freebsd-dev/sys/dev/mfi/mfi.c
Scott Long 2e21a3ef7e Add a driver for the new LSI MegaRAID SAS controller family. The 'MFI' name
is derived from the phrase 'MegaRAID Firmware Interface' used by LSI.  This
driver provides a block interface to logical disks on the card and a minimal
management device.  It is MPSAFE, INTR_FAST, and 64-bit capable.

Thanks to Dell for providing hardware to test with and IronPort for
sponsoring the work.

Sponsored by: Dell, Ironport
MFC After: 3 days
2006-03-25 06:14:32 +00:00

1266 lines
33 KiB
C

/*-
* Copyright (c) 2006 IronPort Systems
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_mfi.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/eventhandler.h>
#include <sys/rman.h>
#include <sys/bus_dma.h>
#include <sys/bio.h>
#include <sys/ioccom.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <dev/mfi/mfireg.h>
#include <dev/mfi/mfi_ioctl.h>
#include <dev/mfi/mfivar.h>
static int mfi_alloc_commands(struct mfi_softc *);
static void mfi_release_command(struct mfi_command *cm);
static int mfi_comms_init(struct mfi_softc *);
static int mfi_polled_command(struct mfi_softc *, struct mfi_command *);
static int mfi_get_controller_info(struct mfi_softc *);
static void mfi_data_cb(void *, bus_dma_segment_t *, int, int);
static void mfi_startup(void *arg);
static void mfi_intr(void *arg);
static void mfi_enable_intr(struct mfi_softc *sc);
static void mfi_ldprobe_inq(struct mfi_softc *sc);
static void mfi_ldprobe_inq_complete(struct mfi_command *);
static int mfi_ldprobe_capacity(struct mfi_softc *sc, int id);
static void mfi_ldprobe_capacity_complete(struct mfi_command *);
static int mfi_ldprobe_tur(struct mfi_softc *sc, int id);
static void mfi_ldprobe_tur_complete(struct mfi_command *);
static int mfi_add_ld(struct mfi_softc *sc, int id, uint64_t, uint32_t);
static struct mfi_command * mfi_bio_command(struct mfi_softc *);
static void mfi_bio_complete(struct mfi_command *);
static int mfi_mapcmd(struct mfi_softc *, struct mfi_command *);
static int mfi_send_frame(struct mfi_softc *, struct mfi_command *);
static void mfi_complete(struct mfi_softc *, struct mfi_command *);
/* Management interface */
static d_open_t mfi_open;
static d_close_t mfi_close;
static d_ioctl_t mfi_ioctl;
static struct cdevsw mfi_cdevsw = {
.d_version = D_VERSION,
.d_flags = 0,
.d_open = mfi_open,
.d_close = mfi_close,
.d_ioctl = mfi_ioctl,
.d_name = "mfi",
};
MALLOC_DEFINE(M_MFIBUF, "mfibuf", "Buffers for the MFI driver");
#define MFI_INQ_LENGTH SHORT_INQUIRY_LENGTH
static int
mfi_transition_firmware(struct mfi_softc *sc)
{
int32_t fw_state, cur_state;
int max_wait, i;
fw_state = MFI_READ4(sc, MFI_OMSG0) & MFI_FWSTATE_MASK;
while (fw_state != MFI_FWSTATE_READY) {
if (bootverbose)
device_printf(sc->mfi_dev, "Waiting for firmware to "
"become ready\n");
cur_state = fw_state;
switch (fw_state) {
case MFI_FWSTATE_FAULT:
device_printf(sc->mfi_dev, "Firmware fault\n");
return (ENXIO);
case MFI_FWSTATE_WAIT_HANDSHAKE:
MFI_WRITE4(sc, MFI_IDB, MFI_FWINIT_CLEAR_HANDSHAKE);
max_wait = 2;
break;
case MFI_FWSTATE_OPERATIONAL:
MFI_WRITE4(sc, MFI_IDB, MFI_FWINIT_READY);
max_wait = 10;
break;
case MFI_FWSTATE_UNDEFINED:
case MFI_FWSTATE_BB_INIT:
max_wait = 2;
break;
case MFI_FWSTATE_FW_INIT:
case MFI_FWSTATE_DEVICE_SCAN:
case MFI_FWSTATE_FLUSH_CACHE:
max_wait = 20;
break;
default:
device_printf(sc->mfi_dev,"Unknown firmware state %d\n",
fw_state);
return (ENXIO);
}
for (i = 0; i < (max_wait * 10); i++) {
fw_state = MFI_READ4(sc, MFI_OMSG0) & MFI_FWSTATE_MASK;
if (fw_state == cur_state)
DELAY(100000);
else
break;
}
if (fw_state == cur_state) {
device_printf(sc->mfi_dev, "firmware stuck in state "
"%#x\n", fw_state);
return (ENXIO);
}
}
return (0);
}
static void
mfi_addr32_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
uint32_t *addr;
addr = arg;
*addr = segs[0].ds_addr;
}
int
mfi_attach(struct mfi_softc *sc)
{
uint32_t status;
int error, commsz, framessz, sensesz;
int frames, unit;
mtx_init(&sc->mfi_io_lock, "MFI I/O lock", NULL, MTX_DEF);
TAILQ_INIT(&sc->mfi_ld_tqh);
mfi_initq_free(sc);
mfi_initq_ready(sc);
mfi_initq_busy(sc);
mfi_initq_bio(sc);
/* Before we get too far, see if the firmware is working */
if ((error = mfi_transition_firmware(sc)) != 0) {
device_printf(sc->mfi_dev, "Firmware not in READY state, "
"error %d\n", error);
return (ENXIO);
}
/*
* Get information needed for sizing the contiguous memory for the
* frame pool. Size down the sgl parameter since we know that
* we will never need more than what's required for MAXPHYS.
* It would be nice if these constants were available at runtime
* instead of compile time.
*/
status = MFI_READ4(sc, MFI_OMSG0);
sc->mfi_max_fw_cmds = status & MFI_FWSTATE_MAXCMD_MASK;
sc->mfi_max_fw_sgl = (status & MFI_FWSTATE_MAXSGL_MASK) >> 16;
sc->mfi_total_sgl = min(sc->mfi_max_fw_sgl, ((MAXPHYS / PAGE_SIZE) +1));
/*
* Create the dma tag for data buffers. Used both for block I/O
* and for various internal data queries.
*/
if (bus_dma_tag_create( sc->mfi_parent_dmat, /* parent */
1, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
sc->mfi_total_sgl, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
busdma_lock_mutex, /* lockfunc */
&sc->mfi_io_lock, /* lockfuncarg */
&sc->mfi_buffer_dmat)) {
device_printf(sc->mfi_dev, "Cannot allocate buffer DMA tag\n");
return (ENOMEM);
}
/*
* Allocate DMA memory for the comms queues. Keep it under 4GB for
* efficiency. The mfi_hwcomms struct includes space for 1 reply queue
* entry, so the calculated size here will be will be 1 more than
* mfi_max_fw_cmds. This is apparently a requirement of the hardware.
*/
commsz = (sizeof(uint32_t) * sc->mfi_max_fw_cmds) +
sizeof(struct mfi_hwcomms);
if (bus_dma_tag_create( sc->mfi_parent_dmat, /* parent */
1, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
commsz, /* maxsize */
1, /* msegments */
commsz, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->mfi_comms_dmat)) {
device_printf(sc->mfi_dev, "Cannot allocate comms DMA tag\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->mfi_comms_dmat, (void **)&sc->mfi_comms,
BUS_DMA_NOWAIT, &sc->mfi_comms_dmamap)) {
device_printf(sc->mfi_dev, "Cannot allocate comms memory\n");
return (ENOMEM);
}
bzero(sc->mfi_comms, commsz);
bus_dmamap_load(sc->mfi_comms_dmat, sc->mfi_comms_dmamap,
sc->mfi_comms, commsz, mfi_addr32_cb, &sc->mfi_comms_busaddr, 0);
/*
* Allocate DMA memory for the command frames. Keep them in the
* lower 4GB for efficiency. Calculate the size of the frames at
* the same time; the frame is 64 bytes plus space for the SG lists.
* The assumption here is that the SG list will start at the second
* 64 byte segment of the frame and not use the unused bytes in the
* frame. While this might seem wasteful, apparently the frames must
* be 64 byte aligned, so any savings would be negated by the extra
* alignment padding.
*/
if (sizeof(bus_addr_t) == 8) {
sc->mfi_sgsize = sizeof(struct mfi_sg64);
sc->mfi_flags |= MFI_FLAGS_SG64;
} else {
sc->mfi_sgsize = sizeof(struct mfi_sg64);
}
frames = (sc->mfi_sgsize * sc->mfi_total_sgl + MFI_FRAME_SIZE - 1) /
MFI_FRAME_SIZE + 1;
sc->mfi_frame_size = frames * MFI_FRAME_SIZE;
framessz = sc->mfi_frame_size * sc->mfi_max_fw_cmds;
if (bus_dma_tag_create( sc->mfi_parent_dmat, /* parent */
64, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
framessz, /* maxsize */
1, /* nsegments */
framessz, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->mfi_frames_dmat)) {
device_printf(sc->mfi_dev, "Cannot allocate frame DMA tag\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->mfi_frames_dmat, (void **)&sc->mfi_frames,
BUS_DMA_NOWAIT, &sc->mfi_frames_dmamap)) {
device_printf(sc->mfi_dev, "Cannot allocate frames memory\n");
return (ENOMEM);
}
bzero(sc->mfi_frames, framessz);
bus_dmamap_load(sc->mfi_frames_dmat, sc->mfi_frames_dmamap,
sc->mfi_frames, framessz, mfi_addr32_cb, &sc->mfi_frames_busaddr,0);
/*
* Allocate DMA memory for the frame sense data. Keep them in the
* lower 4GB for efficiency
*/
sensesz = sc->mfi_max_fw_cmds * MFI_SENSE_LEN;
if (bus_dma_tag_create( sc->mfi_parent_dmat, /* parent */
4, 0, /* algnmnt, boundary */
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
sensesz, /* maxsize */
1, /* nsegments */
sensesz, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->mfi_sense_dmat)) {
device_printf(sc->mfi_dev, "Cannot allocate sense DMA tag\n");
return (ENOMEM);
}
if (bus_dmamem_alloc(sc->mfi_sense_dmat, (void **)&sc->mfi_sense,
BUS_DMA_NOWAIT, &sc->mfi_sense_dmamap)) {
device_printf(sc->mfi_dev, "Cannot allocate sense memory\n");
return (ENOMEM);
}
bus_dmamap_load(sc->mfi_sense_dmat, sc->mfi_sense_dmamap,
sc->mfi_sense, sensesz, mfi_addr32_cb, &sc->mfi_sense_busaddr, 0);
if ((error = mfi_alloc_commands(sc)) != 0)
return (error);
if ((error = mfi_comms_init(sc)) != 0)
return (error);
if ((error = mfi_get_controller_info(sc)) != 0)
return (error);
#if 0
if ((error = mfi_setup_aen(sc)) != 0)
return (error);
#endif
/*
* Set up the interrupt handler. XXX This should happen in
* mfi_pci.c
*/
sc->mfi_irq_rid = 0;
if ((sc->mfi_irq = bus_alloc_resource_any(sc->mfi_dev, SYS_RES_IRQ,
&sc->mfi_irq_rid, RF_SHAREABLE | RF_ACTIVE)) == NULL) {
device_printf(sc->mfi_dev, "Cannot allocate interrupt\n");
return (EINVAL);
}
if (bus_setup_intr(sc->mfi_dev, sc->mfi_irq, INTR_MPSAFE|INTR_TYPE_BIO,
mfi_intr, sc, &sc->mfi_intr)) {
device_printf(sc->mfi_dev, "Cannot set up interrupt\n");
return (EINVAL);
}
/* Register a config hook to probe the bus for arrays */
sc->mfi_ich.ich_func = mfi_startup;
sc->mfi_ich.ich_arg = sc;
if (config_intrhook_establish(&sc->mfi_ich) != 0) {
device_printf(sc->mfi_dev, "Cannot establish configuration "
"hook\n");
return (EINVAL);
}
/*
* Register a shutdown handler.
*/
if ((sc->mfi_eh = EVENTHANDLER_REGISTER(shutdown_final, mfi_shutdown,
sc, SHUTDOWN_PRI_DEFAULT)) == NULL) {
device_printf(sc->mfi_dev, "Warning: shutdown event "
"registration failed\n");
}
/*
* Create the control device for doing management
*/
unit = device_get_unit(sc->mfi_dev);
sc->mfi_cdev = make_dev(&mfi_cdevsw, unit, UID_ROOT, GID_OPERATOR,
0640, "mfi%d", unit);
if (sc->mfi_cdev != NULL)
sc->mfi_cdev->si_drv1 = sc;
return (0);
}
static int
mfi_alloc_commands(struct mfi_softc *sc)
{
struct mfi_command *cm;
int i, ncmds;
/*
* XXX Should we allocate all the commands up front, or allocate on
* demand later like 'aac' does?
*/
ncmds = sc->mfi_max_fw_cmds;
sc->mfi_commands = malloc(sizeof(struct mfi_command) * ncmds, M_MFIBUF,
M_WAITOK | M_ZERO);
for (i = 0; i < ncmds; i++) {
cm = &sc->mfi_commands[i];
cm->cm_frame = (union mfi_frame *)((uintptr_t)sc->mfi_frames +
sc->mfi_frame_size * i);
cm->cm_frame_busaddr = sc->mfi_frames_busaddr +
sc->mfi_frame_size * i;
cm->cm_frame->header.context = i;
cm->cm_sense = &sc->mfi_sense[i];
cm->cm_sense_busaddr= sc->mfi_sense_busaddr + MFI_SENSE_LEN * i;
cm->cm_sc = sc;
if (bus_dmamap_create(sc->mfi_buffer_dmat, 0,
&cm->cm_dmamap) == 0)
mfi_release_command(cm);
else
break;
sc->mfi_total_cmds++;
}
return (0);
}
static void
mfi_release_command(struct mfi_command *cm)
{
uint32_t *hdr_data;
/*
* Zero out the important fields of the frame, but make sure the
* context field is preserved
*/
hdr_data = (uint32_t *)cm->cm_frame;
hdr_data[0] = 0;
hdr_data[1] = 0;
cm->cm_extra_frames = 0;
cm->cm_flags = 0;
cm->cm_complete = NULL;
cm->cm_private = NULL;
cm->cm_sg = 0;
cm->cm_total_frame_size = 0;
mfi_enqueue_free(cm);
}
static int
mfi_comms_init(struct mfi_softc *sc)
{
struct mfi_command *cm;
struct mfi_init_frame *init;
struct mfi_init_qinfo *qinfo;
int error;
if ((cm = mfi_dequeue_free(sc)) == NULL)
return (EBUSY);
/*
* Abuse the SG list area of the frame to hold the init_qinfo
* object;
*/
init = &cm->cm_frame->init;
qinfo = (struct mfi_init_qinfo *)((uintptr_t)init + MFI_FRAME_SIZE);
bzero(qinfo, sizeof(struct mfi_init_qinfo));
qinfo->rq_entries = sc->mfi_max_fw_cmds + 1;
qinfo->rq_addr_lo = sc->mfi_comms_busaddr +
offsetof(struct mfi_hwcomms, hw_reply_q);
qinfo->pi_addr_lo = sc->mfi_comms_busaddr +
offsetof(struct mfi_hwcomms, hw_pi);
qinfo->ci_addr_lo = sc->mfi_comms_busaddr +
offsetof(struct mfi_hwcomms, hw_ci);
init->header.cmd = MFI_CMD_INIT;
init->header.data_len = sizeof(struct mfi_init_qinfo);
init->qinfo_new_addr_lo = cm->cm_frame_busaddr + MFI_FRAME_SIZE;
if ((error = mfi_polled_command(sc, cm)) != 0) {
device_printf(sc->mfi_dev, "failed to send init command\n");
return (error);
}
mfi_release_command(cm);
return (0);
}
static int
mfi_get_controller_info(struct mfi_softc *sc)
{
struct mfi_command *cm;
struct mfi_dcmd_frame *dcmd;
struct mfi_ctrl_info *ci;
uint32_t max_sectors_1, max_sectors_2;
int error;
if ((cm = mfi_dequeue_free(sc)) == NULL)
return (EBUSY);
ci = malloc(sizeof(struct mfi_ctrl_info), M_MFIBUF, M_NOWAIT | M_ZERO);
if (ci == NULL) {
mfi_release_command(cm);
return (ENOMEM);
}
dcmd = &cm->cm_frame->dcmd;
bzero(dcmd->mbox, MFI_MBOX_SIZE);
dcmd->header.cmd = MFI_CMD_DCMD;
dcmd->header.timeout = 0;
dcmd->header.data_len = sizeof(struct mfi_ctrl_info);
dcmd->opcode = MFI_DCMD_CTRL_GETINFO;
cm->cm_sg = &dcmd->sgl;
cm->cm_total_frame_size = MFI_DCMD_FRAME_SIZE;
cm->cm_flags = MFI_CMD_DATAIN | MFI_CMD_POLLED;
cm->cm_data = ci;
cm->cm_len = sizeof(struct mfi_ctrl_info);
if ((error = mfi_mapcmd(sc, cm)) != 0) {
device_printf(sc->mfi_dev, "Controller info buffer map failed");
free(ci, M_MFIBUF);
mfi_release_command(cm);
return (error);
}
/* It's ok if this fails, just use default info instead */
if ((error = mfi_polled_command(sc, cm)) != 0) {
device_printf(sc->mfi_dev, "Failed to get controller info\n");
sc->mfi_max_io = (sc->mfi_total_sgl - 1) * PAGE_SIZE /
MFI_SECTOR_LEN;
free(ci, M_MFIBUF);
mfi_release_command(cm);
return (0);
}
bus_dmamap_sync(sc->mfi_buffer_dmat, cm->cm_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->mfi_buffer_dmat, cm->cm_dmamap);
max_sectors_1 = (1 << ci->stripe_sz_ops.min) * ci->max_strips_per_io;
max_sectors_2 = ci->max_request_size;
sc->mfi_max_io = min(max_sectors_1, max_sectors_2);
free(ci, M_MFIBUF);
mfi_release_command(cm);
return (error);
}
static int
mfi_polled_command(struct mfi_softc *sc, struct mfi_command *cm)
{
struct mfi_frame_header *hdr;
int tm = MFI_POLL_TIMEOUT_SECS * 1000000;
hdr = &cm->cm_frame->header;
hdr->cmd_status = 0xff;
hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
mfi_send_frame(sc, cm);
while (hdr->cmd_status == 0xff) {
DELAY(1000);
tm -= 1000;
if (tm <= 0)
break;
}
if (hdr->cmd_status == 0xff) {
device_printf(sc->mfi_dev, "Frame %p timed out\n", hdr);
return (ETIMEDOUT);
}
return (0);
}
void
mfi_free(struct mfi_softc *sc)
{
struct mfi_command *cm;
int i;
if (sc->mfi_cdev != NULL)
destroy_dev(sc->mfi_cdev);
if (sc->mfi_total_cmds != 0) {
for (i = 0; i < sc->mfi_total_cmds; i++) {
cm = &sc->mfi_commands[i];
bus_dmamap_destroy(sc->mfi_buffer_dmat, cm->cm_dmamap);
}
free(sc->mfi_commands, M_MFIBUF);
}
if (sc->mfi_intr)
bus_teardown_intr(sc->mfi_dev, sc->mfi_irq, sc->mfi_intr);
if (sc->mfi_irq != NULL)
bus_release_resource(sc->mfi_dev, SYS_RES_IRQ, sc->mfi_irq_rid,
sc->mfi_irq);
if (sc->mfi_sense_busaddr != 0)
bus_dmamap_unload(sc->mfi_sense_dmat, sc->mfi_sense_dmamap);
if (sc->mfi_sense != NULL)
bus_dmamem_free(sc->mfi_sense_dmat, sc->mfi_sense,
sc->mfi_sense_dmamap);
if (sc->mfi_sense_dmat != NULL)
bus_dma_tag_destroy(sc->mfi_sense_dmat);
if (sc->mfi_frames_busaddr != 0)
bus_dmamap_unload(sc->mfi_frames_dmat, sc->mfi_frames_dmamap);
if (sc->mfi_frames != NULL)
bus_dmamem_free(sc->mfi_frames_dmat, sc->mfi_frames,
sc->mfi_frames_dmamap);
if (sc->mfi_frames_dmat != NULL)
bus_dma_tag_destroy(sc->mfi_frames_dmat);
if (sc->mfi_comms_busaddr != 0)
bus_dmamap_unload(sc->mfi_comms_dmat, sc->mfi_comms_dmamap);
if (sc->mfi_comms != NULL)
bus_dmamem_free(sc->mfi_comms_dmat, sc->mfi_comms,
sc->mfi_comms_dmamap);
if (sc->mfi_comms_dmat != NULL)
bus_dma_tag_destroy(sc->mfi_comms_dmat);
if (sc->mfi_buffer_dmat != NULL)
bus_dma_tag_destroy(sc->mfi_buffer_dmat);
if (sc->mfi_parent_dmat != NULL)
bus_dma_tag_destroy(sc->mfi_parent_dmat);
if (mtx_initialized(&sc->mfi_io_lock))
mtx_destroy(&sc->mfi_io_lock);
return;
}
static void
mfi_startup(void *arg)
{
struct mfi_softc *sc;
sc = (struct mfi_softc *)arg;
config_intrhook_disestablish(&sc->mfi_ich);
mfi_enable_intr(sc);
mfi_ldprobe_inq(sc);
}
static void
mfi_intr(void *arg)
{
struct mfi_softc *sc;
struct mfi_command *cm;
uint32_t status, pi, ci, context;
sc = (struct mfi_softc *)arg;
status = MFI_READ4(sc, MFI_OSTS);
if ((status & MFI_OSTS_INTR_VALID) == 0)
return;
MFI_WRITE4(sc, MFI_OSTS, status);
pi = sc->mfi_comms->hw_pi;
ci = sc->mfi_comms->hw_ci;
mtx_lock(&sc->mfi_io_lock);
while (ci != pi) {
context = sc->mfi_comms->hw_reply_q[ci];
sc->mfi_comms->hw_reply_q[ci] = 0xffffffff;
if (context == 0xffffffff) {
device_printf(sc->mfi_dev, "mfi_intr: invalid context "
"pi= %d ci= %d\n", pi, ci);
} else {
cm = &sc->mfi_commands[context];
mfi_remove_busy(cm);
mfi_complete(sc, cm);
}
ci++;
if (ci == (sc->mfi_max_fw_cmds + 1)) {
ci = 0;
}
}
mtx_unlock(&sc->mfi_io_lock);
sc->mfi_comms->hw_ci = ci;
return;
}
int
mfi_shutdown(struct mfi_softc *sc)
{
struct mfi_dcmd_frame *dcmd;
struct mfi_command *cm;
int error;
if ((cm = mfi_dequeue_free(sc)) == NULL)
return (EBUSY);
/* AEN? */
dcmd = &cm->cm_frame->dcmd;
bzero(dcmd->mbox, MFI_MBOX_SIZE);
dcmd->header.cmd = MFI_CMD_DCMD;
dcmd->header.sg_count = 0;
dcmd->header.flags = MFI_FRAME_DIR_NONE;
dcmd->header.timeout = 0;
dcmd->header.data_len = 0;
dcmd->opcode = MFI_DCMD_CTRL_SHUTDOWN;
if ((error = mfi_polled_command(sc, cm)) != 0) {
device_printf(sc->mfi_dev, "Failed to shutdown controller\n");
}
return (error);
}
static void
mfi_enable_intr(struct mfi_softc *sc)
{
MFI_WRITE4(sc, MFI_OMSK, 0x01);
}
static void
mfi_ldprobe_inq(struct mfi_softc *sc)
{
struct mfi_command *cm;
struct mfi_pass_frame *pass;
char *inq;
int i;
/* Probe all possible targets with a SCSI INQ command */
mtx_lock(&sc->mfi_io_lock);
sc->mfi_probe_count = 0;
for (i = 0; i < MFI_MAX_CHANNEL_DEVS; i++) {
inq = malloc(MFI_INQ_LENGTH, M_MFIBUF, M_NOWAIT|M_ZERO);
if (inq == NULL)
break;
cm = mfi_dequeue_free(sc);
if (cm == NULL) {
tsleep(mfi_startup, 0, "mfistart", 5 * hz);
i--;
continue;
}
pass = &cm->cm_frame->pass;
pass->header.cmd = MFI_CMD_LD_SCSI_IO;
pass->header.target_id = i;
pass->header.lun_id = 0;
pass->header.cdb_len = 6;
pass->header.timeout = 0;
pass->header.data_len = MFI_INQ_LENGTH;
bzero(pass->cdb, 16);
pass->cdb[0] = INQUIRY;
pass->cdb[4] = MFI_INQ_LENGTH;
pass->header.sense_len = MFI_SENSE_LEN;
pass->sense_addr_lo = cm->cm_sense_busaddr;
pass->sense_addr_hi = 0;
cm->cm_complete = mfi_ldprobe_inq_complete;
cm->cm_private = inq;
cm->cm_sg = &pass->sgl;
cm->cm_total_frame_size = MFI_PASS_FRAME_SIZE;
cm->cm_flags |= MFI_CMD_DATAIN;
cm->cm_data = inq;
cm->cm_len = MFI_INQ_LENGTH;
sc->mfi_probe_count++;
mfi_enqueue_ready(cm);
mfi_startio(sc);
}
/* Sleep while the arrays are attaching */
msleep(mfi_startup, &sc->mfi_io_lock, 0, "mfistart", 60 * hz);
mtx_unlock(&sc->mfi_io_lock);
return;
}
static void
mfi_ldprobe_inq_complete(struct mfi_command *cm)
{
struct mfi_frame_header *hdr;
struct mfi_softc *sc;
struct scsi_inquiry_data *inq;
sc = cm->cm_sc;
inq = cm->cm_private;
hdr = &cm->cm_frame->header;
if ((hdr->cmd_status != MFI_STAT_OK) || (hdr->scsi_status != 0x00) ||
(SID_TYPE(inq) != T_DIRECT)) {
free(inq, M_MFIBUF);
mfi_release_command(cm);
if (--sc->mfi_probe_count <= 0)
wakeup(mfi_startup);
return;
}
free(inq, M_MFIBUF);
mfi_release_command(cm);
mfi_ldprobe_tur(sc, hdr->target_id);
}
static int
mfi_ldprobe_tur(struct mfi_softc *sc, int id)
{
struct mfi_command *cm;
struct mfi_pass_frame *pass;
cm = mfi_dequeue_free(sc);
if (cm == NULL)
return (EBUSY);
pass = &cm->cm_frame->pass;
pass->header.cmd = MFI_CMD_LD_SCSI_IO;
pass->header.target_id = id;
pass->header.lun_id = 0;
pass->header.cdb_len = 6;
pass->header.timeout = 0;
pass->header.data_len = 0;
bzero(pass->cdb, 16);
pass->cdb[0] = TEST_UNIT_READY;
pass->header.sense_len = MFI_SENSE_LEN;
pass->sense_addr_lo = cm->cm_sense_busaddr;
pass->sense_addr_hi = 0;
cm->cm_complete = mfi_ldprobe_tur_complete;
cm->cm_total_frame_size = MFI_PASS_FRAME_SIZE;
cm->cm_flags = 0;
mfi_enqueue_ready(cm);
mfi_startio(sc);
return (0);
}
static void
mfi_ldprobe_tur_complete(struct mfi_command *cm)
{
struct mfi_frame_header *hdr;
struct mfi_softc *sc;
sc = cm->cm_sc;
hdr = &cm->cm_frame->header;
if ((hdr->cmd_status != MFI_STAT_OK) || (hdr->scsi_status != 0x00)) {
device_printf(sc->mfi_dev, "Logical disk %d is not ready, "
"cmd_status= %d scsi_status= %d\n", hdr->target_id,
hdr->cmd_status, hdr->scsi_status);
mfi_print_sense(sc, cm->cm_sense);
mfi_release_command(cm);
if (--sc->mfi_probe_count <= 0)
wakeup(mfi_startup);
return;
}
mfi_release_command(cm);
mfi_ldprobe_capacity(sc, hdr->target_id);
}
static int
mfi_ldprobe_capacity(struct mfi_softc *sc, int id)
{
struct mfi_command *cm;
struct mfi_pass_frame *pass;
struct scsi_read_capacity_data_long *cap;
cap = malloc(sizeof(*cap), M_MFIBUF, M_NOWAIT|M_ZERO);
if (cap == NULL)
return (ENOMEM);
cm = mfi_dequeue_free(sc);
if (cm == NULL)
return (EBUSY);
pass = &cm->cm_frame->pass;
pass->header.cmd = MFI_CMD_LD_SCSI_IO;
pass->header.target_id = id;
pass->header.lun_id = 0;
pass->header.cdb_len = 6;
pass->header.timeout = 0;
pass->header.data_len = sizeof(*cap);
bzero(pass->cdb, 16);
pass->cdb[0] = 0x9e; /* READ CAPACITY 16 */
pass->cdb[13] = sizeof(*cap);
pass->header.sense_len = MFI_SENSE_LEN;
pass->sense_addr_lo = cm->cm_sense_busaddr;
pass->sense_addr_hi = 0;
cm->cm_complete = mfi_ldprobe_capacity_complete;
cm->cm_private = cap;
cm->cm_sg = &pass->sgl;
cm->cm_total_frame_size = MFI_PASS_FRAME_SIZE;
cm->cm_flags |= MFI_CMD_DATAIN;
cm->cm_data = cap;
cm->cm_len = sizeof(*cap);
mfi_enqueue_ready(cm);
mfi_startio(sc);
return (0);
}
static void
mfi_ldprobe_capacity_complete(struct mfi_command *cm)
{
struct mfi_frame_header *hdr;
struct mfi_softc *sc;
struct scsi_read_capacity_data_long *cap;
uint64_t sectors;
uint32_t secsize;
int target;
sc = cm->cm_sc;
cap = cm->cm_private;
hdr = &cm->cm_frame->header;
if ((hdr->cmd_status != MFI_STAT_OK) || (hdr->scsi_status != 0x00)) {
device_printf(sc->mfi_dev, "Failed to read capacity for "
"logical disk\n");
device_printf(sc->mfi_dev, "cmd_status= %d scsi_status= %d\n",
hdr->cmd_status, hdr->scsi_status);
free(cap, M_MFIBUF);
mfi_release_command(cm);
if (--sc->mfi_probe_count <= 0)
wakeup(mfi_startup);
return;
}
target = hdr->target_id;
sectors = scsi_8btou64(cap->addr);
secsize = scsi_4btoul(cap->length);
free(cap, M_MFIBUF);
mfi_release_command(cm);
mfi_add_ld(sc, target, sectors, secsize);
if (--sc->mfi_probe_count <= 0)
wakeup(mfi_startup);
return;
}
static int
mfi_add_ld(struct mfi_softc *sc, int id, uint64_t sectors, uint32_t secsize)
{
struct mfi_ld *ld;
device_t child;
ld = malloc(sizeof(struct mfi_ld), M_MFIBUF, M_NOWAIT|M_ZERO);
if (ld == NULL) {
device_printf(sc->mfi_dev, "Cannot allocate ld\n");
return (ENOMEM);
}
if ((child = device_add_child(sc->mfi_dev, "mfid", -1)) == NULL) {
device_printf(sc->mfi_dev, "Failed to add logical disk\n");
return (EINVAL);
}
ld->ld_id = id;
ld->ld_disk = child;
ld->ld_secsize = secsize;
ld->ld_sectors = sectors;
device_set_ivars(child, ld);
device_set_desc(child, "MFI Logical Disk");
TAILQ_INSERT_TAIL(&sc->mfi_ld_tqh, ld, ld_link);
mtx_unlock(&sc->mfi_io_lock);
mtx_lock(&Giant);
bus_generic_attach(sc->mfi_dev);
mtx_unlock(&Giant);
mtx_lock(&sc->mfi_io_lock);
return (0);
}
static struct mfi_command *
mfi_bio_command(struct mfi_softc *sc)
{
struct mfi_io_frame *io;
struct mfi_command *cm;
struct bio *bio;
int flags, blkcount;;
if ((cm = mfi_dequeue_free(sc)) == NULL)
return (NULL);
if ((bio = mfi_dequeue_bio(sc)) == NULL) {
mfi_release_command(cm);
return (NULL);
}
io = &cm->cm_frame->io;
switch (bio->bio_cmd & 0x03) {
case BIO_READ:
io->header.cmd = MFI_CMD_LD_READ;
flags = MFI_CMD_DATAIN;
break;
case BIO_WRITE:
io->header.cmd = MFI_CMD_LD_WRITE;
flags = MFI_CMD_DATAOUT;
break;
default:
panic("Invalid bio command");
}
/* Cheat with the sector length to avoid a non-constant division */
blkcount = (bio->bio_bcount + MFI_SECTOR_LEN - 1) / MFI_SECTOR_LEN;
io->header.target_id = (uintptr_t)bio->bio_driver1;
io->header.timeout = 0;
io->header.flags = 0;
io->header.sense_len = MFI_SENSE_LEN;
io->header.data_len = blkcount;
io->sense_addr_lo = cm->cm_sense_busaddr;
io->sense_addr_hi = 0;
io->lba_hi = (bio->bio_pblkno & 0xffffffff00000000) >> 32;
io->lba_lo = bio->bio_pblkno & 0xffffffff;
cm->cm_complete = mfi_bio_complete;
cm->cm_private = bio;
cm->cm_data = bio->bio_data;
cm->cm_len = bio->bio_bcount;
cm->cm_sg = &io->sgl;
cm->cm_total_frame_size = MFI_IO_FRAME_SIZE;
cm->cm_flags = flags;
return (cm);
}
static void
mfi_bio_complete(struct mfi_command *cm)
{
struct bio *bio;
struct mfi_frame_header *hdr;
struct mfi_softc *sc;
bio = cm->cm_private;
hdr = &cm->cm_frame->header;
sc = cm->cm_sc;
if ((hdr->cmd_status != 0) || (hdr->scsi_status != 0)) {
bio->bio_flags |= BIO_ERROR;
bio->bio_error = EIO;
device_printf(sc->mfi_dev, "I/O error, status= %d "
"scsi_status= %d\n", hdr->cmd_status, hdr->scsi_status);
mfi_print_sense(cm->cm_sc, cm->cm_sense);
}
mfi_release_command(cm);
mfi_disk_complete(bio);
}
void
mfi_startio(struct mfi_softc *sc)
{
struct mfi_command *cm;
for (;;) {
/* Don't bother if we're short on resources */
if (sc->mfi_flags & MFI_FLAGS_QFRZN)
break;
/* Try a command that has already been prepared */
cm = mfi_dequeue_ready(sc);
/* Nope, so look for work on the bioq */
if (cm == NULL)
cm = mfi_bio_command(sc);
/* No work available, so exit */
if (cm == NULL)
break;
/* Send the command to the controller */
if (mfi_mapcmd(sc, cm) != 0) {
mfi_requeue_ready(cm);
break;
}
}
}
static int
mfi_mapcmd(struct mfi_softc *sc, struct mfi_command *cm)
{
int error, polled;
if (cm->cm_data != NULL) {
polled = (cm->cm_flags & MFI_CMD_POLLED) ? BUS_DMA_NOWAIT : 0;
error = bus_dmamap_load(sc->mfi_buffer_dmat, cm->cm_dmamap,
cm->cm_data, cm->cm_len, mfi_data_cb, cm, polled);
if (error == EINPROGRESS) {
sc->mfi_flags |= MFI_FLAGS_QFRZN;
return (0);
}
} else {
mfi_enqueue_busy(cm);
error = mfi_send_frame(sc, cm);
}
return (error);
}
static void
mfi_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
struct mfi_frame_header *hdr;
struct mfi_command *cm;
struct mfi_softc *sc;
int i, dir;
if (error)
return;
cm = (struct mfi_command *)arg;
sc = cm->cm_sc;
hdr = (struct mfi_frame_header *)cm->cm_frame;
for (i = 0; i < nsegs; i++) {
if ((cm->cm_flags & MFI_FLAGS_SG64) == 0) {
cm->cm_sg->sg32[i].addr = segs[i].ds_addr;
cm->cm_sg->sg32[i].len = segs[i].ds_len;
} else {
cm->cm_sg->sg64[i].addr = segs[i].ds_addr;
cm->cm_sg->sg64[i].len = segs[i].ds_len;
hdr->flags |= MFI_FRAME_SGL64;
}
}
hdr->sg_count = nsegs;
dir = 0;
if (cm->cm_flags & MFI_CMD_DATAIN) {
dir |= BUS_DMASYNC_PREREAD;
hdr->flags |= MFI_FRAME_DIR_READ;
}
if (cm->cm_flags & MFI_CMD_DATAOUT) {
dir |= BUS_DMASYNC_PREWRITE;
hdr->flags |= MFI_FRAME_DIR_WRITE;
}
bus_dmamap_sync(sc->mfi_buffer_dmat, cm->cm_dmamap, dir);
cm->cm_flags |= MFI_CMD_MAPPED;
/*
* Instead of calculating the total number of frames in the
* compound frame, it's already assumed that there will be at
* least 1 frame, so don't compensate for the modulo of the
* following division.
*/
cm->cm_total_frame_size += (sc->mfi_sgsize * nsegs);
cm->cm_extra_frames = (cm->cm_total_frame_size - 1) / MFI_FRAME_SIZE;
/* The caller will take care of delivering polled commands */
if ((cm->cm_flags & MFI_CMD_POLLED) == 0) {
mfi_enqueue_busy(cm);
mfi_send_frame(sc, cm);
}
return;
}
static int
mfi_send_frame(struct mfi_softc *sc, struct mfi_command *cm)
{
/*
* The bus address of the command is aligned on a 64 byte boundary,
* leaving the least 6 bits as zero. For whatever reason, the
* hardware wants the address shifted right by three, leaving just
* 3 zero bits. These three bits are then used to indicate how many
* 64 byte frames beyond the first one are used in the command. The
* extra frames are typically filled with S/G elements. The extra
* frames must also be contiguous. Thus, a compound frame can be at
* most 512 bytes long, allowing for up to 59 32-bit S/G elements or
* 39 64-bit S/G elements for block I/O commands. This means that
* I/O transfers of 256k and higher simply are not possible, which
* is quite odd for such a modern adapter.
*/
MFI_WRITE4(sc, MFI_IQP, (cm->cm_frame_busaddr >> 3) |
cm->cm_extra_frames);
return (0);
}
static void
mfi_complete(struct mfi_softc *sc, struct mfi_command *cm)
{
int dir;
if ((cm->cm_flags & MFI_CMD_MAPPED) != 0) {
dir = 0;
if (cm->cm_flags & MFI_CMD_DATAIN)
dir |= BUS_DMASYNC_POSTREAD;
if (cm->cm_flags & MFI_CMD_DATAOUT)
dir |= BUS_DMASYNC_POSTWRITE;
bus_dmamap_sync(sc->mfi_buffer_dmat, cm->cm_dmamap, dir);
bus_dmamap_unload(sc->mfi_buffer_dmat, cm->cm_dmamap);
cm->cm_flags &= ~MFI_CMD_MAPPED;
}
if (cm->cm_complete != NULL)
cm->cm_complete(cm);
sc->mfi_flags &= ~MFI_FLAGS_QFRZN;
mfi_startio(sc);
}
int
mfi_dump_blocks(struct mfi_softc *sc, int id, uint64_t lba, void *virt, int len)
{
struct mfi_command *cm;
struct mfi_io_frame *io;
int error;
if ((cm = mfi_dequeue_free(sc)) == NULL)
return (EBUSY);
io = &cm->cm_frame->io;
io->header.cmd = MFI_CMD_LD_WRITE;
io->header.target_id = id;
io->header.timeout = 0;
io->header.flags = 0;
io->header.sense_len = MFI_SENSE_LEN;
io->header.data_len = (len + MFI_SECTOR_LEN - 1) / MFI_SECTOR_LEN;
io->sense_addr_lo = cm->cm_sense_busaddr;
io->sense_addr_hi = 0;
io->lba_hi = (lba & 0xffffffff00000000) >> 32;
io->lba_lo = lba & 0xffffffff;
cm->cm_data = virt;
cm->cm_len = len;
cm->cm_sg = &io->sgl;
cm->cm_total_frame_size = MFI_IO_FRAME_SIZE;
cm->cm_flags = MFI_CMD_POLLED | MFI_CMD_DATAOUT;
if ((error = mfi_mapcmd(sc, cm)) != 0) {
mfi_release_command(cm);
return (error);
}
error = mfi_polled_command(sc, cm);
bus_dmamap_sync(sc->mfi_buffer_dmat, cm->cm_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->mfi_buffer_dmat, cm->cm_dmamap);
mfi_release_command(cm);
return (error);
}
static int
mfi_open(struct cdev *dev, int flags, int fmt, d_thread_t *td)
{
struct mfi_softc *sc;
sc = dev->si_drv1;
sc->mfi_flags |= MFI_FLAGS_OPEN;
return (0);
}
static int
mfi_close(struct cdev *dev, int flags, int fmt, d_thread_t *td)
{
struct mfi_softc *sc;
sc = dev->si_drv1;
sc->mfi_flags &= ~MFI_FLAGS_OPEN;
return (0);
}
static int
mfi_ioctl(struct cdev *dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
{
struct mfi_softc *sc;
union mfi_statrequest *ms;
int error;
sc = dev->si_drv1;
error = 0;
switch (cmd) {
case MFIIO_STATS:
ms = (union mfi_statrequest *)arg;
switch (ms->ms_item) {
case MFIQ_FREE:
case MFIQ_BIO:
case MFIQ_READY:
case MFIQ_BUSY:
bcopy(&sc->mfi_qstat[ms->ms_item], &ms->ms_qstat,
sizeof(struct mfi_qstat));
break;
default:
error = ENOENT;
break;
}
break;
default:
error = ENOENT;
break;
}
return (error);
}