freebsd-dev/gnu/lib/libg++/include/Complex.h
Jordan K. Hubbard be25b01844 Michael Reifenberger's libg++ port
Submitted by:	mr
1994-11-13 05:57:35 +00:00

250 lines
5.6 KiB
C++

// This may look like C code, but it is really -*- C++ -*-
/*
Copyright (C) 1988 Free Software Foundation
written by Doug Lea (dl@rocky.oswego.edu)
This file is part of the GNU C++ Library. This library is free
software; you can redistribute it and/or modify it under the terms of
the GNU Library General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your
option) any later version. This library is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free Software
Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifndef _Complex_h
#ifdef __GNUG__
#pragma interface
#endif
#define _Complex_h 1
#include <iostream.h>
#include <math.h>
class Complex
{
#ifdef __ATT_complex__
public:
#else
protected:
#endif
double re;
double im;
public:
double real() const;
double imag() const;
Complex();
Complex(const Complex& y);
Complex(double r, double i=0);
~Complex();
Complex& operator = (const Complex& y);
Complex& operator += (const Complex& y);
Complex& operator += (double y);
Complex& operator -= (const Complex& y);
Complex& operator -= (double y);
Complex& operator *= (const Complex& y);
Complex& operator *= (double y);
Complex& operator /= (const Complex& y);
Complex& operator /= (double y);
void error(const char* msg) const;
};
// non-inline functions
Complex operator / (const Complex& x, const Complex& y);
Complex operator / (const Complex& x, double y);
Complex operator / (double x, const Complex& y);
Complex cos(const Complex& x);
Complex sin(const Complex& x);
Complex cosh(const Complex& x);
Complex sinh(const Complex& x);
Complex exp(const Complex& x);
Complex log(const Complex& x);
Complex pow(const Complex& x, int p);
Complex pow(const Complex& x, const Complex& p);
Complex pow(const Complex& x, double y);
Complex sqrt(const Complex& x);
istream& operator >> (istream& s, Complex& x);
ostream& operator << (ostream& s, const Complex& x);
// inline members
inline double Complex::real() const { return re; }
inline double Complex::imag() const { return im; }
inline Complex::Complex() {}
inline Complex::Complex(const Complex& y) :re(y.real()), im(y.imag()) {}
inline Complex::Complex(double r, double i) :re(r), im(i) {}
inline Complex::~Complex() {}
inline Complex& Complex::operator = (const Complex& y)
{
re = y.real(); im = y.imag(); return *this;
}
inline Complex& Complex::operator += (const Complex& y)
{
re += y.real(); im += y.imag(); return *this;
}
inline Complex& Complex::operator += (double y)
{
re += y; return *this;
}
inline Complex& Complex::operator -= (const Complex& y)
{
re -= y.real(); im -= y.imag(); return *this;
}
inline Complex& Complex::operator -= (double y)
{
re -= y; return *this;
}
inline Complex& Complex::operator *= (const Complex& y)
{
double r = re * y.real() - im * y.imag();
im = re * y.imag() + im * y.real();
re = r;
return *this;
}
inline Complex& Complex::operator *= (double y)
{
re *= y; im *= y; return *this;
}
// functions
inline int operator == (const Complex& x, const Complex& y)
{
return x.real() == y.real() && x.imag() == y.imag();
}
inline int operator == (const Complex& x, double y)
{
return x.imag() == 0.0 && x.real() == y;
}
inline int operator != (const Complex& x, const Complex& y)
{
return x.real() != y.real() || x.imag() != y.imag();
}
inline int operator != (const Complex& x, double y)
{
return x.imag() != 0.0 || x.real() != y;
}
inline Complex operator - (const Complex& x)
{
return Complex(-x.real(), -x.imag());
}
inline Complex conj(const Complex& x)
{
return Complex(x.real(), -x.imag());
}
inline Complex operator + (const Complex& x, const Complex& y)
{
return Complex(x.real() + y.real(), x.imag() + y.imag());
}
inline Complex operator + (const Complex& x, double y)
{
return Complex(x.real() + y, x.imag());
}
inline Complex operator + (double x, const Complex& y)
{
return Complex(x + y.real(), y.imag());
}
inline Complex operator - (const Complex& x, const Complex& y)
{
return Complex(x.real() - y.real(), x.imag() - y.imag());
}
inline Complex operator - (const Complex& x, double y)
{
return Complex(x.real() - y, x.imag());
}
inline Complex operator - (double x, const Complex& y)
{
return Complex(x - y.real(), -y.imag());
}
inline Complex operator * (const Complex& x, const Complex& y)
{
return Complex(x.real() * y.real() - x.imag() * y.imag(),
x.real() * y.imag() + x.imag() * y.real());
}
inline Complex operator * (const Complex& x, double y)
{
return Complex(x.real() * y, x.imag() * y);
}
inline Complex operator * (double x, const Complex& y)
{
return Complex(x * y.real(), x * y.imag());
}
inline double real(const Complex& x)
{
return x.real();
}
inline double imag(const Complex& x)
{
return x.imag();
}
inline double abs(const Complex& x)
{
return hypot(x.real(), x.imag());
}
inline double norm(const Complex& x)
{
return (x.real() * x.real() + x.imag() * x.imag());
}
inline double arg(const Complex& x)
{
return atan2(x.imag(), x.real());
}
inline Complex polar(double r, double t)
{
return Complex(r * cos(t), r * sin(t));
}
#endif