freebsd-dev/sys/amd64/amd64/machdep.c
Konstantin Belousov a9eb27a990 Make it possible for the signal handler to act on #ss. Load the
canonical user data segment' selector into %ss when calling the
handler.

Sponsored by:	The FreeBSD Foundation
MFC after:	1 week
2015-03-28 09:03:54 +00:00

2838 lines
71 KiB
C

/*-
* Copyright (c) 2003 Peter Wemm.
* Copyright (c) 1992 Terrence R. Lambert.
* Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* William Jolitz.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)machdep.c 7.4 (Berkeley) 6/3/91
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_atpic.h"
#include "opt_compat.h"
#include "opt_cpu.h"
#include "opt_ddb.h"
#include "opt_inet.h"
#include "opt_isa.h"
#include "opt_kstack_pages.h"
#include "opt_maxmem.h"
#include "opt_mp_watchdog.h"
#include "opt_perfmon.h"
#include "opt_platform.h"
#include "opt_sched.h"
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/systm.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/bus.h>
#include <sys/callout.h>
#include <sys/cons.h>
#include <sys/cpu.h>
#include <sys/efi.h>
#include <sys/eventhandler.h>
#include <sys/exec.h>
#include <sys/imgact.h>
#include <sys/kdb.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/linker.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/memrange.h>
#include <sys/msgbuf.h>
#include <sys/mutex.h>
#include <sys/pcpu.h>
#include <sys/ptrace.h>
#include <sys/reboot.h>
#include <sys/rwlock.h>
#include <sys/sched.h>
#include <sys/signalvar.h>
#ifdef SMP
#include <sys/smp.h>
#endif
#include <sys/syscallsubr.h>
#include <sys/sysctl.h>
#include <sys/sysent.h>
#include <sys/sysproto.h>
#include <sys/ucontext.h>
#include <sys/vmmeter.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_pager.h>
#include <vm/vm_param.h>
#ifdef DDB
#ifndef KDB
#error KDB must be enabled in order for DDB to work!
#endif
#include <ddb/ddb.h>
#include <ddb/db_sym.h>
#endif
#include <net/netisr.h>
#include <machine/clock.h>
#include <machine/cpu.h>
#include <machine/cputypes.h>
#include <machine/intr_machdep.h>
#include <x86/mca.h>
#include <machine/md_var.h>
#include <machine/metadata.h>
#include <machine/mp_watchdog.h>
#include <machine/pc/bios.h>
#include <machine/pcb.h>
#include <machine/proc.h>
#include <machine/reg.h>
#include <machine/sigframe.h>
#include <machine/specialreg.h>
#ifdef PERFMON
#include <machine/perfmon.h>
#endif
#include <machine/tss.h>
#ifdef SMP
#include <machine/smp.h>
#endif
#ifdef FDT
#include <x86/fdt.h>
#endif
#ifdef DEV_ATPIC
#include <x86/isa/icu.h>
#else
#include <x86/apicvar.h>
#endif
#include <isa/isareg.h>
#include <isa/rtc.h>
#include <x86/init.h>
/* Sanity check for __curthread() */
CTASSERT(offsetof(struct pcpu, pc_curthread) == 0);
extern u_int64_t hammer_time(u_int64_t, u_int64_t);
#define CS_SECURE(cs) (ISPL(cs) == SEL_UPL)
#define EFL_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
static void cpu_startup(void *);
static void get_fpcontext(struct thread *td, mcontext_t *mcp,
char *xfpusave, size_t xfpusave_len);
static int set_fpcontext(struct thread *td, mcontext_t *mcp,
char *xfpustate, size_t xfpustate_len);
SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
/* Preload data parse function */
static caddr_t native_parse_preload_data(u_int64_t);
/* Native function to fetch and parse the e820 map */
static void native_parse_memmap(caddr_t, vm_paddr_t *, int *);
/* Default init_ops implementation. */
struct init_ops init_ops = {
.parse_preload_data = native_parse_preload_data,
.early_clock_source_init = i8254_init,
.early_delay = i8254_delay,
.parse_memmap = native_parse_memmap,
#ifdef SMP
.mp_bootaddress = mp_bootaddress,
.start_all_aps = native_start_all_aps,
#endif
.msi_init = msi_init,
};
/*
* The file "conf/ldscript.amd64" defines the symbol "kernphys". Its value is
* the physical address at which the kernel is loaded.
*/
extern char kernphys[];
struct msgbuf *msgbufp;
/* Intel ICH registers */
#define ICH_PMBASE 0x400
#define ICH_SMI_EN ICH_PMBASE + 0x30
int _udatasel, _ucodesel, _ucode32sel, _ufssel, _ugssel;
int cold = 1;
long Maxmem = 0;
long realmem = 0;
/*
* The number of PHYSMAP entries must be one less than the number of
* PHYSSEG entries because the PHYSMAP entry that spans the largest
* physical address that is accessible by ISA DMA is split into two
* PHYSSEG entries.
*/
#define PHYSMAP_SIZE (2 * (VM_PHYSSEG_MAX - 1))
vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
/* must be 2 less so 0 0 can signal end of chunks */
#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2)
#define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2)
struct kva_md_info kmi;
static struct trapframe proc0_tf;
struct region_descriptor r_gdt, r_idt;
struct pcpu __pcpu[MAXCPU];
struct mtx icu_lock;
struct mem_range_softc mem_range_softc;
struct mtx dt_lock; /* lock for GDT and LDT */
void (*vmm_resume_p)(void);
static void
cpu_startup(dummy)
void *dummy;
{
uintmax_t memsize;
char *sysenv;
/*
* On MacBooks, we need to disallow the legacy USB circuit to
* generate an SMI# because this can cause several problems,
* namely: incorrect CPU frequency detection and failure to
* start the APs.
* We do this by disabling a bit in the SMI_EN (SMI Control and
* Enable register) of the Intel ICH LPC Interface Bridge.
*/
sysenv = kern_getenv("smbios.system.product");
if (sysenv != NULL) {
if (strncmp(sysenv, "MacBook1,1", 10) == 0 ||
strncmp(sysenv, "MacBook3,1", 10) == 0 ||
strncmp(sysenv, "MacBook4,1", 10) == 0 ||
strncmp(sysenv, "MacBookPro1,1", 13) == 0 ||
strncmp(sysenv, "MacBookPro1,2", 13) == 0 ||
strncmp(sysenv, "MacBookPro3,1", 13) == 0 ||
strncmp(sysenv, "MacBookPro4,1", 13) == 0 ||
strncmp(sysenv, "Macmini1,1", 10) == 0) {
if (bootverbose)
printf("Disabling LEGACY_USB_EN bit on "
"Intel ICH.\n");
outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8);
}
freeenv(sysenv);
}
/*
* Good {morning,afternoon,evening,night}.
*/
startrtclock();
printcpuinfo();
panicifcpuunsupported();
#ifdef PERFMON
perfmon_init();
#endif
/*
* Display physical memory if SMBIOS reports reasonable amount.
*/
memsize = 0;
sysenv = kern_getenv("smbios.memory.enabled");
if (sysenv != NULL) {
memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10;
freeenv(sysenv);
}
if (memsize < ptoa((uintmax_t)vm_cnt.v_free_count))
memsize = ptoa((uintmax_t)Maxmem);
printf("real memory = %ju (%ju MB)\n", memsize, memsize >> 20);
realmem = atop(memsize);
/*
* Display any holes after the first chunk of extended memory.
*/
if (bootverbose) {
int indx;
printf("Physical memory chunk(s):\n");
for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
vm_paddr_t size;
size = phys_avail[indx + 1] - phys_avail[indx];
printf(
"0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
(uintmax_t)phys_avail[indx],
(uintmax_t)phys_avail[indx + 1] - 1,
(uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
}
}
vm_ksubmap_init(&kmi);
printf("avail memory = %ju (%ju MB)\n",
ptoa((uintmax_t)vm_cnt.v_free_count),
ptoa((uintmax_t)vm_cnt.v_free_count) / 1048576);
/*
* Set up buffers, so they can be used to read disk labels.
*/
bufinit();
vm_pager_bufferinit();
cpu_setregs();
}
/*
* Send an interrupt to process.
*
* Stack is set up to allow sigcode stored
* at top to call routine, followed by call
* to sigreturn routine below. After sigreturn
* resets the signal mask, the stack, and the
* frame pointer, it returns to the user
* specified pc, psl.
*/
void
sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
{
struct sigframe sf, *sfp;
struct pcb *pcb;
struct proc *p;
struct thread *td;
struct sigacts *psp;
char *sp;
struct trapframe *regs;
char *xfpusave;
size_t xfpusave_len;
int sig;
int oonstack;
td = curthread;
pcb = td->td_pcb;
p = td->td_proc;
PROC_LOCK_ASSERT(p, MA_OWNED);
sig = ksi->ksi_signo;
psp = p->p_sigacts;
mtx_assert(&psp->ps_mtx, MA_OWNED);
regs = td->td_frame;
oonstack = sigonstack(regs->tf_rsp);
if (cpu_max_ext_state_size > sizeof(struct savefpu) && use_xsave) {
xfpusave_len = cpu_max_ext_state_size - sizeof(struct savefpu);
xfpusave = __builtin_alloca(xfpusave_len);
} else {
xfpusave_len = 0;
xfpusave = NULL;
}
/* Save user context. */
bzero(&sf, sizeof(sf));
sf.sf_uc.uc_sigmask = *mask;
sf.sf_uc.uc_stack = td->td_sigstk;
sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(*regs));
sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */
get_fpcontext(td, &sf.sf_uc.uc_mcontext, xfpusave, xfpusave_len);
fpstate_drop(td);
sf.sf_uc.uc_mcontext.mc_fsbase = pcb->pcb_fsbase;
sf.sf_uc.uc_mcontext.mc_gsbase = pcb->pcb_gsbase;
bzero(sf.sf_uc.uc_mcontext.mc_spare,
sizeof(sf.sf_uc.uc_mcontext.mc_spare));
bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__));
/* Allocate space for the signal handler context. */
if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
SIGISMEMBER(psp->ps_sigonstack, sig)) {
sp = td->td_sigstk.ss_sp + td->td_sigstk.ss_size;
#if defined(COMPAT_43)
td->td_sigstk.ss_flags |= SS_ONSTACK;
#endif
} else
sp = (char *)regs->tf_rsp - 128;
if (xfpusave != NULL) {
sp -= xfpusave_len;
sp = (char *)((unsigned long)sp & ~0x3Ful);
sf.sf_uc.uc_mcontext.mc_xfpustate = (register_t)sp;
}
sp -= sizeof(struct sigframe);
/* Align to 16 bytes. */
sfp = (struct sigframe *)((unsigned long)sp & ~0xFul);
/* Translate the signal if appropriate. */
if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
/* Build the argument list for the signal handler. */
regs->tf_rdi = sig; /* arg 1 in %rdi */
regs->tf_rdx = (register_t)&sfp->sf_uc; /* arg 3 in %rdx */
bzero(&sf.sf_si, sizeof(sf.sf_si));
if (SIGISMEMBER(psp->ps_siginfo, sig)) {
/* Signal handler installed with SA_SIGINFO. */
regs->tf_rsi = (register_t)&sfp->sf_si; /* arg 2 in %rsi */
sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
/* Fill in POSIX parts */
sf.sf_si = ksi->ksi_info;
sf.sf_si.si_signo = sig; /* maybe a translated signal */
regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
} else {
/* Old FreeBSD-style arguments. */
regs->tf_rsi = ksi->ksi_code; /* arg 2 in %rsi */
regs->tf_rcx = (register_t)ksi->ksi_addr; /* arg 4 in %rcx */
sf.sf_ahu.sf_handler = catcher;
}
mtx_unlock(&psp->ps_mtx);
PROC_UNLOCK(p);
/*
* Copy the sigframe out to the user's stack.
*/
if (copyout(&sf, sfp, sizeof(*sfp)) != 0 ||
(xfpusave != NULL && copyout(xfpusave,
(void *)sf.sf_uc.uc_mcontext.mc_xfpustate, xfpusave_len)
!= 0)) {
#ifdef DEBUG
printf("process %ld has trashed its stack\n", (long)p->p_pid);
#endif
PROC_LOCK(p);
sigexit(td, SIGILL);
}
regs->tf_rsp = (long)sfp;
regs->tf_rip = p->p_sysent->sv_sigcode_base;
regs->tf_rflags &= ~(PSL_T | PSL_D);
regs->tf_cs = _ucodesel;
regs->tf_ds = _udatasel;
regs->tf_ss = _udatasel;
regs->tf_es = _udatasel;
regs->tf_fs = _ufssel;
regs->tf_gs = _ugssel;
regs->tf_flags = TF_HASSEGS;
set_pcb_flags(pcb, PCB_FULL_IRET);
PROC_LOCK(p);
mtx_lock(&psp->ps_mtx);
}
/*
* System call to cleanup state after a signal
* has been taken. Reset signal mask and
* stack state from context left by sendsig (above).
* Return to previous pc and psl as specified by
* context left by sendsig. Check carefully to
* make sure that the user has not modified the
* state to gain improper privileges.
*
* MPSAFE
*/
int
sys_sigreturn(td, uap)
struct thread *td;
struct sigreturn_args /* {
const struct __ucontext *sigcntxp;
} */ *uap;
{
ucontext_t uc;
struct pcb *pcb;
struct proc *p;
struct trapframe *regs;
ucontext_t *ucp;
char *xfpustate;
size_t xfpustate_len;
long rflags;
int cs, error, ret;
ksiginfo_t ksi;
pcb = td->td_pcb;
p = td->td_proc;
error = copyin(uap->sigcntxp, &uc, sizeof(uc));
if (error != 0) {
uprintf("pid %d (%s): sigreturn copyin failed\n",
p->p_pid, td->td_name);
return (error);
}
ucp = &uc;
if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) {
uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid,
td->td_name, ucp->uc_mcontext.mc_flags);
return (EINVAL);
}
regs = td->td_frame;
rflags = ucp->uc_mcontext.mc_rflags;
/*
* Don't allow users to change privileged or reserved flags.
*/
if (!EFL_SECURE(rflags, regs->tf_rflags)) {
uprintf("pid %d (%s): sigreturn rflags = 0x%lx\n", p->p_pid,
td->td_name, rflags);
return (EINVAL);
}
/*
* Don't allow users to load a valid privileged %cs. Let the
* hardware check for invalid selectors, excess privilege in
* other selectors, invalid %eip's and invalid %esp's.
*/
cs = ucp->uc_mcontext.mc_cs;
if (!CS_SECURE(cs)) {
uprintf("pid %d (%s): sigreturn cs = 0x%x\n", p->p_pid,
td->td_name, cs);
ksiginfo_init_trap(&ksi);
ksi.ksi_signo = SIGBUS;
ksi.ksi_code = BUS_OBJERR;
ksi.ksi_trapno = T_PROTFLT;
ksi.ksi_addr = (void *)regs->tf_rip;
trapsignal(td, &ksi);
return (EINVAL);
}
if ((uc.uc_mcontext.mc_flags & _MC_HASFPXSTATE) != 0) {
xfpustate_len = uc.uc_mcontext.mc_xfpustate_len;
if (xfpustate_len > cpu_max_ext_state_size -
sizeof(struct savefpu)) {
uprintf("pid %d (%s): sigreturn xfpusave_len = 0x%zx\n",
p->p_pid, td->td_name, xfpustate_len);
return (EINVAL);
}
xfpustate = __builtin_alloca(xfpustate_len);
error = copyin((const void *)uc.uc_mcontext.mc_xfpustate,
xfpustate, xfpustate_len);
if (error != 0) {
uprintf(
"pid %d (%s): sigreturn copying xfpustate failed\n",
p->p_pid, td->td_name);
return (error);
}
} else {
xfpustate = NULL;
xfpustate_len = 0;
}
ret = set_fpcontext(td, &ucp->uc_mcontext, xfpustate, xfpustate_len);
if (ret != 0) {
uprintf("pid %d (%s): sigreturn set_fpcontext err %d\n",
p->p_pid, td->td_name, ret);
return (ret);
}
bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(*regs));
pcb->pcb_fsbase = ucp->uc_mcontext.mc_fsbase;
pcb->pcb_gsbase = ucp->uc_mcontext.mc_gsbase;
#if defined(COMPAT_43)
if (ucp->uc_mcontext.mc_onstack & 1)
td->td_sigstk.ss_flags |= SS_ONSTACK;
else
td->td_sigstk.ss_flags &= ~SS_ONSTACK;
#endif
kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);
set_pcb_flags(pcb, PCB_FULL_IRET);
return (EJUSTRETURN);
}
#ifdef COMPAT_FREEBSD4
int
freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
{
return sys_sigreturn(td, (struct sigreturn_args *)uap);
}
#endif
/*
* Machine dependent boot() routine
*
* I haven't seen anything to put here yet
* Possibly some stuff might be grafted back here from boot()
*/
void
cpu_boot(int howto)
{
}
/*
* Flush the D-cache for non-DMA I/O so that the I-cache can
* be made coherent later.
*/
void
cpu_flush_dcache(void *ptr, size_t len)
{
/* Not applicable */
}
/* Get current clock frequency for the given cpu id. */
int
cpu_est_clockrate(int cpu_id, uint64_t *rate)
{
uint64_t tsc1, tsc2;
uint64_t acnt, mcnt, perf;
register_t reg;
if (pcpu_find(cpu_id) == NULL || rate == NULL)
return (EINVAL);
/*
* If TSC is P-state invariant and APERF/MPERF MSRs do not exist,
* DELAY(9) based logic fails.
*/
if (tsc_is_invariant && !tsc_perf_stat)
return (EOPNOTSUPP);
#ifdef SMP
if (smp_cpus > 1) {
/* Schedule ourselves on the indicated cpu. */
thread_lock(curthread);
sched_bind(curthread, cpu_id);
thread_unlock(curthread);
}
#endif
/* Calibrate by measuring a short delay. */
reg = intr_disable();
if (tsc_is_invariant) {
wrmsr(MSR_MPERF, 0);
wrmsr(MSR_APERF, 0);
tsc1 = rdtsc();
DELAY(1000);
mcnt = rdmsr(MSR_MPERF);
acnt = rdmsr(MSR_APERF);
tsc2 = rdtsc();
intr_restore(reg);
perf = 1000 * acnt / mcnt;
*rate = (tsc2 - tsc1) * perf;
} else {
tsc1 = rdtsc();
DELAY(1000);
tsc2 = rdtsc();
intr_restore(reg);
*rate = (tsc2 - tsc1) * 1000;
}
#ifdef SMP
if (smp_cpus > 1) {
thread_lock(curthread);
sched_unbind(curthread);
thread_unlock(curthread);
}
#endif
return (0);
}
/*
* Shutdown the CPU as much as possible
*/
void
cpu_halt(void)
{
for (;;)
halt();
}
void (*cpu_idle_hook)(sbintime_t) = NULL; /* ACPI idle hook. */
static int cpu_ident_amdc1e = 0; /* AMD C1E supported. */
static int idle_mwait = 1; /* Use MONITOR/MWAIT for short idle. */
SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RWTUN, &idle_mwait,
0, "Use MONITOR/MWAIT for short idle");
#define STATE_RUNNING 0x0
#define STATE_MWAIT 0x1
#define STATE_SLEEPING 0x2
static void
cpu_idle_acpi(sbintime_t sbt)
{
int *state;
state = (int *)PCPU_PTR(monitorbuf);
*state = STATE_SLEEPING;
/* See comments in cpu_idle_hlt(). */
disable_intr();
if (sched_runnable())
enable_intr();
else if (cpu_idle_hook)
cpu_idle_hook(sbt);
else
__asm __volatile("sti; hlt");
*state = STATE_RUNNING;
}
static void
cpu_idle_hlt(sbintime_t sbt)
{
int *state;
state = (int *)PCPU_PTR(monitorbuf);
*state = STATE_SLEEPING;
/*
* Since we may be in a critical section from cpu_idle(), if
* an interrupt fires during that critical section we may have
* a pending preemption. If the CPU halts, then that thread
* may not execute until a later interrupt awakens the CPU.
* To handle this race, check for a runnable thread after
* disabling interrupts and immediately return if one is
* found. Also, we must absolutely guarentee that hlt is
* the next instruction after sti. This ensures that any
* interrupt that fires after the call to disable_intr() will
* immediately awaken the CPU from hlt. Finally, please note
* that on x86 this works fine because of interrupts enabled only
* after the instruction following sti takes place, while IF is set
* to 1 immediately, allowing hlt instruction to acknowledge the
* interrupt.
*/
disable_intr();
if (sched_runnable())
enable_intr();
else
__asm __volatile("sti; hlt");
*state = STATE_RUNNING;
}
/*
* MWAIT cpu power states. Lower 4 bits are sub-states.
*/
#define MWAIT_C0 0xf0
#define MWAIT_C1 0x00
#define MWAIT_C2 0x10
#define MWAIT_C3 0x20
#define MWAIT_C4 0x30
static void
cpu_idle_mwait(sbintime_t sbt)
{
int *state;
state = (int *)PCPU_PTR(monitorbuf);
*state = STATE_MWAIT;
/* See comments in cpu_idle_hlt(). */
disable_intr();
if (sched_runnable()) {
enable_intr();
*state = STATE_RUNNING;
return;
}
cpu_monitor(state, 0, 0);
if (*state == STATE_MWAIT)
__asm __volatile("sti; mwait" : : "a" (MWAIT_C1), "c" (0));
else
enable_intr();
*state = STATE_RUNNING;
}
static void
cpu_idle_spin(sbintime_t sbt)
{
int *state;
int i;
state = (int *)PCPU_PTR(monitorbuf);
*state = STATE_RUNNING;
/*
* The sched_runnable() call is racy but as long as there is
* a loop missing it one time will have just a little impact if any
* (and it is much better than missing the check at all).
*/
for (i = 0; i < 1000; i++) {
if (sched_runnable())
return;
cpu_spinwait();
}
}
/*
* C1E renders the local APIC timer dead, so we disable it by
* reading the Interrupt Pending Message register and clearing
* both C1eOnCmpHalt (bit 28) and SmiOnCmpHalt (bit 27).
*
* Reference:
* "BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh Processors"
* #32559 revision 3.00+
*/
#define MSR_AMDK8_IPM 0xc0010055
#define AMDK8_SMIONCMPHALT (1ULL << 27)
#define AMDK8_C1EONCMPHALT (1ULL << 28)
#define AMDK8_CMPHALT (AMDK8_SMIONCMPHALT | AMDK8_C1EONCMPHALT)
static void
cpu_probe_amdc1e(void)
{
/*
* Detect the presence of C1E capability mostly on latest
* dual-cores (or future) k8 family.
*/
if (cpu_vendor_id == CPU_VENDOR_AMD &&
(cpu_id & 0x00000f00) == 0x00000f00 &&
(cpu_id & 0x0fff0000) >= 0x00040000) {
cpu_ident_amdc1e = 1;
}
}
void (*cpu_idle_fn)(sbintime_t) = cpu_idle_acpi;
void
cpu_idle(int busy)
{
uint64_t msr;
sbintime_t sbt = -1;
CTR2(KTR_SPARE2, "cpu_idle(%d) at %d",
busy, curcpu);
#ifdef MP_WATCHDOG
ap_watchdog(PCPU_GET(cpuid));
#endif
/* If we are busy - try to use fast methods. */
if (busy) {
if ((cpu_feature2 & CPUID2_MON) && idle_mwait) {
cpu_idle_mwait(busy);
goto out;
}
}
/* If we have time - switch timers into idle mode. */
if (!busy) {
critical_enter();
sbt = cpu_idleclock();
}
/* Apply AMD APIC timer C1E workaround. */
if (cpu_ident_amdc1e && cpu_disable_c3_sleep) {
msr = rdmsr(MSR_AMDK8_IPM);
if (msr & AMDK8_CMPHALT)
wrmsr(MSR_AMDK8_IPM, msr & ~AMDK8_CMPHALT);
}
/* Call main idle method. */
cpu_idle_fn(sbt);
/* Switch timers back into active mode. */
if (!busy) {
cpu_activeclock();
critical_exit();
}
out:
CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done",
busy, curcpu);
}
int
cpu_idle_wakeup(int cpu)
{
struct pcpu *pcpu;
int *state;
pcpu = pcpu_find(cpu);
state = (int *)pcpu->pc_monitorbuf;
/*
* This doesn't need to be atomic since missing the race will
* simply result in unnecessary IPIs.
*/
if (*state == STATE_SLEEPING)
return (0);
if (*state == STATE_MWAIT)
*state = STATE_RUNNING;
return (1);
}
/*
* Ordered by speed/power consumption.
*/
struct {
void *id_fn;
char *id_name;
} idle_tbl[] = {
{ cpu_idle_spin, "spin" },
{ cpu_idle_mwait, "mwait" },
{ cpu_idle_hlt, "hlt" },
{ cpu_idle_acpi, "acpi" },
{ NULL, NULL }
};
static int
idle_sysctl_available(SYSCTL_HANDLER_ARGS)
{
char *avail, *p;
int error;
int i;
avail = malloc(256, M_TEMP, M_WAITOK);
p = avail;
for (i = 0; idle_tbl[i].id_name != NULL; i++) {
if (strstr(idle_tbl[i].id_name, "mwait") &&
(cpu_feature2 & CPUID2_MON) == 0)
continue;
if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
cpu_idle_hook == NULL)
continue;
p += sprintf(p, "%s%s", p != avail ? ", " : "",
idle_tbl[i].id_name);
}
error = sysctl_handle_string(oidp, avail, 0, req);
free(avail, M_TEMP);
return (error);
}
SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD,
0, 0, idle_sysctl_available, "A", "list of available idle functions");
static int
idle_sysctl(SYSCTL_HANDLER_ARGS)
{
char buf[16];
int error;
char *p;
int i;
p = "unknown";
for (i = 0; idle_tbl[i].id_name != NULL; i++) {
if (idle_tbl[i].id_fn == cpu_idle_fn) {
p = idle_tbl[i].id_name;
break;
}
}
strncpy(buf, p, sizeof(buf));
error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
if (error != 0 || req->newptr == NULL)
return (error);
for (i = 0; idle_tbl[i].id_name != NULL; i++) {
if (strstr(idle_tbl[i].id_name, "mwait") &&
(cpu_feature2 & CPUID2_MON) == 0)
continue;
if (strcmp(idle_tbl[i].id_name, "acpi") == 0 &&
cpu_idle_hook == NULL)
continue;
if (strcmp(idle_tbl[i].id_name, buf))
continue;
cpu_idle_fn = idle_tbl[i].id_fn;
return (0);
}
return (EINVAL);
}
SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0,
idle_sysctl, "A", "currently selected idle function");
/*
* Reset registers to default values on exec.
*/
void
exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
{
struct trapframe *regs = td->td_frame;
struct pcb *pcb = td->td_pcb;
mtx_lock(&dt_lock);
if (td->td_proc->p_md.md_ldt != NULL)
user_ldt_free(td);
else
mtx_unlock(&dt_lock);
pcb->pcb_fsbase = 0;
pcb->pcb_gsbase = 0;
clear_pcb_flags(pcb, PCB_32BIT);
pcb->pcb_initial_fpucw = __INITIAL_FPUCW__;
set_pcb_flags(pcb, PCB_FULL_IRET);
bzero((char *)regs, sizeof(struct trapframe));
regs->tf_rip = imgp->entry_addr;
regs->tf_rsp = ((stack - 8) & ~0xFul) + 8;
regs->tf_rdi = stack; /* argv */
regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
regs->tf_ss = _udatasel;
regs->tf_cs = _ucodesel;
regs->tf_ds = _udatasel;
regs->tf_es = _udatasel;
regs->tf_fs = _ufssel;
regs->tf_gs = _ugssel;
regs->tf_flags = TF_HASSEGS;
td->td_retval[1] = 0;
/*
* Reset the hardware debug registers if they were in use.
* They won't have any meaning for the newly exec'd process.
*/
if (pcb->pcb_flags & PCB_DBREGS) {
pcb->pcb_dr0 = 0;
pcb->pcb_dr1 = 0;
pcb->pcb_dr2 = 0;
pcb->pcb_dr3 = 0;
pcb->pcb_dr6 = 0;
pcb->pcb_dr7 = 0;
if (pcb == curpcb) {
/*
* Clear the debug registers on the running
* CPU, otherwise they will end up affecting
* the next process we switch to.
*/
reset_dbregs();
}
clear_pcb_flags(pcb, PCB_DBREGS);
}
/*
* Drop the FP state if we hold it, so that the process gets a
* clean FP state if it uses the FPU again.
*/
fpstate_drop(td);
}
void
cpu_setregs(void)
{
register_t cr0;
cr0 = rcr0();
/*
* CR0_MP, CR0_NE and CR0_TS are also set by npx_probe() for the
* BSP. See the comments there about why we set them.
*/
cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM;
load_cr0(cr0);
}
/*
* Initialize amd64 and configure to run kernel
*/
/*
* Initialize segments & interrupt table
*/
struct user_segment_descriptor gdt[NGDT * MAXCPU];/* global descriptor tables */
static struct gate_descriptor idt0[NIDT];
struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
static char dblfault_stack[PAGE_SIZE] __aligned(16);
static char nmi0_stack[PAGE_SIZE] __aligned(16);
CTASSERT(sizeof(struct nmi_pcpu) == 16);
struct amd64tss common_tss[MAXCPU];
/*
* Software prototypes -- in more palatable form.
*
* Keep GUFS32, GUGS32, GUCODE32 and GUDATA at the same
* slots as corresponding segments for i386 kernel.
*/
struct soft_segment_descriptor gdt_segs[] = {
/* GNULL_SEL 0 Null Descriptor */
{ .ssd_base = 0x0,
.ssd_limit = 0x0,
.ssd_type = 0,
.ssd_dpl = 0,
.ssd_p = 0,
.ssd_long = 0,
.ssd_def32 = 0,
.ssd_gran = 0 },
/* GNULL2_SEL 1 Null Descriptor */
{ .ssd_base = 0x0,
.ssd_limit = 0x0,
.ssd_type = 0,
.ssd_dpl = 0,
.ssd_p = 0,
.ssd_long = 0,
.ssd_def32 = 0,
.ssd_gran = 0 },
/* GUFS32_SEL 2 32 bit %gs Descriptor for user */
{ .ssd_base = 0x0,
.ssd_limit = 0xfffff,
.ssd_type = SDT_MEMRWA,
.ssd_dpl = SEL_UPL,
.ssd_p = 1,
.ssd_long = 0,
.ssd_def32 = 1,
.ssd_gran = 1 },
/* GUGS32_SEL 3 32 bit %fs Descriptor for user */
{ .ssd_base = 0x0,
.ssd_limit = 0xfffff,
.ssd_type = SDT_MEMRWA,
.ssd_dpl = SEL_UPL,
.ssd_p = 1,
.ssd_long = 0,
.ssd_def32 = 1,
.ssd_gran = 1 },
/* GCODE_SEL 4 Code Descriptor for kernel */
{ .ssd_base = 0x0,
.ssd_limit = 0xfffff,
.ssd_type = SDT_MEMERA,
.ssd_dpl = SEL_KPL,
.ssd_p = 1,
.ssd_long = 1,
.ssd_def32 = 0,
.ssd_gran = 1 },
/* GDATA_SEL 5 Data Descriptor for kernel */
{ .ssd_base = 0x0,
.ssd_limit = 0xfffff,
.ssd_type = SDT_MEMRWA,
.ssd_dpl = SEL_KPL,
.ssd_p = 1,
.ssd_long = 1,
.ssd_def32 = 0,
.ssd_gran = 1 },
/* GUCODE32_SEL 6 32 bit Code Descriptor for user */
{ .ssd_base = 0x0,
.ssd_limit = 0xfffff,
.ssd_type = SDT_MEMERA,
.ssd_dpl = SEL_UPL,
.ssd_p = 1,
.ssd_long = 0,
.ssd_def32 = 1,
.ssd_gran = 1 },
/* GUDATA_SEL 7 32/64 bit Data Descriptor for user */
{ .ssd_base = 0x0,
.ssd_limit = 0xfffff,
.ssd_type = SDT_MEMRWA,
.ssd_dpl = SEL_UPL,
.ssd_p = 1,
.ssd_long = 0,
.ssd_def32 = 1,
.ssd_gran = 1 },
/* GUCODE_SEL 8 64 bit Code Descriptor for user */
{ .ssd_base = 0x0,
.ssd_limit = 0xfffff,
.ssd_type = SDT_MEMERA,
.ssd_dpl = SEL_UPL,
.ssd_p = 1,
.ssd_long = 1,
.ssd_def32 = 0,
.ssd_gran = 1 },
/* GPROC0_SEL 9 Proc 0 Tss Descriptor */
{ .ssd_base = 0x0,
.ssd_limit = sizeof(struct amd64tss) + IOPERM_BITMAP_SIZE - 1,
.ssd_type = SDT_SYSTSS,
.ssd_dpl = SEL_KPL,
.ssd_p = 1,
.ssd_long = 0,
.ssd_def32 = 0,
.ssd_gran = 0 },
/* Actually, the TSS is a system descriptor which is double size */
{ .ssd_base = 0x0,
.ssd_limit = 0x0,
.ssd_type = 0,
.ssd_dpl = 0,
.ssd_p = 0,
.ssd_long = 0,
.ssd_def32 = 0,
.ssd_gran = 0 },
/* GUSERLDT_SEL 11 LDT Descriptor */
{ .ssd_base = 0x0,
.ssd_limit = 0x0,
.ssd_type = 0,
.ssd_dpl = 0,
.ssd_p = 0,
.ssd_long = 0,
.ssd_def32 = 0,
.ssd_gran = 0 },
/* GUSERLDT_SEL 12 LDT Descriptor, double size */
{ .ssd_base = 0x0,
.ssd_limit = 0x0,
.ssd_type = 0,
.ssd_dpl = 0,
.ssd_p = 0,
.ssd_long = 0,
.ssd_def32 = 0,
.ssd_gran = 0 },
};
void
setidt(idx, func, typ, dpl, ist)
int idx;
inthand_t *func;
int typ;
int dpl;
int ist;
{
struct gate_descriptor *ip;
ip = idt + idx;
ip->gd_looffset = (uintptr_t)func;
ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
ip->gd_ist = ist;
ip->gd_xx = 0;
ip->gd_type = typ;
ip->gd_dpl = dpl;
ip->gd_p = 1;
ip->gd_hioffset = ((uintptr_t)func)>>16 ;
}
extern inthand_t
IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
IDTVEC(xmm), IDTVEC(dblfault),
#ifdef KDTRACE_HOOKS
IDTVEC(dtrace_ret),
#endif
#ifdef XENHVM
IDTVEC(xen_intr_upcall),
#endif
IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
#ifdef DDB
/*
* Display the index and function name of any IDT entries that don't use
* the default 'rsvd' entry point.
*/
DB_SHOW_COMMAND(idt, db_show_idt)
{
struct gate_descriptor *ip;
int idx;
uintptr_t func;
ip = idt;
for (idx = 0; idx < NIDT && !db_pager_quit; idx++) {
func = ((long)ip->gd_hioffset << 16 | ip->gd_looffset);
if (func != (uintptr_t)&IDTVEC(rsvd)) {
db_printf("%3d\t", idx);
db_printsym(func, DB_STGY_PROC);
db_printf("\n");
}
ip++;
}
}
/* Show privileged registers. */
DB_SHOW_COMMAND(sysregs, db_show_sysregs)
{
struct {
uint16_t limit;
uint64_t base;
} __packed idtr, gdtr;
uint16_t ldt, tr;
__asm __volatile("sidt %0" : "=m" (idtr));
db_printf("idtr\t0x%016lx/%04x\n",
(u_long)idtr.base, (u_int)idtr.limit);
__asm __volatile("sgdt %0" : "=m" (gdtr));
db_printf("gdtr\t0x%016lx/%04x\n",
(u_long)gdtr.base, (u_int)gdtr.limit);
__asm __volatile("sldt %0" : "=r" (ldt));
db_printf("ldtr\t0x%04x\n", ldt);
__asm __volatile("str %0" : "=r" (tr));
db_printf("tr\t0x%04x\n", tr);
db_printf("cr0\t0x%016lx\n", rcr0());
db_printf("cr2\t0x%016lx\n", rcr2());
db_printf("cr3\t0x%016lx\n", rcr3());
db_printf("cr4\t0x%016lx\n", rcr4());
db_printf("EFER\t%016lx\n", rdmsr(MSR_EFER));
db_printf("FEATURES_CTL\t%016lx\n", rdmsr(MSR_IA32_FEATURE_CONTROL));
db_printf("DEBUG_CTL\t%016lx\n", rdmsr(MSR_DEBUGCTLMSR));
db_printf("PAT\t%016lx\n", rdmsr(MSR_PAT));
db_printf("GSBASE\t%016lx\n", rdmsr(MSR_GSBASE));
}
#endif
void
sdtossd(sd, ssd)
struct user_segment_descriptor *sd;
struct soft_segment_descriptor *ssd;
{
ssd->ssd_base = (sd->sd_hibase << 24) | sd->sd_lobase;
ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
ssd->ssd_type = sd->sd_type;
ssd->ssd_dpl = sd->sd_dpl;
ssd->ssd_p = sd->sd_p;
ssd->ssd_long = sd->sd_long;
ssd->ssd_def32 = sd->sd_def32;
ssd->ssd_gran = sd->sd_gran;
}
void
ssdtosd(ssd, sd)
struct soft_segment_descriptor *ssd;
struct user_segment_descriptor *sd;
{
sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
sd->sd_type = ssd->ssd_type;
sd->sd_dpl = ssd->ssd_dpl;
sd->sd_p = ssd->ssd_p;
sd->sd_long = ssd->ssd_long;
sd->sd_def32 = ssd->ssd_def32;
sd->sd_gran = ssd->ssd_gran;
}
void
ssdtosyssd(ssd, sd)
struct soft_segment_descriptor *ssd;
struct system_segment_descriptor *sd;
{
sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
sd->sd_type = ssd->ssd_type;
sd->sd_dpl = ssd->ssd_dpl;
sd->sd_p = ssd->ssd_p;
sd->sd_gran = ssd->ssd_gran;
}
#if !defined(DEV_ATPIC) && defined(DEV_ISA)
#include <isa/isavar.h>
#include <isa/isareg.h>
/*
* Return a bitmap of the current interrupt requests. This is 8259-specific
* and is only suitable for use at probe time.
* This is only here to pacify sio. It is NOT FATAL if this doesn't work.
* It shouldn't be here. There should probably be an APIC centric
* implementation in the apic driver code, if at all.
*/
intrmask_t
isa_irq_pending(void)
{
u_char irr1;
u_char irr2;
irr1 = inb(IO_ICU1);
irr2 = inb(IO_ICU2);
return ((irr2 << 8) | irr1);
}
#endif
u_int basemem;
static int
add_physmap_entry(uint64_t base, uint64_t length, vm_paddr_t *physmap,
int *physmap_idxp)
{
int i, insert_idx, physmap_idx;
physmap_idx = *physmap_idxp;
if (length == 0)
return (1);
/*
* Find insertion point while checking for overlap. Start off by
* assuming the new entry will be added to the end.
*
* NB: physmap_idx points to the next free slot.
*/
insert_idx = physmap_idx;
for (i = 0; i <= physmap_idx; i += 2) {
if (base < physmap[i + 1]) {
if (base + length <= physmap[i]) {
insert_idx = i;
break;
}
if (boothowto & RB_VERBOSE)
printf(
"Overlapping memory regions, ignoring second region\n");
return (1);
}
}
/* See if we can prepend to the next entry. */
if (insert_idx <= physmap_idx && base + length == physmap[insert_idx]) {
physmap[insert_idx] = base;
return (1);
}
/* See if we can append to the previous entry. */
if (insert_idx > 0 && base == physmap[insert_idx - 1]) {
physmap[insert_idx - 1] += length;
return (1);
}
physmap_idx += 2;
*physmap_idxp = physmap_idx;
if (physmap_idx == PHYSMAP_SIZE) {
printf(
"Too many segments in the physical address map, giving up\n");
return (0);
}
/*
* Move the last 'N' entries down to make room for the new
* entry if needed.
*/
for (i = (physmap_idx - 2); i > insert_idx; i -= 2) {
physmap[i] = physmap[i - 2];
physmap[i + 1] = physmap[i - 1];
}
/* Insert the new entry. */
physmap[insert_idx] = base;
physmap[insert_idx + 1] = base + length;
return (1);
}
void
bios_add_smap_entries(struct bios_smap *smapbase, u_int32_t smapsize,
vm_paddr_t *physmap, int *physmap_idx)
{
struct bios_smap *smap, *smapend;
smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
for (smap = smapbase; smap < smapend; smap++) {
if (boothowto & RB_VERBOSE)
printf("SMAP type=%02x base=%016lx len=%016lx\n",
smap->type, smap->base, smap->length);
if (smap->type != SMAP_TYPE_MEMORY)
continue;
if (!add_physmap_entry(smap->base, smap->length, physmap,
physmap_idx))
break;
}
}
#define efi_next_descriptor(ptr, size) \
((struct efi_md *)(((uint8_t *) ptr) + size))
static void
add_efi_map_entries(struct efi_map_header *efihdr, vm_paddr_t *physmap,
int *physmap_idx)
{
struct efi_md *map, *p;
const char *type;
size_t efisz;
int ndesc, i;
static const char *types[] = {
"Reserved",
"LoaderCode",
"LoaderData",
"BootServicesCode",
"BootServicesData",
"RuntimeServicesCode",
"RuntimeServicesData",
"ConventionalMemory",
"UnusableMemory",
"ACPIReclaimMemory",
"ACPIMemoryNVS",
"MemoryMappedIO",
"MemoryMappedIOPortSpace",
"PalCode"
};
/*
* Memory map data provided by UEFI via the GetMemoryMap
* Boot Services API.
*/
efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
map = (struct efi_md *)((uint8_t *)efihdr + efisz);
if (efihdr->descriptor_size == 0)
return;
ndesc = efihdr->memory_size / efihdr->descriptor_size;
if (boothowto & RB_VERBOSE)
printf("%23s %12s %12s %8s %4s\n",
"Type", "Physical", "Virtual", "#Pages", "Attr");
for (i = 0, p = map; i < ndesc; i++,
p = efi_next_descriptor(p, efihdr->descriptor_size)) {
if (boothowto & RB_VERBOSE) {
if (p->md_type <= EFI_MD_TYPE_PALCODE)
type = types[p->md_type];
else
type = "<INVALID>";
printf("%23s %012lx %12p %08lx ", type, p->md_phys,
p->md_virt, p->md_pages);
if (p->md_attr & EFI_MD_ATTR_UC)
printf("UC ");
if (p->md_attr & EFI_MD_ATTR_WC)
printf("WC ");
if (p->md_attr & EFI_MD_ATTR_WT)
printf("WT ");
if (p->md_attr & EFI_MD_ATTR_WB)
printf("WB ");
if (p->md_attr & EFI_MD_ATTR_UCE)
printf("UCE ");
if (p->md_attr & EFI_MD_ATTR_WP)
printf("WP ");
if (p->md_attr & EFI_MD_ATTR_RP)
printf("RP ");
if (p->md_attr & EFI_MD_ATTR_XP)
printf("XP ");
if (p->md_attr & EFI_MD_ATTR_RT)
printf("RUNTIME");
printf("\n");
}
switch (p->md_type) {
case EFI_MD_TYPE_CODE:
case EFI_MD_TYPE_DATA:
case EFI_MD_TYPE_BS_CODE:
case EFI_MD_TYPE_BS_DATA:
case EFI_MD_TYPE_FREE:
/*
* We're allowed to use any entry with these types.
*/
break;
default:
continue;
}
if (!add_physmap_entry(p->md_phys, (p->md_pages * PAGE_SIZE),
physmap, physmap_idx))
break;
}
}
static char bootmethod[16] = "";
SYSCTL_STRING(_machdep, OID_AUTO, bootmethod, CTLFLAG_RD, bootmethod, 0,
"System firmware boot method");
static void
native_parse_memmap(caddr_t kmdp, vm_paddr_t *physmap, int *physmap_idx)
{
struct bios_smap *smap;
struct efi_map_header *efihdr;
u_int32_t size;
/*
* Memory map from INT 15:E820.
*
* subr_module.c says:
* "Consumer may safely assume that size value precedes data."
* ie: an int32_t immediately precedes smap.
*/
efihdr = (struct efi_map_header *)preload_search_info(kmdp,
MODINFO_METADATA | MODINFOMD_EFI_MAP);
smap = (struct bios_smap *)preload_search_info(kmdp,
MODINFO_METADATA | MODINFOMD_SMAP);
if (efihdr == NULL && smap == NULL)
panic("No BIOS smap or EFI map info from loader!");
if (efihdr != NULL) {
add_efi_map_entries(efihdr, physmap, physmap_idx);
strlcpy(bootmethod, "UEFI", sizeof(bootmethod));
} else {
size = *((u_int32_t *)smap - 1);
bios_add_smap_entries(smap, size, physmap, physmap_idx);
strlcpy(bootmethod, "BIOS", sizeof(bootmethod));
}
}
#define PAGES_PER_GB (1024 * 1024 * 1024 / PAGE_SIZE)
/*
* Populate the (physmap) array with base/bound pairs describing the
* available physical memory in the system, then test this memory and
* build the phys_avail array describing the actually-available memory.
*
* Total memory size may be set by the kernel environment variable
* hw.physmem or the compile-time define MAXMEM.
*
* XXX first should be vm_paddr_t.
*/
static void
getmemsize(caddr_t kmdp, u_int64_t first)
{
int i, physmap_idx, pa_indx, da_indx;
vm_paddr_t pa, physmap[PHYSMAP_SIZE];
u_long physmem_start, physmem_tunable, memtest;
pt_entry_t *pte;
quad_t dcons_addr, dcons_size;
int page_counter;
bzero(physmap, sizeof(physmap));
physmap_idx = 0;
init_ops.parse_memmap(kmdp, physmap, &physmap_idx);
physmap_idx -= 2;
/*
* Find the 'base memory' segment for SMP
*/
basemem = 0;
for (i = 0; i <= physmap_idx; i += 2) {
if (physmap[i] <= 0xA0000) {
basemem = physmap[i + 1] / 1024;
break;
}
}
if (basemem == 0 || basemem > 640) {
if (bootverbose)
printf(
"Memory map doesn't contain a basemem segment, faking it");
basemem = 640;
}
/*
* Make hole for "AP -> long mode" bootstrap code. The
* mp_bootaddress vector is only available when the kernel
* is configured to support APs and APs for the system start
* in 32bit mode (e.g. SMP bare metal).
*/
if (init_ops.mp_bootaddress) {
if (physmap[1] >= 0x100000000)
panic(
"Basemem segment is not suitable for AP bootstrap code!");
physmap[1] = init_ops.mp_bootaddress(physmap[1] / 1024);
}
/*
* Maxmem isn't the "maximum memory", it's one larger than the
* highest page of the physical address space. It should be
* called something like "Maxphyspage". We may adjust this
* based on ``hw.physmem'' and the results of the memory test.
*/
Maxmem = atop(physmap[physmap_idx + 1]);
#ifdef MAXMEM
Maxmem = MAXMEM / 4;
#endif
if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
Maxmem = atop(physmem_tunable);
/*
* The boot memory test is disabled by default, as it takes a
* significant amount of time on large-memory systems, and is
* unfriendly to virtual machines as it unnecessarily touches all
* pages.
*
* A general name is used as the code may be extended to support
* additional tests beyond the current "page present" test.
*/
memtest = 0;
TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest);
/*
* Don't allow MAXMEM or hw.physmem to extend the amount of memory
* in the system.
*/
if (Maxmem > atop(physmap[physmap_idx + 1]))
Maxmem = atop(physmap[physmap_idx + 1]);
if (atop(physmap[physmap_idx + 1]) != Maxmem &&
(boothowto & RB_VERBOSE))
printf("Physical memory use set to %ldK\n", Maxmem * 4);
/* call pmap initialization to make new kernel address space */
pmap_bootstrap(&first);
/*
* Size up each available chunk of physical memory.
*
* XXX Some BIOSes corrupt low 64KB between suspend and resume.
* By default, mask off the first 16 pages unless we appear to be
* running in a VM.
*/
physmem_start = (vm_guest > VM_GUEST_NO ? 1 : 16) << PAGE_SHIFT;
TUNABLE_ULONG_FETCH("hw.physmem.start", &physmem_start);
if (physmap[0] < physmem_start) {
if (physmem_start < PAGE_SIZE)
physmap[0] = PAGE_SIZE;
else if (physmem_start >= physmap[1])
physmap[0] = round_page(physmap[1] - PAGE_SIZE);
else
physmap[0] = round_page(physmem_start);
}
pa_indx = 0;
da_indx = 1;
phys_avail[pa_indx++] = physmap[0];
phys_avail[pa_indx] = physmap[0];
dump_avail[da_indx] = physmap[0];
pte = CMAP1;
/*
* Get dcons buffer address
*/
if (getenv_quad("dcons.addr", &dcons_addr) == 0 ||
getenv_quad("dcons.size", &dcons_size) == 0)
dcons_addr = 0;
/*
* physmap is in bytes, so when converting to page boundaries,
* round up the start address and round down the end address.
*/
page_counter = 0;
if (memtest != 0)
printf("Testing system memory");
for (i = 0; i <= physmap_idx; i += 2) {
vm_paddr_t end;
end = ptoa((vm_paddr_t)Maxmem);
if (physmap[i + 1] < end)
end = trunc_page(physmap[i + 1]);
for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
int tmp, page_bad, full;
int *ptr = (int *)CADDR1;
full = FALSE;
/*
* block out kernel memory as not available.
*/
if (pa >= (vm_paddr_t)kernphys && pa < first)
goto do_dump_avail;
/*
* block out dcons buffer
*/
if (dcons_addr > 0
&& pa >= trunc_page(dcons_addr)
&& pa < dcons_addr + dcons_size)
goto do_dump_avail;
page_bad = FALSE;
if (memtest == 0)
goto skip_memtest;
/*
* Print a "." every GB to show we're making
* progress.
*/
page_counter++;
if ((page_counter % PAGES_PER_GB) == 0)
printf(".");
/*
* map page into kernel: valid, read/write,non-cacheable
*/
*pte = pa | PG_V | PG_RW | PG_NC_PWT | PG_NC_PCD;
invltlb();
tmp = *(int *)ptr;
/*
* Test for alternating 1's and 0's
*/
*(volatile int *)ptr = 0xaaaaaaaa;
if (*(volatile int *)ptr != 0xaaaaaaaa)
page_bad = TRUE;
/*
* Test for alternating 0's and 1's
*/
*(volatile int *)ptr = 0x55555555;
if (*(volatile int *)ptr != 0x55555555)
page_bad = TRUE;
/*
* Test for all 1's
*/
*(volatile int *)ptr = 0xffffffff;
if (*(volatile int *)ptr != 0xffffffff)
page_bad = TRUE;
/*
* Test for all 0's
*/
*(volatile int *)ptr = 0x0;
if (*(volatile int *)ptr != 0x0)
page_bad = TRUE;
/*
* Restore original value.
*/
*(int *)ptr = tmp;
skip_memtest:
/*
* Adjust array of valid/good pages.
*/
if (page_bad == TRUE)
continue;
/*
* If this good page is a continuation of the
* previous set of good pages, then just increase
* the end pointer. Otherwise start a new chunk.
* Note that "end" points one higher than end,
* making the range >= start and < end.
* If we're also doing a speculative memory
* test and we at or past the end, bump up Maxmem
* so that we keep going. The first bad page
* will terminate the loop.
*/
if (phys_avail[pa_indx] == pa) {
phys_avail[pa_indx] += PAGE_SIZE;
} else {
pa_indx++;
if (pa_indx == PHYS_AVAIL_ARRAY_END) {
printf(
"Too many holes in the physical address space, giving up\n");
pa_indx--;
full = TRUE;
goto do_dump_avail;
}
phys_avail[pa_indx++] = pa; /* start */
phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
}
physmem++;
do_dump_avail:
if (dump_avail[da_indx] == pa) {
dump_avail[da_indx] += PAGE_SIZE;
} else {
da_indx++;
if (da_indx == DUMP_AVAIL_ARRAY_END) {
da_indx--;
goto do_next;
}
dump_avail[da_indx++] = pa; /* start */
dump_avail[da_indx] = pa + PAGE_SIZE; /* end */
}
do_next:
if (full)
break;
}
}
*pte = 0;
invltlb();
if (memtest != 0)
printf("\n");
/*
* XXX
* The last chunk must contain at least one page plus the message
* buffer to avoid complicating other code (message buffer address
* calculation, etc.).
*/
while (phys_avail[pa_indx - 1] + PAGE_SIZE +
round_page(msgbufsize) >= phys_avail[pa_indx]) {
physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
phys_avail[pa_indx--] = 0;
phys_avail[pa_indx--] = 0;
}
Maxmem = atop(phys_avail[pa_indx]);
/* Trim off space for the message buffer. */
phys_avail[pa_indx] -= round_page(msgbufsize);
/* Map the message buffer. */
msgbufp = (struct msgbuf *)PHYS_TO_DMAP(phys_avail[pa_indx]);
}
static caddr_t
native_parse_preload_data(u_int64_t modulep)
{
caddr_t kmdp;
#ifdef DDB
vm_offset_t ksym_start;
vm_offset_t ksym_end;
#endif
preload_metadata = (caddr_t)(uintptr_t)(modulep + KERNBASE);
preload_bootstrap_relocate(KERNBASE);
kmdp = preload_search_by_type("elf kernel");
if (kmdp == NULL)
kmdp = preload_search_by_type("elf64 kernel");
boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + KERNBASE;
#ifdef DDB
ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
db_fetch_ksymtab(ksym_start, ksym_end);
#endif
return (kmdp);
}
u_int64_t
hammer_time(u_int64_t modulep, u_int64_t physfree)
{
caddr_t kmdp;
int gsel_tss, x;
struct pcpu *pc;
struct nmi_pcpu *np;
struct xstate_hdr *xhdr;
u_int64_t msr;
char *env;
size_t kstack0_sz;
thread0.td_kstack = physfree + KERNBASE;
thread0.td_kstack_pages = KSTACK_PAGES;
kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE;
bzero((void *)thread0.td_kstack, kstack0_sz);
physfree += kstack0_sz;
/*
* This may be done better later if it gets more high level
* components in it. If so just link td->td_proc here.
*/
proc_linkup0(&proc0, &thread0);
kmdp = init_ops.parse_preload_data(modulep);
/* Init basic tunables, hz etc */
init_param1();
/*
* make gdt memory segments
*/
for (x = 0; x < NGDT; x++) {
if (x != GPROC0_SEL && x != (GPROC0_SEL + 1) &&
x != GUSERLDT_SEL && x != (GUSERLDT_SEL) + 1)
ssdtosd(&gdt_segs[x], &gdt[x]);
}
gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&common_tss[0];
ssdtosyssd(&gdt_segs[GPROC0_SEL],
(struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
r_gdt.rd_base = (long) gdt;
lgdt(&r_gdt);
pc = &__pcpu[0];
wrmsr(MSR_FSBASE, 0); /* User value */
wrmsr(MSR_GSBASE, (u_int64_t)pc);
wrmsr(MSR_KGSBASE, 0); /* User value while in the kernel */
pcpu_init(pc, 0, sizeof(struct pcpu));
dpcpu_init((void *)(physfree + KERNBASE), 0);
physfree += DPCPU_SIZE;
PCPU_SET(prvspace, pc);
PCPU_SET(curthread, &thread0);
PCPU_SET(tssp, &common_tss[0]);
PCPU_SET(commontssp, &common_tss[0]);
PCPU_SET(tss, (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
PCPU_SET(ldt, (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL]);
PCPU_SET(fs32p, &gdt[GUFS32_SEL]);
PCPU_SET(gs32p, &gdt[GUGS32_SEL]);
/*
* Initialize mutexes.
*
* icu_lock: in order to allow an interrupt to occur in a critical
* section, to set pcpu->ipending (etc...) properly, we
* must be able to get the icu lock, so it can't be
* under witness.
*/
mutex_init();
mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS);
mtx_init(&dt_lock, "descriptor tables", NULL, MTX_DEF);
/* exceptions */
for (x = 0; x < NIDT; x++)
setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
setidt(IDT_DE, &IDTVEC(div), SDT_SYSIGT, SEL_KPL, 0);
setidt(IDT_DB, &IDTVEC(dbg), SDT_SYSIGT, SEL_KPL, 0);
setidt(IDT_NMI, &IDTVEC(nmi), SDT_SYSIGT, SEL_KPL, 2);
setidt(IDT_BP, &IDTVEC(bpt), SDT_SYSIGT, SEL_UPL, 0);
setidt(IDT_OF, &IDTVEC(ofl), SDT_SYSIGT, SEL_KPL, 0);
setidt(IDT_BR, &IDTVEC(bnd), SDT_SYSIGT, SEL_KPL, 0);
setidt(IDT_UD, &IDTVEC(ill), SDT_SYSIGT, SEL_KPL, 0);
setidt(IDT_NM, &IDTVEC(dna), SDT_SYSIGT, SEL_KPL, 0);
setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
setidt(IDT_FPUGP, &IDTVEC(fpusegm), SDT_SYSIGT, SEL_KPL, 0);
setidt(IDT_TS, &IDTVEC(tss), SDT_SYSIGT, SEL_KPL, 0);
setidt(IDT_NP, &IDTVEC(missing), SDT_SYSIGT, SEL_KPL, 0);
setidt(IDT_SS, &IDTVEC(stk), SDT_SYSIGT, SEL_KPL, 0);
setidt(IDT_GP, &IDTVEC(prot), SDT_SYSIGT, SEL_KPL, 0);
setidt(IDT_PF, &IDTVEC(page), SDT_SYSIGT, SEL_KPL, 0);
setidt(IDT_MF, &IDTVEC(fpu), SDT_SYSIGT, SEL_KPL, 0);
setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
setidt(IDT_MC, &IDTVEC(mchk), SDT_SYSIGT, SEL_KPL, 0);
setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
#ifdef KDTRACE_HOOKS
setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYSIGT, SEL_UPL, 0);
#endif
#ifdef XENHVM
setidt(IDT_EVTCHN, &IDTVEC(xen_intr_upcall), SDT_SYSIGT, SEL_UPL, 0);
#endif
r_idt.rd_limit = sizeof(idt0) - 1;
r_idt.rd_base = (long) idt;
lidt(&r_idt);
/*
* Initialize the clock before the console so that console
* initialization can use DELAY().
*/
clock_init();
/*
* Use vt(4) by default for UEFI boot (during the sc(4)/vt(4)
* transition).
*/
if (kmdp != NULL && preload_search_info(kmdp,
MODINFO_METADATA | MODINFOMD_EFI_MAP) != NULL)
vty_set_preferred(VTY_VT);
/*
* Initialize the console before we print anything out.
*/
cninit();
#ifdef DEV_ISA
#ifdef DEV_ATPIC
elcr_probe();
atpic_startup();
#else
/* Reset and mask the atpics and leave them shut down. */
atpic_reset();
/*
* Point the ICU spurious interrupt vectors at the APIC spurious
* interrupt handler.
*/
setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYSIGT, SEL_KPL, 0);
#endif
#else
#error "have you forgotten the isa device?";
#endif
kdb_init();
#ifdef KDB
if (boothowto & RB_KDB)
kdb_enter(KDB_WHY_BOOTFLAGS,
"Boot flags requested debugger");
#endif
identify_cpu(); /* Final stage of CPU initialization */
initializecpu(); /* Initialize CPU registers */
initializecpucache();
/* doublefault stack space, runs on ist1 */
common_tss[0].tss_ist1 = (long)&dblfault_stack[sizeof(dblfault_stack)];
/*
* NMI stack, runs on ist2. The pcpu pointer is stored just
* above the start of the ist2 stack.
*/
np = ((struct nmi_pcpu *) &nmi0_stack[sizeof(nmi0_stack)]) - 1;
np->np_pcpu = (register_t) pc;
common_tss[0].tss_ist2 = (long) np;
/* Set the IO permission bitmap (empty due to tss seg limit) */
common_tss[0].tss_iobase = sizeof(struct amd64tss) + IOPERM_BITMAP_SIZE;
gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
ltr(gsel_tss);
/* Set up the fast syscall stuff */
msr = rdmsr(MSR_EFER) | EFER_SCE;
wrmsr(MSR_EFER, msr);
wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
wrmsr(MSR_STAR, msr);
wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
getmemsize(kmdp, physfree);
init_param2(physmem);
/* now running on new page tables, configured,and u/iom is accessible */
msgbufinit(msgbufp, msgbufsize);
fpuinit();
/*
* Set up thread0 pcb after fpuinit calculated pcb + fpu save
* area size. Zero out the extended state header in fpu save
* area.
*/
thread0.td_pcb = get_pcb_td(&thread0);
bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size);
if (use_xsave) {
xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) +
1);
xhdr->xstate_bv = xsave_mask;
}
/* make an initial tss so cpu can get interrupt stack on syscall! */
common_tss[0].tss_rsp0 = (vm_offset_t)thread0.td_pcb;
/* Ensure the stack is aligned to 16 bytes */
common_tss[0].tss_rsp0 &= ~0xFul;
PCPU_SET(rsp0, common_tss[0].tss_rsp0);
PCPU_SET(curpcb, thread0.td_pcb);
/* transfer to user mode */
_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
_ufssel = GSEL(GUFS32_SEL, SEL_UPL);
_ugssel = GSEL(GUGS32_SEL, SEL_UPL);
load_ds(_udatasel);
load_es(_udatasel);
load_fs(_ufssel);
/* setup proc 0's pcb */
thread0.td_pcb->pcb_flags = 0;
thread0.td_pcb->pcb_cr3 = KPML4phys; /* PCID 0 is reserved for kernel */
thread0.td_frame = &proc0_tf;
env = kern_getenv("kernelname");
if (env != NULL)
strlcpy(kernelname, env, sizeof(kernelname));
cpu_probe_amdc1e();
#ifdef FDT
x86_init_fdt();
#endif
/* Location of kernel stack for locore */
return ((u_int64_t)thread0.td_pcb);
}
void
cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
{
pcpu->pc_acpi_id = 0xffffffff;
}
static int
smap_sysctl_handler(SYSCTL_HANDLER_ARGS)
{
struct bios_smap *smapbase;
struct bios_smap_xattr smap;
caddr_t kmdp;
uint32_t *smapattr;
int count, error, i;
/* Retrieve the system memory map from the loader. */
kmdp = preload_search_by_type("elf kernel");
if (kmdp == NULL)
kmdp = preload_search_by_type("elf64 kernel");
smapbase = (struct bios_smap *)preload_search_info(kmdp,
MODINFO_METADATA | MODINFOMD_SMAP);
if (smapbase == NULL)
return (0);
smapattr = (uint32_t *)preload_search_info(kmdp,
MODINFO_METADATA | MODINFOMD_SMAP_XATTR);
count = *((uint32_t *)smapbase - 1) / sizeof(*smapbase);
error = 0;
for (i = 0; i < count; i++) {
smap.base = smapbase[i].base;
smap.length = smapbase[i].length;
smap.type = smapbase[i].type;
if (smapattr != NULL)
smap.xattr = smapattr[i];
else
smap.xattr = 0;
error = SYSCTL_OUT(req, &smap, sizeof(smap));
}
return (error);
}
SYSCTL_PROC(_machdep, OID_AUTO, smap, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
smap_sysctl_handler, "S,bios_smap_xattr", "Raw BIOS SMAP data");
static int
efi_map_sysctl_handler(SYSCTL_HANDLER_ARGS)
{
struct efi_map_header *efihdr;
caddr_t kmdp;
uint32_t efisize;
kmdp = preload_search_by_type("elf kernel");
if (kmdp == NULL)
kmdp = preload_search_by_type("elf64 kernel");
efihdr = (struct efi_map_header *)preload_search_info(kmdp,
MODINFO_METADATA | MODINFOMD_EFI_MAP);
if (efihdr == NULL)
return (0);
efisize = *((uint32_t *)efihdr - 1);
return (SYSCTL_OUT(req, efihdr, efisize));
}
SYSCTL_PROC(_machdep, OID_AUTO, efi_map, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
efi_map_sysctl_handler, "S,efi_map_header", "Raw EFI Memory Map");
void
spinlock_enter(void)
{
struct thread *td;
register_t flags;
td = curthread;
if (td->td_md.md_spinlock_count == 0) {
flags = intr_disable();
td->td_md.md_spinlock_count = 1;
td->td_md.md_saved_flags = flags;
} else
td->td_md.md_spinlock_count++;
critical_enter();
}
void
spinlock_exit(void)
{
struct thread *td;
register_t flags;
td = curthread;
critical_exit();
flags = td->td_md.md_saved_flags;
td->td_md.md_spinlock_count--;
if (td->td_md.md_spinlock_count == 0)
intr_restore(flags);
}
/*
* Construct a PCB from a trapframe. This is called from kdb_trap() where
* we want to start a backtrace from the function that caused us to enter
* the debugger. We have the context in the trapframe, but base the trace
* on the PCB. The PCB doesn't have to be perfect, as long as it contains
* enough for a backtrace.
*/
void
makectx(struct trapframe *tf, struct pcb *pcb)
{
pcb->pcb_r12 = tf->tf_r12;
pcb->pcb_r13 = tf->tf_r13;
pcb->pcb_r14 = tf->tf_r14;
pcb->pcb_r15 = tf->tf_r15;
pcb->pcb_rbp = tf->tf_rbp;
pcb->pcb_rbx = tf->tf_rbx;
pcb->pcb_rip = tf->tf_rip;
pcb->pcb_rsp = tf->tf_rsp;
}
int
ptrace_set_pc(struct thread *td, unsigned long addr)
{
td->td_frame->tf_rip = addr;
set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
return (0);
}
int
ptrace_single_step(struct thread *td)
{
td->td_frame->tf_rflags |= PSL_T;
return (0);
}
int
ptrace_clear_single_step(struct thread *td)
{
td->td_frame->tf_rflags &= ~PSL_T;
return (0);
}
int
fill_regs(struct thread *td, struct reg *regs)
{
struct trapframe *tp;
tp = td->td_frame;
return (fill_frame_regs(tp, regs));
}
int
fill_frame_regs(struct trapframe *tp, struct reg *regs)
{
regs->r_r15 = tp->tf_r15;
regs->r_r14 = tp->tf_r14;
regs->r_r13 = tp->tf_r13;
regs->r_r12 = tp->tf_r12;
regs->r_r11 = tp->tf_r11;
regs->r_r10 = tp->tf_r10;
regs->r_r9 = tp->tf_r9;
regs->r_r8 = tp->tf_r8;
regs->r_rdi = tp->tf_rdi;
regs->r_rsi = tp->tf_rsi;
regs->r_rbp = tp->tf_rbp;
regs->r_rbx = tp->tf_rbx;
regs->r_rdx = tp->tf_rdx;
regs->r_rcx = tp->tf_rcx;
regs->r_rax = tp->tf_rax;
regs->r_rip = tp->tf_rip;
regs->r_cs = tp->tf_cs;
regs->r_rflags = tp->tf_rflags;
regs->r_rsp = tp->tf_rsp;
regs->r_ss = tp->tf_ss;
if (tp->tf_flags & TF_HASSEGS) {
regs->r_ds = tp->tf_ds;
regs->r_es = tp->tf_es;
regs->r_fs = tp->tf_fs;
regs->r_gs = tp->tf_gs;
} else {
regs->r_ds = 0;
regs->r_es = 0;
regs->r_fs = 0;
regs->r_gs = 0;
}
return (0);
}
int
set_regs(struct thread *td, struct reg *regs)
{
struct trapframe *tp;
register_t rflags;
tp = td->td_frame;
rflags = regs->r_rflags & 0xffffffff;
if (!EFL_SECURE(rflags, tp->tf_rflags) || !CS_SECURE(regs->r_cs))
return (EINVAL);
tp->tf_r15 = regs->r_r15;
tp->tf_r14 = regs->r_r14;
tp->tf_r13 = regs->r_r13;
tp->tf_r12 = regs->r_r12;
tp->tf_r11 = regs->r_r11;
tp->tf_r10 = regs->r_r10;
tp->tf_r9 = regs->r_r9;
tp->tf_r8 = regs->r_r8;
tp->tf_rdi = regs->r_rdi;
tp->tf_rsi = regs->r_rsi;
tp->tf_rbp = regs->r_rbp;
tp->tf_rbx = regs->r_rbx;
tp->tf_rdx = regs->r_rdx;
tp->tf_rcx = regs->r_rcx;
tp->tf_rax = regs->r_rax;
tp->tf_rip = regs->r_rip;
tp->tf_cs = regs->r_cs;
tp->tf_rflags = rflags;
tp->tf_rsp = regs->r_rsp;
tp->tf_ss = regs->r_ss;
if (0) { /* XXXKIB */
tp->tf_ds = regs->r_ds;
tp->tf_es = regs->r_es;
tp->tf_fs = regs->r_fs;
tp->tf_gs = regs->r_gs;
tp->tf_flags = TF_HASSEGS;
}
set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
return (0);
}
/* XXX check all this stuff! */
/* externalize from sv_xmm */
static void
fill_fpregs_xmm(struct savefpu *sv_xmm, struct fpreg *fpregs)
{
struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
struct envxmm *penv_xmm = &sv_xmm->sv_env;
int i;
/* pcb -> fpregs */
bzero(fpregs, sizeof(*fpregs));
/* FPU control/status */
penv_fpreg->en_cw = penv_xmm->en_cw;
penv_fpreg->en_sw = penv_xmm->en_sw;
penv_fpreg->en_tw = penv_xmm->en_tw;
penv_fpreg->en_opcode = penv_xmm->en_opcode;
penv_fpreg->en_rip = penv_xmm->en_rip;
penv_fpreg->en_rdp = penv_xmm->en_rdp;
penv_fpreg->en_mxcsr = penv_xmm->en_mxcsr;
penv_fpreg->en_mxcsr_mask = penv_xmm->en_mxcsr_mask;
/* FPU registers */
for (i = 0; i < 8; ++i)
bcopy(sv_xmm->sv_fp[i].fp_acc.fp_bytes, fpregs->fpr_acc[i], 10);
/* SSE registers */
for (i = 0; i < 16; ++i)
bcopy(sv_xmm->sv_xmm[i].xmm_bytes, fpregs->fpr_xacc[i], 16);
}
/* internalize from fpregs into sv_xmm */
static void
set_fpregs_xmm(struct fpreg *fpregs, struct savefpu *sv_xmm)
{
struct envxmm *penv_xmm = &sv_xmm->sv_env;
struct envxmm *penv_fpreg = (struct envxmm *)&fpregs->fpr_env;
int i;
/* fpregs -> pcb */
/* FPU control/status */
penv_xmm->en_cw = penv_fpreg->en_cw;
penv_xmm->en_sw = penv_fpreg->en_sw;
penv_xmm->en_tw = penv_fpreg->en_tw;
penv_xmm->en_opcode = penv_fpreg->en_opcode;
penv_xmm->en_rip = penv_fpreg->en_rip;
penv_xmm->en_rdp = penv_fpreg->en_rdp;
penv_xmm->en_mxcsr = penv_fpreg->en_mxcsr;
penv_xmm->en_mxcsr_mask = penv_fpreg->en_mxcsr_mask & cpu_mxcsr_mask;
/* FPU registers */
for (i = 0; i < 8; ++i)
bcopy(fpregs->fpr_acc[i], sv_xmm->sv_fp[i].fp_acc.fp_bytes, 10);
/* SSE registers */
for (i = 0; i < 16; ++i)
bcopy(fpregs->fpr_xacc[i], sv_xmm->sv_xmm[i].xmm_bytes, 16);
}
/* externalize from td->pcb */
int
fill_fpregs(struct thread *td, struct fpreg *fpregs)
{
KASSERT(td == curthread || TD_IS_SUSPENDED(td) ||
P_SHOULDSTOP(td->td_proc),
("not suspended thread %p", td));
fpugetregs(td);
fill_fpregs_xmm(get_pcb_user_save_td(td), fpregs);
return (0);
}
/* internalize to td->pcb */
int
set_fpregs(struct thread *td, struct fpreg *fpregs)
{
set_fpregs_xmm(fpregs, get_pcb_user_save_td(td));
fpuuserinited(td);
return (0);
}
/*
* Get machine context.
*/
int
get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
{
struct pcb *pcb;
struct trapframe *tp;
pcb = td->td_pcb;
tp = td->td_frame;
PROC_LOCK(curthread->td_proc);
mcp->mc_onstack = sigonstack(tp->tf_rsp);
PROC_UNLOCK(curthread->td_proc);
mcp->mc_r15 = tp->tf_r15;
mcp->mc_r14 = tp->tf_r14;
mcp->mc_r13 = tp->tf_r13;
mcp->mc_r12 = tp->tf_r12;
mcp->mc_r11 = tp->tf_r11;
mcp->mc_r10 = tp->tf_r10;
mcp->mc_r9 = tp->tf_r9;
mcp->mc_r8 = tp->tf_r8;
mcp->mc_rdi = tp->tf_rdi;
mcp->mc_rsi = tp->tf_rsi;
mcp->mc_rbp = tp->tf_rbp;
mcp->mc_rbx = tp->tf_rbx;
mcp->mc_rcx = tp->tf_rcx;
mcp->mc_rflags = tp->tf_rflags;
if (flags & GET_MC_CLEAR_RET) {
mcp->mc_rax = 0;
mcp->mc_rdx = 0;
mcp->mc_rflags &= ~PSL_C;
} else {
mcp->mc_rax = tp->tf_rax;
mcp->mc_rdx = tp->tf_rdx;
}
mcp->mc_rip = tp->tf_rip;
mcp->mc_cs = tp->tf_cs;
mcp->mc_rsp = tp->tf_rsp;
mcp->mc_ss = tp->tf_ss;
mcp->mc_ds = tp->tf_ds;
mcp->mc_es = tp->tf_es;
mcp->mc_fs = tp->tf_fs;
mcp->mc_gs = tp->tf_gs;
mcp->mc_flags = tp->tf_flags;
mcp->mc_len = sizeof(*mcp);
get_fpcontext(td, mcp, NULL, 0);
mcp->mc_fsbase = pcb->pcb_fsbase;
mcp->mc_gsbase = pcb->pcb_gsbase;
mcp->mc_xfpustate = 0;
mcp->mc_xfpustate_len = 0;
bzero(mcp->mc_spare, sizeof(mcp->mc_spare));
return (0);
}
/*
* Set machine context.
*
* However, we don't set any but the user modifiable flags, and we won't
* touch the cs selector.
*/
int
set_mcontext(struct thread *td, mcontext_t *mcp)
{
struct pcb *pcb;
struct trapframe *tp;
char *xfpustate;
long rflags;
int ret;
pcb = td->td_pcb;
tp = td->td_frame;
if (mcp->mc_len != sizeof(*mcp) ||
(mcp->mc_flags & ~_MC_FLAG_MASK) != 0)
return (EINVAL);
rflags = (mcp->mc_rflags & PSL_USERCHANGE) |
(tp->tf_rflags & ~PSL_USERCHANGE);
if (mcp->mc_flags & _MC_HASFPXSTATE) {
if (mcp->mc_xfpustate_len > cpu_max_ext_state_size -
sizeof(struct savefpu))
return (EINVAL);
xfpustate = __builtin_alloca(mcp->mc_xfpustate_len);
ret = copyin((void *)mcp->mc_xfpustate, xfpustate,
mcp->mc_xfpustate_len);
if (ret != 0)
return (ret);
} else
xfpustate = NULL;
ret = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len);
if (ret != 0)
return (ret);
tp->tf_r15 = mcp->mc_r15;
tp->tf_r14 = mcp->mc_r14;
tp->tf_r13 = mcp->mc_r13;
tp->tf_r12 = mcp->mc_r12;
tp->tf_r11 = mcp->mc_r11;
tp->tf_r10 = mcp->mc_r10;
tp->tf_r9 = mcp->mc_r9;
tp->tf_r8 = mcp->mc_r8;
tp->tf_rdi = mcp->mc_rdi;
tp->tf_rsi = mcp->mc_rsi;
tp->tf_rbp = mcp->mc_rbp;
tp->tf_rbx = mcp->mc_rbx;
tp->tf_rdx = mcp->mc_rdx;
tp->tf_rcx = mcp->mc_rcx;
tp->tf_rax = mcp->mc_rax;
tp->tf_rip = mcp->mc_rip;
tp->tf_rflags = rflags;
tp->tf_rsp = mcp->mc_rsp;
tp->tf_ss = mcp->mc_ss;
tp->tf_flags = mcp->mc_flags;
if (tp->tf_flags & TF_HASSEGS) {
tp->tf_ds = mcp->mc_ds;
tp->tf_es = mcp->mc_es;
tp->tf_fs = mcp->mc_fs;
tp->tf_gs = mcp->mc_gs;
}
if (mcp->mc_flags & _MC_HASBASES) {
pcb->pcb_fsbase = mcp->mc_fsbase;
pcb->pcb_gsbase = mcp->mc_gsbase;
}
set_pcb_flags(pcb, PCB_FULL_IRET);
return (0);
}
static void
get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave,
size_t xfpusave_len)
{
size_t max_len, len;
mcp->mc_ownedfp = fpugetregs(td);
bcopy(get_pcb_user_save_td(td), &mcp->mc_fpstate[0],
sizeof(mcp->mc_fpstate));
mcp->mc_fpformat = fpuformat();
if (!use_xsave || xfpusave_len == 0)
return;
max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
len = xfpusave_len;
if (len > max_len) {
len = max_len;
bzero(xfpusave + max_len, len - max_len);
}
mcp->mc_flags |= _MC_HASFPXSTATE;
mcp->mc_xfpustate_len = len;
bcopy(get_pcb_user_save_td(td) + 1, xfpusave, len);
}
static int
set_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpustate,
size_t xfpustate_len)
{
struct savefpu *fpstate;
int error;
if (mcp->mc_fpformat == _MC_FPFMT_NODEV)
return (0);
else if (mcp->mc_fpformat != _MC_FPFMT_XMM)
return (EINVAL);
else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) {
/* We don't care what state is left in the FPU or PCB. */
fpstate_drop(td);
error = 0;
} else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU ||
mcp->mc_ownedfp == _MC_FPOWNED_PCB) {
fpstate = (struct savefpu *)&mcp->mc_fpstate;
fpstate->sv_env.en_mxcsr &= cpu_mxcsr_mask;
error = fpusetregs(td, fpstate, xfpustate, xfpustate_len);
} else
return (EINVAL);
return (error);
}
void
fpstate_drop(struct thread *td)
{
KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu"));
critical_enter();
if (PCPU_GET(fpcurthread) == td)
fpudrop();
/*
* XXX force a full drop of the fpu. The above only drops it if we
* owned it.
*
* XXX I don't much like fpugetuserregs()'s semantics of doing a full
* drop. Dropping only to the pcb matches fnsave's behaviour.
* We only need to drop to !PCB_INITDONE in sendsig(). But
* sendsig() is the only caller of fpugetuserregs()... perhaps we just
* have too many layers.
*/
clear_pcb_flags(curthread->td_pcb,
PCB_FPUINITDONE | PCB_USERFPUINITDONE);
critical_exit();
}
int
fill_dbregs(struct thread *td, struct dbreg *dbregs)
{
struct pcb *pcb;
if (td == NULL) {
dbregs->dr[0] = rdr0();
dbregs->dr[1] = rdr1();
dbregs->dr[2] = rdr2();
dbregs->dr[3] = rdr3();
dbregs->dr[6] = rdr6();
dbregs->dr[7] = rdr7();
} else {
pcb = td->td_pcb;
dbregs->dr[0] = pcb->pcb_dr0;
dbregs->dr[1] = pcb->pcb_dr1;
dbregs->dr[2] = pcb->pcb_dr2;
dbregs->dr[3] = pcb->pcb_dr3;
dbregs->dr[6] = pcb->pcb_dr6;
dbregs->dr[7] = pcb->pcb_dr7;
}
dbregs->dr[4] = 0;
dbregs->dr[5] = 0;
dbregs->dr[8] = 0;
dbregs->dr[9] = 0;
dbregs->dr[10] = 0;
dbregs->dr[11] = 0;
dbregs->dr[12] = 0;
dbregs->dr[13] = 0;
dbregs->dr[14] = 0;
dbregs->dr[15] = 0;
return (0);
}
int
set_dbregs(struct thread *td, struct dbreg *dbregs)
{
struct pcb *pcb;
int i;
if (td == NULL) {
load_dr0(dbregs->dr[0]);
load_dr1(dbregs->dr[1]);
load_dr2(dbregs->dr[2]);
load_dr3(dbregs->dr[3]);
load_dr6(dbregs->dr[6]);
load_dr7(dbregs->dr[7]);
} else {
/*
* Don't let an illegal value for dr7 get set. Specifically,
* check for undefined settings. Setting these bit patterns
* result in undefined behaviour and can lead to an unexpected
* TRCTRAP or a general protection fault right here.
* Upper bits of dr6 and dr7 must not be set
*/
for (i = 0; i < 4; i++) {
if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02)
return (EINVAL);
if (td->td_frame->tf_cs == _ucode32sel &&
DBREG_DR7_LEN(dbregs->dr[7], i) == DBREG_DR7_LEN_8)
return (EINVAL);
}
if ((dbregs->dr[6] & 0xffffffff00000000ul) != 0 ||
(dbregs->dr[7] & 0xffffffff00000000ul) != 0)
return (EINVAL);
pcb = td->td_pcb;
/*
* Don't let a process set a breakpoint that is not within the
* process's address space. If a process could do this, it
* could halt the system by setting a breakpoint in the kernel
* (if ddb was enabled). Thus, we need to check to make sure
* that no breakpoints are being enabled for addresses outside
* process's address space.
*
* XXX - what about when the watched area of the user's
* address space is written into from within the kernel
* ... wouldn't that still cause a breakpoint to be generated
* from within kernel mode?
*/
if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) {
/* dr0 is enabled */
if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS)
return (EINVAL);
}
if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) {
/* dr1 is enabled */
if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS)
return (EINVAL);
}
if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) {
/* dr2 is enabled */
if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS)
return (EINVAL);
}
if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) {
/* dr3 is enabled */
if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS)
return (EINVAL);
}
pcb->pcb_dr0 = dbregs->dr[0];
pcb->pcb_dr1 = dbregs->dr[1];
pcb->pcb_dr2 = dbregs->dr[2];
pcb->pcb_dr3 = dbregs->dr[3];
pcb->pcb_dr6 = dbregs->dr[6];
pcb->pcb_dr7 = dbregs->dr[7];
set_pcb_flags(pcb, PCB_DBREGS);
}
return (0);
}
void
reset_dbregs(void)
{
load_dr7(0); /* Turn off the control bits first */
load_dr0(0);
load_dr1(0);
load_dr2(0);
load_dr3(0);
load_dr6(0);
}
/*
* Return > 0 if a hardware breakpoint has been hit, and the
* breakpoint was in user space. Return 0, otherwise.
*/
int
user_dbreg_trap(void)
{
u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
u_int64_t bp; /* breakpoint bits extracted from dr6 */
int nbp; /* number of breakpoints that triggered */
caddr_t addr[4]; /* breakpoint addresses */
int i;
dr7 = rdr7();
if ((dr7 & 0x000000ff) == 0) {
/*
* all GE and LE bits in the dr7 register are zero,
* thus the trap couldn't have been caused by the
* hardware debug registers
*/
return 0;
}
nbp = 0;
dr6 = rdr6();
bp = dr6 & 0x0000000f;
if (!bp) {
/*
* None of the breakpoint bits are set meaning this
* trap was not caused by any of the debug registers
*/
return 0;
}
/*
* at least one of the breakpoints were hit, check to see
* which ones and if any of them are user space addresses
*/
if (bp & 0x01) {
addr[nbp++] = (caddr_t)rdr0();
}
if (bp & 0x02) {
addr[nbp++] = (caddr_t)rdr1();
}
if (bp & 0x04) {
addr[nbp++] = (caddr_t)rdr2();
}
if (bp & 0x08) {
addr[nbp++] = (caddr_t)rdr3();
}
for (i = 0; i < nbp; i++) {
if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) {
/*
* addr[i] is in user space
*/
return nbp;
}
}
/*
* None of the breakpoints are in user space.
*/
return 0;
}
#ifdef KDB
/*
* Provide inb() and outb() as functions. They are normally only available as
* inline functions, thus cannot be called from the debugger.
*/
/* silence compiler warnings */
u_char inb_(u_short);
void outb_(u_short, u_char);
u_char
inb_(u_short port)
{
return inb(port);
}
void
outb_(u_short port, u_char data)
{
outb(port, data);
}
#endif /* KDB */