2589 lines
71 KiB
C
2589 lines
71 KiB
C
/* SSA operands management for trees.
|
|
Copyright (C) 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2, or (at your option)
|
|
any later version.
|
|
|
|
GCC is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING. If not, write to
|
|
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
|
|
Boston, MA 02110-1301, USA. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "tm.h"
|
|
#include "tree.h"
|
|
#include "flags.h"
|
|
#include "function.h"
|
|
#include "diagnostic.h"
|
|
#include "tree-flow.h"
|
|
#include "tree-inline.h"
|
|
#include "tree-pass.h"
|
|
#include "ggc.h"
|
|
#include "timevar.h"
|
|
#include "toplev.h"
|
|
#include "langhooks.h"
|
|
#include "ipa-reference.h"
|
|
|
|
/* This file contains the code required to manage the operands cache of the
|
|
SSA optimizer. For every stmt, we maintain an operand cache in the stmt
|
|
annotation. This cache contains operands that will be of interest to
|
|
optimizers and other passes wishing to manipulate the IL.
|
|
|
|
The operand type are broken up into REAL and VIRTUAL operands. The real
|
|
operands are represented as pointers into the stmt's operand tree. Thus
|
|
any manipulation of the real operands will be reflected in the actual tree.
|
|
Virtual operands are represented solely in the cache, although the base
|
|
variable for the SSA_NAME may, or may not occur in the stmt's tree.
|
|
Manipulation of the virtual operands will not be reflected in the stmt tree.
|
|
|
|
The routines in this file are concerned with creating this operand cache
|
|
from a stmt tree.
|
|
|
|
The operand tree is the parsed by the various get_* routines which look
|
|
through the stmt tree for the occurrence of operands which may be of
|
|
interest, and calls are made to the append_* routines whenever one is
|
|
found. There are 5 of these routines, each representing one of the
|
|
5 types of operands. Defs, Uses, Virtual Uses, Virtual May Defs, and
|
|
Virtual Must Defs.
|
|
|
|
The append_* routines check for duplication, and simply keep a list of
|
|
unique objects for each operand type in the build_* extendable vectors.
|
|
|
|
Once the stmt tree is completely parsed, the finalize_ssa_operands()
|
|
routine is called, which proceeds to perform the finalization routine
|
|
on each of the 5 operand vectors which have been built up.
|
|
|
|
If the stmt had a previous operand cache, the finalization routines
|
|
attempt to match up the new operands with the old ones. If it's a perfect
|
|
match, the old vector is simply reused. If it isn't a perfect match, then
|
|
a new vector is created and the new operands are placed there. For
|
|
virtual operands, if the previous cache had SSA_NAME version of a
|
|
variable, and that same variable occurs in the same operands cache, then
|
|
the new cache vector will also get the same SSA_NAME.
|
|
|
|
i.e., if a stmt had a VUSE of 'a_5', and 'a' occurs in the new operand
|
|
vector for VUSE, then the new vector will also be modified such that
|
|
it contains 'a_5' rather than 'a'. */
|
|
|
|
/* Flags to describe operand properties in helpers. */
|
|
|
|
/* By default, operands are loaded. */
|
|
#define opf_none 0
|
|
|
|
/* Operand is the target of an assignment expression or a
|
|
call-clobbered variable. */
|
|
#define opf_is_def (1 << 0)
|
|
|
|
/* Operand is the target of an assignment expression. */
|
|
#define opf_kill_def (1 << 1)
|
|
|
|
/* No virtual operands should be created in the expression. This is used
|
|
when traversing ADDR_EXPR nodes which have different semantics than
|
|
other expressions. Inside an ADDR_EXPR node, the only operands that we
|
|
need to consider are indices into arrays. For instance, &a.b[i] should
|
|
generate a USE of 'i' but it should not generate a VUSE for 'a' nor a
|
|
VUSE for 'b'. */
|
|
#define opf_no_vops (1 << 2)
|
|
|
|
/* Operand is a "non-specific" kill for call-clobbers and such. This
|
|
is used to distinguish "reset the world" events from explicit
|
|
MODIFY_EXPRs. */
|
|
#define opf_non_specific (1 << 3)
|
|
|
|
/* Array for building all the def operands. */
|
|
static VEC(tree,heap) *build_defs;
|
|
|
|
/* Array for building all the use operands. */
|
|
static VEC(tree,heap) *build_uses;
|
|
|
|
/* Array for building all the V_MAY_DEF operands. */
|
|
static VEC(tree,heap) *build_v_may_defs;
|
|
|
|
/* Array for building all the VUSE operands. */
|
|
static VEC(tree,heap) *build_vuses;
|
|
|
|
/* Array for building all the V_MUST_DEF operands. */
|
|
static VEC(tree,heap) *build_v_must_defs;
|
|
|
|
/* These arrays are the cached operand vectors for call clobbered calls. */
|
|
static bool ops_active = false;
|
|
|
|
static GTY (()) struct ssa_operand_memory_d *operand_memory = NULL;
|
|
static unsigned operand_memory_index;
|
|
|
|
static void get_expr_operands (tree, tree *, int);
|
|
|
|
static def_optype_p free_defs = NULL;
|
|
static use_optype_p free_uses = NULL;
|
|
static vuse_optype_p free_vuses = NULL;
|
|
static maydef_optype_p free_maydefs = NULL;
|
|
static mustdef_optype_p free_mustdefs = NULL;
|
|
|
|
/* Allocates operand OP of given TYPE from the appropriate free list,
|
|
or of the new value if the list is empty. */
|
|
|
|
#define ALLOC_OPTYPE(OP, TYPE) \
|
|
do \
|
|
{ \
|
|
TYPE##_optype_p ret = free_##TYPE##s; \
|
|
if (ret) \
|
|
free_##TYPE##s = ret->next; \
|
|
else \
|
|
ret = ssa_operand_alloc (sizeof (*ret)); \
|
|
(OP) = ret; \
|
|
} while (0)
|
|
|
|
/* Return the DECL_UID of the base variable of T. */
|
|
|
|
static inline unsigned
|
|
get_name_decl (tree t)
|
|
{
|
|
if (TREE_CODE (t) != SSA_NAME)
|
|
return DECL_UID (t);
|
|
else
|
|
return DECL_UID (SSA_NAME_VAR (t));
|
|
}
|
|
|
|
|
|
/* Comparison function for qsort used in operand_build_sort_virtual. */
|
|
|
|
static int
|
|
operand_build_cmp (const void *p, const void *q)
|
|
{
|
|
tree e1 = *((const tree *)p);
|
|
tree e2 = *((const tree *)q);
|
|
unsigned int u1,u2;
|
|
|
|
u1 = get_name_decl (e1);
|
|
u2 = get_name_decl (e2);
|
|
|
|
/* We want to sort in ascending order. They can never be equal. */
|
|
#ifdef ENABLE_CHECKING
|
|
gcc_assert (u1 != u2);
|
|
#endif
|
|
return (u1 > u2 ? 1 : -1);
|
|
}
|
|
|
|
|
|
/* Sort the virtual operands in LIST from lowest DECL_UID to highest. */
|
|
|
|
static inline void
|
|
operand_build_sort_virtual (VEC(tree,heap) *list)
|
|
{
|
|
int num = VEC_length (tree, list);
|
|
|
|
if (num < 2)
|
|
return;
|
|
|
|
if (num == 2)
|
|
{
|
|
if (get_name_decl (VEC_index (tree, list, 0))
|
|
> get_name_decl (VEC_index (tree, list, 1)))
|
|
{
|
|
/* Swap elements if in the wrong order. */
|
|
tree tmp = VEC_index (tree, list, 0);
|
|
VEC_replace (tree, list, 0, VEC_index (tree, list, 1));
|
|
VEC_replace (tree, list, 1, tmp);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* There are 3 or more elements, call qsort. */
|
|
qsort (VEC_address (tree, list),
|
|
VEC_length (tree, list),
|
|
sizeof (tree),
|
|
operand_build_cmp);
|
|
}
|
|
|
|
|
|
/* Return true if the SSA operands cache is active. */
|
|
|
|
bool
|
|
ssa_operands_active (void)
|
|
{
|
|
return ops_active;
|
|
}
|
|
|
|
|
|
/* Structure storing statistics on how many call clobbers we have, and
|
|
how many where avoided. */
|
|
|
|
static struct
|
|
{
|
|
/* Number of call-clobbered ops we attempt to add to calls in
|
|
add_call_clobber_ops. */
|
|
unsigned int clobbered_vars;
|
|
|
|
/* Number of write-clobbers (V_MAY_DEFs) avoided by using
|
|
not_written information. */
|
|
unsigned int static_write_clobbers_avoided;
|
|
|
|
/* Number of reads (VUSEs) avoided by using not_read information. */
|
|
unsigned int static_read_clobbers_avoided;
|
|
|
|
/* Number of write-clobbers avoided because the variable can't escape to
|
|
this call. */
|
|
unsigned int unescapable_clobbers_avoided;
|
|
|
|
/* Number of read-only uses we attempt to add to calls in
|
|
add_call_read_ops. */
|
|
unsigned int readonly_clobbers;
|
|
|
|
/* Number of read-only uses we avoid using not_read information. */
|
|
unsigned int static_readonly_clobbers_avoided;
|
|
} clobber_stats;
|
|
|
|
|
|
/* Initialize the operand cache routines. */
|
|
|
|
void
|
|
init_ssa_operands (void)
|
|
{
|
|
build_defs = VEC_alloc (tree, heap, 5);
|
|
build_uses = VEC_alloc (tree, heap, 10);
|
|
build_vuses = VEC_alloc (tree, heap, 25);
|
|
build_v_may_defs = VEC_alloc (tree, heap, 25);
|
|
build_v_must_defs = VEC_alloc (tree, heap, 25);
|
|
|
|
gcc_assert (operand_memory == NULL);
|
|
operand_memory_index = SSA_OPERAND_MEMORY_SIZE;
|
|
ops_active = true;
|
|
memset (&clobber_stats, 0, sizeof (clobber_stats));
|
|
}
|
|
|
|
|
|
/* Dispose of anything required by the operand routines. */
|
|
|
|
void
|
|
fini_ssa_operands (void)
|
|
{
|
|
struct ssa_operand_memory_d *ptr;
|
|
VEC_free (tree, heap, build_defs);
|
|
VEC_free (tree, heap, build_uses);
|
|
VEC_free (tree, heap, build_v_must_defs);
|
|
VEC_free (tree, heap, build_v_may_defs);
|
|
VEC_free (tree, heap, build_vuses);
|
|
free_defs = NULL;
|
|
free_uses = NULL;
|
|
free_vuses = NULL;
|
|
free_maydefs = NULL;
|
|
free_mustdefs = NULL;
|
|
while ((ptr = operand_memory) != NULL)
|
|
{
|
|
operand_memory = operand_memory->next;
|
|
ggc_free (ptr);
|
|
}
|
|
|
|
ops_active = false;
|
|
|
|
if (dump_file && (dump_flags & TDF_STATS))
|
|
{
|
|
fprintf (dump_file, "Original clobbered vars:%d\n",
|
|
clobber_stats.clobbered_vars);
|
|
fprintf (dump_file, "Static write clobbers avoided:%d\n",
|
|
clobber_stats.static_write_clobbers_avoided);
|
|
fprintf (dump_file, "Static read clobbers avoided:%d\n",
|
|
clobber_stats.static_read_clobbers_avoided);
|
|
fprintf (dump_file, "Unescapable clobbers avoided:%d\n",
|
|
clobber_stats.unescapable_clobbers_avoided);
|
|
fprintf (dump_file, "Original read-only clobbers:%d\n",
|
|
clobber_stats.readonly_clobbers);
|
|
fprintf (dump_file, "Static read-only clobbers avoided:%d\n",
|
|
clobber_stats.static_readonly_clobbers_avoided);
|
|
}
|
|
}
|
|
|
|
|
|
/* Return memory for operands of SIZE chunks. */
|
|
|
|
static inline void *
|
|
ssa_operand_alloc (unsigned size)
|
|
{
|
|
char *ptr;
|
|
if (operand_memory_index + size >= SSA_OPERAND_MEMORY_SIZE)
|
|
{
|
|
struct ssa_operand_memory_d *ptr;
|
|
ptr = GGC_NEW (struct ssa_operand_memory_d);
|
|
ptr->next = operand_memory;
|
|
operand_memory = ptr;
|
|
operand_memory_index = 0;
|
|
}
|
|
ptr = &(operand_memory->mem[operand_memory_index]);
|
|
operand_memory_index += size;
|
|
return ptr;
|
|
}
|
|
|
|
|
|
|
|
/* This routine makes sure that PTR is in an immediate use list, and makes
|
|
sure the stmt pointer is set to the current stmt. */
|
|
|
|
static inline void
|
|
set_virtual_use_link (use_operand_p ptr, tree stmt)
|
|
{
|
|
/* fold_stmt may have changed the stmt pointers. */
|
|
if (ptr->stmt != stmt)
|
|
ptr->stmt = stmt;
|
|
|
|
/* If this use isn't in a list, add it to the correct list. */
|
|
if (!ptr->prev)
|
|
link_imm_use (ptr, *(ptr->use));
|
|
}
|
|
|
|
/* Appends ELT after TO, and moves the TO pointer to ELT. */
|
|
|
|
#define APPEND_OP_AFTER(ELT, TO) \
|
|
do \
|
|
{ \
|
|
(TO)->next = (ELT); \
|
|
(TO) = (ELT); \
|
|
} while (0)
|
|
|
|
/* Appends head of list FROM after TO, and move both pointers
|
|
to their successors. */
|
|
|
|
#define MOVE_HEAD_AFTER(FROM, TO) \
|
|
do \
|
|
{ \
|
|
APPEND_OP_AFTER (FROM, TO); \
|
|
(FROM) = (FROM)->next; \
|
|
} while (0)
|
|
|
|
/* Moves OP to appropriate freelist. OP is set to its successor. */
|
|
|
|
#define MOVE_HEAD_TO_FREELIST(OP, TYPE) \
|
|
do \
|
|
{ \
|
|
TYPE##_optype_p next = (OP)->next; \
|
|
(OP)->next = free_##TYPE##s; \
|
|
free_##TYPE##s = (OP); \
|
|
(OP) = next; \
|
|
} while (0)
|
|
|
|
/* Initializes immediate use at USE_PTR to value VAL, and links it to the list
|
|
of immediate uses. STMT is the current statement. */
|
|
|
|
#define INITIALIZE_USE(USE_PTR, VAL, STMT) \
|
|
do \
|
|
{ \
|
|
(USE_PTR)->use = (VAL); \
|
|
link_imm_use_stmt ((USE_PTR), *(VAL), (STMT)); \
|
|
} while (0)
|
|
|
|
/* Adds OP to the list of defs after LAST, and moves
|
|
LAST to the new element. */
|
|
|
|
static inline void
|
|
add_def_op (tree *op, def_optype_p *last)
|
|
{
|
|
def_optype_p new;
|
|
|
|
ALLOC_OPTYPE (new, def);
|
|
DEF_OP_PTR (new) = op;
|
|
APPEND_OP_AFTER (new, *last);
|
|
}
|
|
|
|
/* Adds OP to the list of uses of statement STMT after LAST, and moves
|
|
LAST to the new element. */
|
|
|
|
static inline void
|
|
add_use_op (tree stmt, tree *op, use_optype_p *last)
|
|
{
|
|
use_optype_p new;
|
|
|
|
ALLOC_OPTYPE (new, use);
|
|
INITIALIZE_USE (USE_OP_PTR (new), op, stmt);
|
|
APPEND_OP_AFTER (new, *last);
|
|
}
|
|
|
|
/* Adds OP to the list of vuses of statement STMT after LAST, and moves
|
|
LAST to the new element. */
|
|
|
|
static inline void
|
|
add_vuse_op (tree stmt, tree op, vuse_optype_p *last)
|
|
{
|
|
vuse_optype_p new;
|
|
|
|
ALLOC_OPTYPE (new, vuse);
|
|
VUSE_OP (new) = op;
|
|
INITIALIZE_USE (VUSE_OP_PTR (new), &VUSE_OP (new), stmt);
|
|
APPEND_OP_AFTER (new, *last);
|
|
}
|
|
|
|
/* Adds OP to the list of maydefs of statement STMT after LAST, and moves
|
|
LAST to the new element. */
|
|
|
|
static inline void
|
|
add_maydef_op (tree stmt, tree op, maydef_optype_p *last)
|
|
{
|
|
maydef_optype_p new;
|
|
|
|
ALLOC_OPTYPE (new, maydef);
|
|
MAYDEF_RESULT (new) = op;
|
|
MAYDEF_OP (new) = op;
|
|
INITIALIZE_USE (MAYDEF_OP_PTR (new), &MAYDEF_OP (new), stmt);
|
|
APPEND_OP_AFTER (new, *last);
|
|
}
|
|
|
|
/* Adds OP to the list of mustdefs of statement STMT after LAST, and moves
|
|
LAST to the new element. */
|
|
|
|
static inline void
|
|
add_mustdef_op (tree stmt, tree op, mustdef_optype_p *last)
|
|
{
|
|
mustdef_optype_p new;
|
|
|
|
ALLOC_OPTYPE (new, mustdef);
|
|
MUSTDEF_RESULT (new) = op;
|
|
MUSTDEF_KILL (new) = op;
|
|
INITIALIZE_USE (MUSTDEF_KILL_PTR (new), &MUSTDEF_KILL (new), stmt);
|
|
APPEND_OP_AFTER (new, *last);
|
|
}
|
|
|
|
/* Takes elements from build_defs and turns them into def operands of STMT.
|
|
TODO -- Given that def operands list is not necessarily sorted, merging
|
|
the operands this way does not make much sense.
|
|
-- Make build_defs VEC of tree *. */
|
|
|
|
static inline void
|
|
finalize_ssa_def_ops (tree stmt)
|
|
{
|
|
unsigned new_i;
|
|
struct def_optype_d new_list;
|
|
def_optype_p old_ops, last;
|
|
tree *old_base;
|
|
|
|
new_list.next = NULL;
|
|
last = &new_list;
|
|
|
|
old_ops = DEF_OPS (stmt);
|
|
|
|
new_i = 0;
|
|
while (old_ops && new_i < VEC_length (tree, build_defs))
|
|
{
|
|
tree *new_base = (tree *) VEC_index (tree, build_defs, new_i);
|
|
old_base = DEF_OP_PTR (old_ops);
|
|
|
|
if (old_base == new_base)
|
|
{
|
|
/* if variables are the same, reuse this node. */
|
|
MOVE_HEAD_AFTER (old_ops, last);
|
|
new_i++;
|
|
}
|
|
else if (old_base < new_base)
|
|
{
|
|
/* if old is less than new, old goes to the free list. */
|
|
MOVE_HEAD_TO_FREELIST (old_ops, def);
|
|
}
|
|
else
|
|
{
|
|
/* This is a new operand. */
|
|
add_def_op (new_base, &last);
|
|
new_i++;
|
|
}
|
|
}
|
|
|
|
/* If there is anything remaining in the build_defs list, simply emit it. */
|
|
for ( ; new_i < VEC_length (tree, build_defs); new_i++)
|
|
add_def_op ((tree *) VEC_index (tree, build_defs, new_i), &last);
|
|
|
|
last->next = NULL;
|
|
|
|
/* If there is anything in the old list, free it. */
|
|
if (old_ops)
|
|
{
|
|
old_ops->next = free_defs;
|
|
free_defs = old_ops;
|
|
}
|
|
|
|
/* Now set the stmt's operands. */
|
|
DEF_OPS (stmt) = new_list.next;
|
|
|
|
#ifdef ENABLE_CHECKING
|
|
{
|
|
def_optype_p ptr;
|
|
unsigned x = 0;
|
|
for (ptr = DEF_OPS (stmt); ptr; ptr = ptr->next)
|
|
x++;
|
|
|
|
gcc_assert (x == VEC_length (tree, build_defs));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* This routine will create stmt operands for STMT from the def build list. */
|
|
|
|
static void
|
|
finalize_ssa_defs (tree stmt)
|
|
{
|
|
unsigned int num = VEC_length (tree, build_defs);
|
|
|
|
/* There should only be a single real definition per assignment. */
|
|
gcc_assert ((stmt && TREE_CODE (stmt) != MODIFY_EXPR) || num <= 1);
|
|
|
|
/* If there is an old list, often the new list is identical, or close, so
|
|
find the elements at the beginning that are the same as the vector. */
|
|
finalize_ssa_def_ops (stmt);
|
|
VEC_truncate (tree, build_defs, 0);
|
|
}
|
|
|
|
/* Takes elements from build_uses and turns them into use operands of STMT.
|
|
TODO -- Make build_uses VEC of tree *. */
|
|
|
|
static inline void
|
|
finalize_ssa_use_ops (tree stmt)
|
|
{
|
|
unsigned new_i;
|
|
struct use_optype_d new_list;
|
|
use_optype_p old_ops, ptr, last;
|
|
|
|
new_list.next = NULL;
|
|
last = &new_list;
|
|
|
|
old_ops = USE_OPS (stmt);
|
|
|
|
/* If there is anything in the old list, free it. */
|
|
if (old_ops)
|
|
{
|
|
for (ptr = old_ops; ptr; ptr = ptr->next)
|
|
delink_imm_use (USE_OP_PTR (ptr));
|
|
old_ops->next = free_uses;
|
|
free_uses = old_ops;
|
|
}
|
|
|
|
/* Now create nodes for all the new nodes. */
|
|
for (new_i = 0; new_i < VEC_length (tree, build_uses); new_i++)
|
|
add_use_op (stmt, (tree *) VEC_index (tree, build_uses, new_i), &last);
|
|
|
|
last->next = NULL;
|
|
|
|
/* Now set the stmt's operands. */
|
|
USE_OPS (stmt) = new_list.next;
|
|
|
|
#ifdef ENABLE_CHECKING
|
|
{
|
|
unsigned x = 0;
|
|
for (ptr = USE_OPS (stmt); ptr; ptr = ptr->next)
|
|
x++;
|
|
|
|
gcc_assert (x == VEC_length (tree, build_uses));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Return a new use operand vector for STMT, comparing to OLD_OPS_P. */
|
|
|
|
static void
|
|
finalize_ssa_uses (tree stmt)
|
|
{
|
|
#ifdef ENABLE_CHECKING
|
|
{
|
|
unsigned x;
|
|
unsigned num = VEC_length (tree, build_uses);
|
|
|
|
/* If the pointer to the operand is the statement itself, something is
|
|
wrong. It means that we are pointing to a local variable (the
|
|
initial call to update_stmt_operands does not pass a pointer to a
|
|
statement). */
|
|
for (x = 0; x < num; x++)
|
|
gcc_assert (*((tree *)VEC_index (tree, build_uses, x)) != stmt);
|
|
}
|
|
#endif
|
|
finalize_ssa_use_ops (stmt);
|
|
VEC_truncate (tree, build_uses, 0);
|
|
}
|
|
|
|
|
|
/* Takes elements from build_v_may_defs and turns them into maydef operands of
|
|
STMT. */
|
|
|
|
static inline void
|
|
finalize_ssa_v_may_def_ops (tree stmt)
|
|
{
|
|
unsigned new_i;
|
|
struct maydef_optype_d new_list;
|
|
maydef_optype_p old_ops, ptr, last;
|
|
tree act;
|
|
unsigned old_base, new_base;
|
|
|
|
new_list.next = NULL;
|
|
last = &new_list;
|
|
|
|
old_ops = MAYDEF_OPS (stmt);
|
|
|
|
new_i = 0;
|
|
while (old_ops && new_i < VEC_length (tree, build_v_may_defs))
|
|
{
|
|
act = VEC_index (tree, build_v_may_defs, new_i);
|
|
new_base = get_name_decl (act);
|
|
old_base = get_name_decl (MAYDEF_OP (old_ops));
|
|
|
|
if (old_base == new_base)
|
|
{
|
|
/* if variables are the same, reuse this node. */
|
|
MOVE_HEAD_AFTER (old_ops, last);
|
|
set_virtual_use_link (MAYDEF_OP_PTR (last), stmt);
|
|
new_i++;
|
|
}
|
|
else if (old_base < new_base)
|
|
{
|
|
/* if old is less than new, old goes to the free list. */
|
|
delink_imm_use (MAYDEF_OP_PTR (old_ops));
|
|
MOVE_HEAD_TO_FREELIST (old_ops, maydef);
|
|
}
|
|
else
|
|
{
|
|
/* This is a new operand. */
|
|
add_maydef_op (stmt, act, &last);
|
|
new_i++;
|
|
}
|
|
}
|
|
|
|
/* If there is anything remaining in the build_v_may_defs list, simply emit it. */
|
|
for ( ; new_i < VEC_length (tree, build_v_may_defs); new_i++)
|
|
add_maydef_op (stmt, VEC_index (tree, build_v_may_defs, new_i), &last);
|
|
|
|
last->next = NULL;
|
|
|
|
/* If there is anything in the old list, free it. */
|
|
if (old_ops)
|
|
{
|
|
for (ptr = old_ops; ptr; ptr = ptr->next)
|
|
delink_imm_use (MAYDEF_OP_PTR (ptr));
|
|
old_ops->next = free_maydefs;
|
|
free_maydefs = old_ops;
|
|
}
|
|
|
|
/* Now set the stmt's operands. */
|
|
MAYDEF_OPS (stmt) = new_list.next;
|
|
|
|
#ifdef ENABLE_CHECKING
|
|
{
|
|
unsigned x = 0;
|
|
for (ptr = MAYDEF_OPS (stmt); ptr; ptr = ptr->next)
|
|
x++;
|
|
|
|
gcc_assert (x == VEC_length (tree, build_v_may_defs));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
finalize_ssa_v_may_defs (tree stmt)
|
|
{
|
|
finalize_ssa_v_may_def_ops (stmt);
|
|
}
|
|
|
|
|
|
/* Clear the in_list bits and empty the build array for V_MAY_DEFs. */
|
|
|
|
static inline void
|
|
cleanup_v_may_defs (void)
|
|
{
|
|
unsigned x, num;
|
|
num = VEC_length (tree, build_v_may_defs);
|
|
|
|
for (x = 0; x < num; x++)
|
|
{
|
|
tree t = VEC_index (tree, build_v_may_defs, x);
|
|
if (TREE_CODE (t) != SSA_NAME)
|
|
{
|
|
var_ann_t ann = var_ann (t);
|
|
ann->in_v_may_def_list = 0;
|
|
}
|
|
}
|
|
VEC_truncate (tree, build_v_may_defs, 0);
|
|
}
|
|
|
|
|
|
/* Takes elements from build_vuses and turns them into vuse operands of
|
|
STMT. */
|
|
|
|
static inline void
|
|
finalize_ssa_vuse_ops (tree stmt)
|
|
{
|
|
unsigned new_i;
|
|
struct vuse_optype_d new_list;
|
|
vuse_optype_p old_ops, ptr, last;
|
|
tree act;
|
|
unsigned old_base, new_base;
|
|
|
|
new_list.next = NULL;
|
|
last = &new_list;
|
|
|
|
old_ops = VUSE_OPS (stmt);
|
|
|
|
new_i = 0;
|
|
while (old_ops && new_i < VEC_length (tree, build_vuses))
|
|
{
|
|
act = VEC_index (tree, build_vuses, new_i);
|
|
new_base = get_name_decl (act);
|
|
old_base = get_name_decl (VUSE_OP (old_ops));
|
|
|
|
if (old_base == new_base)
|
|
{
|
|
/* if variables are the same, reuse this node. */
|
|
MOVE_HEAD_AFTER (old_ops, last);
|
|
set_virtual_use_link (VUSE_OP_PTR (last), stmt);
|
|
new_i++;
|
|
}
|
|
else if (old_base < new_base)
|
|
{
|
|
/* if old is less than new, old goes to the free list. */
|
|
delink_imm_use (USE_OP_PTR (old_ops));
|
|
MOVE_HEAD_TO_FREELIST (old_ops, vuse);
|
|
}
|
|
else
|
|
{
|
|
/* This is a new operand. */
|
|
add_vuse_op (stmt, act, &last);
|
|
new_i++;
|
|
}
|
|
}
|
|
|
|
/* If there is anything remaining in the build_vuses list, simply emit it. */
|
|
for ( ; new_i < VEC_length (tree, build_vuses); new_i++)
|
|
add_vuse_op (stmt, VEC_index (tree, build_vuses, new_i), &last);
|
|
|
|
last->next = NULL;
|
|
|
|
/* If there is anything in the old list, free it. */
|
|
if (old_ops)
|
|
{
|
|
for (ptr = old_ops; ptr; ptr = ptr->next)
|
|
delink_imm_use (VUSE_OP_PTR (ptr));
|
|
old_ops->next = free_vuses;
|
|
free_vuses = old_ops;
|
|
}
|
|
|
|
/* Now set the stmt's operands. */
|
|
VUSE_OPS (stmt) = new_list.next;
|
|
|
|
#ifdef ENABLE_CHECKING
|
|
{
|
|
unsigned x = 0;
|
|
for (ptr = VUSE_OPS (stmt); ptr; ptr = ptr->next)
|
|
x++;
|
|
|
|
gcc_assert (x == VEC_length (tree, build_vuses));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Return a new VUSE operand vector, comparing to OLD_OPS_P. */
|
|
|
|
static void
|
|
finalize_ssa_vuses (tree stmt)
|
|
{
|
|
unsigned num, num_v_may_defs;
|
|
unsigned vuse_index;
|
|
|
|
/* Remove superfluous VUSE operands. If the statement already has a
|
|
V_MAY_DEF operation for a variable 'a', then a VUSE for 'a' is
|
|
not needed because V_MAY_DEFs imply a VUSE of the variable. For
|
|
instance, suppose that variable 'a' is aliased:
|
|
|
|
# VUSE <a_2>
|
|
# a_3 = V_MAY_DEF <a_2>
|
|
a = a + 1;
|
|
|
|
The VUSE <a_2> is superfluous because it is implied by the
|
|
V_MAY_DEF operation. */
|
|
num = VEC_length (tree, build_vuses);
|
|
num_v_may_defs = VEC_length (tree, build_v_may_defs);
|
|
|
|
if (num > 0 && num_v_may_defs > 0)
|
|
{
|
|
for (vuse_index = 0; vuse_index < VEC_length (tree, build_vuses); )
|
|
{
|
|
tree vuse;
|
|
vuse = VEC_index (tree, build_vuses, vuse_index);
|
|
if (TREE_CODE (vuse) != SSA_NAME)
|
|
{
|
|
var_ann_t ann = var_ann (vuse);
|
|
ann->in_vuse_list = 0;
|
|
if (ann->in_v_may_def_list)
|
|
{
|
|
VEC_ordered_remove (tree, build_vuses, vuse_index);
|
|
continue;
|
|
}
|
|
}
|
|
vuse_index++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Clear out the in_list bits. */
|
|
for (vuse_index = 0;
|
|
vuse_index < VEC_length (tree, build_vuses);
|
|
vuse_index++)
|
|
{
|
|
tree t = VEC_index (tree, build_vuses, vuse_index);
|
|
if (TREE_CODE (t) != SSA_NAME)
|
|
{
|
|
var_ann_t ann = var_ann (t);
|
|
ann->in_vuse_list = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
finalize_ssa_vuse_ops (stmt);
|
|
|
|
/* The V_MAY_DEF build vector wasn't cleaned up because we needed it. */
|
|
cleanup_v_may_defs ();
|
|
|
|
/* Free the VUSEs build vector. */
|
|
VEC_truncate (tree, build_vuses, 0);
|
|
|
|
}
|
|
|
|
/* Takes elements from build_v_must_defs and turns them into mustdef operands of
|
|
STMT. */
|
|
|
|
static inline void
|
|
finalize_ssa_v_must_def_ops (tree stmt)
|
|
{
|
|
unsigned new_i;
|
|
struct mustdef_optype_d new_list;
|
|
mustdef_optype_p old_ops, ptr, last;
|
|
tree act;
|
|
unsigned old_base, new_base;
|
|
|
|
new_list.next = NULL;
|
|
last = &new_list;
|
|
|
|
old_ops = MUSTDEF_OPS (stmt);
|
|
|
|
new_i = 0;
|
|
while (old_ops && new_i < VEC_length (tree, build_v_must_defs))
|
|
{
|
|
act = VEC_index (tree, build_v_must_defs, new_i);
|
|
new_base = get_name_decl (act);
|
|
old_base = get_name_decl (MUSTDEF_KILL (old_ops));
|
|
|
|
if (old_base == new_base)
|
|
{
|
|
/* If variables are the same, reuse this node. */
|
|
MOVE_HEAD_AFTER (old_ops, last);
|
|
set_virtual_use_link (MUSTDEF_KILL_PTR (last), stmt);
|
|
new_i++;
|
|
}
|
|
else if (old_base < new_base)
|
|
{
|
|
/* If old is less than new, old goes to the free list. */
|
|
delink_imm_use (MUSTDEF_KILL_PTR (old_ops));
|
|
MOVE_HEAD_TO_FREELIST (old_ops, mustdef);
|
|
}
|
|
else
|
|
{
|
|
/* This is a new operand. */
|
|
add_mustdef_op (stmt, act, &last);
|
|
new_i++;
|
|
}
|
|
}
|
|
|
|
/* If there is anything remaining in the build_v_must_defs list, simply emit it. */
|
|
for ( ; new_i < VEC_length (tree, build_v_must_defs); new_i++)
|
|
add_mustdef_op (stmt, VEC_index (tree, build_v_must_defs, new_i), &last);
|
|
|
|
last->next = NULL;
|
|
|
|
/* If there is anything in the old list, free it. */
|
|
if (old_ops)
|
|
{
|
|
for (ptr = old_ops; ptr; ptr = ptr->next)
|
|
delink_imm_use (MUSTDEF_KILL_PTR (ptr));
|
|
old_ops->next = free_mustdefs;
|
|
free_mustdefs = old_ops;
|
|
}
|
|
|
|
/* Now set the stmt's operands. */
|
|
MUSTDEF_OPS (stmt) = new_list.next;
|
|
|
|
#ifdef ENABLE_CHECKING
|
|
{
|
|
unsigned x = 0;
|
|
for (ptr = MUSTDEF_OPS (stmt); ptr; ptr = ptr->next)
|
|
x++;
|
|
|
|
gcc_assert (x == VEC_length (tree, build_v_must_defs));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
finalize_ssa_v_must_defs (tree stmt)
|
|
{
|
|
/* In the presence of subvars, there may be more than one V_MUST_DEF
|
|
per statement (one for each subvar). It is a bit expensive to
|
|
verify that all must-defs in a statement belong to subvars if
|
|
there is more than one must-def, so we don't do it. Suffice to
|
|
say, if you reach here without having subvars, and have num >1,
|
|
you have hit a bug. */
|
|
finalize_ssa_v_must_def_ops (stmt);
|
|
VEC_truncate (tree, build_v_must_defs, 0);
|
|
}
|
|
|
|
|
|
/* Finalize all the build vectors, fill the new ones into INFO. */
|
|
|
|
static inline void
|
|
finalize_ssa_stmt_operands (tree stmt)
|
|
{
|
|
finalize_ssa_defs (stmt);
|
|
finalize_ssa_uses (stmt);
|
|
finalize_ssa_v_must_defs (stmt);
|
|
finalize_ssa_v_may_defs (stmt);
|
|
finalize_ssa_vuses (stmt);
|
|
}
|
|
|
|
|
|
/* Start the process of building up operands vectors in INFO. */
|
|
|
|
static inline void
|
|
start_ssa_stmt_operands (void)
|
|
{
|
|
gcc_assert (VEC_length (tree, build_defs) == 0);
|
|
gcc_assert (VEC_length (tree, build_uses) == 0);
|
|
gcc_assert (VEC_length (tree, build_vuses) == 0);
|
|
gcc_assert (VEC_length (tree, build_v_may_defs) == 0);
|
|
gcc_assert (VEC_length (tree, build_v_must_defs) == 0);
|
|
}
|
|
|
|
|
|
/* Add DEF_P to the list of pointers to operands. */
|
|
|
|
static inline void
|
|
append_def (tree *def_p)
|
|
{
|
|
VEC_safe_push (tree, heap, build_defs, (tree)def_p);
|
|
}
|
|
|
|
|
|
/* Add USE_P to the list of pointers to operands. */
|
|
|
|
static inline void
|
|
append_use (tree *use_p)
|
|
{
|
|
VEC_safe_push (tree, heap, build_uses, (tree)use_p);
|
|
}
|
|
|
|
|
|
/* Add a new virtual may def for variable VAR to the build array. */
|
|
|
|
static inline void
|
|
append_v_may_def (tree var)
|
|
{
|
|
if (TREE_CODE (var) != SSA_NAME)
|
|
{
|
|
var_ann_t ann = get_var_ann (var);
|
|
|
|
/* Don't allow duplicate entries. */
|
|
if (ann->in_v_may_def_list)
|
|
return;
|
|
ann->in_v_may_def_list = 1;
|
|
}
|
|
|
|
VEC_safe_push (tree, heap, build_v_may_defs, (tree)var);
|
|
}
|
|
|
|
|
|
/* Add VAR to the list of virtual uses. */
|
|
|
|
static inline void
|
|
append_vuse (tree var)
|
|
{
|
|
/* Don't allow duplicate entries. */
|
|
if (TREE_CODE (var) != SSA_NAME)
|
|
{
|
|
var_ann_t ann = get_var_ann (var);
|
|
|
|
if (ann->in_vuse_list || ann->in_v_may_def_list)
|
|
return;
|
|
ann->in_vuse_list = 1;
|
|
}
|
|
|
|
VEC_safe_push (tree, heap, build_vuses, (tree)var);
|
|
}
|
|
|
|
|
|
/* Add VAR to the list of virtual must definitions for INFO. */
|
|
|
|
static inline void
|
|
append_v_must_def (tree var)
|
|
{
|
|
unsigned i;
|
|
|
|
/* Don't allow duplicate entries. */
|
|
for (i = 0; i < VEC_length (tree, build_v_must_defs); i++)
|
|
if (var == VEC_index (tree, build_v_must_defs, i))
|
|
return;
|
|
|
|
VEC_safe_push (tree, heap, build_v_must_defs, (tree)var);
|
|
}
|
|
|
|
|
|
/* REF is a tree that contains the entire pointer dereference
|
|
expression, if available, or NULL otherwise. ALIAS is the variable
|
|
we are asking if REF can access. OFFSET and SIZE come from the
|
|
memory access expression that generated this virtual operand. */
|
|
|
|
static bool
|
|
access_can_touch_variable (tree ref, tree alias, HOST_WIDE_INT offset,
|
|
HOST_WIDE_INT size)
|
|
{
|
|
bool offsetgtz = offset > 0;
|
|
unsigned HOST_WIDE_INT uoffset = (unsigned HOST_WIDE_INT) offset;
|
|
tree base = ref ? get_base_address (ref) : NULL;
|
|
|
|
/* If ALIAS is .GLOBAL_VAR then the memory reference REF must be
|
|
using a call-clobbered memory tag. By definition, call-clobbered
|
|
memory tags can always touch .GLOBAL_VAR. */
|
|
if (alias == global_var)
|
|
return true;
|
|
|
|
/* We cannot prune nonlocal aliases because they are not type
|
|
specific. */
|
|
if (alias == nonlocal_all)
|
|
return true;
|
|
|
|
/* If ALIAS is an SFT, it can't be touched if the offset
|
|
and size of the access is not overlapping with the SFT offset and
|
|
size. This is only true if we are accessing through a pointer
|
|
to a type that is the same as SFT_PARENT_VAR. Otherwise, we may
|
|
be accessing through a pointer to some substruct of the
|
|
structure, and if we try to prune there, we will have the wrong
|
|
offset, and get the wrong answer.
|
|
i.e., we can't prune without more work if we have something like
|
|
|
|
struct gcc_target
|
|
{
|
|
struct asm_out
|
|
{
|
|
const char *byte_op;
|
|
struct asm_int_op
|
|
{
|
|
const char *hi;
|
|
} aligned_op;
|
|
} asm_out;
|
|
} targetm;
|
|
|
|
foo = &targetm.asm_out.aligned_op;
|
|
return foo->hi;
|
|
|
|
SFT.1, which represents hi, will have SFT_OFFSET=32 because in
|
|
terms of SFT_PARENT_VAR, that is where it is.
|
|
However, the access through the foo pointer will be at offset 0. */
|
|
if (size != -1
|
|
&& TREE_CODE (alias) == STRUCT_FIELD_TAG
|
|
&& base
|
|
&& TREE_TYPE (base) == TREE_TYPE (SFT_PARENT_VAR (alias))
|
|
&& !overlap_subvar (offset, size, alias, NULL))
|
|
{
|
|
#ifdef ACCESS_DEBUGGING
|
|
fprintf (stderr, "Access to ");
|
|
print_generic_expr (stderr, ref, 0);
|
|
fprintf (stderr, " may not touch ");
|
|
print_generic_expr (stderr, alias, 0);
|
|
fprintf (stderr, " in function %s\n", get_name (current_function_decl));
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
/* Without strict aliasing, it is impossible for a component access
|
|
through a pointer to touch a random variable, unless that
|
|
variable *is* a structure or a pointer.
|
|
|
|
That is, given p->c, and some random global variable b,
|
|
there is no legal way that p->c could be an access to b.
|
|
|
|
Without strict aliasing on, we consider it legal to do something
|
|
like:
|
|
|
|
struct foos { int l; };
|
|
int foo;
|
|
static struct foos *getfoo(void);
|
|
int main (void)
|
|
{
|
|
struct foos *f = getfoo();
|
|
f->l = 1;
|
|
foo = 2;
|
|
if (f->l == 1)
|
|
abort();
|
|
exit(0);
|
|
}
|
|
static struct foos *getfoo(void)
|
|
{ return (struct foos *)&foo; }
|
|
|
|
(taken from 20000623-1.c)
|
|
|
|
The docs also say/imply that access through union pointers
|
|
is legal (but *not* if you take the address of the union member,
|
|
i.e. the inverse), such that you can do
|
|
|
|
typedef union {
|
|
int d;
|
|
} U;
|
|
|
|
int rv;
|
|
void breakme()
|
|
{
|
|
U *rv0;
|
|
U *pretmp = (U*)&rv;
|
|
rv0 = pretmp;
|
|
rv0->d = 42;
|
|
}
|
|
To implement this, we just punt on accesses through union
|
|
pointers entirely.
|
|
*/
|
|
else if (ref
|
|
&& flag_strict_aliasing
|
|
&& TREE_CODE (ref) != INDIRECT_REF
|
|
&& !MTAG_P (alias)
|
|
&& (TREE_CODE (base) != INDIRECT_REF
|
|
|| TREE_CODE (TREE_TYPE (base)) != UNION_TYPE)
|
|
&& !AGGREGATE_TYPE_P (TREE_TYPE (alias))
|
|
&& TREE_CODE (TREE_TYPE (alias)) != COMPLEX_TYPE
|
|
&& !POINTER_TYPE_P (TREE_TYPE (alias))
|
|
/* When the struct has may_alias attached to it, we need not to
|
|
return true. */
|
|
&& get_alias_set (base))
|
|
{
|
|
#ifdef ACCESS_DEBUGGING
|
|
fprintf (stderr, "Access to ");
|
|
print_generic_expr (stderr, ref, 0);
|
|
fprintf (stderr, " may not touch ");
|
|
print_generic_expr (stderr, alias, 0);
|
|
fprintf (stderr, " in function %s\n", get_name (current_function_decl));
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
/* If the offset of the access is greater than the size of one of
|
|
the possible aliases, it can't be touching that alias, because it
|
|
would be past the end of the structure. */
|
|
else if (ref
|
|
&& flag_strict_aliasing
|
|
&& TREE_CODE (ref) != INDIRECT_REF
|
|
&& !MTAG_P (alias)
|
|
&& !POINTER_TYPE_P (TREE_TYPE (alias))
|
|
&& offsetgtz
|
|
&& DECL_SIZE (alias)
|
|
&& TREE_CODE (DECL_SIZE (alias)) == INTEGER_CST
|
|
&& uoffset > TREE_INT_CST_LOW (DECL_SIZE (alias)))
|
|
{
|
|
#ifdef ACCESS_DEBUGGING
|
|
fprintf (stderr, "Access to ");
|
|
print_generic_expr (stderr, ref, 0);
|
|
fprintf (stderr, " may not touch ");
|
|
print_generic_expr (stderr, alias, 0);
|
|
fprintf (stderr, " in function %s\n", get_name (current_function_decl));
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Add VAR to the virtual operands array. FLAGS is as in
|
|
get_expr_operands. FULL_REF is a tree that contains the entire
|
|
pointer dereference expression, if available, or NULL otherwise.
|
|
OFFSET and SIZE come from the memory access expression that
|
|
generated this virtual operand. FOR_CLOBBER is true is this is
|
|
adding a virtual operand for a call clobber. */
|
|
|
|
static void
|
|
add_virtual_operand (tree var, stmt_ann_t s_ann, int flags,
|
|
tree full_ref, HOST_WIDE_INT offset,
|
|
HOST_WIDE_INT size, bool for_clobber)
|
|
{
|
|
VEC(tree,gc) *aliases;
|
|
tree sym;
|
|
var_ann_t v_ann;
|
|
|
|
sym = (TREE_CODE (var) == SSA_NAME ? SSA_NAME_VAR (var) : var);
|
|
v_ann = var_ann (sym);
|
|
|
|
/* Mark statements with volatile operands. Optimizers should back
|
|
off from statements having volatile operands. */
|
|
if (TREE_THIS_VOLATILE (sym) && s_ann)
|
|
s_ann->has_volatile_ops = true;
|
|
|
|
/* If the variable cannot be modified and this is a V_MAY_DEF change
|
|
it into a VUSE. This happens when read-only variables are marked
|
|
call-clobbered and/or aliased to writable variables. So we only
|
|
check that this only happens on non-specific stores.
|
|
|
|
Note that if this is a specific store, i.e. associated with a
|
|
modify_expr, then we can't suppress the V_MAY_DEF, lest we run
|
|
into validation problems.
|
|
|
|
This can happen when programs cast away const, leaving us with a
|
|
store to read-only memory. If the statement is actually executed
|
|
at runtime, then the program is ill formed. If the statement is
|
|
not executed then all is well. At the very least, we cannot ICE. */
|
|
if ((flags & opf_non_specific) && unmodifiable_var_p (var))
|
|
flags &= ~(opf_is_def | opf_kill_def);
|
|
|
|
/* The variable is not a GIMPLE register. Add it (or its aliases) to
|
|
virtual operands, unless the caller has specifically requested
|
|
not to add virtual operands (used when adding operands inside an
|
|
ADDR_EXPR expression). */
|
|
if (flags & opf_no_vops)
|
|
return;
|
|
|
|
aliases = v_ann->may_aliases;
|
|
if (aliases == NULL)
|
|
{
|
|
/* The variable is not aliased or it is an alias tag. */
|
|
if (flags & opf_is_def)
|
|
{
|
|
if (flags & opf_kill_def)
|
|
{
|
|
/* V_MUST_DEF for non-aliased, non-GIMPLE register
|
|
variable definitions. */
|
|
gcc_assert (!MTAG_P (var)
|
|
|| TREE_CODE (var) == STRUCT_FIELD_TAG);
|
|
append_v_must_def (var);
|
|
}
|
|
else
|
|
{
|
|
/* Add a V_MAY_DEF for call-clobbered variables and
|
|
memory tags. */
|
|
append_v_may_def (var);
|
|
}
|
|
}
|
|
else
|
|
append_vuse (var);
|
|
}
|
|
else
|
|
{
|
|
unsigned i;
|
|
tree al;
|
|
|
|
/* The variable is aliased. Add its aliases to the virtual
|
|
operands. */
|
|
gcc_assert (VEC_length (tree, aliases) != 0);
|
|
|
|
if (flags & opf_is_def)
|
|
{
|
|
|
|
bool none_added = true;
|
|
|
|
for (i = 0; VEC_iterate (tree, aliases, i, al); i++)
|
|
{
|
|
if (!access_can_touch_variable (full_ref, al, offset, size))
|
|
continue;
|
|
|
|
none_added = false;
|
|
append_v_may_def (al);
|
|
}
|
|
|
|
/* If the variable is also an alias tag, add a virtual
|
|
operand for it, otherwise we will miss representing
|
|
references to the members of the variable's alias set.
|
|
This fixes the bug in gcc.c-torture/execute/20020503-1.c.
|
|
|
|
It is also necessary to add bare defs on clobbers for
|
|
SMT's, so that bare SMT uses caused by pruning all the
|
|
aliases will link up properly with calls. In order to
|
|
keep the number of these bare defs we add down to the
|
|
minimum necessary, we keep track of which SMT's were used
|
|
alone in statement vdefs or VUSEs. */
|
|
if (v_ann->is_aliased
|
|
|| none_added
|
|
|| (TREE_CODE (var) == SYMBOL_MEMORY_TAG
|
|
&& for_clobber
|
|
&& SMT_USED_ALONE (var)))
|
|
{
|
|
/* Every bare SMT def we add should have SMT_USED_ALONE
|
|
set on it, or else we will get the wrong answer on
|
|
clobbers. Sadly, this assertion trips on code that
|
|
violates strict aliasing rules, because they *do* get
|
|
the clobbers wrong, since it is illegal code. As a
|
|
result, we currently only enable it for aliasing
|
|
debugging. Someone might wish to turn this code into
|
|
a nice strict-aliasing warning, since we *know* it
|
|
will get the wrong answer... */
|
|
#ifdef ACCESS_DEBUGGING
|
|
if (none_added
|
|
&& !updating_used_alone && aliases_computed_p
|
|
&& TREE_CODE (var) == SYMBOL_MEMORY_TAG)
|
|
gcc_assert (SMT_USED_ALONE (var));
|
|
#endif
|
|
append_v_may_def (var);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
bool none_added = true;
|
|
for (i = 0; VEC_iterate (tree, aliases, i, al); i++)
|
|
{
|
|
if (!access_can_touch_variable (full_ref, al, offset, size))
|
|
continue;
|
|
none_added = false;
|
|
append_vuse (al);
|
|
}
|
|
|
|
/* Similarly, append a virtual uses for VAR itself, when
|
|
it is an alias tag. */
|
|
if (v_ann->is_aliased || none_added)
|
|
append_vuse (var);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Add *VAR_P to the appropriate operand array for S_ANN. FLAGS is as in
|
|
get_expr_operands. If *VAR_P is a GIMPLE register, it will be added to
|
|
the statement's real operands, otherwise it is added to virtual
|
|
operands. */
|
|
|
|
static void
|
|
add_stmt_operand (tree *var_p, stmt_ann_t s_ann, int flags)
|
|
{
|
|
bool is_real_op;
|
|
tree var, sym;
|
|
var_ann_t v_ann;
|
|
|
|
var = *var_p;
|
|
gcc_assert (SSA_VAR_P (var));
|
|
|
|
is_real_op = is_gimple_reg (var);
|
|
|
|
/* If this is a real operand, the operand is either an SSA name or a
|
|
decl. Virtual operands may only be decls. */
|
|
gcc_assert (is_real_op || DECL_P (var));
|
|
|
|
sym = (TREE_CODE (var) == SSA_NAME ? SSA_NAME_VAR (var) : var);
|
|
v_ann = var_ann (sym);
|
|
|
|
/* Mark statements with volatile operands. Optimizers should back
|
|
off from statements having volatile operands. */
|
|
if (TREE_THIS_VOLATILE (sym) && s_ann)
|
|
s_ann->has_volatile_ops = true;
|
|
|
|
if (is_real_op)
|
|
{
|
|
/* The variable is a GIMPLE register. Add it to real operands. */
|
|
if (flags & opf_is_def)
|
|
append_def (var_p);
|
|
else
|
|
append_use (var_p);
|
|
}
|
|
else
|
|
add_virtual_operand (var, s_ann, flags, NULL_TREE, 0, -1, false);
|
|
}
|
|
|
|
|
|
/* A subroutine of get_expr_operands to handle INDIRECT_REF,
|
|
ALIGN_INDIRECT_REF and MISALIGNED_INDIRECT_REF.
|
|
|
|
STMT is the statement being processed, EXPR is the INDIRECT_REF
|
|
that got us here.
|
|
|
|
FLAGS is as in get_expr_operands.
|
|
|
|
FULL_REF contains the full pointer dereference expression, if we
|
|
have it, or NULL otherwise.
|
|
|
|
OFFSET and SIZE are the location of the access inside the
|
|
dereferenced pointer, if known.
|
|
|
|
RECURSE_ON_BASE should be set to true if we want to continue
|
|
calling get_expr_operands on the base pointer, and false if
|
|
something else will do it for us. */
|
|
|
|
static void
|
|
get_indirect_ref_operands (tree stmt, tree expr, int flags,
|
|
tree full_ref,
|
|
HOST_WIDE_INT offset, HOST_WIDE_INT size,
|
|
bool recurse_on_base)
|
|
{
|
|
tree *pptr = &TREE_OPERAND (expr, 0);
|
|
tree ptr = *pptr;
|
|
stmt_ann_t s_ann = stmt_ann (stmt);
|
|
|
|
/* Stores into INDIRECT_REF operands are never killing definitions. */
|
|
flags &= ~opf_kill_def;
|
|
|
|
if (SSA_VAR_P (ptr))
|
|
{
|
|
struct ptr_info_def *pi = NULL;
|
|
|
|
/* If PTR has flow-sensitive points-to information, use it. */
|
|
if (TREE_CODE (ptr) == SSA_NAME
|
|
&& (pi = SSA_NAME_PTR_INFO (ptr)) != NULL
|
|
&& pi->name_mem_tag)
|
|
{
|
|
/* PTR has its own memory tag. Use it. */
|
|
add_virtual_operand (pi->name_mem_tag, s_ann, flags,
|
|
full_ref, offset, size, false);
|
|
}
|
|
else
|
|
{
|
|
/* If PTR is not an SSA_NAME or it doesn't have a name
|
|
tag, use its symbol memory tag. */
|
|
var_ann_t v_ann;
|
|
|
|
/* If we are emitting debugging dumps, display a warning if
|
|
PTR is an SSA_NAME with no flow-sensitive alias
|
|
information. That means that we may need to compute
|
|
aliasing again. */
|
|
if (dump_file
|
|
&& TREE_CODE (ptr) == SSA_NAME
|
|
&& pi == NULL)
|
|
{
|
|
fprintf (dump_file,
|
|
"NOTE: no flow-sensitive alias info for ");
|
|
print_generic_expr (dump_file, ptr, dump_flags);
|
|
fprintf (dump_file, " in ");
|
|
print_generic_stmt (dump_file, stmt, dump_flags);
|
|
}
|
|
|
|
if (TREE_CODE (ptr) == SSA_NAME)
|
|
ptr = SSA_NAME_VAR (ptr);
|
|
v_ann = var_ann (ptr);
|
|
|
|
if (v_ann->symbol_mem_tag)
|
|
add_virtual_operand (v_ann->symbol_mem_tag, s_ann, flags,
|
|
full_ref, offset, size, false);
|
|
}
|
|
}
|
|
else if (TREE_CODE (ptr) == INTEGER_CST)
|
|
{
|
|
/* If a constant is used as a pointer, we can't generate a real
|
|
operand for it but we mark the statement volatile to prevent
|
|
optimizations from messing things up. */
|
|
if (s_ann)
|
|
s_ann->has_volatile_ops = true;
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
/* Ok, this isn't even is_gimple_min_invariant. Something's broke. */
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* If requested, add a USE operand for the base pointer. */
|
|
if (recurse_on_base)
|
|
get_expr_operands (stmt, pptr, opf_none);
|
|
}
|
|
|
|
|
|
/* A subroutine of get_expr_operands to handle TARGET_MEM_REF. */
|
|
|
|
static void
|
|
get_tmr_operands (tree stmt, tree expr, int flags)
|
|
{
|
|
tree tag = TMR_TAG (expr), ref;
|
|
HOST_WIDE_INT offset, size, maxsize;
|
|
subvar_t svars, sv;
|
|
stmt_ann_t s_ann = stmt_ann (stmt);
|
|
|
|
/* First record the real operands. */
|
|
get_expr_operands (stmt, &TMR_BASE (expr), opf_none);
|
|
get_expr_operands (stmt, &TMR_INDEX (expr), opf_none);
|
|
|
|
/* MEM_REFs should never be killing. */
|
|
flags &= ~opf_kill_def;
|
|
|
|
if (TMR_SYMBOL (expr))
|
|
{
|
|
stmt_ann_t ann = stmt_ann (stmt);
|
|
add_to_addressable_set (TMR_SYMBOL (expr), &ann->addresses_taken);
|
|
}
|
|
|
|
if (!tag)
|
|
{
|
|
/* Something weird, so ensure that we will be careful. */
|
|
stmt_ann (stmt)->has_volatile_ops = true;
|
|
return;
|
|
}
|
|
|
|
if (DECL_P (tag))
|
|
{
|
|
get_expr_operands (stmt, &tag, flags);
|
|
return;
|
|
}
|
|
|
|
ref = get_ref_base_and_extent (tag, &offset, &size, &maxsize);
|
|
gcc_assert (ref != NULL_TREE);
|
|
svars = get_subvars_for_var (ref);
|
|
for (sv = svars; sv; sv = sv->next)
|
|
{
|
|
bool exact;
|
|
if (overlap_subvar (offset, maxsize, sv->var, &exact))
|
|
{
|
|
int subvar_flags = flags;
|
|
if (!exact || size != maxsize)
|
|
subvar_flags &= ~opf_kill_def;
|
|
add_stmt_operand (&sv->var, s_ann, subvar_flags);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Add clobbering definitions for .GLOBAL_VAR or for each of the call
|
|
clobbered variables in the function. */
|
|
|
|
static void
|
|
add_call_clobber_ops (tree stmt, tree callee)
|
|
{
|
|
unsigned u;
|
|
bitmap_iterator bi;
|
|
stmt_ann_t s_ann = stmt_ann (stmt);
|
|
bitmap not_read_b, not_written_b;
|
|
|
|
/* Functions that are not const, pure or never return may clobber
|
|
call-clobbered variables. */
|
|
if (s_ann)
|
|
s_ann->makes_clobbering_call = true;
|
|
|
|
/* If we created .GLOBAL_VAR earlier, just use it. See compute_may_aliases
|
|
for the heuristic used to decide whether to create .GLOBAL_VAR or not. */
|
|
if (global_var)
|
|
{
|
|
add_stmt_operand (&global_var, s_ann, opf_is_def);
|
|
return;
|
|
}
|
|
|
|
/* Get info for local and module level statics. There is a bit
|
|
set for each static if the call being processed does not read
|
|
or write that variable. */
|
|
not_read_b = callee ? ipa_reference_get_not_read_global (callee) : NULL;
|
|
not_written_b = callee ? ipa_reference_get_not_written_global (callee) : NULL;
|
|
/* Add a V_MAY_DEF operand for every call clobbered variable. */
|
|
EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, u, bi)
|
|
{
|
|
tree var = referenced_var_lookup (u);
|
|
unsigned int escape_mask = var_ann (var)->escape_mask;
|
|
tree real_var = var;
|
|
bool not_read;
|
|
bool not_written;
|
|
|
|
/* Not read and not written are computed on regular vars, not
|
|
subvars, so look at the parent var if this is an SFT. */
|
|
if (TREE_CODE (var) == STRUCT_FIELD_TAG)
|
|
real_var = SFT_PARENT_VAR (var);
|
|
|
|
not_read = not_read_b ? bitmap_bit_p (not_read_b,
|
|
DECL_UID (real_var)) : false;
|
|
not_written = not_written_b ? bitmap_bit_p (not_written_b,
|
|
DECL_UID (real_var)) : false;
|
|
gcc_assert (!unmodifiable_var_p (var));
|
|
|
|
clobber_stats.clobbered_vars++;
|
|
|
|
/* See if this variable is really clobbered by this function. */
|
|
|
|
/* Trivial case: Things escaping only to pure/const are not
|
|
clobbered by non-pure-const, and only read by pure/const. */
|
|
if ((escape_mask & ~(ESCAPE_TO_PURE_CONST)) == 0)
|
|
{
|
|
tree call = get_call_expr_in (stmt);
|
|
if (call_expr_flags (call) & (ECF_CONST | ECF_PURE))
|
|
{
|
|
add_stmt_operand (&var, s_ann, opf_none);
|
|
clobber_stats.unescapable_clobbers_avoided++;
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
clobber_stats.unescapable_clobbers_avoided++;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (not_written)
|
|
{
|
|
clobber_stats.static_write_clobbers_avoided++;
|
|
if (!not_read)
|
|
add_stmt_operand (&var, s_ann, opf_none);
|
|
else
|
|
clobber_stats.static_read_clobbers_avoided++;
|
|
}
|
|
else
|
|
add_virtual_operand (var, s_ann, opf_is_def, NULL, 0, -1, true);
|
|
}
|
|
}
|
|
|
|
|
|
/* Add VUSE operands for .GLOBAL_VAR or all call clobbered variables in the
|
|
function. */
|
|
|
|
static void
|
|
add_call_read_ops (tree stmt, tree callee)
|
|
{
|
|
unsigned u;
|
|
bitmap_iterator bi;
|
|
stmt_ann_t s_ann = stmt_ann (stmt);
|
|
bitmap not_read_b;
|
|
|
|
/* if the function is not pure, it may reference memory. Add
|
|
a VUSE for .GLOBAL_VAR if it has been created. See add_referenced_var
|
|
for the heuristic used to decide whether to create .GLOBAL_VAR. */
|
|
if (global_var)
|
|
{
|
|
add_stmt_operand (&global_var, s_ann, opf_none);
|
|
return;
|
|
}
|
|
|
|
not_read_b = callee ? ipa_reference_get_not_read_global (callee) : NULL;
|
|
|
|
/* Add a VUSE for each call-clobbered variable. */
|
|
EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, u, bi)
|
|
{
|
|
tree var = referenced_var (u);
|
|
tree real_var = var;
|
|
bool not_read;
|
|
|
|
clobber_stats.readonly_clobbers++;
|
|
|
|
/* Not read and not written are computed on regular vars, not
|
|
subvars, so look at the parent var if this is an SFT. */
|
|
|
|
if (TREE_CODE (var) == STRUCT_FIELD_TAG)
|
|
real_var = SFT_PARENT_VAR (var);
|
|
|
|
not_read = not_read_b ? bitmap_bit_p (not_read_b, DECL_UID (real_var))
|
|
: false;
|
|
|
|
if (not_read)
|
|
{
|
|
clobber_stats.static_readonly_clobbers_avoided++;
|
|
continue;
|
|
}
|
|
|
|
add_stmt_operand (&var, s_ann, opf_none | opf_non_specific);
|
|
}
|
|
}
|
|
|
|
|
|
/* A subroutine of get_expr_operands to handle CALL_EXPR. */
|
|
|
|
static void
|
|
get_call_expr_operands (tree stmt, tree expr)
|
|
{
|
|
tree op;
|
|
int call_flags = call_expr_flags (expr);
|
|
|
|
/* If aliases have been computed already, add V_MAY_DEF or V_USE
|
|
operands for all the symbols that have been found to be
|
|
call-clobbered.
|
|
|
|
Note that if aliases have not been computed, the global effects
|
|
of calls will not be included in the SSA web. This is fine
|
|
because no optimizer should run before aliases have been
|
|
computed. By not bothering with virtual operands for CALL_EXPRs
|
|
we avoid adding superfluous virtual operands, which can be a
|
|
significant compile time sink (See PR 15855). */
|
|
if (aliases_computed_p
|
|
&& !bitmap_empty_p (call_clobbered_vars)
|
|
&& !(call_flags & ECF_NOVOPS))
|
|
{
|
|
/* A 'pure' or a 'const' function never call-clobbers anything.
|
|
A 'noreturn' function might, but since we don't return anyway
|
|
there is no point in recording that. */
|
|
if (TREE_SIDE_EFFECTS (expr)
|
|
&& !(call_flags & (ECF_PURE | ECF_CONST | ECF_NORETURN)))
|
|
add_call_clobber_ops (stmt, get_callee_fndecl (expr));
|
|
else if (!(call_flags & ECF_CONST))
|
|
add_call_read_ops (stmt, get_callee_fndecl (expr));
|
|
}
|
|
|
|
/* Find uses in the called function. */
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 0), opf_none);
|
|
|
|
for (op = TREE_OPERAND (expr, 1); op; op = TREE_CHAIN (op))
|
|
get_expr_operands (stmt, &TREE_VALUE (op), opf_none);
|
|
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
|
|
}
|
|
|
|
|
|
/* Scan operands in the ASM_EXPR stmt referred to in INFO. */
|
|
|
|
static void
|
|
get_asm_expr_operands (tree stmt)
|
|
{
|
|
stmt_ann_t s_ann = stmt_ann (stmt);
|
|
int noutputs = list_length (ASM_OUTPUTS (stmt));
|
|
const char **oconstraints
|
|
= (const char **) alloca ((noutputs) * sizeof (const char *));
|
|
int i;
|
|
tree link;
|
|
const char *constraint;
|
|
bool allows_mem, allows_reg, is_inout;
|
|
|
|
for (i=0, link = ASM_OUTPUTS (stmt); link; ++i, link = TREE_CHAIN (link))
|
|
{
|
|
constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
|
|
oconstraints[i] = constraint;
|
|
parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
|
|
&allows_reg, &is_inout);
|
|
|
|
/* This should have been split in gimplify_asm_expr. */
|
|
gcc_assert (!allows_reg || !is_inout);
|
|
|
|
/* Memory operands are addressable. Note that STMT needs the
|
|
address of this operand. */
|
|
if (!allows_reg && allows_mem)
|
|
{
|
|
tree t = get_base_address (TREE_VALUE (link));
|
|
if (t && DECL_P (t) && s_ann)
|
|
add_to_addressable_set (t, &s_ann->addresses_taken);
|
|
}
|
|
|
|
get_expr_operands (stmt, &TREE_VALUE (link), opf_is_def);
|
|
}
|
|
|
|
for (link = ASM_INPUTS (stmt); link; link = TREE_CHAIN (link))
|
|
{
|
|
constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
|
|
parse_input_constraint (&constraint, 0, 0, noutputs, 0,
|
|
oconstraints, &allows_mem, &allows_reg);
|
|
|
|
/* Memory operands are addressable. Note that STMT needs the
|
|
address of this operand. */
|
|
if (!allows_reg && allows_mem)
|
|
{
|
|
tree t = get_base_address (TREE_VALUE (link));
|
|
if (t && DECL_P (t) && s_ann)
|
|
add_to_addressable_set (t, &s_ann->addresses_taken);
|
|
}
|
|
|
|
get_expr_operands (stmt, &TREE_VALUE (link), 0);
|
|
}
|
|
|
|
|
|
/* Clobber memory for asm ("" : : : "memory"); */
|
|
for (link = ASM_CLOBBERS (stmt); link; link = TREE_CHAIN (link))
|
|
if (strcmp (TREE_STRING_POINTER (TREE_VALUE (link)), "memory") == 0)
|
|
{
|
|
unsigned i;
|
|
bitmap_iterator bi;
|
|
|
|
/* Clobber all call-clobbered variables (or .GLOBAL_VAR if we
|
|
decided to group them). */
|
|
if (global_var)
|
|
add_stmt_operand (&global_var, s_ann, opf_is_def);
|
|
else
|
|
EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi)
|
|
{
|
|
tree var = referenced_var (i);
|
|
add_stmt_operand (&var, s_ann, opf_is_def | opf_non_specific);
|
|
}
|
|
|
|
/* Now clobber all addressables. */
|
|
EXECUTE_IF_SET_IN_BITMAP (addressable_vars, 0, i, bi)
|
|
{
|
|
tree var = referenced_var (i);
|
|
|
|
/* Subvars are explicitly represented in this list, so
|
|
we don't need the original to be added to the clobber
|
|
ops, but the original *will* be in this list because
|
|
we keep the addressability of the original
|
|
variable up-to-date so we don't screw up the rest of
|
|
the backend. */
|
|
if (var_can_have_subvars (var)
|
|
&& get_subvars_for_var (var) != NULL)
|
|
continue;
|
|
|
|
add_stmt_operand (&var, s_ann, opf_is_def | opf_non_specific);
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
/* Scan operands for the assignment expression EXPR in statement STMT. */
|
|
|
|
static void
|
|
get_modify_expr_operands (tree stmt, tree expr)
|
|
{
|
|
/* First get operands from the RHS. */
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
|
|
|
|
/* For the LHS, use a regular definition (OPF_IS_DEF) for GIMPLE
|
|
registers. If the LHS is a store to memory, we will either need
|
|
a preserving definition (V_MAY_DEF) or a killing definition
|
|
(V_MUST_DEF).
|
|
|
|
Preserving definitions are those that modify a part of an
|
|
aggregate object for which no subvars have been computed (or the
|
|
reference does not correspond exactly to one of them). Stores
|
|
through a pointer are also represented with V_MAY_DEF operators.
|
|
|
|
The determination of whether to use a preserving or a killing
|
|
definition is done while scanning the LHS of the assignment. By
|
|
default, assume that we will emit a V_MUST_DEF. */
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 0), opf_is_def|opf_kill_def);
|
|
}
|
|
|
|
|
|
/* Recursively scan the expression pointed to by EXPR_P in statement
|
|
STMT. FLAGS is one of the OPF_* constants modifying how to
|
|
interpret the operands found. */
|
|
|
|
static void
|
|
get_expr_operands (tree stmt, tree *expr_p, int flags)
|
|
{
|
|
enum tree_code code;
|
|
enum tree_code_class class;
|
|
tree expr = *expr_p;
|
|
stmt_ann_t s_ann = stmt_ann (stmt);
|
|
|
|
if (expr == NULL)
|
|
return;
|
|
|
|
code = TREE_CODE (expr);
|
|
class = TREE_CODE_CLASS (code);
|
|
|
|
switch (code)
|
|
{
|
|
case ADDR_EXPR:
|
|
/* Taking the address of a variable does not represent a
|
|
reference to it, but the fact that the statement takes its
|
|
address will be of interest to some passes (e.g. alias
|
|
resolution). */
|
|
add_to_addressable_set (TREE_OPERAND (expr, 0), &s_ann->addresses_taken);
|
|
|
|
/* If the address is invariant, there may be no interesting
|
|
variable references inside. */
|
|
if (is_gimple_min_invariant (expr))
|
|
return;
|
|
|
|
/* Otherwise, there may be variables referenced inside but there
|
|
should be no VUSEs created, since the referenced objects are
|
|
not really accessed. The only operands that we should find
|
|
here are ARRAY_REF indices which will always be real operands
|
|
(GIMPLE does not allow non-registers as array indices). */
|
|
flags |= opf_no_vops;
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
|
|
return;
|
|
|
|
case SSA_NAME:
|
|
case STRUCT_FIELD_TAG:
|
|
case SYMBOL_MEMORY_TAG:
|
|
case NAME_MEMORY_TAG:
|
|
add_stmt_operand (expr_p, s_ann, flags);
|
|
return;
|
|
|
|
case VAR_DECL:
|
|
case PARM_DECL:
|
|
case RESULT_DECL:
|
|
{
|
|
subvar_t svars;
|
|
|
|
/* Add the subvars for a variable, if it has subvars, to DEFS
|
|
or USES. Otherwise, add the variable itself. Whether it
|
|
goes to USES or DEFS depends on the operand flags. */
|
|
if (var_can_have_subvars (expr)
|
|
&& (svars = get_subvars_for_var (expr)))
|
|
{
|
|
subvar_t sv;
|
|
for (sv = svars; sv; sv = sv->next)
|
|
add_stmt_operand (&sv->var, s_ann, flags);
|
|
}
|
|
else
|
|
add_stmt_operand (expr_p, s_ann, flags);
|
|
|
|
return;
|
|
}
|
|
|
|
case MISALIGNED_INDIRECT_REF:
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 1), flags);
|
|
/* fall through */
|
|
|
|
case ALIGN_INDIRECT_REF:
|
|
case INDIRECT_REF:
|
|
get_indirect_ref_operands (stmt, expr, flags, NULL_TREE, 0, -1, true);
|
|
return;
|
|
|
|
case TARGET_MEM_REF:
|
|
get_tmr_operands (stmt, expr, flags);
|
|
return;
|
|
|
|
case ARRAY_REF:
|
|
case ARRAY_RANGE_REF:
|
|
case COMPONENT_REF:
|
|
case REALPART_EXPR:
|
|
case IMAGPART_EXPR:
|
|
{
|
|
tree ref;
|
|
HOST_WIDE_INT offset, size, maxsize;
|
|
bool none = true;
|
|
|
|
/* This component reference becomes an access to all of the
|
|
subvariables it can touch, if we can determine that, but
|
|
*NOT* the real one. If we can't determine which fields we
|
|
could touch, the recursion will eventually get to a
|
|
variable and add *all* of its subvars, or whatever is the
|
|
minimum correct subset. */
|
|
ref = get_ref_base_and_extent (expr, &offset, &size, &maxsize);
|
|
if (SSA_VAR_P (ref) && get_subvars_for_var (ref))
|
|
{
|
|
subvar_t sv;
|
|
subvar_t svars = get_subvars_for_var (ref);
|
|
|
|
for (sv = svars; sv; sv = sv->next)
|
|
{
|
|
bool exact;
|
|
|
|
if (overlap_subvar (offset, maxsize, sv->var, &exact))
|
|
{
|
|
int subvar_flags = flags;
|
|
none = false;
|
|
if (!exact || size != maxsize)
|
|
subvar_flags &= ~opf_kill_def;
|
|
add_stmt_operand (&sv->var, s_ann, subvar_flags);
|
|
}
|
|
}
|
|
|
|
if (!none)
|
|
flags |= opf_no_vops;
|
|
}
|
|
else if (TREE_CODE (ref) == INDIRECT_REF)
|
|
{
|
|
get_indirect_ref_operands (stmt, ref, flags, expr, offset,
|
|
maxsize, false);
|
|
flags |= opf_no_vops;
|
|
}
|
|
|
|
/* Even if we found subvars above we need to ensure to see
|
|
immediate uses for d in s.a[d]. In case of s.a having
|
|
a subvar or we would miss it otherwise. */
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 0),
|
|
flags & ~opf_kill_def);
|
|
|
|
if (code == COMPONENT_REF)
|
|
{
|
|
if (s_ann && TREE_THIS_VOLATILE (TREE_OPERAND (expr, 1)))
|
|
s_ann->has_volatile_ops = true;
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
|
|
}
|
|
else if (code == ARRAY_REF || code == ARRAY_RANGE_REF)
|
|
{
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 3), opf_none);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
case WITH_SIZE_EXPR:
|
|
/* WITH_SIZE_EXPR is a pass-through reference to its first argument,
|
|
and an rvalue reference to its second argument. */
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
|
|
return;
|
|
|
|
case CALL_EXPR:
|
|
get_call_expr_operands (stmt, expr);
|
|
return;
|
|
|
|
case COND_EXPR:
|
|
case VEC_COND_EXPR:
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 0), opf_none);
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
|
|
return;
|
|
|
|
case MODIFY_EXPR:
|
|
get_modify_expr_operands (stmt, expr);
|
|
return;
|
|
|
|
case CONSTRUCTOR:
|
|
{
|
|
/* General aggregate CONSTRUCTORs have been decomposed, but they
|
|
are still in use as the COMPLEX_EXPR equivalent for vectors. */
|
|
constructor_elt *ce;
|
|
unsigned HOST_WIDE_INT idx;
|
|
|
|
for (idx = 0;
|
|
VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (expr), idx, ce);
|
|
idx++)
|
|
get_expr_operands (stmt, &ce->value, opf_none);
|
|
|
|
return;
|
|
}
|
|
|
|
case BIT_FIELD_REF:
|
|
/* Stores using BIT_FIELD_REF are always preserving definitions. */
|
|
flags &= ~opf_kill_def;
|
|
|
|
/* Fallthru */
|
|
|
|
case TRUTH_NOT_EXPR:
|
|
case VIEW_CONVERT_EXPR:
|
|
do_unary:
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
|
|
return;
|
|
|
|
case TRUTH_AND_EXPR:
|
|
case TRUTH_OR_EXPR:
|
|
case TRUTH_XOR_EXPR:
|
|
case COMPOUND_EXPR:
|
|
case OBJ_TYPE_REF:
|
|
case ASSERT_EXPR:
|
|
do_binary:
|
|
{
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 1), flags);
|
|
return;
|
|
}
|
|
|
|
case DOT_PROD_EXPR:
|
|
case REALIGN_LOAD_EXPR:
|
|
{
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 1), flags);
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 2), flags);
|
|
return;
|
|
}
|
|
|
|
case BLOCK:
|
|
case FUNCTION_DECL:
|
|
case EXC_PTR_EXPR:
|
|
case FILTER_EXPR:
|
|
case LABEL_DECL:
|
|
case CONST_DECL:
|
|
case OMP_PARALLEL:
|
|
case OMP_SECTIONS:
|
|
case OMP_FOR:
|
|
case OMP_SINGLE:
|
|
case OMP_MASTER:
|
|
case OMP_ORDERED:
|
|
case OMP_CRITICAL:
|
|
case OMP_RETURN:
|
|
case OMP_CONTINUE:
|
|
/* Expressions that make no memory references. */
|
|
return;
|
|
|
|
default:
|
|
if (class == tcc_unary)
|
|
goto do_unary;
|
|
if (class == tcc_binary || class == tcc_comparison)
|
|
goto do_binary;
|
|
if (class == tcc_constant || class == tcc_type)
|
|
return;
|
|
}
|
|
|
|
/* If we get here, something has gone wrong. */
|
|
#ifdef ENABLE_CHECKING
|
|
fprintf (stderr, "unhandled expression in get_expr_operands():\n");
|
|
debug_tree (expr);
|
|
fputs ("\n", stderr);
|
|
#endif
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
|
|
/* Parse STMT looking for operands. When finished, the various
|
|
build_* operand vectors will have potential operands in them. */
|
|
|
|
static void
|
|
parse_ssa_operands (tree stmt)
|
|
{
|
|
enum tree_code code;
|
|
|
|
code = TREE_CODE (stmt);
|
|
switch (code)
|
|
{
|
|
case MODIFY_EXPR:
|
|
get_modify_expr_operands (stmt, stmt);
|
|
break;
|
|
|
|
case COND_EXPR:
|
|
get_expr_operands (stmt, &COND_EXPR_COND (stmt), opf_none);
|
|
break;
|
|
|
|
case SWITCH_EXPR:
|
|
get_expr_operands (stmt, &SWITCH_COND (stmt), opf_none);
|
|
break;
|
|
|
|
case ASM_EXPR:
|
|
get_asm_expr_operands (stmt);
|
|
break;
|
|
|
|
case RETURN_EXPR:
|
|
get_expr_operands (stmt, &TREE_OPERAND (stmt, 0), opf_none);
|
|
break;
|
|
|
|
case GOTO_EXPR:
|
|
get_expr_operands (stmt, &GOTO_DESTINATION (stmt), opf_none);
|
|
break;
|
|
|
|
case LABEL_EXPR:
|
|
get_expr_operands (stmt, &LABEL_EXPR_LABEL (stmt), opf_none);
|
|
break;
|
|
|
|
case BIND_EXPR:
|
|
case CASE_LABEL_EXPR:
|
|
case TRY_CATCH_EXPR:
|
|
case TRY_FINALLY_EXPR:
|
|
case EH_FILTER_EXPR:
|
|
case CATCH_EXPR:
|
|
case RESX_EXPR:
|
|
/* These nodes contain no variable references. */
|
|
break;
|
|
|
|
default:
|
|
/* Notice that if get_expr_operands tries to use &STMT as the
|
|
operand pointer (which may only happen for USE operands), we
|
|
will fail in add_stmt_operand. This default will handle
|
|
statements like empty statements, or CALL_EXPRs that may
|
|
appear on the RHS of a statement or as statements themselves. */
|
|
get_expr_operands (stmt, &stmt, opf_none);
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
/* Create an operands cache for STMT. */
|
|
|
|
static void
|
|
build_ssa_operands (tree stmt)
|
|
{
|
|
stmt_ann_t ann = get_stmt_ann (stmt);
|
|
|
|
/* Initially assume that the statement has no volatile operands and
|
|
does not take the address of any symbols. */
|
|
if (ann)
|
|
{
|
|
ann->has_volatile_ops = false;
|
|
if (ann->addresses_taken)
|
|
ann->addresses_taken = NULL;
|
|
}
|
|
|
|
start_ssa_stmt_operands ();
|
|
|
|
parse_ssa_operands (stmt);
|
|
operand_build_sort_virtual (build_vuses);
|
|
operand_build_sort_virtual (build_v_may_defs);
|
|
operand_build_sort_virtual (build_v_must_defs);
|
|
|
|
finalize_ssa_stmt_operands (stmt);
|
|
}
|
|
|
|
|
|
/* Free any operands vectors in OPS. */
|
|
|
|
void
|
|
free_ssa_operands (stmt_operands_p ops)
|
|
{
|
|
ops->def_ops = NULL;
|
|
ops->use_ops = NULL;
|
|
ops->maydef_ops = NULL;
|
|
ops->mustdef_ops = NULL;
|
|
ops->vuse_ops = NULL;
|
|
}
|
|
|
|
|
|
/* Get the operands of statement STMT. */
|
|
|
|
void
|
|
update_stmt_operands (tree stmt)
|
|
{
|
|
stmt_ann_t ann = get_stmt_ann (stmt);
|
|
|
|
/* If update_stmt_operands is called before SSA is initialized, do
|
|
nothing. */
|
|
if (!ssa_operands_active ())
|
|
return;
|
|
|
|
/* The optimizers cannot handle statements that are nothing but a
|
|
_DECL. This indicates a bug in the gimplifier. */
|
|
gcc_assert (!SSA_VAR_P (stmt));
|
|
|
|
gcc_assert (ann->modified);
|
|
|
|
timevar_push (TV_TREE_OPS);
|
|
|
|
build_ssa_operands (stmt);
|
|
|
|
/* Clear the modified bit for STMT. */
|
|
ann->modified = 0;
|
|
|
|
timevar_pop (TV_TREE_OPS);
|
|
}
|
|
|
|
|
|
/* Copies virtual operands from SRC to DST. */
|
|
|
|
void
|
|
copy_virtual_operands (tree dest, tree src)
|
|
{
|
|
tree t;
|
|
ssa_op_iter iter, old_iter;
|
|
use_operand_p use_p, u2;
|
|
def_operand_p def_p, d2;
|
|
|
|
build_ssa_operands (dest);
|
|
|
|
/* Copy all the virtual fields. */
|
|
FOR_EACH_SSA_TREE_OPERAND (t, src, iter, SSA_OP_VUSE)
|
|
append_vuse (t);
|
|
FOR_EACH_SSA_TREE_OPERAND (t, src, iter, SSA_OP_VMAYDEF)
|
|
append_v_may_def (t);
|
|
FOR_EACH_SSA_TREE_OPERAND (t, src, iter, SSA_OP_VMUSTDEF)
|
|
append_v_must_def (t);
|
|
|
|
if (VEC_length (tree, build_vuses) == 0
|
|
&& VEC_length (tree, build_v_may_defs) == 0
|
|
&& VEC_length (tree, build_v_must_defs) == 0)
|
|
return;
|
|
|
|
/* Now commit the virtual operands to this stmt. */
|
|
finalize_ssa_v_must_defs (dest);
|
|
finalize_ssa_v_may_defs (dest);
|
|
finalize_ssa_vuses (dest);
|
|
|
|
/* Finally, set the field to the same values as then originals. */
|
|
t = op_iter_init_tree (&old_iter, src, SSA_OP_VUSE);
|
|
FOR_EACH_SSA_USE_OPERAND (use_p, dest, iter, SSA_OP_VUSE)
|
|
{
|
|
gcc_assert (!op_iter_done (&old_iter));
|
|
SET_USE (use_p, t);
|
|
t = op_iter_next_tree (&old_iter);
|
|
}
|
|
gcc_assert (op_iter_done (&old_iter));
|
|
|
|
op_iter_init_maydef (&old_iter, src, &u2, &d2);
|
|
FOR_EACH_SSA_MAYDEF_OPERAND (def_p, use_p, dest, iter)
|
|
{
|
|
gcc_assert (!op_iter_done (&old_iter));
|
|
SET_USE (use_p, USE_FROM_PTR (u2));
|
|
SET_DEF (def_p, DEF_FROM_PTR (d2));
|
|
op_iter_next_maymustdef (&u2, &d2, &old_iter);
|
|
}
|
|
gcc_assert (op_iter_done (&old_iter));
|
|
|
|
op_iter_init_mustdef (&old_iter, src, &u2, &d2);
|
|
FOR_EACH_SSA_MUSTDEF_OPERAND (def_p, use_p, dest, iter)
|
|
{
|
|
gcc_assert (!op_iter_done (&old_iter));
|
|
SET_USE (use_p, USE_FROM_PTR (u2));
|
|
SET_DEF (def_p, DEF_FROM_PTR (d2));
|
|
op_iter_next_maymustdef (&u2, &d2, &old_iter);
|
|
}
|
|
gcc_assert (op_iter_done (&old_iter));
|
|
|
|
}
|
|
|
|
|
|
/* Specifically for use in DOM's expression analysis. Given a store, we
|
|
create an artificial stmt which looks like a load from the store, this can
|
|
be used to eliminate redundant loads. OLD_OPS are the operands from the
|
|
store stmt, and NEW_STMT is the new load which represents a load of the
|
|
values stored. */
|
|
|
|
void
|
|
create_ssa_artficial_load_stmt (tree new_stmt, tree old_stmt)
|
|
{
|
|
stmt_ann_t ann;
|
|
tree op;
|
|
ssa_op_iter iter;
|
|
use_operand_p use_p;
|
|
unsigned x;
|
|
|
|
ann = get_stmt_ann (new_stmt);
|
|
|
|
/* Process the stmt looking for operands. */
|
|
start_ssa_stmt_operands ();
|
|
parse_ssa_operands (new_stmt);
|
|
|
|
for (x = 0; x < VEC_length (tree, build_vuses); x++)
|
|
{
|
|
tree t = VEC_index (tree, build_vuses, x);
|
|
if (TREE_CODE (t) != SSA_NAME)
|
|
{
|
|
var_ann_t ann = var_ann (t);
|
|
ann->in_vuse_list = 0;
|
|
}
|
|
}
|
|
|
|
for (x = 0; x < VEC_length (tree, build_v_may_defs); x++)
|
|
{
|
|
tree t = VEC_index (tree, build_v_may_defs, x);
|
|
if (TREE_CODE (t) != SSA_NAME)
|
|
{
|
|
var_ann_t ann = var_ann (t);
|
|
ann->in_v_may_def_list = 0;
|
|
}
|
|
}
|
|
|
|
/* Remove any virtual operands that were found. */
|
|
VEC_truncate (tree, build_v_may_defs, 0);
|
|
VEC_truncate (tree, build_v_must_defs, 0);
|
|
VEC_truncate (tree, build_vuses, 0);
|
|
|
|
/* For each VDEF on the original statement, we want to create a
|
|
VUSE of the V_MAY_DEF result or V_MUST_DEF op on the new
|
|
statement. */
|
|
FOR_EACH_SSA_TREE_OPERAND (op, old_stmt, iter,
|
|
(SSA_OP_VMAYDEF | SSA_OP_VMUSTDEF))
|
|
append_vuse (op);
|
|
|
|
/* Now build the operands for this new stmt. */
|
|
finalize_ssa_stmt_operands (new_stmt);
|
|
|
|
/* All uses in this fake stmt must not be in the immediate use lists. */
|
|
FOR_EACH_SSA_USE_OPERAND (use_p, new_stmt, iter, SSA_OP_ALL_USES)
|
|
delink_imm_use (use_p);
|
|
}
|
|
|
|
|
|
/* Swap operands EXP0 and EXP1 in statement STMT. No attempt is done
|
|
to test the validity of the swap operation. */
|
|
|
|
void
|
|
swap_tree_operands (tree stmt, tree *exp0, tree *exp1)
|
|
{
|
|
tree op0, op1;
|
|
op0 = *exp0;
|
|
op1 = *exp1;
|
|
|
|
/* If the operand cache is active, attempt to preserve the relative
|
|
positions of these two operands in their respective immediate use
|
|
lists. */
|
|
if (ssa_operands_active () && op0 != op1)
|
|
{
|
|
use_optype_p use0, use1, ptr;
|
|
use0 = use1 = NULL;
|
|
|
|
/* Find the 2 operands in the cache, if they are there. */
|
|
for (ptr = USE_OPS (stmt); ptr; ptr = ptr->next)
|
|
if (USE_OP_PTR (ptr)->use == exp0)
|
|
{
|
|
use0 = ptr;
|
|
break;
|
|
}
|
|
|
|
for (ptr = USE_OPS (stmt); ptr; ptr = ptr->next)
|
|
if (USE_OP_PTR (ptr)->use == exp1)
|
|
{
|
|
use1 = ptr;
|
|
break;
|
|
}
|
|
|
|
/* If both uses don't have operand entries, there isn't much we can do
|
|
at this point. Presumably we don't need to worry about it. */
|
|
if (use0 && use1)
|
|
{
|
|
tree *tmp = USE_OP_PTR (use1)->use;
|
|
USE_OP_PTR (use1)->use = USE_OP_PTR (use0)->use;
|
|
USE_OP_PTR (use0)->use = tmp;
|
|
}
|
|
}
|
|
|
|
/* Now swap the data. */
|
|
*exp0 = op1;
|
|
*exp1 = op0;
|
|
}
|
|
|
|
|
|
/* Add the base address of REF to the set *ADDRESSES_TAKEN. If
|
|
*ADDRESSES_TAKEN is NULL, a new set is created. REF may be
|
|
a single variable whose address has been taken or any other valid
|
|
GIMPLE memory reference (structure reference, array, etc). If the
|
|
base address of REF is a decl that has sub-variables, also add all
|
|
of its sub-variables. */
|
|
|
|
void
|
|
add_to_addressable_set (tree ref, bitmap *addresses_taken)
|
|
{
|
|
tree var;
|
|
subvar_t svars;
|
|
|
|
gcc_assert (addresses_taken);
|
|
|
|
/* Note that it is *NOT OKAY* to use the target of a COMPONENT_REF
|
|
as the only thing we take the address of. If VAR is a structure,
|
|
taking the address of a field means that the whole structure may
|
|
be referenced using pointer arithmetic. See PR 21407 and the
|
|
ensuing mailing list discussion. */
|
|
var = get_base_address (ref);
|
|
if (var && SSA_VAR_P (var))
|
|
{
|
|
if (*addresses_taken == NULL)
|
|
*addresses_taken = BITMAP_GGC_ALLOC ();
|
|
|
|
if (var_can_have_subvars (var)
|
|
&& (svars = get_subvars_for_var (var)))
|
|
{
|
|
subvar_t sv;
|
|
for (sv = svars; sv; sv = sv->next)
|
|
{
|
|
bitmap_set_bit (*addresses_taken, DECL_UID (sv->var));
|
|
TREE_ADDRESSABLE (sv->var) = 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
bitmap_set_bit (*addresses_taken, DECL_UID (var));
|
|
TREE_ADDRESSABLE (var) = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Scan the immediate_use list for VAR making sure its linked properly.
|
|
Return TRUE if there is a problem and emit an error message to F. */
|
|
|
|
bool
|
|
verify_imm_links (FILE *f, tree var)
|
|
{
|
|
use_operand_p ptr, prev, list;
|
|
int count;
|
|
|
|
gcc_assert (TREE_CODE (var) == SSA_NAME);
|
|
|
|
list = &(SSA_NAME_IMM_USE_NODE (var));
|
|
gcc_assert (list->use == NULL);
|
|
|
|
if (list->prev == NULL)
|
|
{
|
|
gcc_assert (list->next == NULL);
|
|
return false;
|
|
}
|
|
|
|
prev = list;
|
|
count = 0;
|
|
for (ptr = list->next; ptr != list; )
|
|
{
|
|
if (prev != ptr->prev)
|
|
goto error;
|
|
|
|
if (ptr->use == NULL)
|
|
goto error; /* 2 roots, or SAFE guard node. */
|
|
else if (*(ptr->use) != var)
|
|
goto error;
|
|
|
|
prev = ptr;
|
|
ptr = ptr->next;
|
|
|
|
/* Avoid infinite loops. 50,000,000 uses probably indicates a
|
|
problem. */
|
|
if (count++ > 50000000)
|
|
goto error;
|
|
}
|
|
|
|
/* Verify list in the other direction. */
|
|
prev = list;
|
|
for (ptr = list->prev; ptr != list; )
|
|
{
|
|
if (prev != ptr->next)
|
|
goto error;
|
|
prev = ptr;
|
|
ptr = ptr->prev;
|
|
if (count-- < 0)
|
|
goto error;
|
|
}
|
|
|
|
if (count != 0)
|
|
goto error;
|
|
|
|
return false;
|
|
|
|
error:
|
|
if (ptr->stmt && stmt_modified_p (ptr->stmt))
|
|
{
|
|
fprintf (f, " STMT MODIFIED. - <%p> ", (void *)ptr->stmt);
|
|
print_generic_stmt (f, ptr->stmt, TDF_SLIM);
|
|
}
|
|
fprintf (f, " IMM ERROR : (use_p : tree - %p:%p)", (void *)ptr,
|
|
(void *)ptr->use);
|
|
print_generic_expr (f, USE_FROM_PTR (ptr), TDF_SLIM);
|
|
fprintf(f, "\n");
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Dump all the immediate uses to FILE. */
|
|
|
|
void
|
|
dump_immediate_uses_for (FILE *file, tree var)
|
|
{
|
|
imm_use_iterator iter;
|
|
use_operand_p use_p;
|
|
|
|
gcc_assert (var && TREE_CODE (var) == SSA_NAME);
|
|
|
|
print_generic_expr (file, var, TDF_SLIM);
|
|
fprintf (file, " : -->");
|
|
if (has_zero_uses (var))
|
|
fprintf (file, " no uses.\n");
|
|
else
|
|
if (has_single_use (var))
|
|
fprintf (file, " single use.\n");
|
|
else
|
|
fprintf (file, "%d uses.\n", num_imm_uses (var));
|
|
|
|
FOR_EACH_IMM_USE_FAST (use_p, iter, var)
|
|
{
|
|
if (use_p->stmt == NULL && use_p->use == NULL)
|
|
fprintf (file, "***end of stmt iterator marker***\n");
|
|
else
|
|
if (!is_gimple_reg (USE_FROM_PTR (use_p)))
|
|
print_generic_stmt (file, USE_STMT (use_p), TDF_VOPS);
|
|
else
|
|
print_generic_stmt (file, USE_STMT (use_p), TDF_SLIM);
|
|
}
|
|
fprintf(file, "\n");
|
|
}
|
|
|
|
|
|
/* Dump all the immediate uses to FILE. */
|
|
|
|
void
|
|
dump_immediate_uses (FILE *file)
|
|
{
|
|
tree var;
|
|
unsigned int x;
|
|
|
|
fprintf (file, "Immediate_uses: \n\n");
|
|
for (x = 1; x < num_ssa_names; x++)
|
|
{
|
|
var = ssa_name(x);
|
|
if (!var)
|
|
continue;
|
|
dump_immediate_uses_for (file, var);
|
|
}
|
|
}
|
|
|
|
|
|
/* Dump def-use edges on stderr. */
|
|
|
|
void
|
|
debug_immediate_uses (void)
|
|
{
|
|
dump_immediate_uses (stderr);
|
|
}
|
|
|
|
|
|
/* Dump def-use edges on stderr. */
|
|
|
|
void
|
|
debug_immediate_uses_for (tree var)
|
|
{
|
|
dump_immediate_uses_for (stderr, var);
|
|
}
|
|
|
|
#include "gt-tree-ssa-operands.h"
|