514 lines
21 KiB
C++
514 lines
21 KiB
C++
//===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/CGSCCPassManager.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/InstIterator.h"
|
|
|
|
using namespace llvm;
|
|
|
|
// Explicit template instantiations and specialization defininitions for core
|
|
// template typedefs.
|
|
namespace llvm {
|
|
|
|
// Explicit instantiations for the core proxy templates.
|
|
template class AllAnalysesOn<LazyCallGraph::SCC>;
|
|
template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>;
|
|
template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager,
|
|
LazyCallGraph &, CGSCCUpdateResult &>;
|
|
template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>;
|
|
template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
|
|
LazyCallGraph::SCC, LazyCallGraph &>;
|
|
template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>;
|
|
|
|
/// Explicitly specialize the pass manager run method to handle call graph
|
|
/// updates.
|
|
template <>
|
|
PreservedAnalyses
|
|
PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &,
|
|
CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC,
|
|
CGSCCAnalysisManager &AM,
|
|
LazyCallGraph &G, CGSCCUpdateResult &UR) {
|
|
PreservedAnalyses PA = PreservedAnalyses::all();
|
|
|
|
if (DebugLogging)
|
|
dbgs() << "Starting CGSCC pass manager run.\n";
|
|
|
|
// The SCC may be refined while we are running passes over it, so set up
|
|
// a pointer that we can update.
|
|
LazyCallGraph::SCC *C = &InitialC;
|
|
|
|
for (auto &Pass : Passes) {
|
|
if (DebugLogging)
|
|
dbgs() << "Running pass: " << Pass->name() << " on " << *C << "\n";
|
|
|
|
PreservedAnalyses PassPA = Pass->run(*C, AM, G, UR);
|
|
|
|
// Update the SCC if necessary.
|
|
C = UR.UpdatedC ? UR.UpdatedC : C;
|
|
|
|
// Check that we didn't miss any update scenario.
|
|
assert(!UR.InvalidatedSCCs.count(C) && "Processing an invalid SCC!");
|
|
assert(C->begin() != C->end() && "Cannot have an empty SCC!");
|
|
|
|
// Update the analysis manager as each pass runs and potentially
|
|
// invalidates analyses.
|
|
AM.invalidate(*C, PassPA);
|
|
|
|
// Finally, we intersect the final preserved analyses to compute the
|
|
// aggregate preserved set for this pass manager.
|
|
PA.intersect(std::move(PassPA));
|
|
|
|
// FIXME: Historically, the pass managers all called the LLVM context's
|
|
// yield function here. We don't have a generic way to acquire the
|
|
// context and it isn't yet clear what the right pattern is for yielding
|
|
// in the new pass manager so it is currently omitted.
|
|
// ...getContext().yield();
|
|
}
|
|
|
|
// Invaliadtion was handled after each pass in the above loop for the current
|
|
// SCC. Therefore, the remaining analysis results in the AnalysisManager are
|
|
// preserved. We mark this with a set so that we don't need to inspect each
|
|
// one individually.
|
|
PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>();
|
|
|
|
if (DebugLogging)
|
|
dbgs() << "Finished CGSCC pass manager run.\n";
|
|
|
|
return PA;
|
|
}
|
|
|
|
bool CGSCCAnalysisManagerModuleProxy::Result::invalidate(
|
|
Module &M, const PreservedAnalyses &PA,
|
|
ModuleAnalysisManager::Invalidator &Inv) {
|
|
// If literally everything is preserved, we're done.
|
|
if (PA.areAllPreserved())
|
|
return false; // This is still a valid proxy.
|
|
|
|
// If this proxy or the call graph is going to be invalidated, we also need
|
|
// to clear all the keys coming from that analysis.
|
|
//
|
|
// We also directly invalidate the FAM's module proxy if necessary, and if
|
|
// that proxy isn't preserved we can't preserve this proxy either. We rely on
|
|
// it to handle module -> function analysis invalidation in the face of
|
|
// structural changes and so if it's unavailable we conservatively clear the
|
|
// entire SCC layer as well rather than trying to do invalidation ourselves.
|
|
auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>();
|
|
if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) ||
|
|
Inv.invalidate<LazyCallGraphAnalysis>(M, PA) ||
|
|
Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) {
|
|
InnerAM->clear();
|
|
|
|
// And the proxy itself should be marked as invalid so that we can observe
|
|
// the new call graph. This isn't strictly necessary because we cheat
|
|
// above, but is still useful.
|
|
return true;
|
|
}
|
|
|
|
// Directly check if the relevant set is preserved so we can short circuit
|
|
// invalidating SCCs below.
|
|
bool AreSCCAnalysesPreserved =
|
|
PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>();
|
|
|
|
// Ok, we have a graph, so we can propagate the invalidation down into it.
|
|
for (auto &RC : G->postorder_ref_sccs())
|
|
for (auto &C : RC) {
|
|
Optional<PreservedAnalyses> InnerPA;
|
|
|
|
// Check to see whether the preserved set needs to be adjusted based on
|
|
// module-level analysis invalidation triggering deferred invalidation
|
|
// for this SCC.
|
|
if (auto *OuterProxy =
|
|
InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C))
|
|
for (const auto &OuterInvalidationPair :
|
|
OuterProxy->getOuterInvalidations()) {
|
|
AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
|
|
const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
|
|
if (Inv.invalidate(OuterAnalysisID, M, PA)) {
|
|
if (!InnerPA)
|
|
InnerPA = PA;
|
|
for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
|
|
InnerPA->abandon(InnerAnalysisID);
|
|
}
|
|
}
|
|
|
|
// Check if we needed a custom PA set. If so we'll need to run the inner
|
|
// invalidation.
|
|
if (InnerPA) {
|
|
InnerAM->invalidate(C, *InnerPA);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise we only need to do invalidation if the original PA set didn't
|
|
// preserve all SCC analyses.
|
|
if (!AreSCCAnalysesPreserved)
|
|
InnerAM->invalidate(C, PA);
|
|
}
|
|
|
|
// Return false to indicate that this result is still a valid proxy.
|
|
return false;
|
|
}
|
|
|
|
template <>
|
|
CGSCCAnalysisManagerModuleProxy::Result
|
|
CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) {
|
|
// Force the Function analysis manager to also be available so that it can
|
|
// be accessed in an SCC analysis and proxied onward to function passes.
|
|
// FIXME: It is pretty awkward to just drop the result here and assert that
|
|
// we can find it again later.
|
|
(void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M);
|
|
|
|
return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M));
|
|
}
|
|
|
|
AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key;
|
|
|
|
FunctionAnalysisManagerCGSCCProxy::Result
|
|
FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C,
|
|
CGSCCAnalysisManager &AM,
|
|
LazyCallGraph &CG) {
|
|
// Collect the FunctionAnalysisManager from the Module layer and use that to
|
|
// build the proxy result.
|
|
//
|
|
// This allows us to rely on the FunctionAnalysisMangaerModuleProxy to
|
|
// invalidate the function analyses.
|
|
auto &MAM = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG).getManager();
|
|
Module &M = *C.begin()->getFunction().getParent();
|
|
auto *FAMProxy = MAM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M);
|
|
assert(FAMProxy && "The CGSCC pass manager requires that the FAM module "
|
|
"proxy is run on the module prior to entering the CGSCC "
|
|
"walk.");
|
|
|
|
// Note that we special-case invalidation handling of this proxy in the CGSCC
|
|
// analysis manager's Module proxy. This avoids the need to do anything
|
|
// special here to recompute all of this if ever the FAM's module proxy goes
|
|
// away.
|
|
return Result(FAMProxy->getManager());
|
|
}
|
|
|
|
bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate(
|
|
LazyCallGraph::SCC &C, const PreservedAnalyses &PA,
|
|
CGSCCAnalysisManager::Invalidator &Inv) {
|
|
for (LazyCallGraph::Node &N : C)
|
|
FAM->invalidate(N.getFunction(), PA);
|
|
|
|
// This proxy doesn't need to handle invalidation itself. Instead, the
|
|
// module-level CGSCC proxy handles it above by ensuring that if the
|
|
// module-level FAM proxy becomes invalid the entire SCC layer, which
|
|
// includes this proxy, is cleared.
|
|
return false;
|
|
}
|
|
|
|
} // End llvm namespace
|
|
|
|
namespace {
|
|
/// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c
|
|
/// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly
|
|
/// added SCCs.
|
|
///
|
|
/// The range of new SCCs must be in postorder already. The SCC they were split
|
|
/// out of must be provided as \p C. The current node being mutated and
|
|
/// triggering updates must be passed as \p N.
|
|
///
|
|
/// This function returns the SCC containing \p N. This will be either \p C if
|
|
/// no new SCCs have been split out, or it will be the new SCC containing \p N.
|
|
template <typename SCCRangeT>
|
|
LazyCallGraph::SCC *
|
|
incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G,
|
|
LazyCallGraph::Node &N, LazyCallGraph::SCC *C,
|
|
CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
|
|
bool DebugLogging = false) {
|
|
typedef LazyCallGraph::SCC SCC;
|
|
|
|
if (NewSCCRange.begin() == NewSCCRange.end())
|
|
return C;
|
|
|
|
// Add the current SCC to the worklist as its shape has changed.
|
|
UR.CWorklist.insert(C);
|
|
if (DebugLogging)
|
|
dbgs() << "Enqueuing the existing SCC in the worklist:" << *C << "\n";
|
|
|
|
SCC *OldC = C;
|
|
(void)OldC;
|
|
|
|
// Update the current SCC. Note that if we have new SCCs, this must actually
|
|
// change the SCC.
|
|
assert(C != &*NewSCCRange.begin() &&
|
|
"Cannot insert new SCCs without changing current SCC!");
|
|
C = &*NewSCCRange.begin();
|
|
assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
|
|
|
|
for (SCC &NewC :
|
|
reverse(make_range(std::next(NewSCCRange.begin()), NewSCCRange.end()))) {
|
|
assert(C != &NewC && "No need to re-visit the current SCC!");
|
|
assert(OldC != &NewC && "Already handled the original SCC!");
|
|
UR.CWorklist.insert(&NewC);
|
|
if (DebugLogging)
|
|
dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n";
|
|
}
|
|
return C;
|
|
}
|
|
}
|
|
|
|
LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass(
|
|
LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
|
|
CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, bool DebugLogging) {
|
|
typedef LazyCallGraph::Node Node;
|
|
typedef LazyCallGraph::Edge Edge;
|
|
typedef LazyCallGraph::SCC SCC;
|
|
typedef LazyCallGraph::RefSCC RefSCC;
|
|
|
|
RefSCC &InitialRC = InitialC.getOuterRefSCC();
|
|
SCC *C = &InitialC;
|
|
RefSCC *RC = &InitialRC;
|
|
Function &F = N.getFunction();
|
|
|
|
// Walk the function body and build up the set of retained, promoted, and
|
|
// demoted edges.
|
|
SmallVector<Constant *, 16> Worklist;
|
|
SmallPtrSet<Constant *, 16> Visited;
|
|
SmallPtrSet<Function *, 16> RetainedEdges;
|
|
SmallSetVector<Function *, 4> PromotedRefTargets;
|
|
SmallSetVector<Function *, 4> DemotedCallTargets;
|
|
|
|
// First walk the function and handle all called functions. We do this first
|
|
// because if there is a single call edge, whether there are ref edges is
|
|
// irrelevant.
|
|
for (Instruction &I : instructions(F))
|
|
if (auto CS = CallSite(&I))
|
|
if (Function *Callee = CS.getCalledFunction())
|
|
if (Visited.insert(Callee).second && !Callee->isDeclaration()) {
|
|
const Edge *E = N.lookup(*Callee);
|
|
// FIXME: We should really handle adding new calls. While it will
|
|
// make downstream usage more complex, there is no fundamental
|
|
// limitation and it will allow passes within the CGSCC to be a bit
|
|
// more flexible in what transforms they can do. Until then, we
|
|
// verify that new calls haven't been introduced.
|
|
assert(E && "No function transformations should introduce *new* "
|
|
"call edges! Any new calls should be modeled as "
|
|
"promoted existing ref edges!");
|
|
RetainedEdges.insert(Callee);
|
|
if (!E->isCall())
|
|
PromotedRefTargets.insert(Callee);
|
|
}
|
|
|
|
// Now walk all references.
|
|
for (Instruction &I : instructions(F))
|
|
for (Value *Op : I.operand_values())
|
|
if (Constant *C = dyn_cast<Constant>(Op))
|
|
if (Visited.insert(C).second)
|
|
Worklist.push_back(C);
|
|
|
|
LazyCallGraph::visitReferences(Worklist, Visited, [&](Function &Referee) {
|
|
const Edge *E = N.lookup(Referee);
|
|
// FIXME: Similarly to new calls, we also currently preclude
|
|
// introducing new references. See above for details.
|
|
assert(E && "No function transformations should introduce *new* ref "
|
|
"edges! Any new ref edges would require IPO which "
|
|
"function passes aren't allowed to do!");
|
|
RetainedEdges.insert(&Referee);
|
|
if (E->isCall())
|
|
DemotedCallTargets.insert(&Referee);
|
|
});
|
|
|
|
// First remove all of the edges that are no longer present in this function.
|
|
// We have to build a list of dead targets first and then remove them as the
|
|
// data structures will all be invalidated by removing them.
|
|
SmallVector<PointerIntPair<Node *, 1, Edge::Kind>, 4> DeadTargets;
|
|
for (Edge &E : N)
|
|
if (!RetainedEdges.count(&E.getFunction()))
|
|
DeadTargets.push_back({E.getNode(), E.getKind()});
|
|
for (auto DeadTarget : DeadTargets) {
|
|
Node &TargetN = *DeadTarget.getPointer();
|
|
bool IsCall = DeadTarget.getInt() == Edge::Call;
|
|
SCC &TargetC = *G.lookupSCC(TargetN);
|
|
RefSCC &TargetRC = TargetC.getOuterRefSCC();
|
|
|
|
if (&TargetRC != RC) {
|
|
RC->removeOutgoingEdge(N, TargetN);
|
|
if (DebugLogging)
|
|
dbgs() << "Deleting outgoing edge from '" << N << "' to '" << TargetN
|
|
<< "'\n";
|
|
continue;
|
|
}
|
|
if (DebugLogging)
|
|
dbgs() << "Deleting internal " << (IsCall ? "call" : "ref")
|
|
<< " edge from '" << N << "' to '" << TargetN << "'\n";
|
|
|
|
if (IsCall) {
|
|
if (C != &TargetC) {
|
|
// For separate SCCs this is trivial.
|
|
RC->switchTrivialInternalEdgeToRef(N, TargetN);
|
|
} else {
|
|
// Otherwise we may end up re-structuring the call graph. First,
|
|
// invalidate any SCC analyses. We have to do this before we split
|
|
// functions into new SCCs and lose track of where their analyses are
|
|
// cached.
|
|
// FIXME: We should accept a more precise preserved set here. For
|
|
// example, it might be possible to preserve some function analyses
|
|
// even as the SCC structure is changed.
|
|
AM.invalidate(*C, PreservedAnalyses::none());
|
|
// Now update the call graph.
|
|
C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, TargetN), G,
|
|
N, C, AM, UR, DebugLogging);
|
|
}
|
|
}
|
|
|
|
auto NewRefSCCs = RC->removeInternalRefEdge(N, TargetN);
|
|
if (!NewRefSCCs.empty()) {
|
|
// Note that we don't bother to invalidate analyses as ref-edge
|
|
// connectivity is not really observable in any way and is intended
|
|
// exclusively to be used for ordering of transforms rather than for
|
|
// analysis conclusions.
|
|
|
|
// The RC worklist is in reverse postorder, so we first enqueue the
|
|
// current RefSCC as it will remain the parent of all split RefSCCs, then
|
|
// we enqueue the new ones in RPO except for the one which contains the
|
|
// source node as that is the "bottom" we will continue processing in the
|
|
// bottom-up walk.
|
|
UR.RCWorklist.insert(RC);
|
|
if (DebugLogging)
|
|
dbgs() << "Enqueuing the existing RefSCC in the update worklist: "
|
|
<< *RC << "\n";
|
|
// Update the RC to the "bottom".
|
|
assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!");
|
|
RC = &C->getOuterRefSCC();
|
|
assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!");
|
|
assert(NewRefSCCs.front() == RC &&
|
|
"New current RefSCC not first in the returned list!");
|
|
for (RefSCC *NewRC : reverse(
|
|
make_range(std::next(NewRefSCCs.begin()), NewRefSCCs.end()))) {
|
|
assert(NewRC != RC && "Should not encounter the current RefSCC further "
|
|
"in the postorder list of new RefSCCs.");
|
|
UR.RCWorklist.insert(NewRC);
|
|
if (DebugLogging)
|
|
dbgs() << "Enqueuing a new RefSCC in the update worklist: " << *NewRC
|
|
<< "\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
// Next demote all the call edges that are now ref edges. This helps make
|
|
// the SCCs small which should minimize the work below as we don't want to
|
|
// form cycles that this would break.
|
|
for (Function *RefTarget : DemotedCallTargets) {
|
|
Node &TargetN = *G.lookup(*RefTarget);
|
|
SCC &TargetC = *G.lookupSCC(TargetN);
|
|
RefSCC &TargetRC = TargetC.getOuterRefSCC();
|
|
|
|
// The easy case is when the target RefSCC is not this RefSCC. This is
|
|
// only supported when the target RefSCC is a child of this RefSCC.
|
|
if (&TargetRC != RC) {
|
|
assert(RC->isAncestorOf(TargetRC) &&
|
|
"Cannot potentially form RefSCC cycles here!");
|
|
RC->switchOutgoingEdgeToRef(N, TargetN);
|
|
if (DebugLogging)
|
|
dbgs() << "Switch outgoing call edge to a ref edge from '" << N
|
|
<< "' to '" << TargetN << "'\n";
|
|
continue;
|
|
}
|
|
|
|
// We are switching an internal call edge to a ref edge. This may split up
|
|
// some SCCs.
|
|
if (C != &TargetC) {
|
|
// For separate SCCs this is trivial.
|
|
RC->switchTrivialInternalEdgeToRef(N, TargetN);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise we may end up re-structuring the call graph. First, invalidate
|
|
// any SCC analyses. We have to do this before we split functions into new
|
|
// SCCs and lose track of where their analyses are cached.
|
|
// FIXME: We should accept a more precise preserved set here. For example,
|
|
// it might be possible to preserve some function analyses even as the SCC
|
|
// structure is changed.
|
|
AM.invalidate(*C, PreservedAnalyses::none());
|
|
// Now update the call graph.
|
|
C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, TargetN), G,
|
|
N, C, AM, UR, DebugLogging);
|
|
}
|
|
|
|
// Now promote ref edges into call edges.
|
|
for (Function *CallTarget : PromotedRefTargets) {
|
|
Node &TargetN = *G.lookup(*CallTarget);
|
|
SCC &TargetC = *G.lookupSCC(TargetN);
|
|
RefSCC &TargetRC = TargetC.getOuterRefSCC();
|
|
|
|
// The easy case is when the target RefSCC is not this RefSCC. This is
|
|
// only supported when the target RefSCC is a child of this RefSCC.
|
|
if (&TargetRC != RC) {
|
|
assert(RC->isAncestorOf(TargetRC) &&
|
|
"Cannot potentially form RefSCC cycles here!");
|
|
RC->switchOutgoingEdgeToCall(N, TargetN);
|
|
if (DebugLogging)
|
|
dbgs() << "Switch outgoing ref edge to a call edge from '" << N
|
|
<< "' to '" << TargetN << "'\n";
|
|
continue;
|
|
}
|
|
if (DebugLogging)
|
|
dbgs() << "Switch an internal ref edge to a call edge from '" << N
|
|
<< "' to '" << TargetN << "'\n";
|
|
|
|
// Otherwise we are switching an internal ref edge to a call edge. This
|
|
// may merge away some SCCs, and we add those to the UpdateResult. We also
|
|
// need to make sure to update the worklist in the event SCCs have moved
|
|
// before the current one in the post-order sequence.
|
|
auto InitialSCCIndex = RC->find(*C) - RC->begin();
|
|
auto InvalidatedSCCs = RC->switchInternalEdgeToCall(N, TargetN);
|
|
if (!InvalidatedSCCs.empty()) {
|
|
C = &TargetC;
|
|
assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
|
|
|
|
// Any analyses cached for this SCC are no longer precise as the shape
|
|
// has changed by introducing this cycle.
|
|
AM.invalidate(*C, PreservedAnalyses::none());
|
|
|
|
for (SCC *InvalidatedC : InvalidatedSCCs) {
|
|
assert(InvalidatedC != C && "Cannot invalidate the current SCC!");
|
|
UR.InvalidatedSCCs.insert(InvalidatedC);
|
|
|
|
// Also clear any cached analyses for the SCCs that are dead. This
|
|
// isn't really necessary for correctness but can release memory.
|
|
AM.clear(*InvalidatedC);
|
|
}
|
|
}
|
|
auto NewSCCIndex = RC->find(*C) - RC->begin();
|
|
if (InitialSCCIndex < NewSCCIndex) {
|
|
// Put our current SCC back onto the worklist as we'll visit other SCCs
|
|
// that are now definitively ordered prior to the current one in the
|
|
// post-order sequence, and may end up observing more precise context to
|
|
// optimize the current SCC.
|
|
UR.CWorklist.insert(C);
|
|
if (DebugLogging)
|
|
dbgs() << "Enqueuing the existing SCC in the worklist: " << *C << "\n";
|
|
// Enqueue in reverse order as we pop off the back of the worklist.
|
|
for (SCC &MovedC : reverse(make_range(RC->begin() + InitialSCCIndex,
|
|
RC->begin() + NewSCCIndex))) {
|
|
UR.CWorklist.insert(&MovedC);
|
|
if (DebugLogging)
|
|
dbgs() << "Enqueuing a newly earlier in post-order SCC: " << MovedC
|
|
<< "\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!");
|
|
assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!");
|
|
assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!");
|
|
|
|
// Record the current RefSCC and SCC for higher layers of the CGSCC pass
|
|
// manager now that all the updates have been applied.
|
|
if (RC != &InitialRC)
|
|
UR.UpdatedRC = RC;
|
|
if (C != &InitialC)
|
|
UR.UpdatedC = C;
|
|
|
|
return *C;
|
|
}
|