freebsd-dev/sys/dev/bhnd/tools/nvram_map_gen.awk
Matt Macy 4f4eb606dd bhnd nvram map: don't write "variable records written" to standard out by default
Add -v (verbose) option for the developers. The rest of us
derive no value from this information.
2018-05-19 18:15:41 +00:00

4266 lines
112 KiB
Awk
Executable File

#!/usr/bin/awk -f
#-
# Copyright (c) 2015-2016 Landon Fuller <landon@landonf.org>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer,
# without modification.
# 2. Redistributions in binary form must reproduce at minimum a disclaimer
# similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
# redistribution must be conditioned upon including a substantially
# similar Disclaimer requirement for further binary redistribution.
#
# NO WARRANTY
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
# AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
# THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
# OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
# IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
# THE POSSIBILITY OF SUCH DAMAGES.
#
# $FreeBSD$
BEGIN { main() }
END { at_exit() }
#
# Print usage
#
function usage() {
print "usage: bhnd_nvram_map.awk <input map> [-hd] [-o output file]"
_EARLY_EXIT = 1
exit 1
}
function main(_i) {
RS="\n"
OUTPUT_FILE = null
# Probe awk implementation's hex digit handling
if ("0xA" + 0 != 10) {
AWK_REQ_HEX_PARSING=1
}
# Output type
OUT_T = null
OUT_T_HEADER = "HEADER"
OUT_T_DATA = "DATA"
VERBOSE = 0
# Tab width to use when calculating output alignment
TAB_WIDTH = 8
# Enable debug output
DEBUG = 0
# Maximum revision
REV_MAX = 256
# Parse arguments
if (ARGC < 2)
usage()
for (_i = 1; _i < ARGC; _i++) {
if (ARGV[_i] == "--debug") {
DEBUG = 1
} else if (ARGV[_i] == "-d" && OUT_T == null) {
OUT_T = OUT_T_DATA
} else if (ARGV[_i] == "-h" && OUT_T == null) {
OUT_T = OUT_T_HEADER
} else if (ARGV[_i] == "-v") {
VERBOSE = 1
} else if (ARGV[_i] == "-o") {
_i++
if (_i >= ARGC)
usage()
OUTPUT_FILE = ARGV[_i]
} else if (ARGV[_i] == "--") {
_i++
break
} else if (ARGV[_i] !~ /^-/) {
FILENAME = ARGV[_i]
} else {
print "unknown option " ARGV[_i]
usage()
}
}
ARGC=2
if (OUT_T == null) {
print("error: one of -d or -h required")
usage()
}
if (FILENAME == null) {
print("error: no input file specified")
usage()
}
if (OUTPUT_FILE == "-") {
OUTPUT_FILE = "/dev/stdout"
} else if (OUTPUT_FILE == null) {
OUTPUT_FILE_IDX = split(FILENAME, _g_output_path, "/")
OUTPUT_FILE = _g_output_path[OUTPUT_FILE_IDX]
if (OUTPUT_FILE !~ /^bhnd_/)
OUTPUT_FILE = "bhnd_" OUTPUT_FILE
if (OUT_T == OUT_T_HEADER)
OUTPUT_FILE = OUTPUT_FILE ".h"
else
OUTPUT_FILE = OUTPUT_FILE "_data.h"
}
# Common Regexs
UINT_REGEX = "^(0|[1-9][0-9]*)$"
HEX_REGEX = "^(0x[A-Fa-f0-9]+)$"
OFF_REGEX = "^(0|[1-9][0-9]*)|^(0x[A-Fa-f0-9]+)"
REL_OFF_REGEX = "^\\+(0|[1-9][0-9]*)|^\\+(0x[A-Fa-f0-9]+)"
ARRAY_REGEX = "\\[(0|[1-9][0-9]*)\\]"
TYPES_REGEX = "^(((u|i)(8|16|32))|char)("ARRAY_REGEX")?$"
IDENT_REGEX = "[A-Za-z_][A-Za-z0-9_]*"
SVAR_IDENT_REGEX = "^<"IDENT_REGEX">{?$" # <var> identifiers
VAR_IDENT_REGEX = "^"IDENT_REGEX"{?$" # var identifiers
VACCESS_REGEX = "^(private|internal)$"
# Property array keys
PROP_ID = "p_id"
PROP_NAME = "p_name"
# Prop path array keys
PPATH_HEAD = "ppath_head"
PPATH_TAIL = "ppath_tail"
# Object array keys
OBJ_IS_CLS = "o_is_cls"
OBJ_SUPER = "o_super"
OBJ_PROP = "o_prop"
# Class array keys
CLS_NAME = "cls_name"
CLS_PROP = "cls_prop"
# C SPROM binding opcodes/opcode flags
SPROM_OPCODE_EOF = "SPROM_OPCODE_EOF"
SPROM_OPCODE_NELEM = "SPROM_OPCODE_NELEM"
SPROM_OPCODE_VAR_END = "SPROM_OPCODE_VAR_END"
SPROM_OPCODE_VAR_IMM = "SPROM_OPCODE_VAR_IMM"
SPROM_OPCODE_VAR_REL_IMM = "SPROM_OPCODE_VAR_REL_IMM"
SPROM_OPCODE_VAR = "SPROM_OPCODE_VAR"
SPROM_OPCODE_REV_IMM = "SPROM_OPCODE_REV_IMM"
SPROM_OPCODE_REV_RANGE = "SPROM_OPCODE_REV_RANGE"
SPROM_OP_REV_START_MASK = "SPROM_OP_REV_START_MASK"
SPROM_OP_REV_START_SHIFT = "SPROM_OP_REV_START_SHIFT"
SPROM_OP_REV_END_MASK = "SPROM_OP_REV_END_MASK"
SPROM_OP_REV_END_SHIFT = "SPROM_OP_REV_END_SHIFT"
SPROM_OPCODE_MASK_IMM = "SPROM_OPCODE_MASK_IMM"
SPROM_OPCODE_MASK = "SPROM_OPCODE_MASK"
SPROM_OPCODE_SHIFT_IMM = "SPROM_OPCODE_SHIFT_IMM"
SPROM_OPCODE_SHIFT = "SPROM_OPCODE_SHIFT"
SPROM_OPCODE_OFFSET_REL_IMM = "SPROM_OPCODE_OFFSET_REL_IMM"
SPROM_OPCODE_OFFSET = "SPROM_OPCODE_OFFSET"
SPROM_OPCODE_TYPE = "SPROM_OPCODE_TYPE"
SPROM_OPCODE_TYPE_IMM = "SPROM_OPCODE_TYPE_IMM"
SPROM_OPCODE_DO_BINDN_IMM = "SPROM_OPCODE_DO_BINDN_IMM"
SPROM_OPCODE_DO_BIND = "SPROM_OPCODE_DO_BIND"
SPROM_OPCODE_DO_BINDN = "SPROM_OPCODE_DO_BINDN"
SPROM_OP_BIND_SKIP_IN_MASK = "SPROM_OP_BIND_SKIP_IN_MASK"
SPROM_OP_BIND_SKIP_IN_SHIFT = "SPROM_OP_BIND_SKIP_IN_SHIFT"
SPROM_OP_BIND_SKIP_IN_SIGN = "SPROM_OP_BIND_SKIP_IN_SIGN"
SPROM_OP_BIND_SKIP_OUT_MASK = "SPROM_OP_BIND_SKIP_OUT_MASK"
SPROM_OP_BIND_SKIP_OUT_SHIFT = "SPROM_OP_BIND_SKIP_OUT_SHIFT"
SPROM_OP_DATA_U8 = "SPROM_OP_DATA_U8"
SPROM_OP_DATA_U8_SCALED = "SPROM_OP_DATA_U8_SCALED"
SPROM_OP_DATA_U16 = "SPROM_OP_DATA_U16"
SPROM_OP_DATA_U32 = "SPROM_OP_DATA_U32"
SPROM_OP_DATA_I8 = "SPROM_OP_DATA_I8"
SPROM_OP_BIND_SKIP_IN_MAX = 3 # maximum SKIP_IN value
SPROM_OP_BIND_SKIP_IN_MIN = -3 # minimum SKIP_IN value
SPROM_OP_BIND_SKIP_OUT_MAX = 1 # maximum SKIP_OUT value
SPROM_OP_BIND_SKIP_OUT_MIN = 0 # minimum SKIP_OUT value
SPROM_OP_IMM_MAX = 15 # maximum immediate value
SPROM_OP_REV_RANGE_MAX = 15 # maximum SROM rev range value
# SPROM opcode encoding state
SromOpStream = class_new("SromOpStream")
class_add_prop(SromOpStream, p_layout, "layout")
class_add_prop(SromOpStream, p_revisions, "revisions")
class_add_prop(SromOpStream, p_vid, "vid")
class_add_prop(SromOpStream, p_offset, "offset")
class_add_prop(SromOpStream, p_type, "type")
class_add_prop(SromOpStream, p_nelem, "nelem")
class_add_prop(SromOpStream, p_mask, "mask")
class_add_prop(SromOpStream, p_shift, "shift")
class_add_prop(SromOpStream, p_bind_total, "bind_total")
class_add_prop(SromOpStream, p_pending_bind, "pending_bind")
# SROM pending bind operation
SromOpBind = class_new("SromOpBind")
class_add_prop(SromOpBind, p_segment, "segment")
class_add_prop(SromOpBind, p_count, "count")
class_add_prop(SromOpBind, p_offset, "offset")
class_add_prop(SromOpBind, p_width, "width")
class_add_prop(SromOpBind, p_skip_in, "skip_in")
class_add_prop(SromOpBind, p_skip_out, "skip_out")
class_add_prop(SromOpBind, p_buffer, "buffer")
# Map class definition
Map = class_new("Map")
# Array class definition
Array = class_new("Array")
class_add_prop(Array, p_count, "count")
# MacroType class definition
# Used to define a set of known macro types that may be generated
MacroType = class_new("MacroType")
class_add_prop(MacroType, p_name, "name")
class_add_prop(MacroType, p_const_suffix, "const_suffix")
MTypeVarName = macro_type_new("name", "") # var name
MTypeVarID = macro_type_new("id", "_ID") # var unique ID
MTypeVarMaxLen = macro_type_new("len", "_MAXLEN") # var max array length
# Preprocessor Constant
MacroDefine = class_new("MacroDefine")
class_add_prop(MacroDefine, p_name, "name")
class_add_prop(MacroDefine, p_value, "value")
# ParseState definition
ParseState = class_new("ParseState")
class_add_prop(ParseState, p_ctx, "ctx")
class_add_prop(ParseState, p_is_block, "is_block")
class_add_prop(ParseState, p_line, "line")
# Value Formats
Fmt = class_new("Fmt")
class_add_prop(Fmt, p_name, "name")
class_add_prop(Fmt, p_symbol, "symbol")
class_add_prop(Fmt, p_array_fmt, "array_fmt")
FmtHex = fmt_new("hex", "bhnd_nvram_val_bcm_hex_fmt")
FmtDec = fmt_new("decimal", "bhnd_nvram_val_bcm_decimal_fmt")
FmtMAC = fmt_new("macaddr", "bhnd_nvram_val_bcm_macaddr_fmt")
FmtLEDDC = fmt_new("leddc", "bhnd_nvram_val_bcm_leddc_fmt")
FmtCharArray = fmt_new("char_array", "bhnd_nvram_val_char_array_fmt")
FmtChar = fmt_new("char", "bhnd_nvram_val_char_array_fmt",
FmtCharArray)
FmtStr = fmt_new("string", "bhnd_nvram_val_bcm_string_fmt")
# User-specifiable value formats
ValueFormats = map_new()
map_set(ValueFormats, get(FmtHex, p_name), FmtHex)
map_set(ValueFormats, get(FmtDec, p_name), FmtDec)
map_set(ValueFormats, get(FmtMAC, p_name), FmtMAC)
map_set(ValueFormats, get(FmtLEDDC, p_name), FmtLEDDC)
map_set(ValueFormats, get(FmtStr, p_name), FmtStr)
# Data Types
Type = class_new("Type")
class_add_prop(Type, p_name, "name")
class_add_prop(Type, p_width, "width")
class_add_prop(Type, p_signed, "signed")
class_add_prop(Type, p_const, "const")
class_add_prop(Type, p_const_val, "const_val")
class_add_prop(Type, p_array_const, "array_const")
class_add_prop(Type, p_array_const_val, "array_const_val")
class_add_prop(Type, p_default_fmt, "default_fmt")
class_add_prop(Type, p_mask, "mask")
ArrayType = class_new("ArrayType", AST)
class_add_prop(ArrayType, p_type, "type")
class_add_prop(ArrayType, p_count, "count")
UInt8Max = 255
UInt16Max = 65535
UInt32Max = 4294967295
Int8Min = -128
Int8Max = 127
Int16Min = -32768
Int16Max = 32767
Int32Min = -2147483648
Int32Max = 2147483648
CharMin = Int8Min
CharMax = Int8Max
UInt8 = type_new("u8", 1, 0, "BHND_NVRAM_TYPE_UINT8",
"BHND_NVRAM_TYPE_UINT8_ARRAY", FmtHex, UInt8Max, 0, 16)
UInt16 = type_new("u16", 2, 0, "BHND_NVRAM_TYPE_UINT16",
"BHND_NVRAM_TYPE_UINT16_ARRAY", FmtHex, UInt16Max, 1, 17)
UInt32 = type_new("u32", 4, 0, "BHND_NVRAM_TYPE_UINT32",
"BHND_NVRAM_TYPE_UINT32_ARRAY", FmtHex, UInt32Max, 2, 18)
Int8 = type_new("i8", 1, 1, "BHND_NVRAM_TYPE_INT8",
"BHND_NVRAM_TYPE_INT8_ARRAY", FmtDec, UInt8Max, 4, 20)
Int16 = type_new("i16", 2, 1, "BHND_NVRAM_TYPE_INT16",
"BHND_NVRAM_TYPE_INT16_ARRAY", FmtDec, UInt16Max, 5, 21)
Int32 = type_new("i32", 4, 1, "BHND_NVRAM_TYPE_INT32",
"BHND_NVRAM_TYPE_INT32_ARRAY", FmtDec, UInt32Max, 6, 22)
Char = type_new("char", 1, 1, "BHND_NVRAM_TYPE_CHAR",
"BHND_NVRAM_TYPE_CHAR_ARRAY", FmtChar, UInt8Max, 8, 24)
BaseTypes = map_new()
map_set(BaseTypes, get(UInt8, p_name), UInt8)
map_set(BaseTypes, get(UInt16, p_name), UInt16)
map_set(BaseTypes, get(UInt32, p_name), UInt32)
map_set(BaseTypes, get(Int8, p_name), Int8)
map_set(BaseTypes, get(Int16, p_name), Int16)
map_set(BaseTypes, get(Int32, p_name), Int32)
map_set(BaseTypes, get(Char, p_name), Char)
BaseTypesArray = map_to_array(BaseTypes)
BaseTypesCount = array_size(BaseTypesArray)
# Variable Flags
VFlag = class_new("VFlag")
class_add_prop(VFlag, p_name, "name")
class_add_prop(VFlag, p_const, "const")
VFlagPrivate = vflag_new("private", "BHND_NVRAM_VF_MFGINT")
VFlagIgnoreAll1 = vflag_new("ignall1", "BHND_NVRAM_VF_IGNALL1")
# Variable Access Type Constants
VAccess = class_new("VAccess")
VAccessPublic = obj_new(VAccess) # Public
VAccessPrivate = obj_new(VAccess) # MFG Private
VAccessInternal = obj_new(VAccess) # Implementation-Internal
#
# AST node classes
#
AST = class_new("AST")
class_add_prop(AST, p_line, "line")
SymbolContext = class_new("SymbolContext", AST)
class_add_prop(SymbolContext, p_vars, "vars")
# NVRAM root parser context
NVRAM = class_new("NVRAM", SymbolContext)
class_add_prop(NVRAM, p_var_groups, "var_groups")
class_add_prop(NVRAM, p_srom_layouts, "srom_layouts")
class_add_prop(NVRAM, p_srom_table, "srom_table")
# Variable Group
VarGroup = class_new("VarGroup", SymbolContext)
class_add_prop(VarGroup, p_name, "name")
# Revision Range
RevRange = class_new("RevRange", AST)
class_add_prop(RevRange, p_start, "start")
class_add_prop(RevRange, p_end, "end")
# String Constant
StringConstant = class_new("StringConstant", AST)
class_add_prop(StringConstant, p_value, "value") # string
class_add_prop(StringConstant, p_continued, "continued") # bool
# Variable Declaration
Var = class_new("Var", AST)
class_add_prop(Var, p_access, "access") # VAccess
class_add_prop(Var, p_name, "name") # string
class_add_prop(Var, p_desc, "desc") # StringConstant
class_add_prop(Var, p_help, "help") # StringConstant
class_add_prop(Var, p_type, "type") # AbstractType
class_add_prop(Var, p_fmt, "fmt") # Fmt
class_add_prop(Var, p_ignall1, "ignall1") # bool
# ID is assigned once all variables are sorted
class_add_prop(Var, p_vid, "vid") # int
# Common interface inherited by parser contexts that support
# registration of SROM variable entries
SromContext = class_new("SromContext", AST)
class_add_prop(SromContext, p_revisions, "revisions")
# SROM Layout Node
SromLayout = class_new("SromLayout", SromContext)
class_add_prop(SromLayout, p_entries, "entries") # Array<SromEntry>
class_add_prop(SromLayout, p_revmap, "revmap") # Map<(string,int), SromEntry>
class_add_prop(SromLayout, p_output_var_counts, # Map<int, int> (rev->count)
"output_var_counts")
# SROM Layout Filter Node
# Represents a filter over a parent SromLayout's revisions
SromLayoutFilter = class_new("SromLayoutFilter", SromContext)
class_add_prop(SromLayoutFilter, p_parent, "parent")
# SROM variable entry
SromEntry = class_new("SromEntry", AST)
class_add_prop(SromEntry, p_var, "var")
class_add_prop(SromEntry, p_revisions, "revisions")
class_add_prop(SromEntry, p_base_offset, "base_offset")
class_add_prop(SromEntry, p_type, "type")
class_add_prop(SromEntry, p_offsets, "offsets")
# SROM variable offset
SromOffset = class_new("SromOffset", AST)
class_add_prop(SromOffset, p_segments, "segments")
# SROM variable offset segment
SromSegment = class_new("SromSegment", AST)
class_add_prop(SromSegment, p_offset, "offset")
class_add_prop(SromSegment, p_type, "type")
class_add_prop(SromSegment, p_mask, "mask")
class_add_prop(SromSegment, p_shift, "shift")
class_add_prop(SromSegment, p_value, "value")
# Create the parse state stack
_g_parse_stack_depth = 0
_g_parse_stack[0] = null
# Push the root parse state
parser_state_push(nvram_new(), 0)
}
function at_exit(_block_start, _state, _output_vars, _noutput_vars, _name, _var,
_i)
{
# Skip completion handling if exiting from an error
if (_EARLY_EXIT)
exit 1
# Check for complete block closure
if (!in_parser_context(NVRAM)) {
_state = parser_state_get()
_block_start = get(_state, p_line)
errorx("missing '}' for block opened on line " _block_start "")
}
# Apply lexicographical sorting to our variable names. To support more
# effecient table searching, we guarantee a stable sort order (using C
# collation).
#
# This also has a side-effect of generating a unique monotonic ID
# for all variables, which we will emit as a #define and can use as a
# direct index into the C variable table
_output_vars = array_new()
for (_name in _g_var_names) {
_var = _g_var_names[_name]
# Don't include internal variables in the output
if (var_is_internal(_var))
continue
array_append(_output_vars, _var)
}
# Sort by variable name
array_sort(_output_vars, prop_to_path(p_name))
# Set all variable ID properties to their newly assigned ID value
_noutput_vars = array_size(_output_vars)
for (_i = 0; _i < _noutput_vars; _i++) {
_var = array_get(_output_vars, _i)
set(_var, p_vid, _i)
}
# Truncate output file and write common header
printf("") > OUTPUT_FILE
emit("/*\n")
emit(" * THIS FILE IS AUTOMATICALLY GENERATED. DO NOT EDIT.\n")
emit(" *\n")
emit(" * generated from nvram map: " FILENAME "\n")
emit(" */\n")
emit("\n")
# Emit all variable definitions
if (OUT_T == OUT_T_DATA) {
write_data(_output_vars)
} else if (OUT_T == OUT_T_HEADER) {
write_header(_output_vars)
}
if (VERBOSE == 1) {
printf("%u variable records written to %s\n", array_size(_output_vars),
OUTPUT_FILE) >> "/dev/stderr"
}
}
# Write the public header (output type HEADER)
function write_header(output_vars, _noutput_vars, _var,
_tab_align, _macro, _macros, _num_macros, _i)
{
# Produce our array of #defines
_num_macros = 0
_noutput_vars = array_size(output_vars)
for (_i = 0; _i < _noutput_vars; _i++) {
_var = array_get(output_vars, _i)
# Variable name
_macro = var_get_macro(_var, MTypeVarName, \
"\"" get(_var, p_name) "\"")
_macros[_num_macros++] = _macro
# Variable array length
if (var_has_array_type(_var)) {
_macro = var_get_macro(_var, MTypeVarMaxLen,
var_get_array_len(_var))
_macros[_num_macros++] = _macro
}
}
# Calculate value tab alignment position for our macros
_tab_align = macros_get_tab_alignment(_macros, _num_macros)
# Write the macros
for (_i = 0; _i < _num_macros; _i++)
write_macro_define(_macros[_i], _tab_align)
}
# Write the private data header (output type DATA)
function write_data(output_vars, _noutput_vars, _var, _nvram, _layouts,
_nlayouts, _layout, _revs, _rev, _rev_start, _rev_end, _base_type,
_srom_table, _nsrom_table, _i, _j)
{
_nvram = parser_state_get_context(NVRAM)
_layouts = get(_nvram, p_srom_layouts)
_nlayouts = array_size(_layouts)
_noutput_vars = array_size(output_vars)
# Write all our private NVAR_ID defines
write_data_defines(output_vars)
# Write all layout binding opcodes, and build an array
# mapping SROM revision to corresponding SROM layout
_srom_table = array_new()
for (_i = 0; _i < _nlayouts; _i++) {
_layout = array_get(_layouts, _i)
# Write binding opcode table to our output file
write_srom_bindings(_layout)
# Add entries to _srom_table for all covered revisions
_revs = get(_layout, p_revisions)
_rev_start = get(_revs, p_start)
_rev_end = get(_revs, p_end)
for (_j = _rev_start; _j <= _rev_end; _j++)
array_append(_srom_table, _j)
}
# Sort in ascending order, by SROM revision
array_sort(_srom_table)
_nsrom_table = array_size(_srom_table)
# Write the variable definitions
emit("/* Variable definitions */\n")
emit("const struct bhnd_nvram_vardefn " \
"bhnd_nvram_vardefns[] = {\n")
output_depth++
for (_i = 0; _i < _noutput_vars; _i++) {
write_data_nvram_vardefn(array_get(output_vars, _i))
}
output_depth--
emit("};\n")
emit("const size_t bhnd_nvram_num_vardefns = " _noutput_vars ";\n")
# Write static asserts for raw type constant values that must be kept
# synchronized with the code
for (_i = 0; _i < BaseTypesCount; _i++) {
_base_type = array_get(BaseTypesArray, _i)
emit(sprintf("_Static_assert(%s == %u, \"%s\");\n",
type_get_const(_base_type), type_get_const_val(_base_type),
"type constant out of sync"))
emit(sprintf("_Static_assert(%s == %u, \"%s\");\n",
get(_base_type, p_array_const),
get(_base_type, p_array_const_val),
"array type constant out of sync"))
}
# Write all top-level bhnd_sprom_layout entries
emit("/* SPROM layouts */\n")
emit("const struct bhnd_sprom_layout bhnd_sprom_layouts[] = {\n")
output_depth++
for (_i = 0; _i < _nsrom_table; _i++) {
_rev = array_get(_srom_table, _i)
_layout = nvram_get_srom_layout(_nvram, _rev)
write_data_srom_layout(_layout, _rev)
}
output_depth--
emit("};\n")
emit("const size_t bhnd_sprom_num_layouts = " _nsrom_table ";\n")
}
# Write a bhnd_nvram_vardef entry for the given variable
function write_data_nvram_vardefn(v, _desc, _help, _type, _fmt) {
obj_assert_class(v, Var)
_desc = get(v, p_desc)
_help = get(v, p_help)
_type = get(v, p_type)
_fmt = var_get_fmt(v)
emit("{\n")
output_depth++
emit(sprintf(".name = \"%s\",\n", get(v, p_name)))
if (_desc != null)
emit(sprintf(".desc = \"%s\",\n", get(_desc, p_value)))
else
emit(".desc = NULL,\n")
if (_help != null)
emit(sprintf(".help = \"%s\",\n", get(_help, p_value)))
else
emit(".help = NULL,\n")
emit(".type = " type_get_const(_type) ",\n")
emit(".nelem = " var_get_array_len(v) ",\n")
emit(".fmt = &" get(_fmt, p_symbol) ",\n")
emit(".flags = " gen_var_flags(v) ",\n")
output_depth--
emit("},\n")
}
# Write a top-level bhnd_sprom_layout entry for the given revision
# and layout definition
function write_data_srom_layout(layout, revision, _flags, _size,
_sromcrc, _crc_seg, _crc_off,
_sromsig, _sig_seg, _sig_offset, _sig_value,
_sromrev, _rev_seg, _rev_off,
_num_vars)
{
_flags = array_new()
# Calculate the size; it always follows the internal CRC variable
_sromcrc = srom_layout_find_entry(layout, "<sromcrc>", revision)
if (_sromcrc == null) {
errorx("missing '<sromcrc>' entry for '"revision"' layout, " \
"cannot compute total size")
} else {
_crc_seg = srom_entry_get_single_segment(_sromcrc)
_crc_off = get(_crc_seg, p_offset)
_size = _crc_off
_size += get(get(_crc_seg, p_type), p_width)
}
# Fetch signature definition
_sromsig = srom_layout_find_entry(layout, "<sromsig>", revision)
if (_sromsig == null) {
array_append(_flags, "SPROM_LAYOUT_MAGIC_NONE")
} else {
_sig_seg = srom_entry_get_single_segment(_sromsig)
_sig_offset = get(_sig_seg, p_offset)
_sig_value = get(_sig_seg, p_value)
if (_sig_value == "")
errorc(get(_sromsig, p_line), "missing signature value")
}
# Fetch sromrev definition
_sromrev = srom_layout_find_entry(layout, "sromrev", revision)
if (_sromrev == null) {
errorx("missing 'sromrev' entry for '"revision"' layout, " \
"cannot determine offset")
} else {
# Must be a u8 value
if (!type_equal(get(_sromrev, p_type), UInt8)) {
errorx("'sromrev' entry has non-u8 type '" \
type_to_string(get(_sromrev, p_type)))
}
_rev_seg = srom_entry_get_single_segment(_sromrev)
_rev_off = get(_rev_seg, p_offset)
}
# Write layout entry
emit("{\n")
output_depth++
emit(".size = "_size",\n")
emit(".rev = "revision",\n")
if (array_size(_flags) > 0) {
emit(".flags = " array_join(_flags, "|") ",\n")
} else {
emit(".flags = 0,\n")
}
emit(".srev_offset = " _rev_off ",\n")
if (_sromsig != null) {
emit(".magic_offset = " _sig_offset ",\n")
emit(".magic_value = " _sig_value ",\n")
} else {
emit(".magic_offset = 0,\n")
emit(".magic_value = 0,\n")
}
emit(".crc_offset = " _crc_off ",\n")
emit(".bindings = " srom_layout_get_variable_name(layout) ",\n")
emit(".bindings_size = nitems(" \
srom_layout_get_variable_name(layout) "),\n")
emit(".num_vars = " srom_layout_num_output_vars(layout, revision) ",\n")
obj_delete(_flags)
output_depth--
emit("},\n");
}
# Create a new opstream encoding state instance for the given layout
function srom_ops_new(layout, _obj) {
obj_assert_class(layout, SromLayout)
_obj = obj_new(SromOpStream)
set(_obj, p_layout, layout)
set(_obj, p_revisions, get(layout, p_revisions))
set(_obj, p_vid, 0)
set(_obj, p_offset, 0)
set(_obj, p_type, null)
set(_obj, p_mask, null)
set(_obj, p_shift, null)
return (_obj)
}
# Return the current type width, or throw an error if no type is currently
# specified.
function srom_ops_get_type_width(opstream, _type)
{
obj_assert_class(opstream, SromOpStream)
_type = get(opstream, p_type)
if (_type == null)
errorx("no type value set")
return (get(type_get_base(_type), p_width))
}
# Write a string to the SROM opcode stream, either buffering the write,
# or emitting it directly.
function srom_ops_emit(opstream, string, _pending_bind, _buffer) {
obj_assert_class(opstream, SromOpStream)
# Buffered?
if ((_pending_bind = get(opstream, p_pending_bind)) != null) {
_buffer = get(_pending_bind, p_buffer)
array_append(_buffer, string)
return
}
# Emit directly
emit(string)
}
# Emit a SROM opcode followed by up to four optional bytes
function srom_ops_emit_opcode(opstream, opcode, arg0, arg1, arg2, arg3) {
obj_assert_class(opstream, SromOpStream)
srom_ops_emit(opstream, opcode",\n")
if (arg0 != "") srom_ops_emit(opstream, arg0",\n")
if (arg1 != "") srom_ops_emit(opstream, arg1",\n")
if (arg2 != "") srom_ops_emit(opstream, arg2",\n")
if (arg3 != "") srom_ops_emit(opstream, arg3",\n")
}
# Emit a SROM opcode and associated integer value, choosing the best
# SROM_OP_DATA variant for encoding the value.
#
# opc: The standard opcode for non-IMM encoded data, or null if none
# opc_imm: The IMM opcode, or null if none
# value: The value to encode
# svalue: Symbolic representation of value to include in output, or null
function srom_ops_emit_int_opcode(opstream, opc, opc_imm, value, svalue,
_width, _offset, _delta)
{
obj_assert_class(opstream, SromOpStream)
# Fetch current type width
_width = srom_ops_get_type_width(opstream)
# Special cases:
if (opc_imm == SPROM_OPCODE_SHIFT_IMM) {
# SHIFT_IMM -- the imm value must be positive and divisible by
# two (shift/2) to use the IMM form.
if (value >= 0 && value % 2 == 0) {
value = (value/2)
opc = null
} else {
opc_imm = null
}
} else if (opc_imm == SPROM_OPCODE_OFFSET_REL_IMM) {
# OFFSET_REL_IMM -- the imm value must be positive, divisible
# by the type width, and relative to the last offset to use
# the IMM form.
# Assert that callers correctly flushed any pending bind before
# attempting to set a relative offset
if (get(opstream, p_pending_bind) != null)
errorx("can't set relative offset with a pending bind")
# Fetch current offset, calculate relative value and determine
# whether we can issue an IMM opcode
_offset = get(opstream, p_offset)
_delta = value - _offset
if (_delta >= 0 &&
_delta % _width == 0 &&
(_delta/_width) <= SPROM_OP_IMM_MAX)
{
srom_ops_emit(opstream,
sprintf("/* %#x + %#x -> %#x */\n", _offset,
_delta, value))
value = (_delta / _width)
opc = null
} else {
opc_imm = null
}
}
# If no symbolic representation provided, write the raw value
if (svalue == null)
svalue = value
# Try to encode as IMM value?
if (opc_imm != null && value >= 0 && value <= SPROM_OP_IMM_MAX) {
srom_ops_emit_opcode(opstream, "("opc_imm"|"svalue")")
return
}
# Can't encode as immediate; do we have a non-immediate form?
if (opc == null)
errorx("can't encode '" value "' as immediate, and no " \
"non-immediate form was provided")
# Determine and emit minimal encoding
# We let the C compiler perform the bit operations, rather than
# trying to wrestle awk's floating point arithmetic
if (value < 0) {
# Only Int8 is used
if (value < Int8Min)
errorx("cannot int8 encode '" value "'")
srom_ops_emit_opcode(opstream,
"("opc"|"SPROM_OP_DATA_I8")", svalue)
} else if (value <= UInt8Max) {
srom_ops_emit_opcode(opstream,
"("opc"|"SPROM_OP_DATA_U8")", svalue)
} else if (value % _width == 0 && (value / _width) <= UInt8Max) {
srom_ops_emit_opcode(opstream,
"("opc"|"SPROM_OP_DATA_U8_SCALED")", svalue / _width)
} else if (value <= UInt16Max) {
srom_ops_emit_opcode(opstream,
"("opc"|"SPROM_OP_DATA_U16")",
"("svalue" & 0xFF)",
"("svalue" >> 8)")
} else if (value <= UInt32Max) {
srom_ops_emit_opcode(opstream,
"("opc"|"SPROM_OP_DATA_U32")",
"("svalue" & 0xFF)",
"(("svalue" >> 8) & 0xFF)",
"(("svalue" >> 16) & 0xFF)",
"(("svalue" >> 24) & 0xFF)")
} else {
errorx("can't encode '" value "' (too large)")
}
}
# Emit initial OPCODE_VAR opcode and update opstream state
function srom_ops_reset_var(opstream, var, _vid_prev, _vid, _vid_name,
_type, _base_type)
{
obj_assert_class(opstream, SromOpStream)
obj_assert_class(var, Var)
# Flush any pending bind for the previous variable
srom_ops_flush_bind(opstream, 1)
# Fetch current state
_vid_prev = get(opstream, p_vid)
_vid = get(var, p_vid)
_vid_name = var_get_macro_name(var, MTypeVarID)
# Update state
_type = get(var, p_type)
set(opstream, p_vid, _vid)
set(opstream, p_type, type_get_base(_type))
set(opstream, p_nelem, var_get_array_len(var))
set(opstream, p_mask, type_get_default_mask(_type))
set(opstream, p_shift, 0)
set(opstream, p_bind_total, 0)
# Always provide a human readable comment
srom_ops_emit(opstream, sprintf("/* %s (%#x) */\n", get(var, p_name),
get(opstream, p_offset)))
# Prefer a single VAR_IMM byte
if (_vid_prev == 0 || _vid <= SPROM_OP_IMM_MAX) {
srom_ops_emit_int_opcode(opstream,
null, SPROM_OPCODE_VAR_IMM,
_vid, _vid_name)
return
}
# Try encoding as a single VAR_REL_IMM byte
if (_vid_prev <= _vid && (_vid - _vid_prev) <= SPROM_OP_IMM_MAX) {
srom_ops_emit_int_opcode(opstream,
null, SPROM_OPCODE_VAR_REL_IMM,
_vid - _vid_prev, null)
return
}
# Fall back on a multibyte encoding
srom_ops_emit_int_opcode(opstream, SPROM_OPCODE_VAR, null, _vid,
_vid_name)
}
# Emit OPCODE_REV/OPCODE_REV_RANGE (if necessary) for a new revision range
function srom_ops_emit_revisions(opstream, revisions, _prev_revs,
_start, _end)
{
obj_assert_class(opstream, SromOpStream)
_prev_revs = get(opstream, p_revisions)
if (revrange_equal(_prev_revs, revisions))
return;
# Update stream state
set(opstream, p_revisions, revisions)
_start = get(revisions, p_start)
_end = get(revisions, p_end)
# Sanity-check range values
if (_start < 0 || _end < 0)
errorx("invalid range: " revrange_to_string(revisions))
# If range covers a single revision, and can be encoded within
# SROM_OP_IMM_MAX, we can use the single byte encoding
if (_start == _end && _start <= SPROM_OP_IMM_MAX) {
srom_ops_emit_int_opcode(opstream,
null, SPROM_OPCODE_REV_IMM, _start)
return
}
# Otherwise, we need to use the two byte range encoding
if (_start > SPROM_OP_REV_RANGE_MAX || _end > SPROM_OP_REV_RANGE_MAX) {
errorx(sprintf("cannot encode range values %s (>= %u)",
revrange_to_string(revisions), SPROM_OP_REV_RANGE_MAX))
}
srom_ops_emit_opcode(opstream,
SPROM_OPCODE_REV_RANGE,
sprintf("(%u << %s) | (%u << %s)",
_start, SPROM_OP_REV_START_SHIFT,
_end, SPROM_OP_REV_END_SHIFT))
}
# Emit OPCODE_OFFSET (if necessary) for a new offset
function srom_ops_emit_offset(opstream, offset, _prev_offset, _rel_offset,
_bind)
{
obj_assert_class(opstream, SromOpStream)
# Flush any pending bind before adjusting the offset
srom_ops_flush_bind(opstream, 0)
# Fetch current offset
_prev_offset = get(opstream, p_offset)
if (_prev_offset == offset)
return
# Encode (possibly a relative, 1-byte form) of the offset opcode
srom_ops_emit_int_opcode(opstream, SPROM_OPCODE_OFFSET,
SPROM_OPCODE_OFFSET_REL_IMM, offset, null)
# Update state
set(opstream, p_offset, offset)
}
# Emit OPCODE_TYPE (if necessary) for a new type value; this also
# resets the mask to the type default.
function srom_ops_emit_type(opstream, type, _base_type, _prev_type, _prev_mask,
_default_mask)
{
obj_assert_class(opstream, SromOpStream)
if (!obj_is_instanceof(type, ArrayType))
obj_assert_class(type, Type)
_default_mask = type_get_default_mask(type)
_base_type = type_get_base(type)
# If state already matches the requested type, nothing to be
# done
_prev_type = get(opstream, p_type)
_prev_mask = get(opstream, p_mask)
if (type_equal(_prev_type, _base_type) && _prev_mask == _default_mask)
return
# Update state
set(opstream, p_type, _base_type)
set(opstream, p_mask, _default_mask)
# Emit opcode.
if (type_get_const_val(_base_type) <= SPROM_OP_IMM_MAX) {
# Single byte IMM encoding
srom_ops_emit_opcode(opstream,
SPROM_OPCODE_TYPE_IMM "|" type_get_const(_base_type))
} else {
# Two byte encoding
srom_ops_emit_opcode(opstream, SPROM_OPCODE_TYPE,
type_get_const(_base_type))
}
}
# Emit OPCODE_MASK (if necessary) for a new mask value
function srom_ops_emit_mask(opstream, mask, _prev_mask) {
obj_assert_class(opstream, SromOpStream)
_prev_mask = get(opstream, p_mask)
if (_prev_mask == mask)
return
set(opstream, p_mask, mask)
srom_ops_emit_int_opcode(opstream,
SPROM_OPCODE_MASK, SPROM_OPCODE_MASK_IMM,
mask, sprintf("0x%x", mask))
}
# Emit OPCODE_SHIFT (if necessary) for a new shift value
function srom_ops_emit_shift(opstream, shift, _prev_shift) {
obj_assert_class(opstream, SromOpStream)
_prev_shift = get(opstream, p_shift)
if (_prev_shift == shift)
return
set(opstream, p_shift, shift)
srom_ops_emit_int_opcode(opstream,
SPROM_OPCODE_SHIFT, SPROM_OPCODE_SHIFT_IMM,
shift, null)
}
# Return true if a valid BIND/BINDN encoding exists for the given SKIP_IN
# value, false if the skip values exceed the limits of the bind opcode
# family.
function srom_ops_can_encode_skip_in(skip_in) {
return (skip_in >= SPROM_OP_BIND_SKIP_IN_MIN &&
skip_in <= SPROM_OP_BIND_SKIP_IN_MAX)
}
# Return true if a valid BIND/BINDN encoding exists for the given SKIP_OUT
# value, false if the skip values exceed the limits of the bind opcode
# family.
function srom_ops_can_encode_skip_out(skip_out) {
return (skip_in >= SPROM_OP_BIND_SKIP_IN_MIN &&
skip_in <= SPROM_OP_BIND_SKIP_IN_MAX)
}
# Return true if a valid BIND/BINDN encoding exists for the given skip
# values, false if the skip values exceed the limits of the bind opcode
# family.
function srom_ops_can_encode_skip(skip_in, skip_out) {
return (srom_ops_can_encode_skip_in(skip_in) &&
srom_ops_can_encode_skip_out(skip_out))
}
# Create a new SromOpBind instance for the given segment
function srom_opbind_new(segment, skip_in, skip_out, _obj, _type, _width,
_offset)
{
obj_assert_class(segment, SromSegment)
# Verify that an encoding exists for the skip values
if (!srom_ops_can_encode_skip_in(skip_in)) {
errorx(sprintf("cannot encode SKIP_IN=%d; maximum supported " \
"range %d-%d", skip_in,
SPROM_OP_BIND_SKIP_IN_MIN, SPROM_OP_BIND_SKIP_IN_MAX))
}
if (!srom_ops_can_encode_skip_out(skip_out)) {
errorx(sprintf("cannot encode SKIP_OUT=%d; maximum supported " \
"range %d-%d", skip_out,
SPROM_OP_BIND_SKIP_OUT_MIN, SPROM_OP_BIND_SKIP_OUT_MAX))
}
# Fetch basic segment info
_offset = get(segment, p_offset)
_type = srom_segment_get_base_type(segment)
_width = get(_type, p_width)
# Construct new instance
_obj = obj_new(SromOpBind)
set(_obj, p_segment, segment)
set(_obj, p_count, 1)
set(_obj, p_offset, _offset)
set(_obj, p_width, _width)
set(_obj, p_skip_in, skip_in)
set(_obj, p_skip_out, skip_out)
set(_obj, p_buffer, array_new())
return (_obj)
}
# Try to coalesce a BIND for the given segment with an existing bind request,
# returning true on success, or false if the two segments cannot be coalesced
# into the existing request
function srom_opbind_append(bind, segment, skip_out, _bind_seg, _bind_off,
_width, _count, _skip_in, _seg_offset, _delta)
{
obj_assert_class(bind, SromOpBind)
obj_assert_class(segment, SromSegment)
# Are the segments compatible?
_bind_seg = get(bind, p_segment)
if (!srom_segment_attributes_equal(_bind_seg, segment))
return (0)
# Are the output skip values compatible?
if (get(bind, p_skip_out) != skip_out)
return (0)
# Find bind offset/count/width/skip
_bind_off = get(bind, p_offset)
_count = get(bind, p_count)
_skip_in = get(bind, p_skip_in)
_width = get(bind, p_width)
# Fetch new segment's offset
_seg_offset = get(segment, p_offset)
# If there's only one segment in the bind op, we ned to compute the
# skip value to be used for all later segments (including the
# segment we're attempting to append)
#
# If there's already multiple segments, we just need to verify that
# the bind_offset + (count * width * skip_in) produces the new
# segment's offset
if (_count == 1) {
# Determine the delta between the two segment offsets. This
# must be a multiple of the type width to be encoded
# as a BINDN entry
_delta = _seg_offset - _bind_off
if ((_delta % _width) != 0)
return (0)
# The skip byte count is calculated as (type width * skip)
_skip_in = _delta / _width
# Is the skip encodable?
if (!srom_ops_can_encode_skip_in(_skip_in))
return (0)
# Save required skip
set(bind, p_skip_in, _skip_in)
} else if (_count > 1) {
# Get the final offset of the binding if we were to add
# one additional segment
_bind_off = _bind_off + (_width * _skip_in * (_count + 1))
# If it doesn't match our segment's offset, we can't
# append this segment
if (_bind_off != _seg_offset)
return (0)
}
# Success! Increment the bind count in the existing bind
set(bind, p_count, _count + 1)
return (1)
}
# Return true if the given binding operation can be omitted from the output
# if it would be immediately followed by a VAR, VAR_REL_IMM, or EOF opcode.
#
# The bind operatin must be configured with default count, skip_in, and
# skip_out values of 1, and must contain no buffered post-BIND opcodes
function srom_opbind_is_implicit_encodable(bind) {
obj_assert_class(bind, SromOpBind)
if (get(bind, p_count) != 1)
return (0)
if (get(bind, p_skip_in) != 1)
return (0)
if (get(bind, p_skip_out) != 1)
return (0)
if (array_size(get(bind, p_buffer)) != 0)
return (0)
return (1)
}
# Encode all segment settings for a single offset segment, followed by a bind
# request.
#
# opstream: Opcode stream
# segment: Segment to be written
# continued: If this segment's value should be OR'd with the value of a
# following segment
function srom_ops_emit_segment(opstream, segment, continued, _value,
_bind, _skip_in, _skip_out)
{
obj_assert_class(opstream, SromOpStream)
obj_assert_class(segment, SromSegment)
# Determine basic bind parameters
_count = 1
_skip_in = 1
_skip_out = continued ? 0 : 1
# Try to coalesce with a pending binding
if ((_bind = get(opstream, p_pending_bind)) != null) {
if (srom_opbind_append(_bind, segment, _skip_out))
return
}
# Otherwise, flush any pending bind and enqueue our own
srom_ops_flush_bind(opstream, 0)
if (get(opstream, p_pending_bind))
errorx("bind not flushed!")
# Encode type
_value = get(segment, p_type)
srom_ops_emit_type(opstream, _value)
# Encode offset
_value = get(segment, p_offset)
srom_ops_emit_offset(opstream, _value)
# Encode mask
_value = get(segment, p_mask)
srom_ops_emit_mask(opstream, _value)
# Encode shift
_value = get(segment, p_shift)
srom_ops_emit_shift(opstream, _value)
# Enqueue binding with opstream
_bind = srom_opbind_new(segment, _skip_in, _skip_out)
set(opstream, p_pending_bind, _bind)
}
# (private) Adjust the stream's input offset by applying the given bind
# operation's skip_in * width * count.
function _srom_ops_apply_bind_offset(opstream, bind, _count, _offset, _width,
_skip_in, _opstream_offset)
{
obj_assert_class(opstream, SromOpStream)
obj_assert_class(bind, SromOpBind)
_opstream_offset = get(opstream, p_offset)
_offset = get(bind, p_offset)
if (_opstream_offset != _offset)
errorx("stream/bind offset state mismatch")
_count = get(bind, p_count)
_width = get(bind, p_width)
_skip_in = get(bind, p_skip_in)
set(opstream, p_offset,
_opstream_offset + ((_width * _skip_in) * _count))
}
# (private) Write a bind instance and all buffered opcodes
function _srom_ops_emit_bind(opstream, bind, _count, _skip_in, _skip_out,
_off_start, _width, _si_signbit, _written, _nbuffer, _buffer)
{
obj_assert_class(opstream, SromOpStream)
obj_assert_class(bind, SromOpBind)
# Assert that any pending bind state has already been cleared
if (get(opstream, p_pending_bind) != null)
errorx("cannot flush bind with an existing pending_bind active")
# Fetch (and assert valid) our skip values
_skip_in = get(bind, p_skip_in)
_skip_out = get(bind, p_skip_out)
if (!srom_ops_can_encode_skip(_skip_in, _skip_out))
errorx("invalid skip values in buffered bind")
# Determine SKIP_IN sign bit
_si_signbit = "0"
if (_skip_in < 0)
_si_signbit = SPROM_OP_BIND_SKIP_IN_SIGN
# Emit BIND/BINDN opcodes until the full count is encoded
_count = get(bind, p_count)
while (_count > 0) {
if (_count > 1 && _count <= SPROM_OP_IMM_MAX &&
_skip_in == 1 && _skip_out == 1)
{
# The one-byte BINDN form requires encoding the count
# as a IMM, and has an implicit in/out skip of 1.
srom_ops_emit_opcode(opstream,
"("SPROM_OPCODE_DO_BINDN_IMM"|"_count")")
_count -= _count
} else if (_count > 1) {
# The two byte BINDN form can encode skip values and a
# larger U8 count
_written = min(_count, UInt8Max)
srom_ops_emit_opcode(opstream,
sprintf("(%s|%s|(%u<<%s)|(%u<<%s))",
SPROM_OPCODE_DO_BINDN,
_si_signbit,
abs(_skip_in), SPROM_OP_BIND_SKIP_IN_SHIFT,
_skip_out, SPROM_OP_BIND_SKIP_OUT_SHIFT),
_written)
_count -= _written
} else {
# The 1-byte BIND form can encode the same SKIP values
# as the 2-byte BINDN, with a implicit count of 1
srom_ops_emit_opcode(opstream,
sprintf("(%s|%s|(%u<<%s)|(%u<<%s))",
SPROM_OPCODE_DO_BIND,
_si_signbit,
abs(_skip_in), SPROM_OP_BIND_SKIP_IN_SHIFT,
_skip_out, SPROM_OP_BIND_SKIP_OUT_SHIFT))
_count--
}
}
# Update the stream's input offset
_srom_ops_apply_bind_offset(opstream, bind)
# Write any buffered post-BIND opcodes
_buffer = get(bind, p_buffer)
_nbuffer = array_size(_buffer)
for (_i = 0; _i < _nbuffer; _i++)
srom_ops_emit(opstream, array_get(_buffer, _i))
}
# Flush any buffered binding
function srom_ops_flush_bind(opstream, allow_implicit, _bind, _bind_total)
{
obj_assert_class(opstream, SromOpStream)
# If no pending bind, nothing to flush
if ((_bind = get(opstream, p_pending_bind)) == null)
return
# Check the per-variable bind count to determine whether
# we can encode an implicit bind.
#
# If there have been any explicit bind statements, implicit binding
# cannot be used.
_bind_total = get(opstream, p_bind_total)
if (allow_implicit && _bind_total > 0) {
# Disable implicit encoding; explicit bind statements have
# been issued for this variable previously.
allow_implicit = 0
}
# Increment bind count
set(opstream, p_bind_total, _bind_total + 1)
# Clear the property value
set(opstream, p_pending_bind, null)
# If a pending bind operation can be encoded as an implicit bind,
# emit a descriptive comment and update the stream state.
#
# Otherwise, emit the full set of bind opcode(s)
_base_off = get(opstream, p_offset)
if (allow_implicit && srom_opbind_is_implicit_encodable(_bind)) {
# Update stream's input offset
_srom_ops_apply_bind_offset(opstream, _bind)
} else {
_srom_ops_emit_bind(opstream, _bind)
}
# Provide bind information as a comment
srom_ops_emit(opstream,
sprintf("/* bind (%s @ %#x -> %#x) */\n",
type_to_string(get(opstream, p_type)),
_base_off, get(opstream, p_offset)))
# Clean up
obj_delete(_bind)
}
# Write OPCODE_EOF after flushing any buffered writes
function srom_ops_emit_eof(opstream) {
obj_assert_class(opstream, SromOpStream)
# Flush any buffered writes
srom_ops_flush_bind(opstream, 1)
# Emit an explicit VAR_END opcode for the last entry
srom_ops_emit_opcode(opstream, SPROM_OPCODE_VAR_END)
# Emit EOF
srom_ops_emit_opcode(opstream, SPROM_OPCODE_EOF)
}
# Write the SROM offset segment bindings to the opstream
function write_srom_offset_bindings(opstream, offsets,
_noffsets, _offset, _segs, _nsegs, _segment, _cont,
_i, _j)
{
_noffsets = array_size(offsets)
for (_i = 0; _i < _noffsets; _i++) {
# Encode each segment in this offset
_offset = array_get(offsets, _i)
_segs = get(_offset, p_segments)
_nsegs = array_size(_segs)
for (_j = 0; _j < _nsegs; _j++) {
_segment = array_get(_segs, _j)
_cont = 0
# Should this value be OR'd with the next segment?
if (_j+1 < _nsegs)
_cont = 1
# Encode segment
srom_ops_emit_segment(opstream, _segment, _cont)
}
}
}
# Write the SROM entry stream for a SROM entry to the output file
function write_srom_entry_bindings(entry, opstream, _var, _vid,
_var_type, _entry_type, _offsets, _noffsets)
{
_var = get(entry, p_var)
_vid = get(_var, p_vid)
# Encode revision switch. This resets variable state, so must
# occur before any variable definitions to which it applies
srom_ops_emit_revisions(opstream, get(entry, p_revisions))
# Encode variable ID
srom_ops_reset_var(opstream, _var, _vid)
output_depth++
# Write entry-specific array length (SROM layouts may define array
# mappings with fewer elements than in the variable definition)
if (srom_entry_has_array_type(entry)) {
_var_type = get(_var, p_type)
_entry_type = get(entry, p_type)
# If the array length differs from the variable default,
# write an OPCODE_EXT_NELEM entry
if (type_get_nelem(_var_type) != type_get_nelem(_entry_type)) {
srom_ops_emit_opcode(opstream, SPROM_OPCODE_NELEM,
srom_entry_get_array_len(entry))
}
}
# Write offset segment bindings
_offsets = get(entry, p_offsets)
write_srom_offset_bindings(opstream, _offsets)
output_depth--
}
# Write a SROM layout binding opcode table to the output file
function write_srom_bindings(layout, _varname, _var, _all_entries,
_nall_entries, _entries, _nentries, _entry, _opstream, _i)
{
_varname = srom_layout_get_variable_name(layout)
_all_entries = get(layout, p_entries)
_opstream = srom_ops_new(layout)
#
# Collect all entries to be included in the output, and then
# sort by their variable's assigned ID (ascending).
#
# The variable IDs were previously assigned in lexigraphical sort
# order; since the variable *offsets* tend to match this order, this
# works out well for our compact encoding, allowing us to make use of
# compact relative encoding of both variable IDs and variable offsets.
#
_entries = array_new()
_nall_entries = array_size(_all_entries)
for (_i = 0; _i < _nall_entries; _i++) {
_entry = array_get(_all_entries, _i)
_var = get(_entry, p_var)
# Skip internal variables
if (var_is_internal(_var))
continue
# Sanity check variable ID assignment
if (get(_var, p_vid) == "")
errorx("missing variable ID for " obj_to_string(_var))
array_append(_entries, _entry)
}
# Sort entries by (variable ID, revision range), ascending
array_sort(_entries, prop_path_create(p_var, p_vid),
prop_path_create(p_revisions, p_start),
prop_path_create(p_revisions, p_end))
# Emit all entry binding opcodes
emit("static const uint8_t " _varname "[] = {\n")
output_depth++
_nentries = array_size(_entries)
for (_i = 0; _i < _nentries; _i++) {
_entry = array_get(_entries, _i)
write_srom_entry_bindings(_entry, _opstream)
}
# Flush and write EOF
srom_ops_emit_eof(_opstream)
output_depth--
emit("};\n")
obj_delete(_opstream)
obj_delete(_entries)
}
# Write the BHND_NVAR_<NAME>_ID #defines to the output file
function write_data_defines(output_vars, _noutput_vars, _tab_align, _var,
_macro, _macros, _num_macros, _i)
{
# Produce our array of #defines
_num_macros = 0
_noutput_vars = array_size(output_vars)
for (_i = 0; _i < _noutput_vars; _i++) {
_var = array_get(output_vars, _i)
# Variable ID
_macro = var_get_macro(_var, MTypeVarID, get(_var, p_vid))
_macros[_num_macros++] = _macro
}
# Calculate value tab alignment position for our macros
_tab_align = macros_get_tab_alignment(_macros, _num_macros)
# Write the #defines
emit("/* ID constants provide an index into the variable array */\n")
for (_i = 0; _i < _num_macros; _i++)
write_macro_define(_macros[_i], _tab_align)
emit("\n\n");
}
# Calculate the common tab alignment to be used with a set of prefix strings
# with the given maximum length
function tab_alignment(max_len, _tab_align) {
_tab_align = max_len
_tab_align += (TAB_WIDTH - (_tab_align % TAB_WIDTH)) % TAB_WIDTH
_tab_align /= TAB_WIDTH
return (_tab_align)
}
# Generate and return a tab string that can be appended to a string of
# `strlen` to pad the column out to `align_to`
#
# Note: If the string from which strlen was derived contains tabs, the result
# is undefined
function tab_str(strlen, align_to, _lead, _pad, _result, _i) {
_lead = strlen
_lead -= (_lead % TAB_WIDTH);
_lead /= TAB_WIDTH;
# Determine required padding to reach the desired alignment
if (align_to >= _lead)
_pad = align_to - _lead;
else
_pad = 1;
for (_i = 0; _i < _pad; _i++)
_result = _result "\t"
return (_result)
}
# Write a MacroDefine constant, padding the constant out to `align_to`
function write_macro_define(macro, align_to, _tabstr, _i) {
# Determine required padding to reach the desired alignment
_tabstr = tab_str(length(get(macro, p_name)), align_to)
emit("#define\t" get(macro, p_name) _tabstr get(macro, p_value) "\n")
}
# Calculate the tab alignment to be used with a given integer-indexed array
# of Macro instances.
function macros_get_tab_alignment(macros, macros_len, _macro, _max_len, _i) {
_max_len = 0
for (_i = 0; _i < macros_len; _i++) {
_macro = macros[_i]
_max_len = max(_max_len, length(get(_macro, p_name)))
}
return (tab_alignment(_max_len))
}
# Variable group block
$1 == "group" && in_parser_context(NVRAM) {
parse_variable_group()
}
# Variable definition
(($1 ~ VACCESS_REGEX && $2 ~ TYPES_REGEX) || $1 ~ TYPES_REGEX) &&
in_parser_context(SymbolContext) \
{
parse_variable_defn()
}
# Variable "fmt" parameter
$1 == "fmt" && in_parser_context(Var) {
parse_variable_param($1)
next
}
# Variable "all1" parameter
$1 == "all1" && in_parser_context(Var) {
parse_variable_param($1)
next
}
# Variable desc/help parameters
($1 == "desc" || $1 == "help") && in_parser_context(Var) {
parse_variable_param($1)
next
}
# SROM layout block
$1 == "srom" && in_parser_context(NVRAM) {
parse_srom_layout()
}
# SROM layout revision filter block
$1 == "srom" && in_parser_context(SromLayout) {
parse_srom_layout_filter()
}
# SROM layout variable entry
$1 ~ "("OFF_REGEX"):$" && \
(in_parser_context(SromLayout) || in_parser_context(SromLayoutFilter)) \
{
parse_srom_variable_entry()
}
# SROM entry segment
$1 ~ "("REL_OFF_REGEX"|"OFF_REGEX")[:,|]?" && in_parser_context(SromEntry) {
parse_srom_entry_segments()
}
# Skip comments and blank lines
/^[ \t]*#/ || /^$/ {
next
}
# Close blocks
/}/ && !in_parser_context(NVRAM) {
while (!in_parser_context(NVRAM) && $0 ~ "}") {
parser_state_close_block();
}
next
}
# Report unbalanced '}'
/}/ && in_parser_context(NVRAM) {
error("extra '}'")
}
# Invalid variable type
$1 && in_parser_context(SymbolContext) {
error("unknown type '" $1 "'")
}
# Generic parse failure
{
error("unrecognized statement")
}
# Create a class instance with the given name
function class_new(name, superclass, _class) {
if (_class != null)
errorx("class_get() must be called with one or two arguments")
# Look for an existing class instance
if (name in _g_class_names)
errorx("redefining class: " name)
# Create and register the class object
_class = obj_new(superclass)
_g_class_names[name] = _class
_g_obj[_class,OBJ_IS_CLS] = 1
_g_obj[_class,CLS_NAME] = name
return (_class)
}
# Return the class instance with the given name
function class_get(name) {
if (name in _g_class_names)
return (_g_class_names[name])
errorx("no such class " name)
}
# Return the name of cls
function class_get_name(cls) {
if (cls == null) {
warnx("class_get_name() called with null class")
return "<null>"
}
if (!obj_is_class(cls))
errorx(cls " is not a class object")
return (_g_obj[cls,CLS_NAME])
}
# Return true if the given property property ID is defined on class
function class_has_prop_id(class, prop_id, _super) {
if (_super != null)
errorx("class_has_prop_id() must be called with two arguments")
if (class == null)
return (0)
if (prop_id == null)
return (0)
# Check class<->prop cache
if ((class, prop_id) in _g_class_prop_cache)
return (1)
# Otherwise, slow path
if (!obj_is_class(class))
errorx(class " is not a class object")
if (_super != null)
errorx("class_has_prop_id() must be called with two arguments")
for (_super = class; _super != null; _super = obj_get_class(_super)) {
if (!((_super,CLS_PROP,prop_id) in _g_obj))
continue
# Found; add to class<->prop cache
_g_class_prop_cache[class,prop_id] = 1
return (1)
}
return (0)
}
# Return true if the given property prop is defined on class
function class_has_property(class, prop) {
if (!(PROP_ID in prop))
return (0)
return (class_has_prop_id(class, prop[PROP_ID]))
}
# Define a `prop` on `class` with the given `name` string
function class_add_prop(class, prop, name, _prop_id) {
if (_prop_id != null)
errorx("class_add_prop() must be called with three arguments")
# Check for duplicate property definition
if (class_has_property(class, prop))
errorx("property " prop[PROP_NAME] " already defined on " \
class_get_name(class))
# Init property IDs
if (_g_prop_ids == null)
_g_prop_ids = 1
# Get (or create) new property entry
if (name in _g_prop_names) {
_prop_id = _g_prop_names[name]
} else {
_prop_id = _g_prop_ids++
_g_prop_names[name] = _prop_id
_g_props[_prop_id] = name
prop[PROP_NAME] = name
prop[PROP_ID] = _prop_id
}
# Add to class definition
_g_obj[class,CLS_PROP,prop[PROP_ID]] = name
return (name)
}
# Return the property ID for a given class-defined property
function class_get_prop_id(class, prop) {
if (class == null)
errorx("class_get_prop_id() on null class")
if (!class_has_property(class, prop)) {
errorx("requested undefined property '" prop[PROP_NAME] "on " \
class_get_name(class))
}
return (prop[PROP_ID])
}
# Return the property ID for a given class-defined property name
function class_get_named_prop_id(class, name, _prop_id) {
if (class == null)
errorx("class_get_prop_id() on null class")
if (!(name in _g_prop_names))
errorx("requested undefined property '" name "'")
_prop_id = _g_prop_names[name]
if (!class_has_prop_id(class, _prop_id)) {
errorx("requested undefined property '" _g_props[_prop_id] \
"' on " class_get_name(class))
}
return (_prop_id)
}
# Create a new instance of the given class
function obj_new(class, _obj) {
if (_obj != null)
errorx("obj_new() must be called with one argument")
if (_g_obj_ids == null)
_g_obj_ids = 1
# Assign ID and set superclass
_obj = _g_obj_ids++
_g_obj[_obj,OBJ_SUPER] = class
return (_obj)
}
# obj_delete() support for Map instances
function _obj_delete_map(obj, _prefix, _key) {
obj_assert_class(obj, Map)
_prefix = "^" obj SUBSEP
for (_key in _g_maps) {
if (!match(_key, _prefix) && _key != obj)
continue
delete _g_maps[_key]
}
}
# obj_delete() support for Array instances
function _obj_delete_array(obj, _size, _i) {
obj_assert_class(obj, Array)
_size = array_size(obj)
for (_i = 0; _i < _size; _i++)
delete _g_arrays[obj,OBJ_PROP,_i]
}
# Destroy all metadata associated with the given object
function obj_delete(obj, _prop_id, _prop_name, _prefix, _key, _size, _i) {
if (obj_is_class(obj))
errorx("cannot delete class objects")
# Handle classes that use external global array storage
# for effeciency
if (obj_is_instanceof(obj, Map)) {
_obj_delete_map(obj)
} else if (obj_is_instanceof(obj, Array)) {
_obj_delete_array(obj)
}
# Delete all object properties
for (_prop_name in _g_prop_names) {
if (!obj_has_prop_id(obj, _prop_id))
continue
_prop_id = _g_prop_names[_prop_name]
delete _g_obj[obj,OBJ_PROP,_prop_id]
delete _g_obj_nr[obj,OBJ_PROP,_prop_id]
}
# Delete instance state
delete _g_obj[obj,OBJ_IS_CLS]
delete _g_obj[obj,OBJ_SUPER]
}
# Print an object's unique ID, class, and properties to
# stdout
function obj_dump(obj, _pname, _prop_id, _prop_val) {
print(class_get_name(obj_get_class(obj)) "<" obj ">:")
# Dump all properties
for (_pname in _g_prop_names) {
_prop_id = _g_prop_names[_pname]
if (!obj_has_prop_id(obj, _prop_id))
continue
_prop_val = prop_get(obj, _prop_id)
printf("\t%s: %s\n", _pname, _prop_val)
}
}
# Return true if obj is a class object
function obj_is_class(obj) {
return (_g_obj[obj,OBJ_IS_CLS] == 1)
}
# Return the class of obj, if any.
function obj_get_class(obj) {
if (obj == null)
errorx("obj_get_class() on null object")
return (_g_obj[obj,OBJ_SUPER])
}
# Return true if obj is an instance of the given class
function obj_is_instanceof(obj, class, _super) {
if (_super != null)
errorx("obj_is_instanceof() must be called with two arguments")
if (!obj_is_class(class))
errorx(class " is not a class object")
if (obj == null) {
errorx("obj_is_instanceof() called with null obj (class " \
class_get_name(class) ")")
}
for (_super = obj_get_class(obj); _super != null;
_super = obj_get_class(_super))
{
if (_super == class)
return (1)
}
return (0)
}
# Default object shallow equality implementation. Returns true if the two
# objects share a common superclass and have identity equality across all defined
# properties.
function obj_trivially_equal(lhs, rhs, _class, _pname, _prop_id) {
# Simple case
if (lhs == rhs)
return (1)
# Must share a common superclass
_class = obj_get_class(lhs)
if (_class != obj_get_class(rhs))
return (0)
# Compare all properties
_prop_count = 0
for (_pname in _g_prop_names) {
_prop_id = _g_prop_names[_pname]
if (!class_has_prop_id(_class, _prop_id))
continue
if (prop_get(lhs, _prop_id) != prop_get(rhs, _prop_id))
return (0)
}
# All properties are trivially equal
return (1)
}
# Return a debug string representation of an object's unique ID, class, and
# properties
function obj_to_string(obj, _pname, _prop_id, _prop_val, _prop_count, _result) {
_result = class_get_name(obj_get_class(obj)) "<" obj ">: { "
# Fetch all properties
_prop_count = 0
for (_pname in _g_prop_names) {
_prop_id = _g_prop_names[_pname]
if (!obj_has_prop_id(obj, _prop_id))
continue
if (_prop_count >= 0)
_result = _result ", "
_result = _result sprintf("\t%s: %s\n", _pname, _prop_val)
_prop_count++
}
return (_result " }")
}
# Assert that obj is an instance of the given class
function obj_assert_class(obj, class) {
if (!obj_is_instanceof(obj, class)) {
errorx(class_get_name(obj_get_class(obj)) "<" obj "> is not " \
"an instance of " class_get_name(class))
}
}
# Return true if the given property prop is defined by the object's superclass
function obj_has_property(obj, prop, _class) {
if (obj == null)
errorx("obj_has_property() on null object")
_class = obj_get_class(obj)
return (class_has_property(_class, prop))
}
# Return true if the given property ID is defined by the object's superclass
function obj_has_prop_id(obj, prop_id, _class) {
if (obj == null)
errorx("obj_has_prop_id() on null object")
_class = obj_get_class(obj)
return (class_has_prop_id(_class, prop_id))
}
# Return the line (NR) at which a given property ID was set on the object
# Will throw an error if the property has not been set on obj
function obj_get_prop_id_nr(obj, prop_id) {
if (obj == null)
errorx("obj_get_prop_id_nr() on null object")
if (!obj_has_prop_id(obj, prop_id)) {
errorx("requested undefined property '" _g_props[prop_id] \
"' (" prop_id ") on " obj_to_string(obj))
}
# Fetch NR
if ((obj,OBJ_PROP,prop_id) in _g_obj_nr)
return (_g_obj_nr[obj,OBJ_PROP,prop_id])
errorx("property '" _g_props[prop_id] "' (" prop_id ") not " \
"previously set on " obj_to_string(obj))
}
# Return the line (NR) at which a given property was set on the object
# Will throw an error if the property has not been set on obj
function obj_get_prop_nr(obj, prop) {
return (obj_get_prop_id_nr(obj, prop[PROP_ID]))
}
# Return an abstract property ID for a given property
function obj_get_prop_id(obj, prop) {
if (obj == null)
errorx("obj_get_prop_id() on null object")
return (class_get_prop_id(obj_get_class(obj), prop))
}
# Return the property ID for a given property name
function obj_get_named_prop_id(obj, name) {
if (obj == null)
errorx("obj_get_named_prop_id() on null object")
return (class_get_named_prop_id(obj_get_class(obj), name))
}
# Set a property on obj
function set(obj, prop, value, _class) {
return (prop_set(obj, prop[PROP_ID], value))
}
# Get a property value defined on obj
function get(obj, prop, _class) {
return (prop_get(obj, prop[PROP_ID]))
}
# Set a property on obj, using a property ID returned by obj_get_prop_id() or
# class_get_prop_id()
function prop_set(obj, prop_id, value, _class) {
if (obj == null) {
errorx("setting property '" _g_props[prop_id] \
"' on null object")
}
_class = obj_get_class(obj)
if (_class == null)
errorx(obj " has no superclass")
if (!class_has_prop_id(_class, prop_id)) {
errorx("requested undefined property '" _g_props[prop_id] \
"' (" prop_id ") on " class_get_name(_class))
}
# Track the line on which the property was set
_g_obj_nr[obj,OBJ_PROP,prop_id] = NR
_g_obj[obj,OBJ_PROP,prop_id] = value
}
# Convert a property ID to a property path.
function prop_id_to_path(prop_id) {
if (!(prop_id in _g_props))
errorx("'" prop_id "' is not a property ID")
# Convert to path string representation
return (""prop_id)
}
# Convert a property to a property path.
function prop_to_path(prop) {
if (!(PROP_ID in prop))
errorx("prop_to_path() called with non-property head")
return (prop_id_to_path(prop[PROP_ID]))
}
# Create a property path from head and tail properties
# Additional properties may be appended via prop_path_append() or
# prop_path_append_id()
function prop_path_create(head, tail) {
if (!(PROP_ID in head))
errorx("prop_path() called with non-property head")
if (!(PROP_ID in tail))
errorx("prop_path() called with non-property tail")
return (head[PROP_ID] SUBSEP tail[PROP_ID])
}
# Append a property to the given property path
function prop_path_append(path, tail) {
if (!(PROP_ID in tail))
errorx("prop_path_append() called with non-property tail")
return (prop_path_append_id(path, tail[PROP_ID]))
}
# Append a property ID to the given property path
function prop_path_append_id(path, tail_id) {
if (!(tail_id in _g_props))
errorx("'" tail_id "' is not a property ID")
return (path SUBSEP tail_id)
}
# Fetch a value from obj using a property path previously returned by
# prop_path_create(), prop_to_path(), etc.
function prop_get_path(obj, prop_path, _class, _prop_ids, _nprop_ids, _next,
_prop_head, _prop_len, _prop_tail)
{
if (obj == null) {
errorx("requested property path '" \
gsub(SUBSEP, ".", prop_path) "' on null object")
}
# Try the cache first
_class = obj_get_class(obj)
if ((_class,prop_path,PPATH_HEAD) in _g_ppath_cache) {
_prop_head = _g_ppath_cache[_class,prop_path,PPATH_HEAD]
_next = prop_get(obj, _prop_head)
if ((_class,prop_path,PPATH_TAIL) in _g_ppath_cache) {
_prop_tail = _g_ppath_cache[_class,prop_path,PPATH_TAIL]
return (prop_get_path(_next, _prop_tail))
}
return (_next)
}
# Parse the head/tail of the property path and add to cache
_nprop_ids = split(prop_path, _prop_ids, SUBSEP)
if (_nprop_ids == 0)
errorx("empty property path")
_prop_head = _prop_ids[1]
_g_ppath_cache[_class,prop_path,PPATH_HEAD] = _prop_head
if (_nprop_ids > 1) {
_prop_len = length(_prop_head)
_prop_tail = substr(prop_path, _prop_len+2)
# Add to cache
_g_ppath_cache[_class,prop_path,PPATH_TAIL] = _prop_tail
}
# Recursively call out implementation, this time fetching from
# cache
return (prop_get_path(obj, prop_path))
}
# Fetch a value property value from obj, using a property ID returned by
# obj_get_prop_id() or class_get_prop_id()
function prop_get(obj, prop_id, _class) {
if (obj == null) {
errorx("requested property '" _g_props[prop_id] \
"' on null object")
}
_class = obj_get_class(obj)
if (_class == null)
errorx(obj " has no superclass")
if (!class_has_prop_id(_class, prop_id)) {
errorx("requested undefined property '" _g_props[prop_id] \
"' (" prop_id ") on " class_get_name(_class))
}
return (_g_obj[obj,OBJ_PROP,prop_id])
}
# Create a new MacroType instance
function macro_type_new(name, const_suffix, _obj) {
_obj = obj_new(MacroType)
set(_obj, p_name, name)
set(_obj, p_const_suffix, const_suffix)
return (_obj)
}
# Create a new MacroDefine instance
function macro_new(name, value, _obj) {
_obj = obj_new(MacroDefine)
set(_obj, p_name, name)
set(_obj, p_value, value)
return (_obj)
}
# Create an empty array; this uses _g_arrays to store integer
# keys/values under the object's property prefix.
function array_new(_obj) {
_obj = obj_new(Array)
set(_obj, p_count, 0)
return (_obj)
}
# Return the number of elements in the array
function array_size(array) {
obj_assert_class(array, Array)
return (get(array, p_count))
}
# Return true if the array is empty
function array_empty(array) {
return (array_size(array) == 0)
}
# Append a value to the array
function array_append(array, value, _i) {
obj_assert_class(array, Array)
_i = get(array, p_count)
_g_arrays[array,OBJ_PROP,_i] = value
set(array, p_count, _i+1)
}
# Set an array value
# An error will be thrown if the idx is outside array bounds
function array_set(array, idx, value) {
obj_assert_class(array, Array)
if (!((array,OBJ_PROP,idx) in _g_arrays))
errorx(idx " out of range of array " obj_to_string(array))
_g_arrays[array,OBJ_PROP,idx] = value
}
# Return value at the given index from the array
# An error will be thrown if 'idx' is outside the array bounds
function array_get(array, idx) {
obj_assert_class(array, Array)
if (!((array,OBJ_PROP,idx) in _g_arrays))
errorx(idx " out of range of array " obj_to_string(array))
return (_g_arrays[array,OBJ_PROP,idx])
}
#
# Sort an array, using standard awk comparison operators over its values.
#
# If `prop_path*` is non-NULL, the corresponding property path (or property ID)
# will be fetched from each array element and used as the sorting value.
#
# If multiple property paths are specified, the array is first sorted by
# the first path, and then any equal values are sorted by the second path,
# and so on.
#
function array_sort(array, prop_path0, prop_path1, prop_path2, _size) {
obj_assert_class(array, Array)
if (_size != null)
errorx("no more than three property paths may be specified")
_size = array_size(array)
if (_size <= 1)
return
_qsort(array, prop_path0, prop_path1, prop_path2, 0, _size-1)
}
function _qsort_get_key(array, idx, prop_path, _v) {
_v = array_get(array, idx)
if (prop_path == null)
return (_v)
return (prop_get_path(_v, prop_path))
}
function _qsort_compare(array, lhs_idx, rhs_val, ppath0, ppath1, ppath2,
_lhs_val, _rhs_prop_val)
{
_lhs_val = _qsort_get_key(array, lhs_idx, ppath0)
if (ppath0 == null)
_rhs_prop_val = rhs_val
else
_rhs_prop_val = prop_get_path(rhs_val, ppath0)
if (_lhs_val == _rhs_prop_val && ppath1 != null) {
_lhs_val = _qsort_get_key(array, lhs_idx, ppath1)
_rhs_prop_val = prop_get_path(rhs_val, ppath1)
if (_lhs_val == _rhs_prop_val && ppath2 != null) {
_lhs_val = _qsort_get_key(array, lhs_idx, ppath2)
_rhs_prop_val = prop_get_path(rhs_val, ppath2)
}
}
if (_lhs_val < _rhs_prop_val)
return (-1)
else if (_lhs_val > _rhs_prop_val)
return (1)
else
return (0)
}
function _qsort(array, ppath0, ppath1, ppath2, first, last, _qpivot,
_qleft, _qleft_val, _qright, _qright_val)
{
if (first >= last)
return
# select pivot element
_qpivot = int(first + int((last-first+1) * rand()))
_qleft = first
_qright = last
_qpivot_val = array_get(array, _qpivot)
# partition
while (_qleft <= _qright) {
while (_qsort_compare(array, _qleft, _qpivot_val, ppath0, ppath1,
ppath2) < 0)
{
_qleft++
}
while (_qsort_compare(array, _qright, _qpivot_val, ppath0, ppath1,
ppath2) > 0)
{
_qright--
}
# swap
if (_qleft <= _qright) {
_qleft_val = array_get(array, _qleft)
_qright_val = array_get(array, _qright)
array_set(array, _qleft, _qright_val)
array_set(array, _qright, _qleft_val)
_qleft++
_qright--
}
}
# sort the partitions
_qsort(array, ppath0, ppath1, ppath2, first, _qright)
_qsort(array, ppath0, ppath1, ppath2, _qleft, last)
}
#
# Join all array values with the given separator
#
# If `prop_path` is non-NULL, the corresponding property path (or property ID)
# will be fetched from each array value and included in the result, rather than
# immediate array value
#
function array_join(array, sep, prop_path, _i, _size, _value, _result) {
obj_assert_class(array, Array)
_result = ""
_size = array_size(array)
for (_i = 0; _i < _size; _i++) {
# Fetch the value (and optionally, a target property)
_value = array_get(array, _i)
if (prop_path != null)
_value = prop_get_path(_value, prop_path)
if (_i+1 < _size)
_result = _result _value sep
else
_result = _result _value
}
return (_result)
}
# Return the first value in the array, or null if empty
function array_first(array) {
obj_assert_class(array, Array)
if (array_size(array) == 0)
return (null)
else
return (array_get(array, 0))
}
# Return the last value in the array, or null if empty
function array_tail(list, _size) {
obj_assert_class(array, Array)
_size = array_size(array)
if (_size == 0)
return (null)
else
return (array_get(array, _size-1))
}
# Create an empty hash table; this uses the _g_maps array to store arbitrary
# keys/values under the object's property prefix.
function map_new(_obj) {
_obj = obj_new(Map)
return (_obj)
}
# Add `key` with `value` to `map`
function map_set(map, key, value) {
obj_assert_class(map, Map)
_g_maps[map,OBJ_PROP,key] = value
}
# Remove `key` from the map
function map_remove(map, key) {
obj_assert_class(map, Map)
delete _g_maps[map,OBJ_PROP,key]
}
# Return true if `key` is found in `map`, false otherwise
function map_contains(map, key) {
obj_assert_class(map, Map)
return ((map,OBJ_PROP,key) in _g_maps)
}
# Fetch the value of `key` from the map. Will throw an error if the
# key does not exist
function map_get(map, key) {
obj_assert_class(map, Map)
return _g_maps[map,OBJ_PROP,key]
}
# Create and return a new list containing all defined values in `map`
function map_to_array(map, _key, _prefix, _values) {
obj_assert_class(map, Map)
_values = array_new()
_prefix = "^" map SUBSEP OBJ_PROP SUBSEP
for (_key in _g_maps) {
if (!match(_key, _prefix))
continue
array_append(_values, _g_maps[_key])
}
return (_values)
}
# Create a new Type instance
function type_new(name, width, signed, constant, array_constant, fmt, mask,
constant_value, array_constant_value, _obj)
{
obj_assert_class(fmt, Fmt)
_obj = obj_new(Type)
set(_obj, p_name, name)
set(_obj, p_width, width)
set(_obj, p_signed, signed)
set(_obj, p_const, constant)
set(_obj, p_const_val, constant_value)
set(_obj, p_array_const, array_constant)
set(_obj, p_array_const_val, array_constant_value)
set(_obj, p_default_fmt, fmt)
set(_obj, p_mask, mask)
return (_obj)
}
# Return true if two types are equal
function type_equal(lhs, rhs) {
# Simple case
if (lhs == rhs)
return (1)
# Must share a common class
if (obj_get_class(lhs) != obj_get_class(rhs))
return (0)
# Handle ArrayType equality
if (obj_is_instanceof(lhs, ArrayType)) {
# Size must be equal
if (get(lhs, p_count) != get(rhs, p_count))
return (0)
# The base types must be equal
return (type_equal(type_get_base(lhs), type_get_base(rhs)))
}
# Handle Type equality -- we just check for trivial identity
# equality of all members
obj_assert_class(lhs, Type)
return (obj_trivially_equal(lhs, rhs))
}
# Return the type's default value mask. If the type is an array type,
# the default mask of the base type will be returned.
function type_get_default_mask(type) {
if (obj_is_instanceof(type, ArrayType))
return (type_get_default_mask(type_get_base(type)))
obj_assert_class(type, Type)
return (get(type, p_mask))
}
# Return the type's C constant representation
function type_get_const(type) {
if (obj_is_instanceof(type, ArrayType))
return (get(type_get_base(type), p_array_const))
obj_assert_class(type, Type)
return (get(type, p_const))
}
# Return the type's C constant integer value
function type_get_const_val(type) {
if (obj_is_instanceof(type, ArrayType))
return (get(type_get_base(type), p_array_const_val))
obj_assert_class(type, Type)
return (get(type, p_const_val))
}
# Return an array type's element count, or 1 if the type is not
# an array type
function type_get_nelem(type) {
if (obj_is_instanceof(type, ArrayType))
return (get(type, p_count))
obj_assert_class(type, Type)
return (1)
}
# Return the base type for a given type instance.
function type_get_base(type) {
if (obj_is_instanceof(type, ArrayType))
return (type_get_base(get(type, p_type)))
obj_assert_class(type, Type)
return (type)
}
# Return the default fmt for a given type instance
function type_get_default_fmt(type, _base, _fmt, _array_fmt) {
_base = type_get_base(type)
_fmt = get(_base, p_default_fmt)
if (obj_is_instanceof(type, ArrayType)) {
_array_fmt = get(_fmt, p_array_fmt)
if (_array_fmt != null)
_fmt = _array_fmt
}
return (_fmt)
}
# Return a string representation of the given type
function type_to_string(type, _base_type) {
if (obj_is_instanceof(type, ArrayType)) {
_base_type = type_get_base(type)
return (type_to_string(_base_type) "[" get(type, p_count) "]")
}
return get(type, p_name)
}
# Return true if type `rhs` is can be coerced to type `lhs` without data
# loss
function type_can_represent(lhs, rhs) {
# Must be of the same class (Type or ArrayType)
if (obj_get_class(lhs) != obj_get_class(rhs))
return (0)
if (obj_is_instanceof(lhs, ArrayType)) {
# The base types must have a representable relationship
if (!type_can_represent(type_get_base(lhs), type_get_base(rhs)))
return (0)
# The lhs type must be able to represent -at least- as
# many elements as the RHS type
if (get(lhs, p_count) < get(rhs, p_count))
return (0)
return (1)
}
# A signed type could represent the full range of a smaller unsigned
# type, but we don't bother; the two should agree when used in a SROM
# layout. Instead simply assert that both are signed or unsigned.
if (get(lhs, p_signed) != get(rhs, p_signed))
return (0)
# The `rhs` type must be equal or smaller in width to the `lhs` type
if (get(lhs, p_width) < get(rhs, p_width))
return (0)
return (1)
}
# Create a new ArrayType instance
function array_type_new(type, count, _obj) {
_obj = obj_new(ArrayType)
set(_obj, p_type, type)
set(_obj, p_count, count)
return (_obj)
}
#
# Parse a type string to either the Type, ArrayType, or null if
# the type is not recognized.
#
function parse_type_string(str, _base, _count) {
if (match(str, ARRAY_REGEX"$") > 0) {
# Extract count and base type
_count = substr(str, RSTART+1, RLENGTH-2)
sub(ARRAY_REGEX"$", "", str)
# Look for base type
if ((_base = type_named(str)) == null)
return (null)
return (array_type_new(_base, int(_count)))
} else {
return (type_named(str))
}
}
#
# Parse a variable name in the form of 'name' or 'name[len]', returning
# either the provided base_type if no array specifiers are found, or
# the fully parsed ArrayType.
#
function parse_array_type_specifier(str, base_type, _count) {
if (match(str, ARRAY_REGEX"$") > 0) {
# Extract count
_count = substr(str, RSTART+1, RLENGTH-2)
return (array_type_new(base_type, int(_count)))
} else {
return (base_type)
}
}
# Return the type constant for `name`, if any
function type_named(name, _n, _type) {
if (name == null)
errorx("called type_named() with null name")
if (map_contains(BaseTypes, name))
return (map_get(BaseTypes, name))
return (null)
}
# Create a new Fmt instance
function fmt_new(name, symbol, array_fmt, _obj) {
_obj = obj_new(Fmt)
set(_obj, p_name, name)
set(_obj, p_symbol, symbol)
if (array_fmt != null)
set(_obj, p_array_fmt, array_fmt)
return (_obj)
}
# Return the Fmt constant for `name`, if any
function fmt_named(name, _n, _fmt) {
if (map_contains(ValueFormats, name))
return (map_get(ValueFormats, name))
return (null)
}
# Create a new VFlag instance
function vflag_new(name, constant, _obj) {
_obj = obj_new(VFlag)
set(_obj, p_name, name)
set(_obj, p_const, constant)
return (_obj)
}
# Create a new StringConstant AST node
function stringconstant_new(value, continued, _obj) {
_obj = obj_new(StringConstant)
set(_obj, p_value, value)
set(_obj, p_continued, continued)
set(_obj, p_line, NR)
return (_obj)
}
# Create an empty StringConstant AST node to which additional lines
# may be appended
function stringconstant_empty(_obj) {
return (stringconstant_new("", 1))
}
# Parse an input string and return a new string constant
# instance
function stringconstant_parse_line(line, _obj) {
_obj = stringconstant_empty()
stringconstant_append_line(_obj, line)
return (_obj)
}
# Parse and apend an additional line to this string constant
function stringconstant_append_line(str, line, _cont, _strbuf, _regex, _eol) {
obj_assert_class(str, StringConstant)
# Must be marked for continuation
if (!get(str, p_continued)) {
errorx("can't append to non-continuation string '" \
get(str, p_value) "'")
}
_strbuf = get(str, p_value)
# If start of string, look for (and remove) initial double quote
if (_strbuf == null) {
_regex = "^[ \t]*\""
if (!sub(_regex, "", line)) {
error("expected quoted string")
}
}
# Look for a terminating double quote
_regex = "([^\"\\\\]*(\\\\.[^\"\\\\]*)*)\""
_eol = match(line, _regex)
if (_eol > 0) {
# Drop everything following the terminating quote
line = substr(line, 1, RLENGTH-1)
_cont = 0
} else {
# No terminating quote found, continues on next line
_cont = 1
}
# Trim leading and trailing whitespace
sub(/(^[ \t]+|[ \t]+$)/, "", line)
# Append to existing buffer
if ((_strbuf = get(str, p_value)) == NULL)
set(str, p_value, line)
else
set(str, p_value, _strbuf " " line)
# Update line continuation setting
set(str, p_continued, _cont)
}
# Create a new RevRange instance
function revrange_new(start, end, _obj) {
_obj = obj_new(RevRange)
set(_obj, p_start, start)
set(_obj, p_end, end)
set(_obj, p_line, NR)
return (_obj)
}
# Return true if the two revision ranges are equal
function revrange_equal(lhs, rhs) {
if (get(lhs, p_start) != get(rhs, p_start))
return (0)
if (get(lhs, p_end) != get(rhs, p_end))
return (0)
return (1)
}
# Return true if the requested rev is covered by revrange, false otherwise
function revrange_contains(range, rev) {
obj_assert_class(range, RevRange)
if (rev < get(range, p_start))
return (0)
else if (rev > get(range, p_end)) {
return (0)
} else {
return (1)
}
}
#
# Return a string representation of the given revision range
#
function revrange_to_string(revs, _start, _end) {
obj_assert_class(revs, RevRange)
_start = get(revs, p_start)
_end = get(revs, p_end)
if (_start == 0)
return ("<= " _end)
else if (_end == REV_MAX)
return (">= " _start)
else
return (_start "-" _end)
}
# Create a new VarGroup instance
function var_group_new(name, _obj) {
_obj = obj_new(VarGroup)
set(_obj, p_name, name)
set(_obj, p_vars, array_new())
set(_obj, p_line, NR)
return (_obj)
}
# Create a new NVRAM instance
function nvram_new(_obj, _vars, _v) {
_obj = obj_new(NVRAM)
_vars = array_new()
set(_obj, p_vars, _vars)
set(_obj, p_var_groups, array_new())
set(_obj, p_srom_layouts, array_new())
set(_obj, p_srom_table, map_new())
#
# Register our implicit variable definitions
#
# SROM signature offset
_v = var_new(VAccessInternal, "<sromsig>", UInt16)
array_append(_vars, _v)
_g_var_names[get(_v, p_name)] = _v
# SROM CRC8 offset
_v = var_new(VAccessInternal, "<sromcrc>", UInt8)
array_append(_vars, _v)
_g_var_names[get(_v, p_name)] = _v
return (_obj)
}
# Register a new SROM layout instance
# An error will be thrown if the layout overlaps any revisions covered
# by an existing instance.
function nvram_add_srom_layout(nvram, layout, _table, _revs, _start, _end, _i) {
obj_assert_class(nvram, NVRAM)
obj_assert_class(layout, SromLayout)
# revision:layout hash table
_table = get(nvram, p_srom_table)
# register the layout's revisions
_revs = get(layout, p_revisions)
_start = get(_revs, p_start)
_end = get(_revs, p_end)
for (_i = _start; _i <= _end; _i++) {
if (map_contains(_table, _i)) {
error("SROM layout redeclares layout for revision '" \
_i "' (originally declared on line " \
get(map_get(_table, _i), p_line) ")")
}
map_set(_table, _i, layout)
}
# append to srom_layouts
array_append(get(nvram, p_srom_layouts), layout)
}
# Return the first SROM layout registered for a given SROM revision,
# or null if no matching layout is found
function nvram_get_srom_layout(nvram, revision, _layouts, _nlayouts, _layout,
_i)
{
obj_assert_class(nvram, NVRAM)
_layouts = get(nvram, p_srom_layouts)
_nlayouts = array_size(_layouts)
for (_i = 0; _i < _nlayouts; _i++) {
_layout = array_get(_layouts, _i)
if (srom_layout_has_rev(_layout, revision))
return (_layout)
}
# Not found
return (null)
}
# Create a new Var instance
function var_new(access, name, type, _obj) {
obj_assert_class(access, VAccess)
# Validate the variable identifier
#
# The access modifier dictates the permitted identifier format.
# VAccessInternal: <ident>
# VAccess(Public|Private): ident
if (access != VAccessInternal && name ~ SVAR_IDENT_REGEX) {
error("invalid identifier '"name"'; did you mean to " \
"mark this variable as internal?")
} else if (access == VAccessInternal) {
if (name !~ SVAR_IDENT_REGEX)
error("invalid identifier '"name"' for internal " \
"variable; did you mean '<" name ">'?")
} else if (name !~ VAR_IDENT_REGEX) {
error("invalid identifier '"name"'")
}
_obj = obj_new(Var)
set(_obj, p_access, access)
set(_obj, p_name, name)
set(_obj, p_type, type)
set(_obj, p_line, NR)
return (_obj)
}
# Return true if var is internal-only, and should not be included
# in any output (e.g. has an access specifier of VAccessInternal).
function var_is_internal(var) {
return (get(var, p_access) == VAccessInternal)
}
# Return true if `var` has an array type
function var_has_array_type(var, _vtype) {
obj_assert_class(var, Var)
_vtype = get(var, p_type)
return (obj_is_instanceof(_vtype, ArrayType))
}
# Return the number of array elements defined by this variable's type,
# or 1 if the variable does not have an array type.
function var_get_array_len(var) {
obj_assert_class(var, Var)
return (type_get_nelem(get(var, p_type)))
}
# Return the fmt for var. If not explicitly set on var, will return then
# return of calling type_get_default_fmt() with the variable's type
function var_get_fmt(var, _fmt) {
obj_assert_class(var, Var)
# If defined on var, return it
if ((_fmt = get(var, p_fmt)) != null)
return (_fmt)
# Fall back on the type's default
return (type_get_default_fmt(get(var, p_type)))
}
# Return a new MacroDefine instance for the given variable, macro type,
# and value
function var_get_macro(var, macro_type, value, _macro) {
obj_assert_class(var, Var)
obj_assert_class(macro_type, MacroType)
return (macro_new(var_get_macro_name(var, macro_type), value))
}
# Return the preprocessor constant name to be used with `var` for the given
# macro_type
function var_get_macro_name(var, macro_type, _var_name, _suffix) {
obj_assert_class(var, Var)
obj_assert_class(macro_type, MacroType)
_var_name = get(var, p_name)
_suffix = get(macro_type, p_const_suffix)
return("BHND_NVAR_" toupper(_var_name) _suffix)
}
# Create a new SromLayout instance
function srom_layout_new(rev_desc, _obj)
{
_obj = obj_new(SromLayout)
set(_obj, p_revisions, rev_desc)
set(_obj, p_entries, array_new())
set(_obj, p_revmap, map_new())
set(_obj, p_output_var_counts, map_new())
set(_obj, p_line, NR)
return (_obj)
}
# Register a new entry with the srom layout
function srom_layout_add_entry(layout, entry, _revmap, _name, _rev_start,
_rev_end, _var, _prev_entry, _count, _i)
{
obj_assert_class(layout, SromLayout)
obj_assert_class(entry, SromEntry)
_layout_revmap = get(layout, p_revmap)
_layout_var_count = get(layout, p_output_var_counts)
_var = get(entry, p_var)
_name = get(_var, p_name)
# Add to revision array
array_append(get(layout, p_entries), entry)
# Add to the revision map tables
_rev_start = get(get(entry, p_revisions), p_start)
_rev_end = get(get(entry, p_revisions), p_end)
for (_i = _rev_start; _i <= _rev_end; _i++) {
# Check for existing entry
_prev_entry = srom_layout_find_entry(layout, _name, _i)
if (_prev_entry != null) {
error("redefinition of variable '" _name "' for SROM " \
"revision " _i " (previously defined on line " \
get(_prev_entry, p_line) ")")
}
# Add to the (varname,revision) map
map_set(_layout_revmap, (_name SUBSEP _i), entry)
# If an output variable, set or increment the output variable
# count
if (!srom_entry_should_output(entry, _i))
continue
if (!map_contains(_layout_var_count, _i)) {
map_set(_layout_var_count, _i, 1)
} else {
_count = map_get(_layout_var_count, _i)
map_set(_layout_var_count, _i, _count + 1)
}
}
}
# Return the variable name to be used when emitting C declarations
# for this SROM layout
#
# The name is gauranteed to be unique across SROM layouts with non-overlapping
# revision ranges
function srom_layout_get_variable_name(layout, _revs) {
obj_assert_class(layout, SromLayout)
_revs = get(layout, p_revisions)
return ("bhnd_sprom_layout_r" get(_revs, p_start) \
"_r" get(_revs, p_end))
}
# Return true if the given SROM revision is defined by the layout, false
# otherwise
function srom_layout_has_rev(layout, rev) {
obj_assert_class(layout, SromLayout)
return (revrange_contains(get(layout, p_revisions), rev))
}
# Return the total number of output variables (variables to be included
# in the SROM layout bindings) for the given SROM revision
function srom_layout_num_output_vars(layout, rev, _counts)
{
obj_assert_class(layout, SromLayout)
_counts = get(layout, p_output_var_counts)
if (!map_contains(_counts, rev))
return (0)
return (map_get(_counts, rev))
}
# Return the SromEntry defined for the given variable name and SROM revision,
# or null if none
function srom_layout_find_entry(layout, vname, revision, _key, _srom_revmap) {
obj_assert_class(layout, SromLayout)
_srom_revmap = get(layout, p_revmap)
# SromEntry are mapped by name,revision composite keys
_key = vname SUBSEP revision
if (!map_contains(_srom_revmap, _key))
return (null)
return (map_get(_srom_revmap, _key))
}
# Create a new SromLayoutFilter instance, checking that `revs`
# falls within the parent's revision range
function srom_layout_filter_new(parent, revs, _obj, _start, _end, _parent_revs) {
obj_assert_class(parent, SromLayout)
obj_assert_class(revs, RevRange)
# Fetch our parent's revision range, confirm that we're
# a strict subset
_start = get(revs, p_start)
_end = get(revs, p_end)
_parent_revs = get(parent, p_revisions)
if (!revrange_contains(_parent_revs, _start))
error("'" _start "' is outside of parent range")
if (!revrange_contains(_parent_revs, _end))
error("'" _end "' is outside of parent range")
if (revrange_equal(revs, _parent_revs)) {
error("srom range '" revrange_to_string(revs) "' is " \
"identical to parent range of '" \
revrange_to_string(_parent_revs) "'")
}
# Construct and return new filter instance
_obj = obj_new(SromLayoutFilter)
set(_obj, p_parent, parent)
set(_obj, p_revisions, revs)
set(_obj, p_line, NR)
return (_obj)
}
#
# Create a new SromEntry instance
#
# var: The variable referenced by this entry
# revisions: The SROM revisions to which this entry applies
# base_offset: The SROM entry offset; any relative segment offsets will be
# calculated relative to the base offset
# type: The SROM's value type; this may be a subtype of the variable
# type, and defines the data (width, sign, etc) to be read from
# SROM.
#
function srom_entry_new(var, revisions, base_offset, type, _obj) {
obj_assert_class(var, Var)
if (revisions != null)
obj_assert_class(revisions, RevRange)
_obj = obj_new(SromEntry)
set(_obj, p_var, var)
set(_obj, p_revisions, revisions)
set(_obj, p_base_offset, base_offset)
set(_obj, p_type, type)
set(_obj, p_offsets, array_new())
set(_obj, p_line, NR)
return (_obj)
}
# Return true if the SromEntry has an array type
function srom_entry_has_array_type(entry) {
obj_assert_class(entry, SromEntry)
return (obj_is_instanceof(get(entry, p_type), ArrayType))
}
# Return the number of array elements defined by this SromEntry's type,
# or 1 if the entry does not have an array type.
function srom_entry_get_array_len(entry, _type) {
obj_assert_class(entry, SromEntry)
return (type_get_nelem(get(entry, p_type)))
}
#
# Return true if the given entry should be included in the output bindings
# generated for the given revision, false otherwise.
#
function srom_entry_should_output(entry, rev, _var, _revs)
{
obj_assert_class(entry, SromEntry)
_var = get(entry, p_var)
_revs = get(entry, p_revisions)
# Exclude internal variables
if (var_is_internal(_var))
return (0)
# Exclude inapplicable entry revisions
if (!revrange_contains(_revs, rev))
return (0)
return (1)
}
#
# Return the single, non-shifted, non-masked offset/segment for the given
# SromEntry, or throw an error if the entry contains multiple offsets/segments.
#
# This is used to fetch special-cased variable definitions that are required
# to present a single simple offset.
#
function srom_entry_get_single_segment(entry, _offsets, _segments, _seg,
_base_type, _default_mask)
{
obj_assert_class(entry, SromEntry)
# Fetch the single offset's segment list
_offsets = get(entry, p_offsets)
if (array_size(_offsets) != 1)
errorc(get(entry, p_line), "unsupported offset count")
_segments = get(array_first(_offsets), p_segments)
if (array_size(_segments) != 1)
errorc(get(entry, p_line), "unsupported segment count")
# Fetch the single segment
_seg = array_first(_segments)
_base_type = srom_segment_get_base_type(_seg)
_default_mask = get(_base_type, p_mask)
# Must not be shifted/masked
if (get(_seg, p_shift) != 0)
errorc(obj_get_prop_nr(_seg, p_mask), "shift unsupported")
if (get(_seg, p_mask) != _default_mask)
errorc(obj_get_prop_nr(_seg, p_mask), "mask unsupported")
return (_seg)
}
# Create a new SromOffset instance
function srom_offset_new(_obj) {
_obj = obj_new(SromOffset)
set(_obj, p_segments, array_new())
set(_obj, p_line, NR)
return (_obj)
}
# Return the number of SromSegment instances defined by this offset.
function srom_offset_segment_count(offset) {
obj_assert_class(offset, SromOffset)
return (array_size(get(offset, p_segments)))
}
# Return the idx'th segment. Will throw an error if idx falls outside
# the number of available segments.
function srom_offset_get_segment(offset, idx, _segments, _seg) {
obj_assert_class(offset, SromOffset)
return (array_get(get(offset, p_segments), idx))
}
# Create a new SromSegment instance
function srom_segment_new(offset, type, mask, shift, value, _obj) {
_obj = obj_new(SromSegment)
set(_obj, p_offset, offset)
set(_obj, p_type, type)
set(_obj, p_mask, mask)
set(_obj, p_shift, shift)
set(_obj, p_value, value)
set(_obj, p_line, NR)
return (_obj)
}
# Return true if the segment has an array type
function srom_segment_has_array_type(seg, _type) {
_type = srom_segment_get_type(seg)
return (obj_is_instanceof(_type, ArrayType))
}
# Return the array count of the segment, or 1 if the segment does not have
# an array type
function srom_segment_get_array_len(seg, _type) {
if (!srom_segment_has_array_type(seg))
return (1)
_type = srom_segment_get_type(seg)
return (get(_type, p_count))
}
# Return the type of the segment
function srom_segment_get_type(seg) {
obj_assert_class(seg, SromSegment)
return (get(seg, p_type))
}
# Return the base type of the segment
function srom_segment_get_base_type(seg) {
return (type_get_base(srom_segment_get_type(seg)))
}
# Return true if the two segments have identical types and attributes (i.e.
# differing only by offset)
function srom_segment_attributes_equal(lhs, rhs) {
obj_assert_class(lhs, SromSegment)
obj_assert_class(rhs, SromSegment)
# type
if (!type_equal(get(lhs, p_type), get(rhs, p_type)))
return (0)
# mask
if (get(lhs, p_mask) != get(rhs, p_mask))
return (0)
# shift
if (get(lhs, p_shift) != get(rhs, p_shift))
return (0)
# value
if (get(lhs, p_value) != get(rhs, p_value))
return (0)
return (1)
}
# Return a human-readable representation of a Segment instance
function segment_to_string(seg, _str, _t, _m, _s, _attrs, _attr_str) {
_attrs = array_new()
# include type (if specified)
if ((_t = get(seg, p_type)) != null)
_str = (type_to_string(_t) " ")
# include offset
_str = (_str sprintf("0x%X", get(seg, p_offset)))
# append list of attributes
if ((_m = get(seg, p_mask)) != null)
array_append(_attrs, ("&" _m))
if ((_s = get(seg, p_shift)) != null) {
if (_s > 0)
_s = ">>" _s
else
_s = "<<" _s
array_append(_attrs, _s)
}
_attr_str = array_join(_attrs, ", ")
obj_delete(_attrs)
if (_attr_str == "")
return (_str)
else
return (_str " (" _attr_str ")")
}
# return the flag definition for variable `v`
function gen_var_flags(v, _type, _flags, _flag, _str)
{
_num_flags = 0;
_type = get(v, p_type)
_flags = array_new()
# VF_PRIVATE
if (get(v, p_access) == VAccessPrivate)
array_append(_flags, VFlagPrivate)
# VF_IGNALL1
if (get(v, p_ignall1))
array_append(_flags, VFlagIgnoreAll1)
# If empty, return empty flag value
if (array_size(_flags) == 0) {
obj_delete(_flags)
return ("0")
}
# Join all flag constants with |
_str = array_join(_flags, "|", class_get_prop_id(VFlag, p_const))
# Clean up
obj_delete(_flags)
return (_str)
}
#
# Return the absolute value
#
function abs(i) {
return (i < 0 ? -i : i)
}
#
# Return the minimum of two values
#
function min(lhs, rhs) {
return (lhs < rhs ? lhs : rhs)
}
#
# Return the maximum of two values
#
function max(lhs, rhs) {
return (lhs > rhs ? lhs : rhs)
}
#
# Parse a hex string
#
function parse_hex_string(str, _hex_pstate, _out, _p, _count) {
if (!AWK_REQ_HEX_PARSING)
return (str + 0)
# Populate hex parsing lookup table on-demand
if (!("F" in _g_hex_table)) {
for (_p = 0; _p < 16; _p++) {
_g_hex_table[sprintf("%X", _p)] = _p
_g_hex_table[sprintf("%x", _p)] = _p
}
}
# Split input into an array
_count = split(toupper(str), _hex_pstate, "")
_p = 1
# Skip leading '0x'
if (_count >= 2 && _hex_pstate[1] == "0") {
if (_hex_pstate[2] == "x" || _hex_pstate[2] == "X")
_p += 2
}
# Parse the hex_digits
_out = 0
for (; _p <= _count; _p++)
_out = (_out * 16) + _g_hex_table[_hex_pstate[_p]]
return (_out)
}
#
# Return the integer representation of an unsigned decimal, hexadecimal, or
# octal string
#
function parse_uint_string(str) {
if (str ~ UINT_REGEX)
return (int(str))
else if (str ~ HEX_REGEX)
return (parse_hex_string(str))
else
error("invalid integer value: '" str "'")
}
#
# Parse an offset string, stripping any leading '+' or trailing ':' or ','
# characters
#
# +0x0:
# 0x0,
# ...
#
function parse_uint_offset(str) {
# Drop any leading '+'
sub(/^\+/, "", str)
# Drop any trailing ':', ',', or '|'
sub("[,|:]$", "", str)
# Parse the cleaned up string
return (parse_uint_string(str))
}
#
# Print msg to output file, without indentation
#
function emit_ni(msg) {
printf("%s", msg) >> OUTPUT_FILE
}
#
# Print msg to output file, indented for the current `output_depth`
#
function emit(msg, _ind) {
for (_ind = 0; _ind < output_depth; _ind++)
emit_ni("\t")
emit_ni(msg)
}
#
# Print a warning to stderr
#
function warn(msg) {
print "warning:", msg, "at", FILENAME, "line", NR > "/dev/stderr"
}
#
# Print an warning message without including the source line information
#
function warnx(msg) {
print "warning:", msg > "/dev/stderr"
}
#
# Print a compiler error to stderr with a caller supplied
# line number
#
function errorc(line, msg) {
errorx(msg " at " FILENAME " line " line)
}
#
# Print a compiler error to stderr
#
function error(msg) {
errorx(msg " at " FILENAME " line " NR ":\n\t" $0)
}
#
# Print an error message without including the source line information
#
function errorx(msg) {
print "error:", msg > "/dev/stderr"
_EARLY_EXIT=1
exit 1
}
#
# Print a debug output message
#
function debug(msg, _i) {
if (!DEBUG)
return
for (_i = 1; _i < _g_parse_stack_depth; _i++)
printf("\t") > "/dev/stderr"
print msg > "/dev/stderr"
}
#
# Advance to the next non-comment input record
#
function next_line(_result) {
do {
_result = getline
} while (_result > 0 && $0 ~ /^[ \t]*#.*/) # skip comment lines
return (_result)
}
#
# Advance to the next input record and verify that it matches @p regex
#
function getline_matching(regex, _result) {
_result = next_line()
if (_result <= 0)
return (_result)
if ($0 ~ regex)
return (1)
return (-1)
}
#
# Shift the current fields left by `n`.
#
# If all fields are consumed and the optional do_getline argument is true,
# read the next line.
#
function shiftf(n, do_getline, _i) {
if (n > NF)
error("shift past end of line")
if (n == NF) {
# If shifting the entire line, just reset the line value
$0 = ""
} else {
for (_i = 1; _i <= NF-n; _i++) {
$(_i) = $(_i+n)
}
NF = NF - n
}
if (NF == 0 && do_getline)
next_line()
}
# Push a new parser state.
function parser_state_push(ctx, is_block, _state) {
_state = obj_new(ParseState)
set(_state, p_ctx, ctx)
set(_state, p_is_block, is_block)
set(_state, p_line, NR)
_g_parse_stack_depth++
_g_parse_stack[_g_parse_stack_depth] = _state
}
# Fetch the current parser state
function parser_state_get() {
if (_g_parse_stack_depth == 0)
errorx("parser_state_get() called with empty parse stack")
return (_g_parse_stack[_g_parse_stack_depth])
}
# Pop the current parser state
function parser_state_pop(_block_state, _closes_block) {
if (_g_parse_stack_depth == 0)
errorx("parser_state_pop() called with empty parse stack")
_closes_block = get(parser_state_get(), p_is_block)
delete _g_parse_stack[_g_parse_stack_depth]
_g_parse_stack_depth--
if (_closes_block)
debug("}")
}
# Fetch the current context object associated with this parser state
# The object will be asserted as being an instance of the given class.
function parser_state_get_context(class, _ctx_obj) {
_ctx_obj = get(parser_state_get(), p_ctx)
obj_assert_class(_ctx_obj, class)
return (_ctx_obj)
}
# Walk the parser state stack until a context object of the given class
# is found. If the top of the stack is reached without finding a context object
# of the requested type, an error will be thrown.
function parser_state_find_context(class, _state, _ctx, _i) {
if (class == null)
errorx("parser_state_find_context() called with null class")
# Find the first context instance inheriting from `class`
for (_i = 0; _i < _g_parse_stack_depth; _i++) {
_state = _g_parse_stack[_g_parse_stack_depth - _i]
_ctx = get(_state, p_ctx)
# Check for match
if (obj_is_instanceof(_ctx, class))
return (_ctx)
}
# Not found
errorx("no context instance of type '" class_get_name(class) "' " \
"found in parse stack")
}
#
# Find opening brace and push a new parser state for a brace-delimited block.
#
function parser_state_open_block(ctx) {
if ($0 ~ "{" || getline_matching("^[ \t]*{") > 0) {
parser_state_push(ctx, 1)
sub("^[^{]*{", "", $0)
return
}
error("found '"$1 "' instead of expected '{'")
}
#
# Find closing brace and pop parser states until the first
# brace-delimited block is discarded.
#
function parser_state_close_block(_next_state, _found_block) {
if ($0 !~ "}")
error("internal error - no closing brace")
# pop states until we exit the first enclosing block
do {
_next_state = parser_state_get()
_found_block = get(_next_state, p_is_block)
parser_state_pop()
} while (!_found_block)
# strip everything prior to the block closure
sub("^[^}]*}", "", $0)
}
# Evaluates to true if the current parser state is defined with a context of
# the given class
function in_parser_context(class, _ctx) {
if (class == null)
errorx("called in_parser_context() with null class")
_ctx = get(parser_state_get(), p_ctx)
return (obj_is_instanceof(_ctx, class))
}
#
# Parse and return a revision range from the current line.
#
# 4
# 4-10 # revisions 4-10, inclusive
# > 4
# < 4
# >= 4
# <= 4
#
function parse_revrange(_start, _end, _robj) {
_start = 0
_end = 0
if ($2 ~ "[0-9]*-[0-9*]") {
split($2, _g_rev_range, "[ \t]*-[ \t]*")
_start = int(_g_rev_range[1])
_end = int(_g_rev_range[2])
} else if ($2 ~ "(>|>=|<|<=)" && $3 ~ "[1-9][0-9]*") {
if ($2 == ">") {
_start = int($3)+1
_end = REV_MAX
} else if ($2 == ">=") {
_start = int($3)
_end = REV_MAX
} else if ($2 == "<" && int($3) > 0) {
_start = 0
_end = int($3)-1
} else if ($2 == "<=") {
_start = 0
_end = int($3)-1
} else {
error("invalid revision descriptor")
}
} else if ($2 ~ "[1-9][0-9]*") {
_start = int($2)
_end = int($2)
} else {
error("invalid revision descriptor")
}
return (revrange_new(_start, _end))
}
#
# Parse a variable group block starting at the current line
#
# group "Group Name" {
# u8 var_name[10] {
# ...
# }
# ...
# }
#
function parse_variable_group(_ctx, _groups, _group, _group_name) {
_ctx = parser_state_get_context(NVRAM)
# Seek to the start of the name string
shiftf(1)
# Parse the first line
_group_name = stringconstant_parse_line($0)
# Incrementally parse line continuations
while (get(_group_name, p_continued)) {
getline
stringconstant_append_line(_group_name, $0)
}
debug("group \"" get(_group_name, p_value) "\" {")
# Register the new variable group
_groups = get(_ctx, p_var_groups)
_group = var_group_new(_group_name)
array_append(_groups, _group)
# Push our variable group block
parser_state_open_block(_group)
}
#
# Parse a variable definition block starting at the current line
#
# u8 var_name[10] {
# all1 ignore
# desc ...
# }
#
function parse_variable_defn(_ctx, _vaccess, _type, _name, _fmt, _var,
_var_list)
{
_ctx = parser_state_get_context(SymbolContext)
# Check for access modifier
if ($1 == "private") {
_vaccess = VAccessPrivate
shiftf(1)
} else if ($1 == "internal") {
_vaccess = VAccessInternal
shiftf(1)
} else {
_vaccess = VAccessPublic
}
# Find the base type
if ((_type = type_named($1)) == null)
error("unknown type '" $1 "'")
# Parse (and trim) any array specifier from the variable name
_name = $2
_type = parse_array_type_specifier(_name, _type)
sub(ARRAY_REGEX"$", "", _name)
# Look for an existing variable definition
if (_name in _g_var_names) {
error("variable identifier '" _name "' previously defined at " \
"line " get(_g_var_names[_name], p_line))
}
# Construct new variable instance
_var = var_new(_vaccess, _name, _type)
debug((_private ? "private " : "") type_to_string(_type) " " _name " {")
# Register in global name table
_g_var_names[_name] = _var
# Add to our parent context
_var_list = get(_ctx, p_vars)
array_append(_var_list, _var)
# Push our variable definition block
parser_state_open_block(_var)
}
#
# Return a string containing the human-readable list of valid Fmt names
#
function fmt_get_human_readable_list(_result, _fmts, _fmt, _nfmts, _i)
{
# Build up a string listing the valid formats
_fmts = map_to_array(ValueFormats)
_result = ""
_nfmts = array_size(_fmts)
for (_i = 0; _i < _nfmts; _i++) {
_fmt = array_get(_fmts, _i)
if (_i+1 == _nfmts)
_result = _result "or "
_result = _name_str \
"'" get(_fmt, p_name) "'"
if (_i+1 < _nfmts)
_result = _result ", "
}
obj_delete(_fmts)
return (_result)
}
#
# Parse a variable parameter from the current line
#
# fmt (decimal|hex|macaddr|...)
# all1 ignore
# desc "quoted string"
# help "quoted string"
#
function parse_variable_param(param_name, _var, _vprops, _prop_id, _pval) {
_var = parser_state_get_context(Var)
if (param_name == "fmt") {
debug($1 " " $2)
# Check for an existing definition
if ((_pval = get(_var, p_fmt)) != null) {
error("fmt previously specified on line " \
obj_get_prop_nr(_var, p_fmt))
}
# Validate arguments
if (NF != 2) {
error("'" $1 "' requires a single parameter value of " \
fmt_get_human_readable_list())
}
if ((_pval = fmt_named($2)) == null) {
error("'" $1 "' value '" $2 "' unrecognized. Must be " \
"one of " fmt_get_human_readable_list())
}
# Set fmt reference
set(_var, p_fmt, _pval)
} else if (param_name == "all1") {
debug($1 " " $2)
# Check for an existing definition
if ((_pval = get(_var, p_ignall1)) != null) {
error("all1 previously specified on line " \
obj_get_prop_nr(_var, p_ignall1))
}
# Check argument
if (NF != 2)
error("'" $1 "'requires a single 'ignore' argument")
else if ($2 != "ignore")
error("unknown "$1" value '"$2"', expected 'ignore'")
# Set variable property
set(_var, p_ignall1, 1)
} else if (param_name == "desc" || param_name == "help") {
# Fetch an indirect property reference for either the 'desc'
# or 'help' property
_prop_id = obj_get_named_prop_id(_var, param_name)
# Check for an existing definition
if ((_pval = prop_get(_var, _prop_id)) != null) {
error(get(_var, p_name) " '" $1 "' redefined " \
"(previously defined on line " \
obj_get_prop_id_nr(_var, _prop_id) ")")
}
# Seek to the start of the desc/help string
shiftf(1)
# Parse the first line
_pval = stringconstant_parse_line($0)
# Incrementally parse line continuations
while (get(_pval, p_continued)) {
getline
stringconstant_append_line(_pval, $0)
}
debug(param_name " \"" get(_pval, p_value) "\"")
# Add to the var object
prop_set(_var, _prop_id, _pval)
} else {
error("unknown variable property type: '" param_name "'")
}
}
#
# Parse a top-level SROM layout block starting at the current line
#
# srom 4-7 {
# 0x000: ...
# }
#
function parse_srom_layout(_nvram, _srom_layouts, _revs, _layout) {
_nvram = parser_state_get_context(NVRAM)
_srom_layouts = get(_nvram, p_srom_layouts)
# Parse revision descriptor and register SROM
# instance
_revs = parse_revrange()
_layout = srom_layout_new(_revs)
nvram_add_srom_layout(_nvram, _layout)
debug("srom " revrange_to_string(_revs) " {")
# Push new SROM parser state
parser_state_open_block(_layout)
}
#
# Parse a nested srom range filter block starting at the current line
# srom 4-7 {
# # Filter block
# srom 5 {
# 0x000: ...
# }
# }
#
function parse_srom_layout_filter(_parent, _revs, _filter) {
_parent = parser_state_get_context(SromLayout)
# Parse revision descriptor
_revs = parse_revrange()
# Construct the filter (which also validates the revision range)
_filter = srom_layout_filter_new(_parent, _revs)
debug("srom " revrange_to_string(_revs) " {")
# Push new SROM parser state
parser_state_open_block(_filter)
}
#
# Parse a SROM offset segment's attribute list from the current line
#
# <empty line>
# (&0xF0, >>4, =0x5340)
# ()
#
# Attribute designators:
# &0xF Mask value with 0xF
# <<4 Shift left 4 bits
# >>4 Shift right 4 bits
# =0x53 The parsed value must be equal to this constant value
#
# May be followed by a | indicating that this segment should be OR'd with the
# segment that follows, or a terminating , indicating that a new offset's
# list of segments may follow.
#
function parse_srom_segment_attributes(offset, type, _attrs, _num_attr, _attr,
_mask, _shift, _value, _i)
{
# seek to offset (attributes...) or end of the offset expr (|,)
sub("^[^,(|){}]+", "", $0)
# defaults
_mask = type_get_default_mask(type)
_shift = 0
# parse attributes
if ($1 ~ "^\\(") {
# extract attribute list
if (match($0, /\([^|\(\)]*\)/) <= 0)
error("expected attribute list")
_attrs = substr($0, RSTART+1, RLENGTH-2)
# drop attribute list from the input line
$0 = substr($0, RSTART+RLENGTH, length($0) - RSTART+RLENGTH)
# parse attributes
_num_attr = split(_attrs, _g_attrs, ",[ \t]*")
for (_i = 1; _i <= _num_attr; _i++) {
_attr = _g_attrs[_i]
if (sub("^&[ \t]*", "", _attr) > 0) {
_mask = parse_uint_string(_attr)
} else if (sub("^<<[ \t]*", "", _attr) > 0) {
_shift = - parse_uint_string(_attr)
} else if (sub("^>>[ \t]*", "", _attr) > 0) {
_shift = parse_uint_string(_attr)
} else if (sub("^=[ \t]*", "", _attr) > 0) {
_value = _attr
} else {
error("unknown attribute '" _attr "'")
}
}
}
return (srom_segment_new(offset, type, _mask, _shift, _value))
}
#
# Parse a SROM offset's segment declaration from the current line
#
# +0x0: u8 (&0xF0, >>4) # read 8 bits at +0x0 (relative to srom entry
# # offset, apply 0xF0 mask, shift >> 4
# 0x10: u8 (&0xF0, >>4) # identical to above, but perform the read at
# # absolute offset 0x10
#
# +0x0: u8 # no attributes
# 0x10: u8
#
# +0x0 # simplified forms denoted by lack of ':'; the
# 0x0 # type is inherited from the parent SromEntry
#
#
function parse_srom_segment(base_offset, base_type, _simple, _type, _type_str,
_offset, _attrs, _num_attr, _attr, _mask, _shift, _off_desc)
{
# Fetch the offset value
_offset = $1
# Offset string must be one of:
# simplified entry: <offset|+reloff>
# Provides only the offset, with the type inherited
# from the original variable definition
# standard entry: <offset|+reloff>:
# Provides the offset, followed by a type
#
# We differentiate the two by looking for (and simultaneously removing)
# the trailing ':'
if (!sub(/:$/, "", _offset))
_simple = 1
# The offset may either be absolute (e.g. 0x180) or relative (e.g.
# +0x01).
#
# If we find a relative offset definition, we must trim the leading '+'
# and then add the base offset
if (sub(/^\+/, "", _offset)) {
_offset = base_offset + parse_uint_offset(_offset)
} else {
_offset = parse_uint_offset(_offset)
}
# If simplified form, use the base type of the SROM entry. Otherwise,
# we need to parse the type.
if (_simple) {
_type = base_type
} else {
_type_str = $2
sub(/,$/, "", _type_str) # trim trailing ',', if any
if ((_type = parse_type_string(_type_str)) == null)
error("unknown type '" _type_str "'")
}
# Parse the trailing (... attributes ...), if any
return (parse_srom_segment_attributes(_offset, _type))
}
#
# Parse a SROM variable entry from the current line
# <offset>: <type> <varname><array spec> ...
#
function parse_srom_variable_entry(_srom, _srom_revs, _rev_start, _rev_end,
_srom_entries, _srom_revmap, _prev_entry, _ctx, _base_offset, _name,
_stype, _var, _entry, _offset, _seg, _i)
{
# Fetch our parent context
_ctx = parser_state_get_context(SromContext)
_srom_revs = get(_ctx, p_revisions)
_rev_start = get(_srom_revs, p_start)
_rev_end = get(_srom_revs, p_end)
# Locate our enclosing layout
_srom = parser_state_find_context(SromLayout)
_srom_entries = get(_srom, p_entries)
_srom_revmap = get(_srom, p_revmap)
# Verify argument count
if (NF < 3) {
error("unrecognized srom entry syntax; must specify at " \
"least \"<offset>: <type> <variable name>\"")
}
# Parse the base offset
_base_offset = parse_uint_offset($1)
# Parse the base type
if ((_stype = type_named($2)) == null)
error("unknown type '" $2 "'")
# Parse (and trim) any array specifier from the variable name
_name = $3
_stype = parse_array_type_specifier(_name, _stype)
sub(ARRAY_REGEX"$", "", _name)
# Locate the variable definition
if (!(_name in _g_var_names))
error("no definition found for variable '" _name "'")
_var = _g_var_names[_name]
# The SROM entry type must be a subtype of the variable's declared
# type
if (!type_can_represent(get(_var, p_type), _stype)) {
error("'" type_to_string(_stype) "' SROM value cannot be " \
"coerced to '" type_to_string(get(_var, p_type)) " " _name \
"' variable")
}
# Create and register our new offset entry
_entry = srom_entry_new(_var, _srom_revs, _base_offset, _stype)
srom_layout_add_entry(_srom, _entry)
# Seek to either the block start ('{'), or the attributes to be
# used for a single offset/segment entry at `offset`
shiftf(3)
# Using the block syntax? */
if ($1 == "{") {
debug(sprintf("0x%03x: %s %s {", _base_offset,
type_to_string(_stype), _name))
parser_state_open_block(_entry)
} else {
# Otherwise, we're using the simplified syntax -- create and
# register our implicit SromOffset
_offset = srom_offset_new()
array_append(get(_entry, p_offsets), _offset)
# Parse and register simplified segment syntax
_seg = parse_srom_segment_attributes(_base_offset, _stype)
array_append(get(_offset, p_segments), _seg)
debug(sprintf("0x%03x: %s %s { %s }", _base_offset,
type_to_string(_stype), _name, segment_to_string(_seg)))
}
}
#
# Parse all SromSegment entry segments readable starting at the current line
#
# <offset|+reloff>[,|]?
# <offset|+reloff>: <type>[,|]?
# <offset|+reloff>: <type> (<attributes>)[,|]?
#
function parse_srom_entry_segments(_entry, _base_off, _base_type, _offs,
_offset, _segs, _seg, _more_seg, _more_vals)
{
_entry = parser_state_get_context(SromEntry)
_base_off = get(_entry, p_base_offset)
_offs = get(_entry, p_offsets)
_base_type = get(_entry, p_type)
_base_type = type_get_base(_base_type)
# Parse all offsets
do {
# Create a SromOffset
_offset = srom_offset_new()
_segs = get(_offset, p_segments)
array_append(_offs, _offset)
# Parse all segments
do {
_seg = parse_srom_segment(_base_off, _base_type)
array_append(_segs, _seg)
# Do more segments follow?
_more_seg = ($1 == "|")
if (_more_seg)
shiftf(1, 1)
if (_more_seg)
debug(segment_to_string(_seg) " |")
else
debug(segment_to_string(_seg))
} while (_more_seg)
# Do more offsets follow?
_more_vals = ($1 == ",")
if (_more_vals)
shiftf(1, 1)
} while (_more_vals)
}