358bcc4c6c
In NETMAP mode not all queues need to be allocated to NETMAP. Some of them could be left to the kernel. Configuration is managed by the flags nr_mode and nr_pending_mode provided per each NETMAP kring. ENA driver checks those flags and perform proper rings initialization. Differential Revision: https://reviews.freebsd.org/D21937 Submitted by: Rafal Kozik <rk@semihalf.com> Michal Krawczyk <mk@semihalf.com> Obtained from: Semihalf Sponsored by: Amazon, Inc.
1096 lines
29 KiB
C
1096 lines
29 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright (c) 2015-2019 Amazon.com, Inc. or its affiliates.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#ifdef DEV_NETMAP
|
|
|
|
#include "ena.h"
|
|
#include "ena_netmap.h"
|
|
|
|
#define ENA_NETMAP_MORE_FRAMES 1
|
|
#define ENA_NETMAP_NO_MORE_FRAMES 0
|
|
#define ENA_MAX_FRAMES 16384
|
|
|
|
struct ena_netmap_ctx {
|
|
struct netmap_kring *kring;
|
|
struct ena_adapter *adapter;
|
|
struct netmap_adapter *na;
|
|
struct netmap_slot *slots;
|
|
struct ena_ring *ring;
|
|
struct ena_com_io_cq *io_cq;
|
|
struct ena_com_io_sq *io_sq;
|
|
u_int nm_i;
|
|
uint16_t nt;
|
|
uint16_t lim;
|
|
};
|
|
|
|
/* Netmap callbacks */
|
|
static int ena_netmap_reg(struct netmap_adapter *, int);
|
|
static int ena_netmap_txsync(struct netmap_kring *, int);
|
|
static int ena_netmap_rxsync(struct netmap_kring *, int);
|
|
|
|
/* Helper functions */
|
|
static int ena_netmap_tx_frames(struct ena_netmap_ctx *);
|
|
static int ena_netmap_tx_frame(struct ena_netmap_ctx *);
|
|
static inline uint16_t ena_netmap_count_slots(struct ena_netmap_ctx *);
|
|
static inline uint16_t ena_netmap_packet_len(struct netmap_slot *, u_int,
|
|
uint16_t);
|
|
static int ena_netmap_copy_data(struct netmap_adapter *,
|
|
struct netmap_slot *, u_int, uint16_t, uint16_t, void *);
|
|
static int ena_netmap_map_single_slot(struct netmap_adapter *,
|
|
struct netmap_slot *, bus_dma_tag_t, bus_dmamap_t, void **, uint64_t *);
|
|
static int ena_netmap_tx_map_slots(struct ena_netmap_ctx *,
|
|
struct ena_tx_buffer *, void **, uint16_t *, uint16_t *);
|
|
static void ena_netmap_unmap_last_socket_chain(struct ena_netmap_ctx *,
|
|
struct ena_tx_buffer *);
|
|
static void ena_netmap_tx_cleanup(struct ena_netmap_ctx *);
|
|
static uint16_t ena_netmap_tx_clean_one(struct ena_netmap_ctx *,
|
|
uint16_t);
|
|
static inline int validate_tx_req_id(struct ena_ring *, uint16_t);
|
|
static int ena_netmap_rx_frames(struct ena_netmap_ctx *);
|
|
static int ena_netmap_rx_frame(struct ena_netmap_ctx *);
|
|
static int ena_netmap_rx_load_desc(struct ena_netmap_ctx *, uint16_t,
|
|
int *);
|
|
static void ena_netmap_rx_cleanup(struct ena_netmap_ctx *);
|
|
static void ena_netmap_fill_ctx(struct netmap_kring *,
|
|
struct ena_netmap_ctx *, uint16_t);
|
|
|
|
int
|
|
ena_netmap_attach(struct ena_adapter *adapter)
|
|
{
|
|
struct netmap_adapter na;
|
|
|
|
ena_trace(ENA_NETMAP, "netmap attach\n");
|
|
|
|
bzero(&na, sizeof(na));
|
|
na.na_flags = NAF_MOREFRAG;
|
|
na.ifp = adapter->ifp;
|
|
na.num_tx_desc = adapter->tx_ring_size;
|
|
na.num_rx_desc = adapter->rx_ring_size;
|
|
na.num_tx_rings = adapter->num_queues;
|
|
na.num_rx_rings = adapter->num_queues;
|
|
na.rx_buf_maxsize = adapter->buf_ring_size;
|
|
na.nm_txsync = ena_netmap_txsync;
|
|
na.nm_rxsync = ena_netmap_rxsync;
|
|
na.nm_register = ena_netmap_reg;
|
|
|
|
return (netmap_attach(&na));
|
|
}
|
|
|
|
int
|
|
ena_netmap_alloc_rx_slot(struct ena_adapter *adapter,
|
|
struct ena_ring *rx_ring, struct ena_rx_buffer *rx_info)
|
|
{
|
|
struct netmap_adapter *na = NA(adapter->ifp);
|
|
struct netmap_kring *kring;
|
|
struct netmap_ring *ring;
|
|
struct netmap_slot *slot;
|
|
void *addr;
|
|
uint64_t paddr;
|
|
int nm_i, qid, head, lim, rc;
|
|
|
|
/* if previously allocated frag is not used */
|
|
if (unlikely(rx_info->netmap_buf_idx != 0))
|
|
return (0);
|
|
|
|
qid = rx_ring->qid;
|
|
kring = na->rx_rings[qid];
|
|
nm_i = kring->nr_hwcur;
|
|
head = kring->rhead;
|
|
|
|
ena_trace(ENA_NETMAP | ENA_DBG, "nr_hwcur: %d, nr_hwtail: %d, "
|
|
"rhead: %d, rcur: %d, rtail: %d\n", kring->nr_hwcur,
|
|
kring->nr_hwtail, kring->rhead, kring->rcur, kring->rtail);
|
|
|
|
if ((nm_i == head) && rx_ring->initialized) {
|
|
ena_trace(ENA_NETMAP, "No free slots in netmap ring\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
ring = kring->ring;
|
|
if (ring == NULL) {
|
|
device_printf(adapter->pdev, "Rx ring %d is NULL\n", qid);
|
|
return (EFAULT);
|
|
}
|
|
slot = &ring->slot[nm_i];
|
|
|
|
addr = PNMB(na, slot, &paddr);
|
|
if (addr == NETMAP_BUF_BASE(na)) {
|
|
device_printf(adapter->pdev, "Bad buff in slot\n");
|
|
return (EFAULT);
|
|
}
|
|
|
|
rc = netmap_load_map(na, adapter->rx_buf_tag, rx_info->map, addr);
|
|
if (rc != 0) {
|
|
ena_trace(ENA_WARNING, "DMA mapping error\n");
|
|
return (rc);
|
|
}
|
|
bus_dmamap_sync(adapter->rx_buf_tag, rx_info->map, BUS_DMASYNC_PREREAD);
|
|
|
|
rx_info->ena_buf.paddr = paddr;
|
|
rx_info->ena_buf.len = ring->nr_buf_size;
|
|
rx_info->mbuf = NULL;
|
|
rx_info->netmap_buf_idx = slot->buf_idx;
|
|
|
|
slot->buf_idx = 0;
|
|
|
|
lim = kring->nkr_num_slots - 1;
|
|
kring->nr_hwcur = nm_next(nm_i, lim);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
ena_netmap_free_rx_slot(struct ena_adapter *adapter,
|
|
struct ena_ring *rx_ring, struct ena_rx_buffer *rx_info)
|
|
{
|
|
struct netmap_adapter *na;
|
|
struct netmap_kring *kring;
|
|
struct netmap_slot *slot;
|
|
int nm_i, qid, lim;
|
|
|
|
na = NA(adapter->ifp);
|
|
if (na == NULL) {
|
|
device_printf(adapter->pdev, "netmap adapter is NULL\n");
|
|
return;
|
|
}
|
|
|
|
if (na->rx_rings == NULL) {
|
|
device_printf(adapter->pdev, "netmap rings are NULL\n");
|
|
return;
|
|
}
|
|
|
|
qid = rx_ring->qid;
|
|
kring = na->rx_rings[qid];
|
|
if (kring == NULL) {
|
|
device_printf(adapter->pdev,
|
|
"netmap kernel ring %d is NULL\n", qid);
|
|
return;
|
|
}
|
|
|
|
lim = kring->nkr_num_slots - 1;
|
|
nm_i = nm_prev(kring->nr_hwcur, lim);
|
|
|
|
if (kring->nr_mode != NKR_NETMAP_ON)
|
|
return;
|
|
|
|
bus_dmamap_sync(adapter->rx_buf_tag, rx_info->map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
netmap_unload_map(na, adapter->rx_buf_tag, rx_info->map);
|
|
|
|
KASSERT(kring->ring == NULL, ("Netmap Rx ring is NULL\n"));
|
|
|
|
slot = &kring->ring->slot[nm_i];
|
|
|
|
ENA_ASSERT(slot->buf_idx == 0, "Overwrite slot buf\n");
|
|
slot->buf_idx = rx_info->netmap_buf_idx;
|
|
slot->flags = NS_BUF_CHANGED;
|
|
|
|
rx_info->netmap_buf_idx = 0;
|
|
kring->nr_hwcur = nm_i;
|
|
}
|
|
|
|
static bool
|
|
ena_ring_in_netmap(struct ena_adapter *adapter, int qid, enum txrx x)
|
|
{
|
|
struct netmap_adapter *na;
|
|
struct netmap_kring *kring;
|
|
|
|
if (adapter->ifp->if_capenable & IFCAP_NETMAP) {
|
|
na = NA(adapter->ifp);
|
|
kring = (x == NR_RX) ? na->rx_rings[qid] : na->tx_rings[qid];
|
|
if (kring->nr_mode == NKR_NETMAP_ON)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
ena_tx_ring_in_netmap(struct ena_adapter *adapter, int qid)
|
|
{
|
|
return ena_ring_in_netmap(adapter, qid, NR_TX);
|
|
}
|
|
|
|
bool
|
|
ena_rx_ring_in_netmap(struct ena_adapter *adapter, int qid)
|
|
{
|
|
return ena_ring_in_netmap(adapter, qid, NR_RX);
|
|
}
|
|
|
|
static void
|
|
ena_netmap_reset_ring(struct ena_adapter *adapter, int qid, enum txrx x)
|
|
{
|
|
if (!ena_ring_in_netmap(adapter, qid, x))
|
|
return;
|
|
|
|
netmap_reset(NA(adapter->ifp), x, qid, 0);
|
|
ena_trace(ENA_NETMAP, "%s ring %d is in netmap mode\n",
|
|
(x == NR_TX) ? "Tx" : "Rx", qid);
|
|
}
|
|
|
|
void
|
|
ena_netmap_reset_rx_ring(struct ena_adapter *adapter, int qid)
|
|
{
|
|
ena_netmap_reset_ring(adapter, qid, NR_RX);
|
|
}
|
|
|
|
void
|
|
ena_netmap_reset_tx_ring(struct ena_adapter *adapter, int qid)
|
|
{
|
|
ena_netmap_reset_ring(adapter, qid, NR_TX);
|
|
}
|
|
|
|
static int
|
|
ena_netmap_reg(struct netmap_adapter *na, int onoff)
|
|
{
|
|
struct ifnet *ifp = na->ifp;
|
|
struct ena_adapter* adapter = ifp->if_softc;
|
|
struct netmap_kring *kring;
|
|
enum txrx t;
|
|
int rc, i;
|
|
|
|
sx_xlock(&adapter->ioctl_sx);
|
|
ENA_FLAG_CLEAR_ATOMIC(ENA_FLAG_TRIGGER_RESET, adapter);
|
|
ena_down(adapter);
|
|
|
|
if (onoff) {
|
|
ena_trace(ENA_NETMAP, "netmap on\n");
|
|
for_rx_tx(t) {
|
|
for (i = 0; i <= nma_get_nrings(na, t); i++) {
|
|
kring = NMR(na, t)[i];
|
|
if (nm_kring_pending_on(kring)) {
|
|
kring->nr_mode = NKR_NETMAP_ON;
|
|
}
|
|
}
|
|
}
|
|
nm_set_native_flags(na);
|
|
} else {
|
|
ena_trace(ENA_NETMAP, "netmap off\n");
|
|
nm_clear_native_flags(na);
|
|
for_rx_tx(t) {
|
|
for (i = 0; i <= nma_get_nrings(na, t); i++) {
|
|
kring = NMR(na, t)[i];
|
|
if (nm_kring_pending_off(kring)) {
|
|
kring->nr_mode = NKR_NETMAP_OFF;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
rc = ena_up(adapter);
|
|
if (rc != 0) {
|
|
ena_trace(ENA_WARNING, "ena_up failed with rc=%d\n", rc);
|
|
adapter->reset_reason = ENA_REGS_RESET_DRIVER_INVALID_STATE;
|
|
nm_clear_native_flags(na);
|
|
ena_destroy_device(adapter, false);
|
|
ENA_FLAG_SET_ATOMIC(ENA_FLAG_DEV_UP_BEFORE_RESET, adapter);
|
|
rc = ena_restore_device(adapter);
|
|
}
|
|
sx_unlock(&adapter->ioctl_sx);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
static int
|
|
ena_netmap_txsync(struct netmap_kring *kring, int flags)
|
|
{
|
|
struct ena_netmap_ctx ctx;
|
|
int rc = 0;
|
|
|
|
ena_netmap_fill_ctx(kring, &ctx, ENA_IO_TXQ_IDX(kring->ring_id));
|
|
ctx.ring = &ctx.adapter->tx_ring[kring->ring_id];
|
|
|
|
ENA_RING_MTX_LOCK(ctx.ring);
|
|
if (unlikely(!ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, ctx.adapter)))
|
|
goto txsync_end;
|
|
|
|
if (unlikely(!ENA_FLAG_ISSET(ENA_FLAG_LINK_UP, ctx.adapter)))
|
|
goto txsync_end;
|
|
|
|
rc = ena_netmap_tx_frames(&ctx);
|
|
ena_netmap_tx_cleanup(&ctx);
|
|
|
|
txsync_end:
|
|
ENA_RING_MTX_UNLOCK(ctx.ring);
|
|
return (rc);
|
|
}
|
|
|
|
static int
|
|
ena_netmap_tx_frames(struct ena_netmap_ctx *ctx)
|
|
{
|
|
struct ena_ring *tx_ring = ctx->ring;
|
|
int rc = 0;
|
|
|
|
ctx->nm_i = ctx->kring->nr_hwcur;
|
|
ctx->nt = ctx->ring->next_to_use;
|
|
|
|
__builtin_prefetch(&ctx->slots[ctx->nm_i]);
|
|
|
|
while (ctx->nm_i != ctx->kring->rhead) {
|
|
if ((rc = ena_netmap_tx_frame(ctx)) != 0) {
|
|
/*
|
|
* When there is no empty space in Tx ring, error is
|
|
* still being returned. It should not be passed to the
|
|
* netmap, as application knows current ring state from
|
|
* netmap ring pointers. Returning error there could
|
|
* cause application to exit, but the Tx ring is commonly
|
|
* being full.
|
|
*/
|
|
if (rc == ENA_COM_NO_MEM)
|
|
rc = 0;
|
|
break;
|
|
}
|
|
tx_ring->acum_pkts++;
|
|
}
|
|
|
|
/* If any packet was sent... */
|
|
if (likely(ctx->nm_i != ctx->kring->nr_hwcur)) {
|
|
wmb();
|
|
/* ...send the doorbell to the device. */
|
|
ena_com_write_sq_doorbell(ctx->io_sq);
|
|
counter_u64_add(ctx->ring->tx_stats.doorbells, 1);
|
|
tx_ring->acum_pkts = 0;
|
|
|
|
ctx->ring->next_to_use = ctx->nt;
|
|
ctx->kring->nr_hwcur = ctx->nm_i;
|
|
}
|
|
|
|
return (rc);
|
|
}
|
|
|
|
static int
|
|
ena_netmap_tx_frame(struct ena_netmap_ctx *ctx)
|
|
{
|
|
struct ena_com_tx_ctx ena_tx_ctx;
|
|
struct ena_adapter *adapter;
|
|
struct ena_ring *tx_ring;
|
|
struct ena_tx_buffer *tx_info;
|
|
uint16_t req_id;
|
|
uint16_t header_len;
|
|
uint16_t packet_len;
|
|
int nb_hw_desc;
|
|
int rc;
|
|
void *push_hdr;
|
|
|
|
adapter = ctx->adapter;
|
|
if (ena_netmap_count_slots(ctx) > adapter->max_tx_sgl_size) {
|
|
ena_trace(ENA_WARNING, "Too many slots per packet\n");
|
|
return (EINVAL);
|
|
}
|
|
|
|
tx_ring = ctx->ring;
|
|
|
|
req_id = tx_ring->free_tx_ids[ctx->nt];
|
|
tx_info = &tx_ring->tx_buffer_info[req_id];
|
|
tx_info->num_of_bufs = 0;
|
|
tx_info->nm_info.sockets_used = 0;
|
|
|
|
rc = ena_netmap_tx_map_slots(ctx, tx_info, &push_hdr, &header_len,
|
|
&packet_len);
|
|
if (unlikely(rc != 0)) {
|
|
device_printf(adapter->pdev, "Failed to map Tx slot\n");
|
|
return (rc);
|
|
}
|
|
|
|
bzero(&ena_tx_ctx, sizeof(struct ena_com_tx_ctx));
|
|
ena_tx_ctx.ena_bufs = tx_info->bufs;
|
|
ena_tx_ctx.push_header = push_hdr;
|
|
ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
|
|
ena_tx_ctx.req_id = req_id;
|
|
ena_tx_ctx.header_len = header_len;
|
|
|
|
/* There are no any offloads, as the netmap doesn't support them */
|
|
|
|
if (tx_ring->acum_pkts == DB_THRESHOLD ||
|
|
ena_com_is_doorbell_needed(ctx->io_sq, &ena_tx_ctx)) {
|
|
wmb();
|
|
ena_com_write_sq_doorbell(ctx->io_sq);
|
|
counter_u64_add(tx_ring->tx_stats.doorbells, 1);
|
|
tx_ring->acum_pkts = 0;
|
|
}
|
|
|
|
rc = ena_com_prepare_tx(ctx->io_sq, &ena_tx_ctx, &nb_hw_desc);
|
|
if (unlikely(rc != 0)) {
|
|
if (likely(rc == ENA_COM_NO_MEM)) {
|
|
ena_trace(ENA_NETMAP | ENA_DBG | ENA_TXPTH,
|
|
"Tx ring[%d] is out of space\n", tx_ring->que->id);
|
|
} else {
|
|
device_printf(adapter->pdev,
|
|
"Failed to prepare Tx bufs\n");
|
|
}
|
|
counter_u64_add(tx_ring->tx_stats.prepare_ctx_err, 1);
|
|
|
|
ena_netmap_unmap_last_socket_chain(ctx, tx_info);
|
|
return (rc);
|
|
}
|
|
|
|
counter_enter();
|
|
counter_u64_add_protected(tx_ring->tx_stats.cnt, 1);
|
|
counter_u64_add_protected(tx_ring->tx_stats.bytes, packet_len);
|
|
counter_u64_add_protected(adapter->hw_stats.tx_packets, 1);
|
|
counter_u64_add_protected(adapter->hw_stats.tx_bytes, packet_len);
|
|
counter_exit();
|
|
|
|
tx_info->tx_descs = nb_hw_desc;
|
|
|
|
ctx->nt = ENA_TX_RING_IDX_NEXT(ctx->nt, ctx->ring->ring_size);
|
|
|
|
for (unsigned int i = 0; i < tx_info->num_of_bufs; i++)
|
|
bus_dmamap_sync(adapter->tx_buf_tag,
|
|
tx_info->nm_info.map_seg[i], BUS_DMASYNC_PREWRITE);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static inline uint16_t
|
|
ena_netmap_count_slots(struct ena_netmap_ctx *ctx)
|
|
{
|
|
uint16_t slots = 1;
|
|
uint16_t nm = ctx->nm_i;
|
|
|
|
while ((ctx->slots[nm].flags & NS_MOREFRAG) != 0) {
|
|
slots++;
|
|
nm = nm_next(nm, ctx->lim);
|
|
}
|
|
|
|
return slots;
|
|
}
|
|
|
|
static inline uint16_t
|
|
ena_netmap_packet_len(struct netmap_slot *slots, u_int slot_index,
|
|
uint16_t limit)
|
|
{
|
|
struct netmap_slot *nm_slot;
|
|
uint16_t packet_size = 0;
|
|
|
|
do {
|
|
nm_slot = &slots[slot_index];
|
|
packet_size += nm_slot->len;
|
|
slot_index = nm_next(slot_index, limit);
|
|
} while ((nm_slot->flags & NS_MOREFRAG) != 0);
|
|
|
|
return packet_size;
|
|
}
|
|
|
|
static int
|
|
ena_netmap_copy_data(struct netmap_adapter *na, struct netmap_slot *slots,
|
|
u_int slot_index, uint16_t limit, uint16_t bytes_to_copy, void *destination)
|
|
{
|
|
struct netmap_slot *nm_slot;
|
|
void *slot_vaddr;
|
|
uint16_t packet_size;
|
|
uint16_t data_amount;
|
|
|
|
packet_size = 0;
|
|
do {
|
|
nm_slot = &slots[slot_index];
|
|
slot_vaddr = NMB(na, nm_slot);
|
|
if (unlikely(slot_vaddr == NULL))
|
|
return (EINVAL);
|
|
|
|
data_amount = min_t(uint16_t, bytes_to_copy, nm_slot->len);
|
|
memcpy(destination, slot_vaddr, data_amount);
|
|
bytes_to_copy -= data_amount;
|
|
|
|
slot_index = nm_next(slot_index, limit);
|
|
} while ((nm_slot->flags & NS_MOREFRAG) != 0 && bytes_to_copy > 0);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ena_netmap_map_single_slot(struct netmap_adapter *na, struct netmap_slot *slot,
|
|
bus_dma_tag_t dmatag, bus_dmamap_t dmamap, void **vaddr, uint64_t *paddr)
|
|
{
|
|
int rc;
|
|
|
|
*vaddr = PNMB(na, slot, paddr);
|
|
if (unlikely(vaddr == NULL)) {
|
|
ena_trace(ENA_ALERT, "Slot address is NULL\n");
|
|
return (EINVAL);
|
|
}
|
|
|
|
rc = netmap_load_map(na, dmatag, dmamap, *vaddr);
|
|
if (unlikely(rc != 0)) {
|
|
ena_trace(ENA_ALERT, "Failed to map slot %d for DMA\n",
|
|
slot->buf_idx);
|
|
return (EINVAL);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ena_netmap_tx_map_slots(struct ena_netmap_ctx *ctx,
|
|
struct ena_tx_buffer *tx_info, void **push_hdr, uint16_t *header_len,
|
|
uint16_t *packet_len)
|
|
{
|
|
struct netmap_slot *slot;
|
|
struct ena_com_buf *ena_buf;
|
|
struct ena_adapter *adapter;
|
|
struct ena_ring *tx_ring;
|
|
struct ena_netmap_tx_info *nm_info;
|
|
bus_dmamap_t *nm_maps;
|
|
void *vaddr;
|
|
uint64_t paddr;
|
|
uint32_t *nm_buf_idx;
|
|
uint32_t slot_head_len;
|
|
uint32_t frag_len;
|
|
uint32_t remaining_len;
|
|
uint16_t push_len;
|
|
uint16_t delta;
|
|
int rc;
|
|
|
|
adapter = ctx->adapter;
|
|
tx_ring = ctx->ring;
|
|
ena_buf = tx_info->bufs;
|
|
nm_info = &tx_info->nm_info;
|
|
nm_maps = nm_info->map_seg;
|
|
nm_buf_idx = nm_info->socket_buf_idx;
|
|
slot = &ctx->slots[ctx->nm_i];
|
|
|
|
slot_head_len = slot->len;
|
|
*packet_len = ena_netmap_packet_len(ctx->slots, ctx->nm_i, ctx->lim);
|
|
remaining_len = *packet_len;
|
|
delta = 0;
|
|
|
|
__builtin_prefetch(&ctx->slots[ctx->nm_i + 1]);
|
|
if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
|
|
/*
|
|
* When the device is in LLQ mode, the driver will copy
|
|
* the header into the device memory space.
|
|
* The ena_com layer assumes that the header is in a linear
|
|
* memory space.
|
|
* This assumption might be wrong since part of the header
|
|
* can be in the fragmented buffers.
|
|
* First, check if header fits in the first slot. If not, copy
|
|
* it to separate buffer that will be holding linearized data.
|
|
*/
|
|
push_len = min_t(uint32_t, *packet_len,
|
|
tx_ring->tx_max_header_size);
|
|
*header_len = push_len;
|
|
/* If header is in linear space, just point to socket's data. */
|
|
if (likely(push_len <= slot_head_len)) {
|
|
*push_hdr = NMB(ctx->na, slot);
|
|
if (unlikely(push_hdr == NULL)) {
|
|
device_printf(adapter->pdev,
|
|
"Slot vaddress is NULL\n");
|
|
return (EINVAL);
|
|
}
|
|
/*
|
|
* Otherwise, copy whole portion of header from multiple slots
|
|
* to intermediate buffer.
|
|
*/
|
|
} else {
|
|
rc = ena_netmap_copy_data(ctx->na,
|
|
ctx->slots,
|
|
ctx->nm_i,
|
|
ctx->lim,
|
|
push_len,
|
|
tx_ring->push_buf_intermediate_buf);
|
|
if (unlikely(rc)) {
|
|
device_printf(adapter->pdev,
|
|
"Failed to copy data from slots to push_buf\n");
|
|
return (EINVAL);
|
|
}
|
|
|
|
*push_hdr = tx_ring->push_buf_intermediate_buf;
|
|
counter_u64_add(tx_ring->tx_stats.llq_buffer_copy, 1);
|
|
|
|
delta = push_len - slot_head_len;
|
|
}
|
|
|
|
ena_trace(ENA_NETMAP | ENA_DBG | ENA_TXPTH,
|
|
"slot: %d header_buf->vaddr: %p push_len: %d\n",
|
|
slot->buf_idx, *push_hdr, push_len);
|
|
|
|
/*
|
|
* If header was in linear memory space, map for the dma rest of the data
|
|
* in the first mbuf of the mbuf chain.
|
|
*/
|
|
if (slot_head_len > push_len) {
|
|
rc = ena_netmap_map_single_slot(ctx->na,
|
|
slot,
|
|
adapter->tx_buf_tag,
|
|
*nm_maps,
|
|
&vaddr,
|
|
&paddr);
|
|
if (unlikely(rc != 0)) {
|
|
device_printf(adapter->pdev,
|
|
"DMA mapping error\n");
|
|
return (rc);
|
|
}
|
|
nm_maps++;
|
|
|
|
ena_buf->paddr = paddr + push_len;
|
|
ena_buf->len = slot->len - push_len;
|
|
ena_buf++;
|
|
|
|
tx_info->num_of_bufs++;
|
|
}
|
|
|
|
remaining_len -= slot->len;
|
|
|
|
/* Save buf idx before advancing */
|
|
*nm_buf_idx = slot->buf_idx;
|
|
nm_buf_idx++;
|
|
slot->buf_idx = 0;
|
|
|
|
/* Advance to the next socket */
|
|
ctx->nm_i = nm_next(ctx->nm_i, ctx->lim);
|
|
slot = &ctx->slots[ctx->nm_i];
|
|
nm_info->sockets_used++;
|
|
|
|
/*
|
|
* If header is in non linear space (delta > 0), then skip mbufs
|
|
* containing header and map the last one containing both header
|
|
* and the packet data.
|
|
* The first segment is already counted in.
|
|
*/
|
|
while (delta > 0) {
|
|
__builtin_prefetch(&ctx->slots[ctx->nm_i + 1]);
|
|
frag_len = slot->len;
|
|
|
|
/*
|
|
* If whole segment contains header just move to the
|
|
* next one and reduce delta.
|
|
*/
|
|
if (unlikely(delta >= frag_len)) {
|
|
delta -= frag_len;
|
|
} else {
|
|
/*
|
|
* Map the data and then assign it with the
|
|
* offsets
|
|
*/
|
|
rc = ena_netmap_map_single_slot(ctx->na,
|
|
slot,
|
|
adapter->tx_buf_tag,
|
|
*nm_maps,
|
|
&vaddr,
|
|
&paddr);
|
|
if (unlikely(rc != 0)) {
|
|
device_printf(adapter->pdev,
|
|
"DMA mapping error\n");
|
|
goto error_map;
|
|
}
|
|
nm_maps++;
|
|
|
|
ena_buf->paddr = paddr + delta;
|
|
ena_buf->len = slot->len - delta;
|
|
ena_buf++;
|
|
|
|
tx_info->num_of_bufs++;
|
|
delta = 0;
|
|
}
|
|
|
|
remaining_len -= slot->len;
|
|
|
|
/* Save buf idx before advancing */
|
|
*nm_buf_idx = slot->buf_idx;
|
|
nm_buf_idx++;
|
|
slot->buf_idx = 0;
|
|
|
|
/* Advance to the next socket */
|
|
ctx->nm_i = nm_next(ctx->nm_i, ctx->lim);
|
|
slot = &ctx->slots[ctx->nm_i];
|
|
nm_info->sockets_used++;
|
|
}
|
|
} else {
|
|
*push_hdr = NULL;
|
|
/*
|
|
* header_len is just a hint for the device. Because netmap is
|
|
* not giving us any information about packet header length and
|
|
* it is not guaranteed that all packet headers will be in the
|
|
* 1st slot, setting header_len to 0 is making the device ignore
|
|
* this value and resolve header on it's own.
|
|
*/
|
|
*header_len = 0;
|
|
}
|
|
|
|
/* Map all remaining data (regular routine for non-LLQ mode) */
|
|
while (remaining_len > 0) {
|
|
__builtin_prefetch(&ctx->slots[ctx->nm_i + 1]);
|
|
|
|
rc = ena_netmap_map_single_slot(ctx->na,
|
|
slot,
|
|
adapter->tx_buf_tag,
|
|
*nm_maps,
|
|
&vaddr,
|
|
&paddr);
|
|
if (unlikely(rc != 0)) {
|
|
device_printf(adapter->pdev,
|
|
"DMA mapping error\n");
|
|
goto error_map;
|
|
}
|
|
nm_maps++;
|
|
|
|
ena_buf->paddr = paddr;
|
|
ena_buf->len = slot->len;
|
|
ena_buf++;
|
|
|
|
tx_info->num_of_bufs++;
|
|
|
|
remaining_len -= slot->len;
|
|
|
|
/* Save buf idx before advancing */
|
|
*nm_buf_idx = slot->buf_idx;
|
|
nm_buf_idx++;
|
|
slot->buf_idx = 0;
|
|
|
|
/* Advance to the next socket */
|
|
ctx->nm_i = nm_next(ctx->nm_i, ctx->lim);
|
|
slot = &ctx->slots[ctx->nm_i];
|
|
nm_info->sockets_used++;
|
|
}
|
|
|
|
return (0);
|
|
|
|
error_map:
|
|
ena_netmap_unmap_last_socket_chain(ctx, tx_info);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
static void
|
|
ena_netmap_unmap_last_socket_chain(struct ena_netmap_ctx *ctx,
|
|
struct ena_tx_buffer *tx_info)
|
|
{
|
|
struct ena_netmap_tx_info *nm_info;
|
|
int n;
|
|
|
|
nm_info = &tx_info->nm_info;
|
|
|
|
/**
|
|
* As the used sockets must not be equal to the buffers used in the LLQ
|
|
* mode, they must be treated separately.
|
|
* First, unmap the DMA maps.
|
|
*/
|
|
n = tx_info->num_of_bufs;
|
|
while (n--) {
|
|
netmap_unload_map(ctx->na, ctx->adapter->tx_buf_tag,
|
|
nm_info->map_seg[n]);
|
|
}
|
|
tx_info->num_of_bufs = 0;
|
|
|
|
/* Next, retain the sockets back to the userspace */
|
|
n = nm_info->sockets_used;
|
|
while (n--) {
|
|
ctx->slots[ctx->nm_i].buf_idx = nm_info->socket_buf_idx[n];
|
|
ctx->slots[ctx->nm_i].flags = NS_BUF_CHANGED;
|
|
nm_info->socket_buf_idx[n] = 0;
|
|
ctx->nm_i = nm_prev(ctx->nm_i, ctx->lim);
|
|
}
|
|
nm_info->sockets_used = 0;
|
|
}
|
|
|
|
static void
|
|
ena_netmap_tx_cleanup(struct ena_netmap_ctx *ctx)
|
|
{
|
|
uint16_t req_id;
|
|
uint16_t total_tx_descs = 0;
|
|
|
|
ctx->nm_i = ctx->kring->nr_hwtail;
|
|
ctx->nt = ctx->ring->next_to_clean;
|
|
|
|
/* Reclaim buffers for completed transmissions */
|
|
while (ena_com_tx_comp_req_id_get(ctx->io_cq, &req_id) >= 0) {
|
|
if (validate_tx_req_id(ctx->ring, req_id) != 0)
|
|
break;
|
|
total_tx_descs += ena_netmap_tx_clean_one(ctx, req_id);
|
|
}
|
|
|
|
ctx->kring->nr_hwtail = ctx->nm_i;
|
|
|
|
if (total_tx_descs > 0) {
|
|
/* acknowledge completion of sent packets */
|
|
ctx->ring->next_to_clean = ctx->nt;
|
|
ena_com_comp_ack(ctx->ring->ena_com_io_sq, total_tx_descs);
|
|
ena_com_update_dev_comp_head(ctx->ring->ena_com_io_cq);
|
|
}
|
|
}
|
|
|
|
static uint16_t
|
|
ena_netmap_tx_clean_one(struct ena_netmap_ctx *ctx, uint16_t req_id)
|
|
{
|
|
struct ena_tx_buffer *tx_info;
|
|
struct ena_netmap_tx_info *nm_info;
|
|
int n;
|
|
|
|
tx_info = &ctx->ring->tx_buffer_info[req_id];
|
|
nm_info = &tx_info->nm_info;
|
|
|
|
/**
|
|
* As the used sockets must not be equal to the buffers used in the LLQ
|
|
* mode, they must be treated separately.
|
|
* First, unmap the DMA maps.
|
|
*/
|
|
n = tx_info->num_of_bufs;
|
|
for (n = 0; n < tx_info->num_of_bufs; n++) {
|
|
netmap_unload_map(ctx->na, ctx->adapter->tx_buf_tag,
|
|
nm_info->map_seg[n]);
|
|
}
|
|
tx_info->num_of_bufs = 0;
|
|
|
|
/* Next, retain the sockets back to the userspace */
|
|
for (n = 0; n < nm_info->sockets_used; n++) {
|
|
ctx->nm_i = nm_next(ctx->nm_i, ctx->lim);
|
|
ENA_ASSERT(ctx->slots[ctx->nm_i].buf_idx == 0,
|
|
"Tx idx is not 0.\n");
|
|
ctx->slots[ctx->nm_i].buf_idx = nm_info->socket_buf_idx[n];
|
|
ctx->slots[ctx->nm_i].flags = NS_BUF_CHANGED;
|
|
nm_info->socket_buf_idx[n] = 0;
|
|
}
|
|
nm_info->sockets_used = 0;
|
|
|
|
ctx->ring->free_tx_ids[ctx->nt] = req_id;
|
|
ctx->nt = ENA_TX_RING_IDX_NEXT(ctx->nt, ctx->lim);
|
|
|
|
return tx_info->tx_descs;
|
|
}
|
|
|
|
static inline int
|
|
validate_tx_req_id(struct ena_ring *tx_ring, uint16_t req_id)
|
|
{
|
|
struct ena_adapter *adapter = tx_ring->adapter;
|
|
|
|
if (likely(req_id < tx_ring->ring_size))
|
|
return (0);
|
|
|
|
ena_trace(ENA_WARNING, "Invalid req_id: %hu\n", req_id);
|
|
counter_u64_add(tx_ring->tx_stats.bad_req_id, 1);
|
|
|
|
adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
|
|
ENA_FLAG_SET_ATOMIC(ENA_FLAG_TRIGGER_RESET, adapter);
|
|
|
|
return (EFAULT);
|
|
}
|
|
|
|
static int
|
|
ena_netmap_rxsync(struct netmap_kring *kring, int flags)
|
|
{
|
|
struct ena_netmap_ctx ctx;
|
|
int rc;
|
|
|
|
ena_netmap_fill_ctx(kring, &ctx, ENA_IO_RXQ_IDX(kring->ring_id));
|
|
ctx.ring = &ctx.adapter->rx_ring[kring->ring_id];
|
|
|
|
if (ctx.kring->rhead > ctx.lim) {
|
|
/* Probably not needed to release slots from RX ring. */
|
|
return (netmap_ring_reinit(ctx.kring));
|
|
}
|
|
|
|
if (unlikely((if_getdrvflags(ctx.na->ifp) & IFF_DRV_RUNNING) == 0))
|
|
return (0);
|
|
|
|
if (unlikely(!ENA_FLAG_ISSET(ENA_FLAG_LINK_UP, ctx.adapter)))
|
|
return (0);
|
|
|
|
if ((rc = ena_netmap_rx_frames(&ctx)) != 0)
|
|
return (rc);
|
|
|
|
ena_netmap_rx_cleanup(&ctx);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static inline int
|
|
ena_netmap_rx_frames(struct ena_netmap_ctx *ctx)
|
|
{
|
|
int rc = 0;
|
|
int frames_counter = 0;
|
|
|
|
ctx->nt = ctx->ring->next_to_clean;
|
|
ctx->nm_i = ctx->kring->nr_hwtail;
|
|
|
|
while((rc = ena_netmap_rx_frame(ctx)) == ENA_NETMAP_MORE_FRAMES) {
|
|
frames_counter++;
|
|
/* In case of multiple frames, it is not an error. */
|
|
rc = 0;
|
|
if (frames_counter > ENA_MAX_FRAMES) {
|
|
device_printf(ctx->adapter->pdev,
|
|
"Driver is stuck in the Rx loop\n");
|
|
break;
|
|
}
|
|
};
|
|
|
|
ctx->kring->nr_hwtail = ctx->nm_i;
|
|
ctx->kring->nr_kflags &= ~NKR_PENDINTR;
|
|
ctx->ring->next_to_clean = ctx->nt;
|
|
|
|
return (rc);
|
|
}
|
|
|
|
static inline int
|
|
ena_netmap_rx_frame(struct ena_netmap_ctx *ctx)
|
|
{
|
|
struct ena_com_rx_ctx ena_rx_ctx;
|
|
int rc, len = 0;
|
|
uint16_t buf, nm;
|
|
|
|
ena_rx_ctx.ena_bufs = ctx->ring->ena_bufs;
|
|
ena_rx_ctx.max_bufs = ctx->adapter->max_rx_sgl_size;
|
|
bus_dmamap_sync(ctx->io_cq->cdesc_addr.mem_handle.tag,
|
|
ctx->io_cq->cdesc_addr.mem_handle.map, BUS_DMASYNC_POSTREAD);
|
|
|
|
rc = ena_com_rx_pkt(ctx->io_cq, ctx->io_sq, &ena_rx_ctx);
|
|
if (unlikely(rc != 0)) {
|
|
ena_trace(ENA_ALERT, "Too many desc from the device.\n");
|
|
counter_u64_add(ctx->ring->rx_stats.bad_desc_num, 1);
|
|
ctx->adapter->reset_reason = ENA_REGS_RESET_TOO_MANY_RX_DESCS;
|
|
ENA_FLAG_SET_ATOMIC(ENA_FLAG_TRIGGER_RESET, ctx->adapter);
|
|
return (rc);
|
|
}
|
|
if (unlikely(ena_rx_ctx.descs == 0))
|
|
return (ENA_NETMAP_NO_MORE_FRAMES);
|
|
|
|
ena_trace(ENA_NETMAP | ENA_DBG, "Rx: q %d got packet from ena. descs #:"
|
|
" %d l3 proto %d l4 proto %d hash: %x\n", ctx->ring->qid,
|
|
ena_rx_ctx.descs, ena_rx_ctx.l3_proto, ena_rx_ctx.l4_proto,
|
|
ena_rx_ctx.hash);
|
|
|
|
for (buf = 0; buf < ena_rx_ctx.descs; buf++)
|
|
if ((rc = ena_netmap_rx_load_desc(ctx, buf, &len)) != 0)
|
|
break;
|
|
/*
|
|
* ena_netmap_rx_load_desc doesn't know the number of descriptors.
|
|
* It just set flag NS_MOREFRAG to all slots, then here flag of
|
|
* last slot is cleared.
|
|
*/
|
|
ctx->slots[nm_prev(ctx->nm_i, ctx->lim)].flags = NS_BUF_CHANGED;
|
|
|
|
if (rc != 0) {
|
|
goto rx_clear_desc;
|
|
}
|
|
|
|
bus_dmamap_sync(ctx->io_cq->cdesc_addr.mem_handle.tag,
|
|
ctx->io_cq->cdesc_addr.mem_handle.map, BUS_DMASYNC_PREREAD);
|
|
|
|
counter_enter();
|
|
counter_u64_add_protected(ctx->ring->rx_stats.bytes, len);
|
|
counter_u64_add_protected(ctx->adapter->hw_stats.rx_bytes, len);
|
|
counter_u64_add_protected(ctx->ring->rx_stats.cnt, 1);
|
|
counter_u64_add_protected(ctx->adapter->hw_stats.rx_packets, 1);
|
|
counter_exit();
|
|
|
|
return (ENA_NETMAP_MORE_FRAMES);
|
|
|
|
rx_clear_desc:
|
|
nm = ctx->nm_i;
|
|
|
|
/* Remove failed packet from ring */
|
|
while(buf--) {
|
|
ctx->slots[nm].flags = 0;
|
|
ctx->slots[nm].len = 0;
|
|
nm = nm_prev(nm, ctx->lim);
|
|
}
|
|
|
|
return (rc);
|
|
}
|
|
|
|
static inline int
|
|
ena_netmap_rx_load_desc(struct ena_netmap_ctx *ctx, uint16_t buf, int *len)
|
|
{
|
|
struct ena_rx_buffer *rx_info;
|
|
uint16_t req_id;
|
|
int rc;
|
|
|
|
req_id = ctx->ring->ena_bufs[buf].req_id;
|
|
rc = validate_rx_req_id(ctx->ring, req_id);
|
|
if (unlikely(rc != 0))
|
|
return (rc);
|
|
|
|
rx_info = &ctx->ring->rx_buffer_info[req_id];
|
|
bus_dmamap_sync(ctx->adapter->rx_buf_tag, rx_info->map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
netmap_unload_map(ctx->na, ctx->adapter->rx_buf_tag, rx_info->map);
|
|
|
|
ENA_ASSERT(ctx->slots[ctx->nm_i].buf_idx == 0, "Rx idx is not 0.\n");
|
|
|
|
ctx->slots[ctx->nm_i].buf_idx = rx_info->netmap_buf_idx;
|
|
rx_info->netmap_buf_idx = 0;
|
|
/*
|
|
* Set NS_MOREFRAG to all slots.
|
|
* Then ena_netmap_rx_frame clears it from last one.
|
|
*/
|
|
ctx->slots[ctx->nm_i].flags |= NS_MOREFRAG | NS_BUF_CHANGED;
|
|
ctx->slots[ctx->nm_i].len = ctx->ring->ena_bufs[buf].len;
|
|
*len += ctx->slots[ctx->nm_i].len;
|
|
ctx->ring->free_rx_ids[ctx->nt] = req_id;
|
|
ena_trace(ENA_DBG, "rx_info %p, buf_idx %d, paddr %jx, nm: %d\n",
|
|
rx_info, ctx->slots[ctx->nm_i].buf_idx,
|
|
(uintmax_t)rx_info->ena_buf.paddr, ctx->nm_i);
|
|
|
|
ctx->nm_i = nm_next(ctx->nm_i, ctx->lim);
|
|
ctx->nt = ENA_RX_RING_IDX_NEXT(ctx->nt, ctx->ring->ring_size);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static inline void
|
|
ena_netmap_rx_cleanup(struct ena_netmap_ctx *ctx)
|
|
{
|
|
int refill_required;
|
|
|
|
refill_required = ctx->kring->rhead - ctx->kring->nr_hwcur;
|
|
if (ctx->kring->nr_hwcur != ctx->kring->nr_hwtail)
|
|
refill_required -= 1;
|
|
|
|
if (refill_required == 0)
|
|
return;
|
|
else if (refill_required < 0)
|
|
refill_required += ctx->kring->nkr_num_slots;
|
|
|
|
ena_refill_rx_bufs(ctx->ring, refill_required);
|
|
}
|
|
|
|
static inline void
|
|
ena_netmap_fill_ctx(struct netmap_kring *kring, struct ena_netmap_ctx *ctx,
|
|
uint16_t ena_qid)
|
|
{
|
|
ctx->kring = kring;
|
|
ctx->na = kring->na;
|
|
ctx->adapter = ctx->na->ifp->if_softc;
|
|
ctx->lim = kring->nkr_num_slots - 1;
|
|
ctx->io_cq = &ctx->adapter->ena_dev->io_cq_queues[ena_qid];
|
|
ctx->io_sq = &ctx->adapter->ena_dev->io_sq_queues[ena_qid];
|
|
ctx->slots = kring->ring->slot;
|
|
}
|
|
|
|
void
|
|
ena_netmap_unload(struct ena_adapter *adapter, bus_dmamap_t map)
|
|
{
|
|
struct netmap_adapter *na = NA(adapter->ifp);
|
|
|
|
netmap_unload_map(na, adapter->tx_buf_tag, map);
|
|
}
|
|
|
|
#endif /* DEV_NETMAP */
|