freebsd-dev/sys/kern/kern_thr.c
Konstantin Belousov 1b0a4974c5 thread_create(): call cpu_copy_thread() after td_pflags is zeroed
By calling the function too early we might still have the td_pflags
value cached from the previous struct thread use. cpu_copy_thread()
depends on correct value for TDP_KTHREAD at least on x86.

Reported, bisected, and tested by:	pho
Reviewed by:	markj
Sponsored by:	The FreeBSD Foundation
MFC after:	1 week
Differential revision:	https://reviews.freebsd.org/D36069
2022-08-08 19:44:17 +03:00

628 lines
14 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2003, Jeffrey Roberson <jeff@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_posix.h"
#include "opt_hwpmc_hooks.h"
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/posix4.h>
#include <sys/ptrace.h>
#include <sys/racct.h>
#include <sys/resourcevar.h>
#include <sys/rwlock.h>
#include <sys/sched.h>
#include <sys/sysctl.h>
#include <sys/smp.h>
#include <sys/syscallsubr.h>
#include <sys/sysent.h>
#include <sys/systm.h>
#include <sys/sysproto.h>
#include <sys/signalvar.h>
#include <sys/sysctl.h>
#include <sys/ucontext.h>
#include <sys/thr.h>
#include <sys/rtprio.h>
#include <sys/umtxvar.h>
#include <sys/limits.h>
#ifdef HWPMC_HOOKS
#include <sys/pmckern.h>
#endif
#include <machine/frame.h>
#include <security/audit/audit.h>
static SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
"thread allocation");
int max_threads_per_proc = 1500;
SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW,
&max_threads_per_proc, 0, "Limit on threads per proc");
static int max_threads_hits;
SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_hits, CTLFLAG_RD,
&max_threads_hits, 0, "kern.threads.max_threads_per_proc hit count");
#ifdef COMPAT_FREEBSD32
static inline int
suword_lwpid(void *addr, lwpid_t lwpid)
{
int error;
if (SV_CURPROC_FLAG(SV_LP64))
error = suword(addr, lwpid);
else
error = suword32(addr, lwpid);
return (error);
}
#else
#define suword_lwpid suword
#endif
/*
* System call interface.
*/
struct thr_create_initthr_args {
ucontext_t ctx;
long *tid;
};
static int
thr_create_initthr(struct thread *td, void *thunk)
{
struct thr_create_initthr_args *args;
/* Copy out the child tid. */
args = thunk;
if (args->tid != NULL && suword_lwpid(args->tid, td->td_tid))
return (EFAULT);
return (set_mcontext(td, &args->ctx.uc_mcontext));
}
int
sys_thr_create(struct thread *td, struct thr_create_args *uap)
/* ucontext_t *ctx, long *id, int flags */
{
struct thr_create_initthr_args args;
int error;
if ((error = copyin(uap->ctx, &args.ctx, sizeof(args.ctx))))
return (error);
args.tid = uap->id;
return (thread_create(td, NULL, thr_create_initthr, &args));
}
int
sys_thr_new(struct thread *td, struct thr_new_args *uap)
/* struct thr_param * */
{
struct thr_param param;
int error;
if (uap->param_size < 0 || uap->param_size > sizeof(param))
return (EINVAL);
bzero(&param, sizeof(param));
if ((error = copyin(uap->param, &param, uap->param_size)))
return (error);
return (kern_thr_new(td, &param));
}
static int
thr_new_initthr(struct thread *td, void *thunk)
{
stack_t stack;
struct thr_param *param;
/*
* Here we copy out tid to two places, one for child and one
* for parent, because pthread can create a detached thread,
* if parent wants to safely access child tid, it has to provide
* its storage, because child thread may exit quickly and
* memory is freed before parent thread can access it.
*/
param = thunk;
if ((param->child_tid != NULL &&
suword_lwpid(param->child_tid, td->td_tid)) ||
(param->parent_tid != NULL &&
suword_lwpid(param->parent_tid, td->td_tid)))
return (EFAULT);
/* Set up our machine context. */
stack.ss_sp = param->stack_base;
stack.ss_size = param->stack_size;
/* Set upcall address to user thread entry function. */
cpu_set_upcall(td, param->start_func, param->arg, &stack);
/* Setup user TLS address and TLS pointer register. */
return (cpu_set_user_tls(td, param->tls_base));
}
int
kern_thr_new(struct thread *td, struct thr_param *param)
{
struct rtprio rtp, *rtpp;
int error;
rtpp = NULL;
if (param->rtp != 0) {
error = copyin(param->rtp, &rtp, sizeof(struct rtprio));
if (error)
return (error);
rtpp = &rtp;
}
return (thread_create(td, rtpp, thr_new_initthr, param));
}
int
thread_create(struct thread *td, struct rtprio *rtp,
int (*initialize_thread)(struct thread *, void *), void *thunk)
{
struct thread *newtd;
struct proc *p;
int error;
p = td->td_proc;
if (rtp != NULL) {
switch(rtp->type) {
case RTP_PRIO_REALTIME:
case RTP_PRIO_FIFO:
/* Only root can set scheduler policy */
if (priv_check(td, PRIV_SCHED_SETPOLICY) != 0)
return (EPERM);
if (rtp->prio > RTP_PRIO_MAX)
return (EINVAL);
break;
case RTP_PRIO_NORMAL:
rtp->prio = 0;
break;
default:
return (EINVAL);
}
}
#ifdef RACCT
if (racct_enable) {
PROC_LOCK(p);
error = racct_add(p, RACCT_NTHR, 1);
PROC_UNLOCK(p);
if (error != 0)
return (EPROCLIM);
}
#endif
/* Initialize our td */
error = kern_thr_alloc(p, 0, &newtd);
if (error)
goto fail;
bzero(&newtd->td_startzero,
__rangeof(struct thread, td_startzero, td_endzero));
bcopy(&td->td_startcopy, &newtd->td_startcopy,
__rangeof(struct thread, td_startcopy, td_endcopy));
newtd->td_proc = td->td_proc;
newtd->td_rb_list = newtd->td_rbp_list = newtd->td_rb_inact = 0;
thread_cow_get(newtd, td);
cpu_copy_thread(newtd, td);
error = initialize_thread(newtd, thunk);
if (error != 0) {
thread_cow_free(newtd);
thread_free(newtd);
goto fail;
}
PROC_LOCK(p);
p->p_flag |= P_HADTHREADS;
thread_link(newtd, p);
bcopy(p->p_comm, newtd->td_name, sizeof(newtd->td_name));
thread_lock(td);
/* let the scheduler know about these things. */
sched_fork_thread(td, newtd);
thread_unlock(td);
if (P_SHOULDSTOP(p))
ast_sched(newtd, TDA_SUSPEND);
if (p->p_ptevents & PTRACE_LWP)
newtd->td_dbgflags |= TDB_BORN;
PROC_UNLOCK(p);
#ifdef HWPMC_HOOKS
if (PMC_PROC_IS_USING_PMCS(p))
PMC_CALL_HOOK(newtd, PMC_FN_THR_CREATE, NULL);
else if (PMC_SYSTEM_SAMPLING_ACTIVE())
PMC_CALL_HOOK_UNLOCKED(newtd, PMC_FN_THR_CREATE_LOG, NULL);
#endif
tidhash_add(newtd);
/* ignore timesharing class */
if (rtp != NULL && !(td->td_pri_class == PRI_TIMESHARE &&
rtp->type == RTP_PRIO_NORMAL))
rtp_to_pri(rtp, newtd);
thread_lock(newtd);
TD_SET_CAN_RUN(newtd);
sched_add(newtd, SRQ_BORING);
return (0);
fail:
#ifdef RACCT
if (racct_enable) {
PROC_LOCK(p);
racct_sub(p, RACCT_NTHR, 1);
PROC_UNLOCK(p);
}
#endif
return (error);
}
int
sys_thr_self(struct thread *td, struct thr_self_args *uap)
/* long *id */
{
int error;
error = suword_lwpid(uap->id, (unsigned)td->td_tid);
if (error == -1)
return (EFAULT);
return (0);
}
int
sys_thr_exit(struct thread *td, struct thr_exit_args *uap)
/* long *state */
{
umtx_thread_exit(td);
/* Signal userland that it can free the stack. */
if ((void *)uap->state != NULL) {
suword_lwpid(uap->state, 1);
kern_umtx_wake(td, uap->state, INT_MAX, 0);
}
return (kern_thr_exit(td));
}
int
kern_thr_exit(struct thread *td)
{
struct proc *p;
p = td->td_proc;
/*
* If all of the threads in a process call this routine to
* exit (e.g. all threads call pthread_exit()), exactly one
* thread should return to the caller to terminate the process
* instead of the thread.
*
* Checking p_numthreads alone is not sufficient since threads
* might be committed to terminating while the PROC_LOCK is
* dropped in either ptracestop() or while removing this thread
* from the tidhash. Instead, the p_pendingexits field holds
* the count of threads in either of those states and a thread
* is considered the "last" thread if all of the other threads
* in a process are already terminating.
*/
PROC_LOCK(p);
if (p->p_numthreads == p->p_pendingexits + 1) {
/*
* Ignore attempts to shut down last thread in the
* proc. This will actually call _exit(2) in the
* usermode trampoline when it returns.
*/
PROC_UNLOCK(p);
return (0);
}
if (p->p_sysent->sv_ontdexit != NULL)
p->p_sysent->sv_ontdexit(td);
td->td_dbgflags |= TDB_EXIT;
if (p->p_ptevents & PTRACE_LWP) {
p->p_pendingexits++;
ptracestop(td, SIGTRAP, NULL);
p->p_pendingexits--;
}
tidhash_remove(td);
/*
* The check above should prevent all other threads from this
* process from exiting while the PROC_LOCK is dropped, so
* there must be at least one other thread other than the
* current thread.
*/
KASSERT(p->p_numthreads > 1, ("too few threads"));
racct_sub(p, RACCT_NTHR, 1);
tdsigcleanup(td);
#ifdef AUDIT
AUDIT_SYSCALL_EXIT(0, td);
#endif
PROC_SLOCK(p);
thread_stopped(p);
thread_exit();
/* NOTREACHED */
}
int
sys_thr_kill(struct thread *td, struct thr_kill_args *uap)
/* long id, int sig */
{
ksiginfo_t ksi;
struct thread *ttd;
struct proc *p;
int error;
p = td->td_proc;
ksiginfo_init(&ksi);
ksi.ksi_signo = uap->sig;
ksi.ksi_code = SI_LWP;
ksi.ksi_pid = p->p_pid;
ksi.ksi_uid = td->td_ucred->cr_ruid;
if (uap->id == -1) {
if (uap->sig != 0 && !_SIG_VALID(uap->sig)) {
error = EINVAL;
} else {
error = ESRCH;
PROC_LOCK(p);
FOREACH_THREAD_IN_PROC(p, ttd) {
if (ttd != td) {
error = 0;
if (uap->sig == 0)
break;
tdksignal(ttd, uap->sig, &ksi);
}
}
PROC_UNLOCK(p);
}
} else {
error = 0;
ttd = tdfind((lwpid_t)uap->id, p->p_pid);
if (ttd == NULL)
return (ESRCH);
if (uap->sig == 0)
;
else if (!_SIG_VALID(uap->sig))
error = EINVAL;
else
tdksignal(ttd, uap->sig, &ksi);
PROC_UNLOCK(ttd->td_proc);
}
return (error);
}
int
sys_thr_kill2(struct thread *td, struct thr_kill2_args *uap)
/* pid_t pid, long id, int sig */
{
ksiginfo_t ksi;
struct thread *ttd;
struct proc *p;
int error;
AUDIT_ARG_SIGNUM(uap->sig);
ksiginfo_init(&ksi);
ksi.ksi_signo = uap->sig;
ksi.ksi_code = SI_LWP;
ksi.ksi_pid = td->td_proc->p_pid;
ksi.ksi_uid = td->td_ucred->cr_ruid;
if (uap->id == -1) {
if ((p = pfind(uap->pid)) == NULL)
return (ESRCH);
AUDIT_ARG_PROCESS(p);
error = p_cansignal(td, p, uap->sig);
if (error) {
PROC_UNLOCK(p);
return (error);
}
if (uap->sig != 0 && !_SIG_VALID(uap->sig)) {
error = EINVAL;
} else {
error = ESRCH;
FOREACH_THREAD_IN_PROC(p, ttd) {
if (ttd != td) {
error = 0;
if (uap->sig == 0)
break;
tdksignal(ttd, uap->sig, &ksi);
}
}
}
PROC_UNLOCK(p);
} else {
ttd = tdfind((lwpid_t)uap->id, uap->pid);
if (ttd == NULL)
return (ESRCH);
p = ttd->td_proc;
AUDIT_ARG_PROCESS(p);
error = p_cansignal(td, p, uap->sig);
if (uap->sig == 0)
;
else if (!_SIG_VALID(uap->sig))
error = EINVAL;
else
tdksignal(ttd, uap->sig, &ksi);
PROC_UNLOCK(p);
}
return (error);
}
int
sys_thr_suspend(struct thread *td, struct thr_suspend_args *uap)
/* const struct timespec *timeout */
{
struct timespec ts, *tsp;
int error;
tsp = NULL;
if (uap->timeout != NULL) {
error = umtx_copyin_timeout(uap->timeout, &ts);
if (error != 0)
return (error);
tsp = &ts;
}
return (kern_thr_suspend(td, tsp));
}
int
kern_thr_suspend(struct thread *td, struct timespec *tsp)
{
struct proc *p = td->td_proc;
struct timeval tv;
int error = 0;
int timo = 0;
if (td->td_pflags & TDP_WAKEUP) {
td->td_pflags &= ~TDP_WAKEUP;
return (0);
}
if (tsp != NULL) {
if (tsp->tv_sec == 0 && tsp->tv_nsec == 0)
error = EWOULDBLOCK;
else {
TIMESPEC_TO_TIMEVAL(&tv, tsp);
timo = tvtohz(&tv);
}
}
PROC_LOCK(p);
if (error == 0 && (td->td_flags & TDF_THRWAKEUP) == 0)
error = msleep((void *)td, &p->p_mtx,
PCATCH, "lthr", timo);
if (td->td_flags & TDF_THRWAKEUP) {
thread_lock(td);
td->td_flags &= ~TDF_THRWAKEUP;
thread_unlock(td);
PROC_UNLOCK(p);
return (0);
}
PROC_UNLOCK(p);
if (error == EWOULDBLOCK)
error = ETIMEDOUT;
else if (error == ERESTART) {
if (timo != 0)
error = EINTR;
}
return (error);
}
int
sys_thr_wake(struct thread *td, struct thr_wake_args *uap)
/* long id */
{
struct proc *p;
struct thread *ttd;
if (uap->id == td->td_tid) {
td->td_pflags |= TDP_WAKEUP;
return (0);
}
p = td->td_proc;
ttd = tdfind((lwpid_t)uap->id, p->p_pid);
if (ttd == NULL)
return (ESRCH);
thread_lock(ttd);
ttd->td_flags |= TDF_THRWAKEUP;
thread_unlock(ttd);
wakeup((void *)ttd);
PROC_UNLOCK(p);
return (0);
}
int
sys_thr_set_name(struct thread *td, struct thr_set_name_args *uap)
{
struct proc *p;
char name[MAXCOMLEN + 1];
struct thread *ttd;
int error;
error = 0;
name[0] = '\0';
if (uap->name != NULL) {
error = copyinstr(uap->name, name, sizeof(name), NULL);
if (error == ENAMETOOLONG) {
error = copyin(uap->name, name, sizeof(name) - 1);
name[sizeof(name) - 1] = '\0';
}
if (error)
return (error);
}
p = td->td_proc;
ttd = tdfind((lwpid_t)uap->id, p->p_pid);
if (ttd == NULL)
return (ESRCH);
strcpy(ttd->td_name, name);
#ifdef HWPMC_HOOKS
if (PMC_PROC_IS_USING_PMCS(p) || PMC_SYSTEM_SAMPLING_ACTIVE())
PMC_CALL_HOOK_UNLOCKED(ttd, PMC_FN_THR_CREATE_LOG, NULL);
#endif
#ifdef KTR
sched_clear_tdname(ttd);
#endif
PROC_UNLOCK(p);
return (error);
}
int
kern_thr_alloc(struct proc *p, int pages, struct thread **ntd)
{
/* Have race condition but it is cheap. */
if (p->p_numthreads >= max_threads_per_proc) {
++max_threads_hits;
return (EPROCLIM);
}
*ntd = thread_alloc(pages);
if (*ntd == NULL)
return (ENOMEM);
return (0);
}