605f36fc1e
return pre-zeroed pages itself. Noticed by: jake
508 lines
14 KiB
C
508 lines
14 KiB
C
/*-
|
|
* Copyright 1996, 1997, 1998, 1999 John D. Polstra.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
/*
|
|
* Dynamic linker for ELF.
|
|
*
|
|
* John Polstra <jdp@polstra.com>.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/mman.h>
|
|
|
|
#include <dlfcn.h>
|
|
#include <err.h>
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <stdarg.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
|
|
#include "debug.h"
|
|
#include "rtld.h"
|
|
|
|
extern Elf_Dyn _GOT_END_;
|
|
|
|
/*
|
|
* Macros for loading/storing unaligned 64-bit values. These are
|
|
* needed because relocations can point to unaligned data. This
|
|
* occurs in the DWARF2 exception frame tables generated by the
|
|
* compiler, for instance.
|
|
*
|
|
* We don't use these when relocating jump slots and GOT entries,
|
|
* since they are guaranteed to be aligned.
|
|
*/
|
|
#define load64(p) ({ \
|
|
Elf_Addr __res; \
|
|
__asm__("ldq_u %0,%1" : "=r"(__res) : "m"(*(p))); \
|
|
__res; })
|
|
|
|
#define store64(p, v) \
|
|
__asm__("stq_u %1,%0" : "=m"(*(p)) : "r"(v))
|
|
|
|
/* Relocate a non-PLT object with addend. */
|
|
static int
|
|
reloc_non_plt_obj(Obj_Entry *obj_rtld, Obj_Entry *obj, const Elf_Rela *rela,
|
|
SymCache *cache)
|
|
{
|
|
Elf_Addr *where = (Elf_Addr *) (obj->relocbase + rela->r_offset);
|
|
|
|
switch (ELF_R_TYPE(rela->r_info)) {
|
|
|
|
case R_ALPHA_NONE:
|
|
break;
|
|
|
|
case R_ALPHA_REFQUAD: {
|
|
const Elf_Sym *def;
|
|
const Obj_Entry *defobj;
|
|
|
|
def = find_symdef(ELF_R_SYM(rela->r_info), obj,
|
|
&defobj, false, cache);
|
|
if (def == NULL)
|
|
return -1;
|
|
store64(where,
|
|
(Elf_Addr) (defobj->relocbase + def->st_value) +
|
|
load64(where) + rela->r_addend);
|
|
}
|
|
break;
|
|
|
|
case R_ALPHA_GLOB_DAT: {
|
|
const Elf_Sym *def;
|
|
const Obj_Entry *defobj;
|
|
Elf_Addr val;
|
|
|
|
def = find_symdef(ELF_R_SYM(rela->r_info), obj,
|
|
&defobj, false, cache);
|
|
if (def == NULL)
|
|
return -1;
|
|
val = (Elf_Addr) (defobj->relocbase + def->st_value +
|
|
rela->r_addend);
|
|
if (load64(where) != val)
|
|
store64(where, val);
|
|
}
|
|
break;
|
|
|
|
case R_ALPHA_RELATIVE: {
|
|
if (obj != obj_rtld ||
|
|
(caddr_t)where < (caddr_t)_GLOBAL_OFFSET_TABLE_ ||
|
|
(caddr_t)where >= (caddr_t)&_GOT_END_)
|
|
store64(where,
|
|
load64(where) + (Elf_Addr) obj->relocbase);
|
|
}
|
|
break;
|
|
|
|
case R_ALPHA_COPY: {
|
|
/*
|
|
* These are deferred until all other relocations
|
|
* have been done. All we do here is make sure
|
|
* that the COPY relocation is not in a shared
|
|
* library. They are allowed only in executable
|
|
* files.
|
|
*/
|
|
if (!obj->mainprog) {
|
|
_rtld_error("%s: Unexpected R_COPY "
|
|
" relocation in shared library",
|
|
obj->path);
|
|
return -1;
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
_rtld_error("%s: Unsupported relocation type %d"
|
|
" in non-PLT relocations\n", obj->path,
|
|
ELF_R_TYPE(rela->r_info));
|
|
return -1;
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
/* Process the non-PLT relocations. */
|
|
int
|
|
reloc_non_plt(Obj_Entry *obj, Obj_Entry *obj_rtld)
|
|
{
|
|
const Elf_Rel *rellim;
|
|
const Elf_Rel *rel;
|
|
const Elf_Rela *relalim;
|
|
const Elf_Rela *rela;
|
|
SymCache *cache;
|
|
int bytes = obj->nchains * sizeof(SymCache);
|
|
int r = -1;
|
|
|
|
/*
|
|
* The dynamic loader may be called from a thread, we have
|
|
* limited amounts of stack available so we cannot use alloca().
|
|
*/
|
|
cache = mmap(NULL, bytes, PROT_READ|PROT_WRITE, MAP_ANON, -1, 0);
|
|
if (cache == MAP_FAILED)
|
|
cache = NULL;
|
|
|
|
/* Perform relocations without addend if there are any: */
|
|
rellim = (const Elf_Rel *) ((caddr_t) obj->rel + obj->relsize);
|
|
for (rel = obj->rel; obj->rel != NULL && rel < rellim; rel++) {
|
|
Elf_Rela locrela;
|
|
|
|
locrela.r_info = rel->r_info;
|
|
locrela.r_offset = rel->r_offset;
|
|
locrela.r_addend = 0;
|
|
if (reloc_non_plt_obj(obj_rtld, obj, &locrela, cache))
|
|
goto done;
|
|
}
|
|
|
|
/* Perform relocations with addend if there are any: */
|
|
relalim = (const Elf_Rela *) ((caddr_t) obj->rela + obj->relasize);
|
|
for (rela = obj->rela; obj->rela != NULL && rela < relalim; rela++) {
|
|
if (reloc_non_plt_obj(obj_rtld, obj, rela, cache))
|
|
goto done;
|
|
}
|
|
r = 0;
|
|
done:
|
|
if (cache)
|
|
munmap(cache, bytes);
|
|
return(r);
|
|
}
|
|
|
|
/* Process the PLT relocations. */
|
|
int
|
|
reloc_plt(Obj_Entry *obj)
|
|
{
|
|
/* All PLT relocations are the same kind: either Elf_Rel or Elf_Rela. */
|
|
if (obj->pltrelsize != 0) {
|
|
const Elf_Rel *rellim;
|
|
const Elf_Rel *rel;
|
|
|
|
rellim = (const Elf_Rel *)((char *)obj->pltrel + obj->pltrelsize);
|
|
for (rel = obj->pltrel; rel < rellim; rel++) {
|
|
Elf_Addr *where;
|
|
|
|
assert(ELF_R_TYPE(rel->r_info) == R_ALPHA_JMP_SLOT);
|
|
|
|
/* Relocate the GOT slot pointing into the PLT. */
|
|
where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
|
|
*where += (Elf_Addr)obj->relocbase;
|
|
}
|
|
} else {
|
|
const Elf_Rela *relalim;
|
|
const Elf_Rela *rela;
|
|
|
|
relalim = (const Elf_Rela *)((char *)obj->pltrela + obj->pltrelasize);
|
|
for (rela = obj->pltrela; rela < relalim; rela++) {
|
|
Elf_Addr *where;
|
|
|
|
assert(ELF_R_TYPE(rela->r_info) == R_ALPHA_JMP_SLOT);
|
|
|
|
/* Relocate the GOT slot pointing into the PLT. */
|
|
where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
|
|
*where += (Elf_Addr)obj->relocbase;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Relocate the jump slots in an object. */
|
|
int
|
|
reloc_jmpslots(Obj_Entry *obj)
|
|
{
|
|
if (obj->jmpslots_done)
|
|
return 0;
|
|
/* All PLT relocations are the same kind: either Elf_Rel or Elf_Rela. */
|
|
if (obj->pltrelsize != 0) {
|
|
const Elf_Rel *rellim;
|
|
const Elf_Rel *rel;
|
|
|
|
rellim = (const Elf_Rel *)((char *)obj->pltrel + obj->pltrelsize);
|
|
for (rel = obj->pltrel; rel < rellim; rel++) {
|
|
Elf_Addr *where;
|
|
const Elf_Sym *def;
|
|
const Obj_Entry *defobj;
|
|
|
|
assert(ELF_R_TYPE(rel->r_info) == R_ALPHA_JMP_SLOT);
|
|
where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
|
|
def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true,
|
|
NULL);
|
|
if (def == NULL)
|
|
return -1;
|
|
reloc_jmpslot(where,
|
|
(Elf_Addr)(defobj->relocbase + def->st_value),
|
|
defobj, obj, rel);
|
|
}
|
|
} else {
|
|
const Elf_Rela *relalim;
|
|
const Elf_Rela *rela;
|
|
|
|
relalim = (const Elf_Rela *)((char *)obj->pltrela + obj->pltrelasize);
|
|
for (rela = obj->pltrela; rela < relalim; rela++) {
|
|
Elf_Addr *where;
|
|
const Elf_Sym *def;
|
|
const Obj_Entry *defobj;
|
|
|
|
assert(ELF_R_TYPE(rela->r_info) == R_ALPHA_JMP_SLOT);
|
|
where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
|
|
def = find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj, true,
|
|
NULL);
|
|
if (def == NULL)
|
|
return -1;
|
|
reloc_jmpslot(where,
|
|
(Elf_Addr)(defobj->relocbase + def->st_value),
|
|
defobj, obj, (Elf_Rel *)rela);
|
|
}
|
|
}
|
|
obj->jmpslots_done = true;
|
|
return 0;
|
|
}
|
|
|
|
/* Fixup the jump slot at "where" to transfer control to "target". */
|
|
Elf_Addr
|
|
reloc_jmpslot(Elf_Addr *where, Elf_Addr target, const Obj_Entry *obj,
|
|
const Obj_Entry *refobj, const Elf_Rel *rel)
|
|
{
|
|
Elf_Addr stubaddr;
|
|
|
|
dbg(" reloc_jmpslot: where=%p, target=%p", (void *)where, (void *)target);
|
|
stubaddr = *where;
|
|
if (stubaddr != target) {
|
|
int64_t delta;
|
|
u_int32_t inst[3];
|
|
int instct;
|
|
Elf_Addr pc;
|
|
int64_t idisp;
|
|
u_int32_t *stubptr;
|
|
|
|
/* Point this GOT entry directly at the target. */
|
|
*where = target;
|
|
|
|
/*
|
|
* There may be multiple GOT tables, each with an entry
|
|
* pointing to the stub in the PLT. But we can only find and
|
|
* fix up the first GOT entry. So we must rewrite the stub as
|
|
* well, to perform a call to the target if it is executed.
|
|
*
|
|
* When the stub gets control, register pv ($27) contains its
|
|
* address. We adjust its value so that it points to the
|
|
* target, and then jump indirect through it.
|
|
*
|
|
* Each PLT entry has room for 3 instructions. If the
|
|
* adjustment amount fits in a signed 32-bit integer, we can
|
|
* simply add it to register pv. Otherwise we must load the
|
|
* GOT entry itself into the pv register.
|
|
*/
|
|
delta = target - stubaddr;
|
|
dbg(" stubaddr=%p, where-stubaddr=%ld, delta=%ld", (void *)stubaddr,
|
|
(long)where - (long)stubaddr, (long)delta);
|
|
instct = 0;
|
|
if ((int32_t)delta == delta) {
|
|
/*
|
|
* We can adjust pv with a LDA, LDAH sequence.
|
|
*
|
|
* First build an LDA instruction to adjust the low 16 bits.
|
|
*/
|
|
inst[instct++] = 0x08 << 26 | 27 << 21 | 27 << 16 |
|
|
(delta & 0xffff);
|
|
dbg(" LDA $27,%d($27)", (int16_t)delta);
|
|
/*
|
|
* Adjust the delta to account for the effects of the LDA,
|
|
* including sign-extension.
|
|
*/
|
|
delta -= (int16_t)delta;
|
|
if (delta != 0) {
|
|
/* Build an LDAH instruction to adjust the high 16 bits. */
|
|
inst[instct++] = 0x09 << 26 | 27 << 21 | 27 << 16 |
|
|
(delta >> 16 & 0xffff);
|
|
dbg(" LDAH $27,%d($27)", (int16_t)(delta >> 16));
|
|
}
|
|
} else {
|
|
int64_t dhigh;
|
|
|
|
/* We must load the GOT entry from memory. */
|
|
delta = (Elf_Addr)where - stubaddr;
|
|
/*
|
|
* If the GOT entry is too far away from the PLT entry,
|
|
* then punt. This PLT entry will have to be looked up
|
|
* manually for all GOT entries except the first one.
|
|
* The program will still run, albeit very slowly. It's
|
|
* extremely unlikely that this case could ever arise in
|
|
* practice, but we might as well handle it correctly if
|
|
* it does.
|
|
*/
|
|
if ((int32_t)delta != delta) {
|
|
dbg(" PLT stub too far from GOT to relocate");
|
|
return target;
|
|
}
|
|
dhigh = delta - (int16_t)delta;
|
|
if (dhigh != 0) {
|
|
/* Build an LDAH instruction to adjust the high 16 bits. */
|
|
inst[instct++] = 0x09 << 26 | 27 << 21 | 27 << 16 |
|
|
(dhigh >> 16 & 0xffff);
|
|
dbg(" LDAH $27,%d($27)", (int16_t)(dhigh >> 16));
|
|
}
|
|
/* Build an LDQ to load the GOT entry. */
|
|
inst[instct++] = 0x29 << 26 | 27 << 21 | 27 << 16 |
|
|
(delta & 0xffff);
|
|
dbg(" LDQ $27,%d($27)", (int16_t)delta);
|
|
}
|
|
|
|
/*
|
|
* Build a JMP or BR instruction to jump to the target. If
|
|
* the instruction displacement fits in a sign-extended 21-bit
|
|
* field, we can use the more efficient BR instruction.
|
|
* Otherwise we have to jump indirect through the pv register.
|
|
*/
|
|
pc = stubaddr + 4 * (instct + 1);
|
|
idisp = (int64_t)(target - pc) >> 2;
|
|
if (-0x100000 <= idisp && idisp < 0x100000) {
|
|
inst[instct++] = 0x30 << 26 | 31 << 21 | (idisp & 0x1fffff);
|
|
dbg(" BR $31,%p", (void *)target);
|
|
} else {
|
|
inst[instct++] = 0x1a << 26 | 31 << 21 | 27 << 16 |
|
|
(idisp & 0x3fff);
|
|
dbg(" JMP $31,($27),%d", (int)(idisp & 0x3fff));
|
|
}
|
|
|
|
/*
|
|
* Fill in the tail of the PLT entry first for reentrancy.
|
|
* Until we have overwritten the first instruction (an
|
|
* unconditional branch), the remaining instructions have no
|
|
* effect.
|
|
*/
|
|
stubptr = (u_int32_t *)stubaddr;
|
|
while (instct > 1) {
|
|
instct--;
|
|
stubptr[instct] = inst[instct];
|
|
}
|
|
/*
|
|
* Commit the tail of the instruction sequence to memory
|
|
* before overwriting the first instruction.
|
|
*/
|
|
__asm__ __volatile__("wmb" : : : "memory");
|
|
stubptr[0] = inst[0];
|
|
}
|
|
|
|
return target;
|
|
}
|
|
|
|
/* Process an R_ALPHA_COPY relocation. */
|
|
static int
|
|
do_copy_relocation(Obj_Entry *dstobj, const Elf_Rela *rela)
|
|
{
|
|
void *dstaddr;
|
|
const Elf_Sym *dstsym;
|
|
const char *name;
|
|
unsigned long hash;
|
|
size_t size;
|
|
const void *srcaddr;
|
|
const Elf_Sym *srcsym;
|
|
Obj_Entry *srcobj;
|
|
|
|
dstaddr = (void *) (dstobj->relocbase + rela->r_offset);
|
|
dstsym = dstobj->symtab + ELF_R_SYM(rela->r_info);
|
|
name = dstobj->strtab + dstsym->st_name;
|
|
hash = elf_hash(name);
|
|
size = dstsym->st_size;
|
|
|
|
for (srcobj = dstobj->next; srcobj != NULL; srcobj = srcobj->next)
|
|
if ((srcsym = symlook_obj(name, hash, srcobj, false)) != NULL)
|
|
break;
|
|
|
|
if (srcobj == NULL) {
|
|
_rtld_error("Undefined symbol \"%s\" referenced from COPY"
|
|
" relocation in %s", name, dstobj->path);
|
|
return -1;
|
|
}
|
|
|
|
srcaddr = (const void *) (srcobj->relocbase + srcsym->st_value);
|
|
memcpy(dstaddr, srcaddr, size);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Process the special R_ALPHA_COPY relocations in the main program. These
|
|
* copy data from a shared object into a region in the main program's BSS
|
|
* segment.
|
|
*
|
|
* Returns 0 on success, -1 on failure.
|
|
*/
|
|
int
|
|
do_copy_relocations(Obj_Entry *dstobj)
|
|
{
|
|
const Elf_Rel *rellim;
|
|
const Elf_Rel *rel;
|
|
const Elf_Rela *relalim;
|
|
const Elf_Rela *rela;
|
|
|
|
assert(dstobj->mainprog); /* COPY relocations are invalid elsewhere */
|
|
|
|
rellim = (const Elf_Rel *) ((caddr_t) dstobj->rel + dstobj->relsize);
|
|
for (rel = dstobj->rel; dstobj->rel != NULL && rel < rellim; rel++) {
|
|
if (ELF_R_TYPE(rel->r_info) == R_ALPHA_COPY) {
|
|
Elf_Rela locrela;
|
|
|
|
locrela.r_info = rel->r_info;
|
|
locrela.r_offset = rel->r_offset;
|
|
locrela.r_addend = 0;
|
|
if (do_copy_relocation(dstobj, &locrela))
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
relalim = (const Elf_Rela *) ((caddr_t) dstobj->rela +
|
|
dstobj->relasize);
|
|
for (rela = dstobj->rela; dstobj->rela != NULL && rela < relalim;
|
|
rela++) {
|
|
if (ELF_R_TYPE(rela->r_info) == R_ALPHA_COPY) {
|
|
if (do_copy_relocation(dstobj, rela))
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Initialize the special PLT entries. */
|
|
void
|
|
init_pltgot(Obj_Entry *obj)
|
|
{
|
|
u_int32_t *pltgot;
|
|
|
|
if (obj->pltgot != NULL &&
|
|
(obj->pltrelsize != 0 || obj->pltrelasize != 0)) {
|
|
/*
|
|
* This function will be called to perform the relocation.
|
|
* Look for the ldah instruction from the old PLT format since
|
|
* that will tell us what format we are trying to relocate.
|
|
*/
|
|
pltgot = (u_int32_t *) obj->pltgot;
|
|
if ((pltgot[8] & 0xffff0000) == 0x279f0000)
|
|
obj->pltgot[2] = (Elf_Addr) &_rtld_bind_start_old;
|
|
else
|
|
obj->pltgot[2] = (Elf_Addr) &_rtld_bind_start;
|
|
/* Identify this shared object */
|
|
obj->pltgot[3] = (Elf_Addr) obj;
|
|
}
|
|
}
|