freebsd-dev/sys/alpha/pci/t2.c
John Baldwin 7e1f6dfe9d Modify the critical section API as follows:
- The MD functions critical_enter/exit are renamed to start with a cpu_
  prefix.
- MI wrapper functions critical_enter/exit maintain a per-thread nesting
  count and a per-thread critical section saved state set when entering
  a critical section while at nesting level 0 and restored when exiting
  to nesting level 0.  This moves the saved state out of spin mutexes so
  that interlocking spin mutexes works properly.
- Most low-level MD code that used critical_enter/exit now use
  cpu_critical_enter/exit.  MI code such as device drivers and spin
  mutexes use the MI wrappers.  Note that since the MI wrappers store
  the state in the current thread, they do not have any return values or
  arguments.
- mtx_intr_enable() is replaced with a constant CRITICAL_FORK which is
  assigned to curthread->td_savecrit during fork_exit().

Tested on:	i386, alpha
2001-12-18 00:27:18 +00:00

627 lines
15 KiB
C

/*
* Copyright (c) 2000 Andrew Gallatin & Doug Rabson
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Portions of this file were obtained from Compaq intellectual
* property which was made available under the following copyright:
*
* *****************************************************************
* * *
* * Copyright Compaq Computer Corporation, 2000 *
* * *
* * Permission to use, copy, modify, distribute, and sell *
* * this software and its documentation for any purpose is *
* * hereby granted without fee, provided that the above *
* * copyright notice appear in all copies and that both *
* * that copyright notice and this permission notice appear *
* * in supporting documentation, and that the name of *
* * Compaq Computer Corporation not be used in advertising *
* * or publicity pertaining to distribution of the software *
* * without specific, written prior permission. Compaq *
* * makes no representations about the suitability of this *
* * software for any purpose. It is provided "AS IS" *
* * without express or implied warranty. *
* * *
* *****************************************************************
*
* $FreeBSD$
*/
/*
* T2 CBUS to PCI bridge
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/malloc.h>
#include <sys/bus.h>
#include <machine/bus.h>
#include <sys/proc.h>
#include <sys/rman.h>
#include <sys/interrupt.h>
#include <alpha/pci/t2reg.h>
#include <alpha/pci/t2var.h>
#include <alpha/isa/isavar.h>
#include <machine/intr.h>
#include <machine/resource.h>
#include <machine/intrcnt.h>
#include <machine/cpuconf.h>
#include <machine/swiz.h>
#include <machine/sgmap.h>
#include <pci/pcivar.h>
#include <vm/vm.h>
#include <vm/vm_page.h>
#define KV(pa) ALPHA_PHYS_TO_K0SEG(pa + sable_lynx_base)
vm_offset_t sable_lynx_base = 0UL;
volatile t2_csr_t *t2_csr[2];
static int pci_int_type[2];
static devclass_t t2_devclass;
static device_t t2_0; /* XXX only one for now */
struct t2_softc {
int junk;
};
#define T2_SOFTC(dev) (struct t2_softc*) device_get_softc(dev)
static alpha_chipset_read_hae_t t2_read_hae;
static alpha_chipset_write_hae_t t2_write_hae;
static alpha_chipset_t t2_chipset = {
t2_read_hae,
t2_write_hae,
};
static u_int32_t t2_hae_mem[2];
#define REG1 (1UL << 24)
static u_int32_t
t2_set_hae_mem(void *arg, u_int32_t pa)
{
int s;
u_int32_t msb;
int hose;
hose = (long)arg;
if(pa >= REG1){
msb = pa & 0xf8000000;
pa -= msb;
msb >>= 27; /* t2 puts high bits in the bottom of the register */
s = cpu_critical_enter();
if (msb != t2_hae_mem[hose]) {
t2_hae_mem[hose] = msb;
t2_csr[hose]->hae0_1 = t2_hae_mem[hose];
alpha_mb();
t2_hae_mem[hose] = t2_csr[hose]->hae0_1;
}
cpu_critical_exit(s);
}
return pa;
}
static u_int64_t
t2_read_hae(void)
{
return t2_hae_mem[0] << 27;
}
static void
t2_write_hae(u_int64_t hae)
{
u_int32_t pa = hae;
t2_set_hae_mem(0, pa);
}
static int t2_probe(device_t dev);
static int t2_attach(device_t dev);
static int t2_setup_intr(device_t dev, device_t child,
struct resource *irq, int flags,
void *intr, void *arg, void **cookiep);
static int t2_teardown_intr(device_t dev, device_t child,
struct resource *irq, void *cookie);
static void
t2_dispatch_intr(void *frame, unsigned long vector);
static void
t2_machine_check(unsigned long mces, struct trapframe *framep,
unsigned long vector, unsigned long param);
static device_method_t t2_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, t2_probe),
DEVMETHOD(device_attach, t2_attach),
/* Bus interface */
DEVMETHOD(bus_setup_intr, t2_setup_intr),
DEVMETHOD(bus_teardown_intr, t2_teardown_intr),
{ 0, 0 }
};
static driver_t t2_driver = {
"t2",
t2_methods,
sizeof(struct t2_softc),
};
#define T2_SGMAP_BASE (8*1024*1024)
#define T2_SGMAP_SIZE (8*1024*1024)
static void
t2_sgmap_invalidate(void)
{
u_int64_t val;
alpha_mb();
val = REGVAL64(T2_IOCSR);
val |= T2_IOCSRL_ITLB;
REGVAL64(T2_IOCSR) = val;
alpha_mb();
alpha_mb();
val = REGVAL64(T2_IOCSR);
val &= ~T2_IOCSRL_ITLB;
REGVAL64(T2_IOCSR) = val;
alpha_mb();
alpha_mb();
}
static void
t2_sgmap_map(void *arg, bus_addr_t ba, vm_offset_t pa)
{
u_int64_t *sgtable = arg;
int index = alpha_btop(ba - T2_SGMAP_BASE);
if (pa) {
if (pa > (1L<<32))
panic("t2_sgmap_map: can't map address 0x%lx", pa);
sgtable[index] = ((pa >> 13) << 1) | 1;
} else {
sgtable[index] = 0;
}
alpha_mb();
t2_sgmap_invalidate();
}
static void
t2_init_sgmap(int h)
{
void *sgtable;
/*
* First setup Window 2 to map 8Mb to 16Mb with an
* sgmap. Allocate the map aligned to a 32 boundary.
*
* bits 31..20 of WBASE represent the pci start address
* (in units of 1Mb), and bits 11..0 represent the pci
* end address
*/
t2_csr[h]->wbase2 = T2_WSIZE_8M|T2_WINDOW_ENABLE|T2_WINDOW_SG
| ((T2_SGMAP_BASE >> 20) << 20)
| ((T2_SGMAP_BASE + T2_SGMAP_SIZE) >> 20);
t2_csr[h]->wmask2 = T2_WMASK_8M;
alpha_mb();
sgtable = contigmalloc(8192, M_DEVBUF, M_NOWAIT,
0, (1L<<34),
32*1024, (1L<<34));
if (!sgtable)
panic("t2_init_sgmap: can't allocate page table");
t2_csr[h]->tbase2 =
(pmap_kextract((vm_offset_t) sgtable) >> T2_TBASE_SHIFT);
chipset.sgmap = sgmap_map_create(T2_SGMAP_BASE,
T2_SGMAP_BASE + T2_SGMAP_SIZE,
t2_sgmap_map, sgtable);
}
static void
t2_csr_init(int h)
{
/*
* initialize the DMA windows
*/
t2_csr[h]->wbase1 = T2_WSIZE_1G|T2_WINDOW_ENABLE|T2_WINDOW_DIRECT|0x7ff;
t2_csr[h]->wmask1 = T2_WMASK_1G;
t2_csr[h]->tbase1 = 0x0;
t2_csr[h]->wbase2 = 0x0;
/*
* enable the PCI "Hole" for ISA devices which use memory in
* the 512k - 1MB range
*/
t2_csr[h]->hbase = 1 << 13;
t2_init_sgmap(0);
/* initialize the HAEs */
t2_csr[h]->hae0_1 = 0x0;
alpha_mb();
t2_csr[h]->hae0_2 = 0x0;
alpha_mb();
t2_csr[h]->hae0_3 = 0x0;
alpha_mb();
}
/*
* Perform basic chipset init/fixup. Called by various early
* consumers to ensure that the system will work before the
* bus methods are invoked.
*
*/
void
t2_init()
{
static int initted = 0;
static struct swiz_space io_space, mem_space;
if (initted) return;
initted = 1;
swiz_init_space(&io_space, KV(T2_PCI_SIO));
swiz_init_space_hae(&mem_space, KV(T2_PCI_SPARSE),
t2_set_hae_mem, 0);
busspace_isa_io = (struct alpha_busspace *) &io_space;
busspace_isa_mem = (struct alpha_busspace *) &mem_space;
chipset = t2_chipset;
}
static int
t2_probe(device_t dev)
{
int h, t2_num_hoses = 1;
device_t child;
if (t2_0)
return ENXIO;
t2_0 = dev;
device_set_desc(dev, "T2 Core Logic chipset");
t2_csr[0] = (t2_csr_t *)
ALPHA_PHYS_TO_K0SEG(sable_lynx_base + PCI0_BASE);
t2_csr[1] = (t2_csr_t *)
ALPHA_PHYS_TO_K0SEG(sable_lynx_base + PCI1_BASE);
/* Look at the rev of the chip. If the high bit is set in the
* rev field then we have either a T3 or a T4 chip, so use the
* new interrupt structure. If it is clear, then we have a T2
* so use the old way */
platform.mcheck_handler = t2_machine_check;
if (((t2_csr[0]->iocsr) >> 35) & 1)
pci_int_type[0] = 1;
else
pci_int_type[0] = 0;
device_printf(dev, "using interrupt type %d on pci bus 0\n",
pci_int_type[0]);
if (!badaddr((void *)&t2_csr[1]->tlbbr, sizeof(long))) {
pci_int_type[1] = 1; /* PCI1 always uses the new scheme */
/* Clear any errors that the BADADDR probe may have caused */
t2_csr[1]->cerr1 |= t2_csr[1]->cerr1;
t2_csr[1]->pcierr1 |= t2_csr[1]->pcierr1;
device_printf(dev, "found EXT_IO!!!!!\n");
/* t2_num_hoses = 2; XXX not ready for this yet */
}
for (h = 0; h < t2_num_hoses; h++)
t2_csr_init(h);
child = device_add_child(dev, "pcib", 0);
device_set_ivars(child, 0);
return 0;
}
static int
t2_attach(device_t dev)
{
t2_init();
set_iointr(t2_dispatch_intr);
platform.isa_setup_intr = t2_setup_intr;
platform.isa_teardown_intr = t2_teardown_intr;
snprintf(chipset_type, sizeof(chipset_type), "t2");
bus_generic_attach(dev);
return 0;
}
/*
* magical mystery table partly obtained from Linux
* at least some of their values for PCI masks
* were incorrect, and I've filled in my own extrapolations
* XXX this needs more testers
*/
unsigned long t2_shadow_mask = -1L;
static const char irq_to_mask[40] = {
-1, 6, -1, 8, 15, 12, 7, 9, /* ISA 0-7 */
-1, 16, 17, 18, 3, -1, 21, 22, /* ISA 8-15 */
-1, -1, -1, -1, -1, -1, -1, -1, /* ?? EISA XXX */
-1, -1, -1, -1, -1, -1, -1, -1, /* ?? EISA XXX */
0, 1, 2, 3, 4, 5, 6, 7 /* PCI 0-7 XXX */
};
static void
t2_8259_disable_mask(int mask)
{
t2_shadow_mask |= (1UL << mask);
if (mask <= 7)
outb(SLAVE0_ICU, t2_shadow_mask);
else if (mask <= 15)
outb(SLAVE1_ICU, t2_shadow_mask >> 8);
else
outb(SLAVE2_ICU, t2_shadow_mask >> 16);
}
static void
t2_8259_enable_mask(int mask)
{
t2_shadow_mask &= ~(1UL << mask);
if (mask <= 7)
outb(SLAVE0_ICU, t2_shadow_mask);
else if (mask <= 15)
outb(SLAVE1_ICU, t2_shadow_mask >> 8);
else
outb(SLAVE2_ICU, t2_shadow_mask >> 16);
}
static void
t2_eoi( int vector)
{
int irq, hose;
hose = (vector >= 0xC00);
irq = (vector - 0x800) >> 4;
if (pci_int_type[hose]) {
/* New interrupt scheme. Both PCI0 and PCI1 can use
* the same handler. Dispatching interrupts with the
* IC IC chip is easy. We simply write the vector
* address register (var) on the T3/T4 (offset
* 0x480) with the IRQ level (0 - 63) of what came in. */
t2_csr[hose]->var = (u_long) irq;
alpha_mb();
alpha_mb();
} else {
switch (irq) {
case 0 ... 7:
outb(SLAVE0_ICU-1, (0xe0 | (irq)));
outb(MASTER_ICU-1, (0xe0 | 1));
break;
case 8 ... 15:
outb(SLAVE1_ICU-1, (0xe0 | (irq - 8)));
outb(MASTER_ICU-1, (0xe0 | 3));
break;
case 16 ... 24:
outb(SLAVE2_ICU-1, (0xe0 | (irq - 16)));
outb(MASTER_ICU-1, (0xe0 | 4));
break;
}
}
}
static void
t2_enable_vec(int vector)
{
int irq, hose;
u_long IC_mask, scratch;
hose = (vector >= 0xC00);
irq = (vector - 0x800) >> 4;
if (pci_int_type[hose]) {
/* Write the air register on the T3/T4 with the
* address of the IC IC masks register (offset 0x40) */
t2_csr[hose]->air = 0x40;
alpha_mb();
scratch = t2_csr[hose]->air;
alpha_mb();
IC_mask = t2_csr[hose]->dir;
IC_mask &= ~(1L << ( (u_long) irq));
t2_csr[hose]->dir = IC_mask;
alpha_mb();
alpha_mb();
/*
* EOI the interrupt we just enabled.
*/
t2_eoi(vector);
} else {
/* Old style 8259 (Gack!!!) interrupts */
t2_8259_enable_mask(irq);
}
}
static void
t2_disable_vec(int vector)
{
int hose, irq;
u_long scratch, IC_mask;
hose = (vector >= 0xC00);
irq = (vector - 0x800) >> 4;
if (pci_int_type[hose]) {
/* Write the air register on the T3/T4 wioth the
* address of the IC IC masks register (offset 0x40) */
t2_csr[hose]->air = 0x40;
alpha_mb();
scratch = t2_csr[hose]->air;
alpha_mb();
/*
* Read the dir register to fetch the mask data, 'or' in the
* new disable bit, and write the data back.
*/
IC_mask = t2_csr[hose]->dir;
IC_mask |= (1L << ( (u_long) irq));
/* Set the disable bit */
t2_csr[hose]->dir = IC_mask;
alpha_mb();
alpha_mb();
} else {
/* Old style 8259 (Gack!!!) interrupts */
t2_8259_disable_mask(irq);
}
}
static int
t2_setup_intr(device_t dev, device_t child,
struct resource *irq, int flags,
void *intr, void *arg, void **cookiep)
{
int error, vector, stdio_irq;
const char *name;
device_t bus, parent;
name = device_get_nameunit(dev);
stdio_irq = irq->r_start;
if (strncmp(name, "eisa", 4) == 0) {
if ((stdio_irq != 6 ) && (stdio_irq != 3 )) {
stdio_irq =
T2_EISA_IRQ_TO_STDIO_IRQ(stdio_irq);
}
} else if ((strncmp(name, "isa", 3)) == 0) {
stdio_irq = irq_to_mask[stdio_irq];
}
parent = dev;
do {
bus = parent;
parent = device_get_parent(bus);
} while (parent && strncmp("t2", device_get_nameunit(parent), 2));
if (parent && (device_get_unit(bus) != 0))
vector = STDIO_PCI1_IRQ_TO_SCB_VECTOR(stdio_irq);
else
vector = STDIO_PCI0_IRQ_TO_SCB_VECTOR(stdio_irq);
error = rman_activate_resource(irq);
if (error)
return error;
error = alpha_setup_intr(device_get_nameunit(child ? child : dev),
vector, intr, arg, flags, cookiep,
&intrcnt[irq->r_start], t2_disable_vec, t2_enable_vec);
if (error)
return error;
/* Enable interrupt */
t2_enable_vec(vector);
if (bootverbose != 0)
device_printf(child,
"interrupting at T2 irq %d (stdio irq %d)\n",
(int) irq->r_start, stdio_irq);
return 0;
}
static int
t2_teardown_intr(device_t dev, device_t child,
struct resource *irq, void *cookie)
{
int mask;
mask = irq_to_mask[irq->r_start];
/* Disable interrupt */
/*
* XXX this is totally broken!
* we don't have enough info to figure out where the interrupt
* came from if hose != 0 and pci_int_type[hose] != 0
* We should probably carry around the vector someplace --
* that would be enough to figure out the hose and the stdio irq
*/
t2_shadow_mask |= (1UL << mask);
if (mask <= 7)
outb(SLAVE0_ICU, t2_shadow_mask);
else if (mask <= 15)
outb(SLAVE1_ICU, t2_shadow_mask >> 8);
else
outb(SLAVE2_ICU, t2_shadow_mask >> 16);
alpha_teardown_intr(cookie);
return rman_deactivate_resource(irq);
}
static void
t2_dispatch_intr(void *frame, unsigned long vector)
{
alpha_dispatch_intr(frame, vector);
t2_eoi(vector);
}
static void
t2_machine_check(unsigned long mces, struct trapframe *framep,
unsigned long vector, unsigned long param)
{
int expected;
expected = mc_expected;
machine_check(mces, framep, vector, param);
/* for some reason the alpha_pal_wrmces() doesn't clear all
pending machine checks & we may take another */
mc_expected = expected;
}
DRIVER_MODULE(t2, root, t2_driver, t2_devclass, 0, 0);