8173 lines
250 KiB
C
8173 lines
250 KiB
C
/* Expands front end tree to back end RTL for GCC.
|
||
Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
|
||
1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 2, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
|
||
02111-1307, USA. */
|
||
|
||
/* $FreeBSD$ */
|
||
|
||
/* This file handles the generation of rtl code from tree structure
|
||
at the level of the function as a whole.
|
||
It creates the rtl expressions for parameters and auto variables
|
||
and has full responsibility for allocating stack slots.
|
||
|
||
`expand_function_start' is called at the beginning of a function,
|
||
before the function body is parsed, and `expand_function_end' is
|
||
called after parsing the body.
|
||
|
||
Call `assign_stack_local' to allocate a stack slot for a local variable.
|
||
This is usually done during the RTL generation for the function body,
|
||
but it can also be done in the reload pass when a pseudo-register does
|
||
not get a hard register.
|
||
|
||
Call `put_var_into_stack' when you learn, belatedly, that a variable
|
||
previously given a pseudo-register must in fact go in the stack.
|
||
This function changes the DECL_RTL to be a stack slot instead of a reg
|
||
then scans all the RTL instructions so far generated to correct them. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "rtl.h"
|
||
#include "tree.h"
|
||
#include "flags.h"
|
||
#include "except.h"
|
||
#include "function.h"
|
||
#include "expr.h"
|
||
#include "optabs.h"
|
||
#include "libfuncs.h"
|
||
#include "regs.h"
|
||
#include "hard-reg-set.h"
|
||
#include "insn-config.h"
|
||
#include "recog.h"
|
||
#include "output.h"
|
||
#include "basic-block.h"
|
||
#include "toplev.h"
|
||
#include "hashtab.h"
|
||
#include "ggc.h"
|
||
#include "tm_p.h"
|
||
#include "integrate.h"
|
||
#include "langhooks.h"
|
||
#include "target.h"
|
||
|
||
#ifndef TRAMPOLINE_ALIGNMENT
|
||
#define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
|
||
#endif
|
||
|
||
#ifndef LOCAL_ALIGNMENT
|
||
#define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
|
||
#endif
|
||
|
||
#ifndef STACK_ALIGNMENT_NEEDED
|
||
#define STACK_ALIGNMENT_NEEDED 1
|
||
#endif
|
||
|
||
#define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
|
||
|
||
/* Some systems use __main in a way incompatible with its use in gcc, in these
|
||
cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
|
||
give the same symbol without quotes for an alternative entry point. You
|
||
must define both, or neither. */
|
||
#ifndef NAME__MAIN
|
||
#define NAME__MAIN "__main"
|
||
#endif
|
||
|
||
/* Round a value to the lowest integer less than it that is a multiple of
|
||
the required alignment. Avoid using division in case the value is
|
||
negative. Assume the alignment is a power of two. */
|
||
#define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
|
||
|
||
/* Similar, but round to the next highest integer that meets the
|
||
alignment. */
|
||
#define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
|
||
|
||
/* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
|
||
during rtl generation. If they are different register numbers, this is
|
||
always true. It may also be true if
|
||
FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
|
||
generation. See fix_lexical_addr for details. */
|
||
|
||
#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
|
||
#define NEED_SEPARATE_AP
|
||
#endif
|
||
|
||
/* Nonzero if function being compiled doesn't contain any calls
|
||
(ignoring the prologue and epilogue). This is set prior to
|
||
local register allocation and is valid for the remaining
|
||
compiler passes. */
|
||
int current_function_is_leaf;
|
||
|
||
/* Nonzero if function being compiled doesn't contain any instructions
|
||
that can throw an exception. This is set prior to final. */
|
||
|
||
int current_function_nothrow;
|
||
|
||
/* Nonzero if function being compiled doesn't modify the stack pointer
|
||
(ignoring the prologue and epilogue). This is only valid after
|
||
life_analysis has run. */
|
||
int current_function_sp_is_unchanging;
|
||
|
||
/* Nonzero if the function being compiled is a leaf function which only
|
||
uses leaf registers. This is valid after reload (specifically after
|
||
sched2) and is useful only if the port defines LEAF_REGISTERS. */
|
||
int current_function_uses_only_leaf_regs;
|
||
|
||
/* Nonzero once virtual register instantiation has been done.
|
||
assign_stack_local uses frame_pointer_rtx when this is nonzero.
|
||
calls.c:emit_library_call_value_1 uses it to set up
|
||
post-instantiation libcalls. */
|
||
int virtuals_instantiated;
|
||
|
||
/* Nonzero if at least one trampoline has been created. */
|
||
int trampolines_created;
|
||
|
||
/* Assign unique numbers to labels generated for profiling, debugging, etc. */
|
||
static GTY(()) int funcdef_no;
|
||
|
||
/* These variables hold pointers to functions to create and destroy
|
||
target specific, per-function data structures. */
|
||
struct machine_function * (*init_machine_status) (void);
|
||
|
||
/* The FUNCTION_DECL for an inline function currently being expanded. */
|
||
tree inline_function_decl;
|
||
|
||
/* The currently compiled function. */
|
||
struct function *cfun = 0;
|
||
|
||
/* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
|
||
static GTY(()) varray_type prologue;
|
||
static GTY(()) varray_type epilogue;
|
||
|
||
/* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
|
||
in this function. */
|
||
static GTY(()) varray_type sibcall_epilogue;
|
||
|
||
/* In order to evaluate some expressions, such as function calls returning
|
||
structures in memory, we need to temporarily allocate stack locations.
|
||
We record each allocated temporary in the following structure.
|
||
|
||
Associated with each temporary slot is a nesting level. When we pop up
|
||
one level, all temporaries associated with the previous level are freed.
|
||
Normally, all temporaries are freed after the execution of the statement
|
||
in which they were created. However, if we are inside a ({...}) grouping,
|
||
the result may be in a temporary and hence must be preserved. If the
|
||
result could be in a temporary, we preserve it if we can determine which
|
||
one it is in. If we cannot determine which temporary may contain the
|
||
result, all temporaries are preserved. A temporary is preserved by
|
||
pretending it was allocated at the previous nesting level.
|
||
|
||
Automatic variables are also assigned temporary slots, at the nesting
|
||
level where they are defined. They are marked a "kept" so that
|
||
free_temp_slots will not free them. */
|
||
|
||
struct temp_slot GTY(())
|
||
{
|
||
/* Points to next temporary slot. */
|
||
struct temp_slot *next;
|
||
/* The rtx to used to reference the slot. */
|
||
rtx slot;
|
||
/* The rtx used to represent the address if not the address of the
|
||
slot above. May be an EXPR_LIST if multiple addresses exist. */
|
||
rtx address;
|
||
/* The alignment (in bits) of the slot. */
|
||
unsigned int align;
|
||
/* The size, in units, of the slot. */
|
||
HOST_WIDE_INT size;
|
||
/* The type of the object in the slot, or zero if it doesn't correspond
|
||
to a type. We use this to determine whether a slot can be reused.
|
||
It can be reused if objects of the type of the new slot will always
|
||
conflict with objects of the type of the old slot. */
|
||
tree type;
|
||
/* The value of `sequence_rtl_expr' when this temporary is allocated. */
|
||
tree rtl_expr;
|
||
/* Nonzero if this temporary is currently in use. */
|
||
char in_use;
|
||
/* Nonzero if this temporary has its address taken. */
|
||
char addr_taken;
|
||
/* Nesting level at which this slot is being used. */
|
||
int level;
|
||
/* Nonzero if this should survive a call to free_temp_slots. */
|
||
int keep;
|
||
/* The offset of the slot from the frame_pointer, including extra space
|
||
for alignment. This info is for combine_temp_slots. */
|
||
HOST_WIDE_INT base_offset;
|
||
/* The size of the slot, including extra space for alignment. This
|
||
info is for combine_temp_slots. */
|
||
HOST_WIDE_INT full_size;
|
||
};
|
||
|
||
/* This structure is used to record MEMs or pseudos used to replace VAR, any
|
||
SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
|
||
maintain this list in case two operands of an insn were required to match;
|
||
in that case we must ensure we use the same replacement. */
|
||
|
||
struct fixup_replacement GTY(())
|
||
{
|
||
rtx old;
|
||
rtx new;
|
||
struct fixup_replacement *next;
|
||
};
|
||
|
||
struct insns_for_mem_entry
|
||
{
|
||
/* A MEM. */
|
||
rtx key;
|
||
/* These are the INSNs which reference the MEM. */
|
||
rtx insns;
|
||
};
|
||
|
||
/* Forward declarations. */
|
||
|
||
static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
|
||
struct function *);
|
||
static struct temp_slot *find_temp_slot_from_address (rtx);
|
||
static void put_reg_into_stack (struct function *, rtx, tree, enum machine_mode,
|
||
unsigned int, bool, bool, bool, htab_t);
|
||
static void schedule_fixup_var_refs (struct function *, rtx, tree, enum machine_mode,
|
||
htab_t);
|
||
static void fixup_var_refs (rtx, enum machine_mode, int, rtx, htab_t);
|
||
static struct fixup_replacement
|
||
*find_fixup_replacement (struct fixup_replacement **, rtx);
|
||
static void fixup_var_refs_insns (rtx, rtx, enum machine_mode, int, int, rtx);
|
||
static void fixup_var_refs_insns_with_hash (htab_t, rtx, enum machine_mode, int, rtx);
|
||
static void fixup_var_refs_insn (rtx, rtx, enum machine_mode, int, int, rtx);
|
||
static void fixup_var_refs_1 (rtx, enum machine_mode, rtx *, rtx,
|
||
struct fixup_replacement **, rtx);
|
||
static rtx fixup_memory_subreg (rtx, rtx, enum machine_mode, int);
|
||
static rtx walk_fixup_memory_subreg (rtx, rtx, enum machine_mode, int);
|
||
static rtx fixup_stack_1 (rtx, rtx);
|
||
static void optimize_bit_field (rtx, rtx, rtx *);
|
||
static void instantiate_decls (tree, int);
|
||
static void instantiate_decls_1 (tree, int);
|
||
static void instantiate_decl (rtx, HOST_WIDE_INT, int);
|
||
static rtx instantiate_new_reg (rtx, HOST_WIDE_INT *);
|
||
static int instantiate_virtual_regs_1 (rtx *, rtx, int);
|
||
static void delete_handlers (void);
|
||
static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
|
||
static void pad_below (struct args_size *, enum machine_mode, tree);
|
||
static rtx round_trampoline_addr (rtx);
|
||
static rtx adjust_trampoline_addr (rtx);
|
||
static tree *identify_blocks_1 (rtx, tree *, tree *, tree *);
|
||
static void reorder_blocks_0 (tree);
|
||
static void reorder_blocks_1 (rtx, tree, varray_type *);
|
||
static void reorder_fix_fragments (tree);
|
||
static tree blocks_nreverse (tree);
|
||
static int all_blocks (tree, tree *);
|
||
static tree *get_block_vector (tree, int *);
|
||
extern tree debug_find_var_in_block_tree (tree, tree);
|
||
/* We always define `record_insns' even if its not used so that we
|
||
can always export `prologue_epilogue_contains'. */
|
||
static void record_insns (rtx, varray_type *) ATTRIBUTE_UNUSED;
|
||
static int contains (rtx, varray_type);
|
||
#ifdef HAVE_return
|
||
static void emit_return_into_block (basic_block, rtx);
|
||
#endif
|
||
static void put_addressof_into_stack (rtx, htab_t);
|
||
static bool purge_addressof_1 (rtx *, rtx, int, int, int, htab_t);
|
||
static void purge_single_hard_subreg_set (rtx);
|
||
#if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
|
||
static rtx keep_stack_depressed (rtx);
|
||
#endif
|
||
static int is_addressof (rtx *, void *);
|
||
static hashval_t insns_for_mem_hash (const void *);
|
||
static int insns_for_mem_comp (const void *, const void *);
|
||
static int insns_for_mem_walk (rtx *, void *);
|
||
static void compute_insns_for_mem (rtx, rtx, htab_t);
|
||
static void prepare_function_start (tree);
|
||
static void do_clobber_return_reg (rtx, void *);
|
||
static void do_use_return_reg (rtx, void *);
|
||
static void instantiate_virtual_regs_lossage (rtx);
|
||
static tree split_complex_args (tree);
|
||
static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
|
||
|
||
/* Pointer to chain of `struct function' for containing functions. */
|
||
struct function *outer_function_chain;
|
||
|
||
/* List of insns that were postponed by purge_addressof_1. */
|
||
static rtx postponed_insns;
|
||
|
||
/* Given a function decl for a containing function,
|
||
return the `struct function' for it. */
|
||
|
||
struct function *
|
||
find_function_data (tree decl)
|
||
{
|
||
struct function *p;
|
||
|
||
for (p = outer_function_chain; p; p = p->outer)
|
||
if (p->decl == decl)
|
||
return p;
|
||
|
||
abort ();
|
||
}
|
||
|
||
/* Save the current context for compilation of a nested function.
|
||
This is called from language-specific code. The caller should use
|
||
the enter_nested langhook to save any language-specific state,
|
||
since this function knows only about language-independent
|
||
variables. */
|
||
|
||
void
|
||
push_function_context_to (tree context)
|
||
{
|
||
struct function *p;
|
||
|
||
if (context)
|
||
{
|
||
if (context == current_function_decl)
|
||
cfun->contains_functions = 1;
|
||
else
|
||
{
|
||
struct function *containing = find_function_data (context);
|
||
containing->contains_functions = 1;
|
||
}
|
||
}
|
||
|
||
if (cfun == 0)
|
||
init_dummy_function_start ();
|
||
p = cfun;
|
||
|
||
p->outer = outer_function_chain;
|
||
outer_function_chain = p;
|
||
p->fixup_var_refs_queue = 0;
|
||
|
||
(*lang_hooks.function.enter_nested) (p);
|
||
|
||
cfun = 0;
|
||
}
|
||
|
||
void
|
||
push_function_context (void)
|
||
{
|
||
push_function_context_to (current_function_decl);
|
||
}
|
||
|
||
/* Restore the last saved context, at the end of a nested function.
|
||
This function is called from language-specific code. */
|
||
|
||
void
|
||
pop_function_context_from (tree context ATTRIBUTE_UNUSED)
|
||
{
|
||
struct function *p = outer_function_chain;
|
||
struct var_refs_queue *queue;
|
||
|
||
cfun = p;
|
||
outer_function_chain = p->outer;
|
||
|
||
current_function_decl = p->decl;
|
||
reg_renumber = 0;
|
||
|
||
restore_emit_status (p);
|
||
|
||
(*lang_hooks.function.leave_nested) (p);
|
||
|
||
/* Finish doing put_var_into_stack for any of our variables which became
|
||
addressable during the nested function. If only one entry has to be
|
||
fixed up, just do that one. Otherwise, first make a list of MEMs that
|
||
are not to be unshared. */
|
||
if (p->fixup_var_refs_queue == 0)
|
||
;
|
||
else if (p->fixup_var_refs_queue->next == 0)
|
||
fixup_var_refs (p->fixup_var_refs_queue->modified,
|
||
p->fixup_var_refs_queue->promoted_mode,
|
||
p->fixup_var_refs_queue->unsignedp,
|
||
p->fixup_var_refs_queue->modified, 0);
|
||
else
|
||
{
|
||
rtx list = 0;
|
||
|
||
for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
|
||
list = gen_rtx_EXPR_LIST (VOIDmode, queue->modified, list);
|
||
|
||
for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
|
||
fixup_var_refs (queue->modified, queue->promoted_mode,
|
||
queue->unsignedp, list, 0);
|
||
|
||
}
|
||
|
||
p->fixup_var_refs_queue = 0;
|
||
|
||
/* Reset variables that have known state during rtx generation. */
|
||
rtx_equal_function_value_matters = 1;
|
||
virtuals_instantiated = 0;
|
||
generating_concat_p = 1;
|
||
}
|
||
|
||
void
|
||
pop_function_context (void)
|
||
{
|
||
pop_function_context_from (current_function_decl);
|
||
}
|
||
|
||
/* Clear out all parts of the state in F that can safely be discarded
|
||
after the function has been parsed, but not compiled, to let
|
||
garbage collection reclaim the memory. */
|
||
|
||
void
|
||
free_after_parsing (struct function *f)
|
||
{
|
||
/* f->expr->forced_labels is used by code generation. */
|
||
/* f->emit->regno_reg_rtx is used by code generation. */
|
||
/* f->varasm is used by code generation. */
|
||
/* f->eh->eh_return_stub_label is used by code generation. */
|
||
|
||
(*lang_hooks.function.final) (f);
|
||
f->stmt = NULL;
|
||
}
|
||
|
||
/* Clear out all parts of the state in F that can safely be discarded
|
||
after the function has been compiled, to let garbage collection
|
||
reclaim the memory. */
|
||
|
||
void
|
||
free_after_compilation (struct function *f)
|
||
{
|
||
f->eh = NULL;
|
||
f->expr = NULL;
|
||
f->emit = NULL;
|
||
f->varasm = NULL;
|
||
f->machine = NULL;
|
||
|
||
f->x_temp_slots = NULL;
|
||
f->arg_offset_rtx = NULL;
|
||
f->return_rtx = NULL;
|
||
f->internal_arg_pointer = NULL;
|
||
f->x_nonlocal_labels = NULL;
|
||
f->x_nonlocal_goto_handler_slots = NULL;
|
||
f->x_nonlocal_goto_handler_labels = NULL;
|
||
f->x_nonlocal_goto_stack_level = NULL;
|
||
f->x_cleanup_label = NULL;
|
||
f->x_return_label = NULL;
|
||
f->x_naked_return_label = NULL;
|
||
f->computed_goto_common_label = NULL;
|
||
f->computed_goto_common_reg = NULL;
|
||
f->x_save_expr_regs = NULL;
|
||
f->x_stack_slot_list = NULL;
|
||
f->x_rtl_expr_chain = NULL;
|
||
f->x_tail_recursion_label = NULL;
|
||
f->x_tail_recursion_reentry = NULL;
|
||
f->x_arg_pointer_save_area = NULL;
|
||
f->x_clobber_return_insn = NULL;
|
||
f->x_context_display = NULL;
|
||
f->x_trampoline_list = NULL;
|
||
f->x_parm_birth_insn = NULL;
|
||
f->x_last_parm_insn = NULL;
|
||
f->x_parm_reg_stack_loc = NULL;
|
||
f->fixup_var_refs_queue = NULL;
|
||
f->original_arg_vector = NULL;
|
||
f->original_decl_initial = NULL;
|
||
f->inl_last_parm_insn = NULL;
|
||
f->epilogue_delay_list = NULL;
|
||
}
|
||
|
||
/* Allocate fixed slots in the stack frame of the current function. */
|
||
|
||
/* Return size needed for stack frame based on slots so far allocated in
|
||
function F.
|
||
This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
|
||
the caller may have to do that. */
|
||
|
||
HOST_WIDE_INT
|
||
get_func_frame_size (struct function *f)
|
||
{
|
||
#ifdef FRAME_GROWS_DOWNWARD
|
||
return -f->x_frame_offset;
|
||
#else
|
||
return f->x_frame_offset;
|
||
#endif
|
||
}
|
||
|
||
/* Return size needed for stack frame based on slots so far allocated.
|
||
This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
|
||
the caller may have to do that. */
|
||
HOST_WIDE_INT
|
||
get_frame_size (void)
|
||
{
|
||
return get_func_frame_size (cfun);
|
||
}
|
||
|
||
/* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
|
||
with machine mode MODE.
|
||
|
||
ALIGN controls the amount of alignment for the address of the slot:
|
||
0 means according to MODE,
|
||
-1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
|
||
-2 means use BITS_PER_UNIT,
|
||
positive specifies alignment boundary in bits.
|
||
|
||
We do not round to stack_boundary here.
|
||
|
||
FUNCTION specifies the function to allocate in. */
|
||
|
||
static rtx
|
||
assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
|
||
struct function *function)
|
||
{
|
||
rtx x, addr;
|
||
int bigend_correction = 0;
|
||
int alignment;
|
||
int frame_off, frame_alignment, frame_phase;
|
||
|
||
if (align == 0)
|
||
{
|
||
tree type;
|
||
|
||
if (mode == BLKmode)
|
||
alignment = BIGGEST_ALIGNMENT;
|
||
else
|
||
alignment = GET_MODE_ALIGNMENT (mode);
|
||
|
||
/* Allow the target to (possibly) increase the alignment of this
|
||
stack slot. */
|
||
type = (*lang_hooks.types.type_for_mode) (mode, 0);
|
||
if (type)
|
||
alignment = LOCAL_ALIGNMENT (type, alignment);
|
||
|
||
alignment /= BITS_PER_UNIT;
|
||
}
|
||
else if (align == -1)
|
||
{
|
||
alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
|
||
size = CEIL_ROUND (size, alignment);
|
||
}
|
||
else if (align == -2)
|
||
alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
|
||
else
|
||
alignment = align / BITS_PER_UNIT;
|
||
|
||
#ifdef FRAME_GROWS_DOWNWARD
|
||
function->x_frame_offset -= size;
|
||
#endif
|
||
|
||
/* Ignore alignment we can't do with expected alignment of the boundary. */
|
||
if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
|
||
alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
|
||
|
||
if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
|
||
function->stack_alignment_needed = alignment * BITS_PER_UNIT;
|
||
|
||
/* Calculate how many bytes the start of local variables is off from
|
||
stack alignment. */
|
||
frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
|
||
frame_off = STARTING_FRAME_OFFSET % frame_alignment;
|
||
frame_phase = frame_off ? frame_alignment - frame_off : 0;
|
||
|
||
/* Round the frame offset to the specified alignment. The default is
|
||
to always honor requests to align the stack but a port may choose to
|
||
do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
|
||
if (STACK_ALIGNMENT_NEEDED
|
||
|| mode != BLKmode
|
||
|| size != 0)
|
||
{
|
||
/* We must be careful here, since FRAME_OFFSET might be negative and
|
||
division with a negative dividend isn't as well defined as we might
|
||
like. So we instead assume that ALIGNMENT is a power of two and
|
||
use logical operations which are unambiguous. */
|
||
#ifdef FRAME_GROWS_DOWNWARD
|
||
function->x_frame_offset
|
||
= (FLOOR_ROUND (function->x_frame_offset - frame_phase, alignment)
|
||
+ frame_phase);
|
||
#else
|
||
function->x_frame_offset
|
||
= (CEIL_ROUND (function->x_frame_offset - frame_phase, alignment)
|
||
+ frame_phase);
|
||
#endif
|
||
}
|
||
|
||
/* On a big-endian machine, if we are allocating more space than we will use,
|
||
use the least significant bytes of those that are allocated. */
|
||
if (BYTES_BIG_ENDIAN && mode != BLKmode)
|
||
bigend_correction = size - GET_MODE_SIZE (mode);
|
||
|
||
/* If we have already instantiated virtual registers, return the actual
|
||
address relative to the frame pointer. */
|
||
if (function == cfun && virtuals_instantiated)
|
||
addr = plus_constant (frame_pointer_rtx,
|
||
trunc_int_for_mode
|
||
(frame_offset + bigend_correction
|
||
+ STARTING_FRAME_OFFSET, Pmode));
|
||
else
|
||
addr = plus_constant (virtual_stack_vars_rtx,
|
||
trunc_int_for_mode
|
||
(function->x_frame_offset + bigend_correction,
|
||
Pmode));
|
||
|
||
#ifndef FRAME_GROWS_DOWNWARD
|
||
function->x_frame_offset += size;
|
||
#endif
|
||
|
||
x = gen_rtx_MEM (mode, addr);
|
||
|
||
function->x_stack_slot_list
|
||
= gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
|
||
|
||
return x;
|
||
}
|
||
|
||
/* Wrapper around assign_stack_local_1; assign a local stack slot for the
|
||
current function. */
|
||
|
||
rtx
|
||
assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
|
||
{
|
||
return assign_stack_local_1 (mode, size, align, cfun);
|
||
}
|
||
|
||
/* Allocate a temporary stack slot and record it for possible later
|
||
reuse.
|
||
|
||
MODE is the machine mode to be given to the returned rtx.
|
||
|
||
SIZE is the size in units of the space required. We do no rounding here
|
||
since assign_stack_local will do any required rounding.
|
||
|
||
KEEP is 1 if this slot is to be retained after a call to
|
||
free_temp_slots. Automatic variables for a block are allocated
|
||
with this flag. KEEP is 2 if we allocate a longer term temporary,
|
||
whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
|
||
if we are to allocate something at an inner level to be treated as
|
||
a variable in the block (e.g., a SAVE_EXPR).
|
||
|
||
TYPE is the type that will be used for the stack slot. */
|
||
|
||
rtx
|
||
assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size, int keep,
|
||
tree type)
|
||
{
|
||
unsigned int align;
|
||
struct temp_slot *p, *best_p = 0;
|
||
rtx slot;
|
||
|
||
/* If SIZE is -1 it means that somebody tried to allocate a temporary
|
||
of a variable size. */
|
||
if (size == -1)
|
||
abort ();
|
||
|
||
if (mode == BLKmode)
|
||
align = BIGGEST_ALIGNMENT;
|
||
else
|
||
align = GET_MODE_ALIGNMENT (mode);
|
||
|
||
if (! type)
|
||
type = (*lang_hooks.types.type_for_mode) (mode, 0);
|
||
|
||
if (type)
|
||
align = LOCAL_ALIGNMENT (type, align);
|
||
|
||
/* Try to find an available, already-allocated temporary of the proper
|
||
mode which meets the size and alignment requirements. Choose the
|
||
smallest one with the closest alignment. */
|
||
for (p = temp_slots; p; p = p->next)
|
||
if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
|
||
&& ! p->in_use
|
||
&& objects_must_conflict_p (p->type, type)
|
||
&& (best_p == 0 || best_p->size > p->size
|
||
|| (best_p->size == p->size && best_p->align > p->align)))
|
||
{
|
||
if (p->align == align && p->size == size)
|
||
{
|
||
best_p = 0;
|
||
break;
|
||
}
|
||
best_p = p;
|
||
}
|
||
|
||
/* Make our best, if any, the one to use. */
|
||
if (best_p)
|
||
{
|
||
/* If there are enough aligned bytes left over, make them into a new
|
||
temp_slot so that the extra bytes don't get wasted. Do this only
|
||
for BLKmode slots, so that we can be sure of the alignment. */
|
||
if (GET_MODE (best_p->slot) == BLKmode)
|
||
{
|
||
int alignment = best_p->align / BITS_PER_UNIT;
|
||
HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
|
||
|
||
if (best_p->size - rounded_size >= alignment)
|
||
{
|
||
p = ggc_alloc (sizeof (struct temp_slot));
|
||
p->in_use = p->addr_taken = 0;
|
||
p->size = best_p->size - rounded_size;
|
||
p->base_offset = best_p->base_offset + rounded_size;
|
||
p->full_size = best_p->full_size - rounded_size;
|
||
p->slot = gen_rtx_MEM (BLKmode,
|
||
plus_constant (XEXP (best_p->slot, 0),
|
||
rounded_size));
|
||
p->align = best_p->align;
|
||
p->address = 0;
|
||
p->rtl_expr = 0;
|
||
p->type = best_p->type;
|
||
p->next = temp_slots;
|
||
temp_slots = p;
|
||
|
||
stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
|
||
stack_slot_list);
|
||
|
||
best_p->size = rounded_size;
|
||
best_p->full_size = rounded_size;
|
||
}
|
||
}
|
||
|
||
p = best_p;
|
||
}
|
||
|
||
/* If we still didn't find one, make a new temporary. */
|
||
if (p == 0)
|
||
{
|
||
HOST_WIDE_INT frame_offset_old = frame_offset;
|
||
|
||
p = ggc_alloc (sizeof (struct temp_slot));
|
||
|
||
/* We are passing an explicit alignment request to assign_stack_local.
|
||
One side effect of that is assign_stack_local will not round SIZE
|
||
to ensure the frame offset remains suitably aligned.
|
||
|
||
So for requests which depended on the rounding of SIZE, we go ahead
|
||
and round it now. We also make sure ALIGNMENT is at least
|
||
BIGGEST_ALIGNMENT. */
|
||
if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
|
||
abort ();
|
||
p->slot = assign_stack_local (mode,
|
||
(mode == BLKmode
|
||
? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
|
||
: size),
|
||
align);
|
||
|
||
p->align = align;
|
||
|
||
/* The following slot size computation is necessary because we don't
|
||
know the actual size of the temporary slot until assign_stack_local
|
||
has performed all the frame alignment and size rounding for the
|
||
requested temporary. Note that extra space added for alignment
|
||
can be either above or below this stack slot depending on which
|
||
way the frame grows. We include the extra space if and only if it
|
||
is above this slot. */
|
||
#ifdef FRAME_GROWS_DOWNWARD
|
||
p->size = frame_offset_old - frame_offset;
|
||
#else
|
||
p->size = size;
|
||
#endif
|
||
|
||
/* Now define the fields used by combine_temp_slots. */
|
||
#ifdef FRAME_GROWS_DOWNWARD
|
||
p->base_offset = frame_offset;
|
||
p->full_size = frame_offset_old - frame_offset;
|
||
#else
|
||
p->base_offset = frame_offset_old;
|
||
p->full_size = frame_offset - frame_offset_old;
|
||
#endif
|
||
p->address = 0;
|
||
p->next = temp_slots;
|
||
temp_slots = p;
|
||
}
|
||
|
||
p->in_use = 1;
|
||
p->addr_taken = 0;
|
||
p->rtl_expr = seq_rtl_expr;
|
||
p->type = type;
|
||
|
||
if (keep == 2)
|
||
{
|
||
p->level = target_temp_slot_level;
|
||
p->keep = 1;
|
||
}
|
||
else if (keep == 3)
|
||
{
|
||
p->level = var_temp_slot_level;
|
||
p->keep = 0;
|
||
}
|
||
else
|
||
{
|
||
p->level = temp_slot_level;
|
||
p->keep = keep;
|
||
}
|
||
|
||
|
||
/* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
|
||
slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
|
||
stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
|
||
|
||
/* If we know the alias set for the memory that will be used, use
|
||
it. If there's no TYPE, then we don't know anything about the
|
||
alias set for the memory. */
|
||
set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
|
||
set_mem_align (slot, align);
|
||
|
||
/* If a type is specified, set the relevant flags. */
|
||
if (type != 0)
|
||
{
|
||
RTX_UNCHANGING_P (slot) = (lang_hooks.honor_readonly
|
||
&& TYPE_READONLY (type));
|
||
MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
|
||
MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
|
||
}
|
||
|
||
return slot;
|
||
}
|
||
|
||
/* Allocate a temporary stack slot and record it for possible later
|
||
reuse. First three arguments are same as in preceding function. */
|
||
|
||
rtx
|
||
assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
|
||
{
|
||
return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
|
||
}
|
||
|
||
/* Assign a temporary.
|
||
If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
|
||
and so that should be used in error messages. In either case, we
|
||
allocate of the given type.
|
||
KEEP is as for assign_stack_temp.
|
||
MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
|
||
it is 0 if a register is OK.
|
||
DONT_PROMOTE is 1 if we should not promote values in register
|
||
to wider modes. */
|
||
|
||
rtx
|
||
assign_temp (tree type_or_decl, int keep, int memory_required,
|
||
int dont_promote ATTRIBUTE_UNUSED)
|
||
{
|
||
tree type, decl;
|
||
enum machine_mode mode;
|
||
#ifndef PROMOTE_FOR_CALL_ONLY
|
||
int unsignedp;
|
||
#endif
|
||
|
||
if (DECL_P (type_or_decl))
|
||
decl = type_or_decl, type = TREE_TYPE (decl);
|
||
else
|
||
decl = NULL, type = type_or_decl;
|
||
|
||
mode = TYPE_MODE (type);
|
||
#ifndef PROMOTE_FOR_CALL_ONLY
|
||
unsignedp = TREE_UNSIGNED (type);
|
||
#endif
|
||
|
||
if (mode == BLKmode || memory_required)
|
||
{
|
||
HOST_WIDE_INT size = int_size_in_bytes (type);
|
||
rtx tmp;
|
||
|
||
/* Zero sized arrays are GNU C extension. Set size to 1 to avoid
|
||
problems with allocating the stack space. */
|
||
if (size == 0)
|
||
size = 1;
|
||
|
||
/* Unfortunately, we don't yet know how to allocate variable-sized
|
||
temporaries. However, sometimes we have a fixed upper limit on
|
||
the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
|
||
instead. This is the case for Chill variable-sized strings. */
|
||
if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
|
||
&& TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
|
||
&& host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
|
||
size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
|
||
|
||
/* The size of the temporary may be too large to fit into an integer. */
|
||
/* ??? Not sure this should happen except for user silliness, so limit
|
||
this to things that aren't compiler-generated temporaries. The
|
||
rest of the time we'll abort in assign_stack_temp_for_type. */
|
||
if (decl && size == -1
|
||
&& TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
|
||
{
|
||
error ("%Jsize of variable '%D' is too large", decl, decl);
|
||
size = 1;
|
||
}
|
||
|
||
tmp = assign_stack_temp_for_type (mode, size, keep, type);
|
||
return tmp;
|
||
}
|
||
|
||
#ifndef PROMOTE_FOR_CALL_ONLY
|
||
if (! dont_promote)
|
||
mode = promote_mode (type, mode, &unsignedp, 0);
|
||
#endif
|
||
|
||
return gen_reg_rtx (mode);
|
||
}
|
||
|
||
/* Combine temporary stack slots which are adjacent on the stack.
|
||
|
||
This allows for better use of already allocated stack space. This is only
|
||
done for BLKmode slots because we can be sure that we won't have alignment
|
||
problems in this case. */
|
||
|
||
void
|
||
combine_temp_slots (void)
|
||
{
|
||
struct temp_slot *p, *q;
|
||
struct temp_slot *prev_p, *prev_q;
|
||
int num_slots;
|
||
|
||
/* We can't combine slots, because the information about which slot
|
||
is in which alias set will be lost. */
|
||
if (flag_strict_aliasing)
|
||
return;
|
||
|
||
/* If there are a lot of temp slots, don't do anything unless
|
||
high levels of optimization. */
|
||
if (! flag_expensive_optimizations)
|
||
for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++)
|
||
if (num_slots > 100 || (num_slots > 10 && optimize == 0))
|
||
return;
|
||
|
||
for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
|
||
{
|
||
int delete_p = 0;
|
||
|
||
if (! p->in_use && GET_MODE (p->slot) == BLKmode)
|
||
for (q = p->next, prev_q = p; q; q = prev_q->next)
|
||
{
|
||
int delete_q = 0;
|
||
if (! q->in_use && GET_MODE (q->slot) == BLKmode)
|
||
{
|
||
if (p->base_offset + p->full_size == q->base_offset)
|
||
{
|
||
/* Q comes after P; combine Q into P. */
|
||
p->size += q->size;
|
||
p->full_size += q->full_size;
|
||
delete_q = 1;
|
||
}
|
||
else if (q->base_offset + q->full_size == p->base_offset)
|
||
{
|
||
/* P comes after Q; combine P into Q. */
|
||
q->size += p->size;
|
||
q->full_size += p->full_size;
|
||
delete_p = 1;
|
||
break;
|
||
}
|
||
}
|
||
/* Either delete Q or advance past it. */
|
||
if (delete_q)
|
||
prev_q->next = q->next;
|
||
else
|
||
prev_q = q;
|
||
}
|
||
/* Either delete P or advance past it. */
|
||
if (delete_p)
|
||
{
|
||
if (prev_p)
|
||
prev_p->next = p->next;
|
||
else
|
||
temp_slots = p->next;
|
||
}
|
||
else
|
||
prev_p = p;
|
||
}
|
||
}
|
||
|
||
/* Find the temp slot corresponding to the object at address X. */
|
||
|
||
static struct temp_slot *
|
||
find_temp_slot_from_address (rtx x)
|
||
{
|
||
struct temp_slot *p;
|
||
rtx next;
|
||
|
||
for (p = temp_slots; p; p = p->next)
|
||
{
|
||
if (! p->in_use)
|
||
continue;
|
||
|
||
else if (XEXP (p->slot, 0) == x
|
||
|| p->address == x
|
||
|| (GET_CODE (x) == PLUS
|
||
&& XEXP (x, 0) == virtual_stack_vars_rtx
|
||
&& GET_CODE (XEXP (x, 1)) == CONST_INT
|
||
&& INTVAL (XEXP (x, 1)) >= p->base_offset
|
||
&& INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
|
||
return p;
|
||
|
||
else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
|
||
for (next = p->address; next; next = XEXP (next, 1))
|
||
if (XEXP (next, 0) == x)
|
||
return p;
|
||
}
|
||
|
||
/* If we have a sum involving a register, see if it points to a temp
|
||
slot. */
|
||
if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG
|
||
&& (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
|
||
return p;
|
||
else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG
|
||
&& (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
|
||
return p;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Indicate that NEW is an alternate way of referring to the temp slot
|
||
that previously was known by OLD. */
|
||
|
||
void
|
||
update_temp_slot_address (rtx old, rtx new)
|
||
{
|
||
struct temp_slot *p;
|
||
|
||
if (rtx_equal_p (old, new))
|
||
return;
|
||
|
||
p = find_temp_slot_from_address (old);
|
||
|
||
/* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
|
||
is a register, see if one operand of the PLUS is a temporary
|
||
location. If so, NEW points into it. Otherwise, if both OLD and
|
||
NEW are a PLUS and if there is a register in common between them.
|
||
If so, try a recursive call on those values. */
|
||
if (p == 0)
|
||
{
|
||
if (GET_CODE (old) != PLUS)
|
||
return;
|
||
|
||
if (GET_CODE (new) == REG)
|
||
{
|
||
update_temp_slot_address (XEXP (old, 0), new);
|
||
update_temp_slot_address (XEXP (old, 1), new);
|
||
return;
|
||
}
|
||
else if (GET_CODE (new) != PLUS)
|
||
return;
|
||
|
||
if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
|
||
update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
|
||
else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
|
||
update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
|
||
else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
|
||
update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
|
||
else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
|
||
update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
|
||
|
||
return;
|
||
}
|
||
|
||
/* Otherwise add an alias for the temp's address. */
|
||
else if (p->address == 0)
|
||
p->address = new;
|
||
else
|
||
{
|
||
if (GET_CODE (p->address) != EXPR_LIST)
|
||
p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
|
||
|
||
p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
|
||
}
|
||
}
|
||
|
||
/* If X could be a reference to a temporary slot, mark the fact that its
|
||
address was taken. */
|
||
|
||
void
|
||
mark_temp_addr_taken (rtx x)
|
||
{
|
||
struct temp_slot *p;
|
||
|
||
if (x == 0)
|
||
return;
|
||
|
||
/* If X is not in memory or is at a constant address, it cannot be in
|
||
a temporary slot. */
|
||
if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
|
||
return;
|
||
|
||
p = find_temp_slot_from_address (XEXP (x, 0));
|
||
if (p != 0)
|
||
p->addr_taken = 1;
|
||
}
|
||
|
||
/* If X could be a reference to a temporary slot, mark that slot as
|
||
belonging to the to one level higher than the current level. If X
|
||
matched one of our slots, just mark that one. Otherwise, we can't
|
||
easily predict which it is, so upgrade all of them. Kept slots
|
||
need not be touched.
|
||
|
||
This is called when an ({...}) construct occurs and a statement
|
||
returns a value in memory. */
|
||
|
||
void
|
||
preserve_temp_slots (rtx x)
|
||
{
|
||
struct temp_slot *p = 0;
|
||
|
||
/* If there is no result, we still might have some objects whose address
|
||
were taken, so we need to make sure they stay around. */
|
||
if (x == 0)
|
||
{
|
||
for (p = temp_slots; p; p = p->next)
|
||
if (p->in_use && p->level == temp_slot_level && p->addr_taken)
|
||
p->level--;
|
||
|
||
return;
|
||
}
|
||
|
||
/* If X is a register that is being used as a pointer, see if we have
|
||
a temporary slot we know it points to. To be consistent with
|
||
the code below, we really should preserve all non-kept slots
|
||
if we can't find a match, but that seems to be much too costly. */
|
||
if (GET_CODE (x) == REG && REG_POINTER (x))
|
||
p = find_temp_slot_from_address (x);
|
||
|
||
/* If X is not in memory or is at a constant address, it cannot be in
|
||
a temporary slot, but it can contain something whose address was
|
||
taken. */
|
||
if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
|
||
{
|
||
for (p = temp_slots; p; p = p->next)
|
||
if (p->in_use && p->level == temp_slot_level && p->addr_taken)
|
||
p->level--;
|
||
|
||
return;
|
||
}
|
||
|
||
/* First see if we can find a match. */
|
||
if (p == 0)
|
||
p = find_temp_slot_from_address (XEXP (x, 0));
|
||
|
||
if (p != 0)
|
||
{
|
||
/* Move everything at our level whose address was taken to our new
|
||
level in case we used its address. */
|
||
struct temp_slot *q;
|
||
|
||
if (p->level == temp_slot_level)
|
||
{
|
||
for (q = temp_slots; q; q = q->next)
|
||
if (q != p && q->addr_taken && q->level == p->level)
|
||
q->level--;
|
||
|
||
p->level--;
|
||
p->addr_taken = 0;
|
||
}
|
||
return;
|
||
}
|
||
|
||
/* Otherwise, preserve all non-kept slots at this level. */
|
||
for (p = temp_slots; p; p = p->next)
|
||
if (p->in_use && p->level == temp_slot_level && ! p->keep)
|
||
p->level--;
|
||
}
|
||
|
||
/* X is the result of an RTL_EXPR. If it is a temporary slot associated
|
||
with that RTL_EXPR, promote it into a temporary slot at the present
|
||
level so it will not be freed when we free slots made in the
|
||
RTL_EXPR. */
|
||
|
||
void
|
||
preserve_rtl_expr_result (rtx x)
|
||
{
|
||
struct temp_slot *p;
|
||
|
||
/* If X is not in memory or is at a constant address, it cannot be in
|
||
a temporary slot. */
|
||
if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
|
||
return;
|
||
|
||
/* If we can find a match, move it to our level unless it is already at
|
||
an upper level. */
|
||
p = find_temp_slot_from_address (XEXP (x, 0));
|
||
if (p != 0)
|
||
{
|
||
p->level = MIN (p->level, temp_slot_level);
|
||
p->rtl_expr = 0;
|
||
}
|
||
|
||
return;
|
||
}
|
||
|
||
/* Free all temporaries used so far. This is normally called at the end
|
||
of generating code for a statement. Don't free any temporaries
|
||
currently in use for an RTL_EXPR that hasn't yet been emitted.
|
||
We could eventually do better than this since it can be reused while
|
||
generating the same RTL_EXPR, but this is complex and probably not
|
||
worthwhile. */
|
||
|
||
void
|
||
free_temp_slots (void)
|
||
{
|
||
struct temp_slot *p;
|
||
|
||
for (p = temp_slots; p; p = p->next)
|
||
if (p->in_use && p->level == temp_slot_level && ! p->keep
|
||
&& p->rtl_expr == 0)
|
||
p->in_use = 0;
|
||
|
||
combine_temp_slots ();
|
||
}
|
||
|
||
/* Free all temporary slots used in T, an RTL_EXPR node. */
|
||
|
||
void
|
||
free_temps_for_rtl_expr (tree t)
|
||
{
|
||
struct temp_slot *p;
|
||
|
||
for (p = temp_slots; p; p = p->next)
|
||
if (p->rtl_expr == t)
|
||
{
|
||
/* If this slot is below the current TEMP_SLOT_LEVEL, then it
|
||
needs to be preserved. This can happen if a temporary in
|
||
the RTL_EXPR was addressed; preserve_temp_slots will move
|
||
the temporary into a higher level. */
|
||
if (temp_slot_level <= p->level)
|
||
p->in_use = 0;
|
||
else
|
||
p->rtl_expr = NULL_TREE;
|
||
}
|
||
|
||
combine_temp_slots ();
|
||
}
|
||
|
||
/* Mark all temporaries ever allocated in this function as not suitable
|
||
for reuse until the current level is exited. */
|
||
|
||
void
|
||
mark_all_temps_used (void)
|
||
{
|
||
struct temp_slot *p;
|
||
|
||
for (p = temp_slots; p; p = p->next)
|
||
{
|
||
p->in_use = p->keep = 1;
|
||
p->level = MIN (p->level, temp_slot_level);
|
||
}
|
||
}
|
||
|
||
/* Push deeper into the nesting level for stack temporaries. */
|
||
|
||
void
|
||
push_temp_slots (void)
|
||
{
|
||
temp_slot_level++;
|
||
}
|
||
|
||
/* Pop a temporary nesting level. All slots in use in the current level
|
||
are freed. */
|
||
|
||
void
|
||
pop_temp_slots (void)
|
||
{
|
||
struct temp_slot *p;
|
||
|
||
for (p = temp_slots; p; p = p->next)
|
||
if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
|
||
p->in_use = 0;
|
||
|
||
combine_temp_slots ();
|
||
|
||
temp_slot_level--;
|
||
}
|
||
|
||
/* Initialize temporary slots. */
|
||
|
||
void
|
||
init_temp_slots (void)
|
||
{
|
||
/* We have not allocated any temporaries yet. */
|
||
temp_slots = 0;
|
||
temp_slot_level = 0;
|
||
var_temp_slot_level = 0;
|
||
target_temp_slot_level = 0;
|
||
}
|
||
|
||
/* Retroactively move an auto variable from a register to a stack
|
||
slot. This is done when an address-reference to the variable is
|
||
seen. If RESCAN is true, all previously emitted instructions are
|
||
examined and modified to handle the fact that DECL is now
|
||
addressable. */
|
||
|
||
void
|
||
put_var_into_stack (tree decl, int rescan)
|
||
{
|
||
rtx reg;
|
||
enum machine_mode promoted_mode, decl_mode;
|
||
struct function *function = 0;
|
||
tree context;
|
||
bool can_use_addressof_p;
|
||
bool volatile_p = TREE_CODE (decl) != SAVE_EXPR && TREE_THIS_VOLATILE (decl);
|
||
bool used_p = (TREE_USED (decl)
|
||
|| (TREE_CODE (decl) != SAVE_EXPR && DECL_INITIAL (decl) != 0));
|
||
|
||
context = decl_function_context (decl);
|
||
|
||
/* Get the current rtl used for this object and its original mode. */
|
||
reg = (TREE_CODE (decl) == SAVE_EXPR
|
||
? SAVE_EXPR_RTL (decl)
|
||
: DECL_RTL_IF_SET (decl));
|
||
|
||
/* No need to do anything if decl has no rtx yet
|
||
since in that case caller is setting TREE_ADDRESSABLE
|
||
and a stack slot will be assigned when the rtl is made. */
|
||
if (reg == 0)
|
||
return;
|
||
|
||
/* Get the declared mode for this object. */
|
||
decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
|
||
: DECL_MODE (decl));
|
||
/* Get the mode it's actually stored in. */
|
||
promoted_mode = GET_MODE (reg);
|
||
|
||
/* If this variable comes from an outer function, find that
|
||
function's saved context. Don't use find_function_data here,
|
||
because it might not be in any active function.
|
||
FIXME: Is that really supposed to happen?
|
||
It does in ObjC at least. */
|
||
if (context != current_function_decl && context != inline_function_decl)
|
||
for (function = outer_function_chain; function; function = function->outer)
|
||
if (function->decl == context)
|
||
break;
|
||
|
||
/* If this is a variable-sized object or a structure passed by invisible
|
||
reference, with a pseudo to address it, put that pseudo into the stack
|
||
if the var is non-local. */
|
||
if (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl)
|
||
&& GET_CODE (reg) == MEM
|
||
&& GET_CODE (XEXP (reg, 0)) == REG
|
||
&& REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
|
||
{
|
||
reg = XEXP (reg, 0);
|
||
decl_mode = promoted_mode = GET_MODE (reg);
|
||
}
|
||
|
||
/* If this variable lives in the current function and we don't need to put it
|
||
in the stack for the sake of setjmp or the non-locality, try to keep it in
|
||
a register until we know we actually need the address. */
|
||
can_use_addressof_p
|
||
= (function == 0
|
||
&& ! (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl))
|
||
&& optimize > 0
|
||
/* FIXME make it work for promoted modes too */
|
||
&& decl_mode == promoted_mode
|
||
#ifdef NON_SAVING_SETJMP
|
||
&& ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
|
||
#endif
|
||
);
|
||
|
||
/* If we can't use ADDRESSOF, make sure we see through one we already
|
||
generated. */
|
||
if (! can_use_addressof_p
|
||
&& GET_CODE (reg) == MEM
|
||
&& GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
|
||
reg = XEXP (XEXP (reg, 0), 0);
|
||
|
||
/* Now we should have a value that resides in one or more pseudo regs. */
|
||
|
||
if (GET_CODE (reg) == REG)
|
||
{
|
||
if (can_use_addressof_p)
|
||
gen_mem_addressof (reg, decl, rescan);
|
||
else
|
||
put_reg_into_stack (function, reg, TREE_TYPE (decl), decl_mode,
|
||
0, volatile_p, used_p, false, 0);
|
||
}
|
||
else if (GET_CODE (reg) == CONCAT)
|
||
{
|
||
/* A CONCAT contains two pseudos; put them both in the stack.
|
||
We do it so they end up consecutive.
|
||
We fixup references to the parts only after we fixup references
|
||
to the whole CONCAT, lest we do double fixups for the latter
|
||
references. */
|
||
enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
|
||
tree part_type = (*lang_hooks.types.type_for_mode) (part_mode, 0);
|
||
rtx lopart = XEXP (reg, 0);
|
||
rtx hipart = XEXP (reg, 1);
|
||
#ifdef FRAME_GROWS_DOWNWARD
|
||
/* Since part 0 should have a lower address, do it second. */
|
||
put_reg_into_stack (function, hipart, part_type, part_mode,
|
||
0, volatile_p, false, false, 0);
|
||
put_reg_into_stack (function, lopart, part_type, part_mode,
|
||
0, volatile_p, false, true, 0);
|
||
#else
|
||
put_reg_into_stack (function, lopart, part_type, part_mode,
|
||
0, volatile_p, false, false, 0);
|
||
put_reg_into_stack (function, hipart, part_type, part_mode,
|
||
0, volatile_p, false, true, 0);
|
||
#endif
|
||
|
||
/* Change the CONCAT into a combined MEM for both parts. */
|
||
PUT_CODE (reg, MEM);
|
||
MEM_ATTRS (reg) = 0;
|
||
|
||
/* set_mem_attributes uses DECL_RTL to avoid re-generating of
|
||
already computed alias sets. Here we want to re-generate. */
|
||
if (DECL_P (decl))
|
||
SET_DECL_RTL (decl, NULL);
|
||
set_mem_attributes (reg, decl, 1);
|
||
if (DECL_P (decl))
|
||
SET_DECL_RTL (decl, reg);
|
||
|
||
/* The two parts are in memory order already.
|
||
Use the lower parts address as ours. */
|
||
XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
|
||
/* Prevent sharing of rtl that might lose. */
|
||
if (GET_CODE (XEXP (reg, 0)) == PLUS)
|
||
XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
|
||
if (used_p && rescan)
|
||
{
|
||
schedule_fixup_var_refs (function, reg, TREE_TYPE (decl),
|
||
promoted_mode, 0);
|
||
schedule_fixup_var_refs (function, lopart, part_type, part_mode, 0);
|
||
schedule_fixup_var_refs (function, hipart, part_type, part_mode, 0);
|
||
}
|
||
}
|
||
else
|
||
return;
|
||
}
|
||
|
||
/* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
|
||
into the stack frame of FUNCTION (0 means the current function).
|
||
TYPE is the user-level data type of the value hold in the register.
|
||
DECL_MODE is the machine mode of the user-level data type.
|
||
ORIGINAL_REGNO must be set if the real regno is not visible in REG.
|
||
VOLATILE_P is true if this is for a "volatile" decl.
|
||
USED_P is true if this reg might have already been used in an insn.
|
||
CONSECUTIVE_P is true if the stack slot assigned to reg must be
|
||
consecutive with the previous stack slot. */
|
||
|
||
static void
|
||
put_reg_into_stack (struct function *function, rtx reg, tree type,
|
||
enum machine_mode decl_mode, unsigned int original_regno,
|
||
bool volatile_p, bool used_p, bool consecutive_p,
|
||
htab_t ht)
|
||
{
|
||
struct function *func = function ? function : cfun;
|
||
enum machine_mode mode = GET_MODE (reg);
|
||
unsigned int regno = original_regno;
|
||
rtx new = 0;
|
||
|
||
if (regno == 0)
|
||
regno = REGNO (reg);
|
||
|
||
if (regno < func->x_max_parm_reg)
|
||
{
|
||
if (!func->x_parm_reg_stack_loc)
|
||
abort ();
|
||
new = func->x_parm_reg_stack_loc[regno];
|
||
}
|
||
|
||
if (new == 0)
|
||
new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode),
|
||
consecutive_p ? -2 : 0, func);
|
||
|
||
PUT_CODE (reg, MEM);
|
||
PUT_MODE (reg, decl_mode);
|
||
XEXP (reg, 0) = XEXP (new, 0);
|
||
MEM_ATTRS (reg) = 0;
|
||
/* `volatil' bit means one thing for MEMs, another entirely for REGs. */
|
||
MEM_VOLATILE_P (reg) = volatile_p;
|
||
|
||
/* If this is a memory ref that contains aggregate components,
|
||
mark it as such for cse and loop optimize. If we are reusing a
|
||
previously generated stack slot, then we need to copy the bit in
|
||
case it was set for other reasons. For instance, it is set for
|
||
__builtin_va_alist. */
|
||
if (type)
|
||
{
|
||
MEM_SET_IN_STRUCT_P (reg,
|
||
AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
|
||
set_mem_alias_set (reg, get_alias_set (type));
|
||
}
|
||
|
||
if (used_p)
|
||
schedule_fixup_var_refs (function, reg, type, mode, ht);
|
||
}
|
||
|
||
/* Make sure that all refs to the variable, previously made
|
||
when it was a register, are fixed up to be valid again.
|
||
See function above for meaning of arguments. */
|
||
|
||
static void
|
||
schedule_fixup_var_refs (struct function *function, rtx reg, tree type,
|
||
enum machine_mode promoted_mode, htab_t ht)
|
||
{
|
||
int unsigned_p = type ? TREE_UNSIGNED (type) : 0;
|
||
|
||
if (function != 0)
|
||
{
|
||
struct var_refs_queue *temp;
|
||
|
||
temp = ggc_alloc (sizeof (struct var_refs_queue));
|
||
temp->modified = reg;
|
||
temp->promoted_mode = promoted_mode;
|
||
temp->unsignedp = unsigned_p;
|
||
temp->next = function->fixup_var_refs_queue;
|
||
function->fixup_var_refs_queue = temp;
|
||
}
|
||
else
|
||
/* Variable is local; fix it up now. */
|
||
fixup_var_refs (reg, promoted_mode, unsigned_p, reg, ht);
|
||
}
|
||
|
||
static void
|
||
fixup_var_refs (rtx var, enum machine_mode promoted_mode, int unsignedp,
|
||
rtx may_share, htab_t ht)
|
||
{
|
||
tree pending;
|
||
rtx first_insn = get_insns ();
|
||
struct sequence_stack *stack = seq_stack;
|
||
tree rtl_exps = rtl_expr_chain;
|
||
|
||
/* If there's a hash table, it must record all uses of VAR. */
|
||
if (ht)
|
||
{
|
||
if (stack != 0)
|
||
abort ();
|
||
fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp,
|
||
may_share);
|
||
return;
|
||
}
|
||
|
||
fixup_var_refs_insns (first_insn, var, promoted_mode, unsignedp,
|
||
stack == 0, may_share);
|
||
|
||
/* Scan all pending sequences too. */
|
||
for (; stack; stack = stack->next)
|
||
{
|
||
push_to_full_sequence (stack->first, stack->last);
|
||
fixup_var_refs_insns (stack->first, var, promoted_mode, unsignedp,
|
||
stack->next != 0, may_share);
|
||
/* Update remembered end of sequence
|
||
in case we added an insn at the end. */
|
||
stack->last = get_last_insn ();
|
||
end_sequence ();
|
||
}
|
||
|
||
/* Scan all waiting RTL_EXPRs too. */
|
||
for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
|
||
{
|
||
rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
|
||
if (seq != const0_rtx && seq != 0)
|
||
{
|
||
push_to_sequence (seq);
|
||
fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0,
|
||
may_share);
|
||
end_sequence ();
|
||
}
|
||
}
|
||
}
|
||
|
||
/* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
|
||
some part of an insn. Return a struct fixup_replacement whose OLD
|
||
value is equal to X. Allocate a new structure if no such entry exists. */
|
||
|
||
static struct fixup_replacement *
|
||
find_fixup_replacement (struct fixup_replacement **replacements, rtx x)
|
||
{
|
||
struct fixup_replacement *p;
|
||
|
||
/* See if we have already replaced this. */
|
||
for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
|
||
;
|
||
|
||
if (p == 0)
|
||
{
|
||
p = xmalloc (sizeof (struct fixup_replacement));
|
||
p->old = x;
|
||
p->new = 0;
|
||
p->next = *replacements;
|
||
*replacements = p;
|
||
}
|
||
|
||
return p;
|
||
}
|
||
|
||
/* Scan the insn-chain starting with INSN for refs to VAR and fix them
|
||
up. TOPLEVEL is nonzero if this chain is the main chain of insns
|
||
for the current function. MAY_SHARE is either a MEM that is not
|
||
to be unshared or a list of them. */
|
||
|
||
static void
|
||
fixup_var_refs_insns (rtx insn, rtx var, enum machine_mode promoted_mode,
|
||
int unsignedp, int toplevel, rtx may_share)
|
||
{
|
||
while (insn)
|
||
{
|
||
/* fixup_var_refs_insn might modify insn, so save its next
|
||
pointer now. */
|
||
rtx next = NEXT_INSN (insn);
|
||
|
||
/* CALL_PLACEHOLDERs are special; we have to switch into each of
|
||
the three sequences they (potentially) contain, and process
|
||
them recursively. The CALL_INSN itself is not interesting. */
|
||
|
||
if (GET_CODE (insn) == CALL_INSN
|
||
&& GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
|
||
{
|
||
int i;
|
||
|
||
/* Look at the Normal call, sibling call and tail recursion
|
||
sequences attached to the CALL_PLACEHOLDER. */
|
||
for (i = 0; i < 3; i++)
|
||
{
|
||
rtx seq = XEXP (PATTERN (insn), i);
|
||
if (seq)
|
||
{
|
||
push_to_sequence (seq);
|
||
fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0,
|
||
may_share);
|
||
XEXP (PATTERN (insn), i) = get_insns ();
|
||
end_sequence ();
|
||
}
|
||
}
|
||
}
|
||
|
||
else if (INSN_P (insn))
|
||
fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel,
|
||
may_share);
|
||
|
||
insn = next;
|
||
}
|
||
}
|
||
|
||
/* Look up the insns which reference VAR in HT and fix them up. Other
|
||
arguments are the same as fixup_var_refs_insns.
|
||
|
||
N.B. No need for special processing of CALL_PLACEHOLDERs here,
|
||
because the hash table will point straight to the interesting insn
|
||
(inside the CALL_PLACEHOLDER). */
|
||
|
||
static void
|
||
fixup_var_refs_insns_with_hash (htab_t ht, rtx var, enum machine_mode promoted_mode,
|
||
int unsignedp, rtx may_share)
|
||
{
|
||
struct insns_for_mem_entry tmp;
|
||
struct insns_for_mem_entry *ime;
|
||
rtx insn_list;
|
||
|
||
tmp.key = var;
|
||
ime = htab_find (ht, &tmp);
|
||
for (insn_list = ime->insns; insn_list != 0; insn_list = XEXP (insn_list, 1))
|
||
if (INSN_P (XEXP (insn_list, 0)) && !INSN_DELETED_P (XEXP (insn_list, 0)))
|
||
fixup_var_refs_insn (XEXP (insn_list, 0), var, promoted_mode,
|
||
unsignedp, 1, may_share);
|
||
}
|
||
|
||
|
||
/* Per-insn processing by fixup_var_refs_insns(_with_hash). INSN is
|
||
the insn under examination, VAR is the variable to fix up
|
||
references to, PROMOTED_MODE and UNSIGNEDP describe VAR, and
|
||
TOPLEVEL is nonzero if this is the main insn chain for this
|
||
function. */
|
||
|
||
static void
|
||
fixup_var_refs_insn (rtx insn, rtx var, enum machine_mode promoted_mode,
|
||
int unsignedp, int toplevel, rtx no_share)
|
||
{
|
||
rtx call_dest = 0;
|
||
rtx set, prev, prev_set;
|
||
rtx note;
|
||
|
||
/* Remember the notes in case we delete the insn. */
|
||
note = REG_NOTES (insn);
|
||
|
||
/* If this is a CLOBBER of VAR, delete it.
|
||
|
||
If it has a REG_LIBCALL note, delete the REG_LIBCALL
|
||
and REG_RETVAL notes too. */
|
||
if (GET_CODE (PATTERN (insn)) == CLOBBER
|
||
&& (XEXP (PATTERN (insn), 0) == var
|
||
|| (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
|
||
&& (XEXP (XEXP (PATTERN (insn), 0), 0) == var
|
||
|| XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
|
||
{
|
||
if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
|
||
/* The REG_LIBCALL note will go away since we are going to
|
||
turn INSN into a NOTE, so just delete the
|
||
corresponding REG_RETVAL note. */
|
||
remove_note (XEXP (note, 0),
|
||
find_reg_note (XEXP (note, 0), REG_RETVAL,
|
||
NULL_RTX));
|
||
|
||
delete_insn (insn);
|
||
}
|
||
|
||
/* The insn to load VAR from a home in the arglist
|
||
is now a no-op. When we see it, just delete it.
|
||
Similarly if this is storing VAR from a register from which
|
||
it was loaded in the previous insn. This will occur
|
||
when an ADDRESSOF was made for an arglist slot. */
|
||
else if (toplevel
|
||
&& (set = single_set (insn)) != 0
|
||
&& SET_DEST (set) == var
|
||
/* If this represents the result of an insn group,
|
||
don't delete the insn. */
|
||
&& find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
|
||
&& (rtx_equal_p (SET_SRC (set), var)
|
||
|| (GET_CODE (SET_SRC (set)) == REG
|
||
&& (prev = prev_nonnote_insn (insn)) != 0
|
||
&& (prev_set = single_set (prev)) != 0
|
||
&& SET_DEST (prev_set) == SET_SRC (set)
|
||
&& rtx_equal_p (SET_SRC (prev_set), var))))
|
||
{
|
||
delete_insn (insn);
|
||
}
|
||
else
|
||
{
|
||
struct fixup_replacement *replacements = 0;
|
||
rtx next_insn = NEXT_INSN (insn);
|
||
|
||
if (SMALL_REGISTER_CLASSES)
|
||
{
|
||
/* If the insn that copies the results of a CALL_INSN
|
||
into a pseudo now references VAR, we have to use an
|
||
intermediate pseudo since we want the life of the
|
||
return value register to be only a single insn.
|
||
|
||
If we don't use an intermediate pseudo, such things as
|
||
address computations to make the address of VAR valid
|
||
if it is not can be placed between the CALL_INSN and INSN.
|
||
|
||
To make sure this doesn't happen, we record the destination
|
||
of the CALL_INSN and see if the next insn uses both that
|
||
and VAR. */
|
||
|
||
if (call_dest != 0 && GET_CODE (insn) == INSN
|
||
&& reg_mentioned_p (var, PATTERN (insn))
|
||
&& reg_mentioned_p (call_dest, PATTERN (insn)))
|
||
{
|
||
rtx temp = gen_reg_rtx (GET_MODE (call_dest));
|
||
|
||
emit_insn_before (gen_move_insn (temp, call_dest), insn);
|
||
|
||
PATTERN (insn) = replace_rtx (PATTERN (insn),
|
||
call_dest, temp);
|
||
}
|
||
|
||
if (GET_CODE (insn) == CALL_INSN
|
||
&& GET_CODE (PATTERN (insn)) == SET)
|
||
call_dest = SET_DEST (PATTERN (insn));
|
||
else if (GET_CODE (insn) == CALL_INSN
|
||
&& GET_CODE (PATTERN (insn)) == PARALLEL
|
||
&& GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
|
||
call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
|
||
else
|
||
call_dest = 0;
|
||
}
|
||
|
||
/* See if we have to do anything to INSN now that VAR is in
|
||
memory. If it needs to be loaded into a pseudo, use a single
|
||
pseudo for the entire insn in case there is a MATCH_DUP
|
||
between two operands. We pass a pointer to the head of
|
||
a list of struct fixup_replacements. If fixup_var_refs_1
|
||
needs to allocate pseudos or replacement MEMs (for SUBREGs),
|
||
it will record them in this list.
|
||
|
||
If it allocated a pseudo for any replacement, we copy into
|
||
it here. */
|
||
|
||
fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
|
||
&replacements, no_share);
|
||
|
||
/* If this is last_parm_insn, and any instructions were output
|
||
after it to fix it up, then we must set last_parm_insn to
|
||
the last such instruction emitted. */
|
||
if (insn == last_parm_insn)
|
||
last_parm_insn = PREV_INSN (next_insn);
|
||
|
||
while (replacements)
|
||
{
|
||
struct fixup_replacement *next;
|
||
|
||
if (GET_CODE (replacements->new) == REG)
|
||
{
|
||
rtx insert_before;
|
||
rtx seq;
|
||
|
||
/* OLD might be a (subreg (mem)). */
|
||
if (GET_CODE (replacements->old) == SUBREG)
|
||
replacements->old
|
||
= fixup_memory_subreg (replacements->old, insn,
|
||
promoted_mode, 0);
|
||
else
|
||
replacements->old
|
||
= fixup_stack_1 (replacements->old, insn);
|
||
|
||
insert_before = insn;
|
||
|
||
/* If we are changing the mode, do a conversion.
|
||
This might be wasteful, but combine.c will
|
||
eliminate much of the waste. */
|
||
|
||
if (GET_MODE (replacements->new)
|
||
!= GET_MODE (replacements->old))
|
||
{
|
||
start_sequence ();
|
||
convert_move (replacements->new,
|
||
replacements->old, unsignedp);
|
||
seq = get_insns ();
|
||
end_sequence ();
|
||
}
|
||
else
|
||
seq = gen_move_insn (replacements->new,
|
||
replacements->old);
|
||
|
||
emit_insn_before (seq, insert_before);
|
||
}
|
||
|
||
next = replacements->next;
|
||
free (replacements);
|
||
replacements = next;
|
||
}
|
||
}
|
||
|
||
/* Also fix up any invalid exprs in the REG_NOTES of this insn.
|
||
But don't touch other insns referred to by reg-notes;
|
||
we will get them elsewhere. */
|
||
while (note)
|
||
{
|
||
if (GET_CODE (note) != INSN_LIST)
|
||
XEXP (note, 0)
|
||
= walk_fixup_memory_subreg (XEXP (note, 0), insn,
|
||
promoted_mode, 1);
|
||
note = XEXP (note, 1);
|
||
}
|
||
}
|
||
|
||
/* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
|
||
See if the rtx expression at *LOC in INSN needs to be changed.
|
||
|
||
REPLACEMENTS is a pointer to a list head that starts out zero, but may
|
||
contain a list of original rtx's and replacements. If we find that we need
|
||
to modify this insn by replacing a memory reference with a pseudo or by
|
||
making a new MEM to implement a SUBREG, we consult that list to see if
|
||
we have already chosen a replacement. If none has already been allocated,
|
||
we allocate it and update the list. fixup_var_refs_insn will copy VAR
|
||
or the SUBREG, as appropriate, to the pseudo. */
|
||
|
||
static void
|
||
fixup_var_refs_1 (rtx var, enum machine_mode promoted_mode, rtx *loc, rtx insn,
|
||
struct fixup_replacement **replacements, rtx no_share)
|
||
{
|
||
int i;
|
||
rtx x = *loc;
|
||
RTX_CODE code = GET_CODE (x);
|
||
const char *fmt;
|
||
rtx tem, tem1;
|
||
struct fixup_replacement *replacement;
|
||
|
||
switch (code)
|
||
{
|
||
case ADDRESSOF:
|
||
if (XEXP (x, 0) == var)
|
||
{
|
||
/* Prevent sharing of rtl that might lose. */
|
||
rtx sub = copy_rtx (XEXP (var, 0));
|
||
|
||
if (! validate_change (insn, loc, sub, 0))
|
||
{
|
||
rtx y = gen_reg_rtx (GET_MODE (sub));
|
||
rtx seq, new_insn;
|
||
|
||
/* We should be able to replace with a register or all is lost.
|
||
Note that we can't use validate_change to verify this, since
|
||
we're not caring for replacing all dups simultaneously. */
|
||
if (! validate_replace_rtx (*loc, y, insn))
|
||
abort ();
|
||
|
||
/* Careful! First try to recognize a direct move of the
|
||
value, mimicking how things are done in gen_reload wrt
|
||
PLUS. Consider what happens when insn is a conditional
|
||
move instruction and addsi3 clobbers flags. */
|
||
|
||
start_sequence ();
|
||
new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
|
||
seq = get_insns ();
|
||
end_sequence ();
|
||
|
||
if (recog_memoized (new_insn) < 0)
|
||
{
|
||
/* That failed. Fall back on force_operand and hope. */
|
||
|
||
start_sequence ();
|
||
sub = force_operand (sub, y);
|
||
if (sub != y)
|
||
emit_insn (gen_move_insn (y, sub));
|
||
seq = get_insns ();
|
||
end_sequence ();
|
||
}
|
||
|
||
#ifdef HAVE_cc0
|
||
/* Don't separate setter from user. */
|
||
if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
|
||
insn = PREV_INSN (insn);
|
||
#endif
|
||
|
||
emit_insn_before (seq, insn);
|
||
}
|
||
}
|
||
return;
|
||
|
||
case MEM:
|
||
if (var == x)
|
||
{
|
||
/* If we already have a replacement, use it. Otherwise,
|
||
try to fix up this address in case it is invalid. */
|
||
|
||
replacement = find_fixup_replacement (replacements, var);
|
||
if (replacement->new)
|
||
{
|
||
*loc = replacement->new;
|
||
return;
|
||
}
|
||
|
||
*loc = replacement->new = x = fixup_stack_1 (x, insn);
|
||
|
||
/* Unless we are forcing memory to register or we changed the mode,
|
||
we can leave things the way they are if the insn is valid. */
|
||
|
||
INSN_CODE (insn) = -1;
|
||
if (! flag_force_mem && GET_MODE (x) == promoted_mode
|
||
&& recog_memoized (insn) >= 0)
|
||
return;
|
||
|
||
*loc = replacement->new = gen_reg_rtx (promoted_mode);
|
||
return;
|
||
}
|
||
|
||
/* If X contains VAR, we need to unshare it here so that we update
|
||
each occurrence separately. But all identical MEMs in one insn
|
||
must be replaced with the same rtx because of the possibility of
|
||
MATCH_DUPs. */
|
||
|
||
if (reg_mentioned_p (var, x))
|
||
{
|
||
replacement = find_fixup_replacement (replacements, x);
|
||
if (replacement->new == 0)
|
||
replacement->new = copy_most_rtx (x, no_share);
|
||
|
||
*loc = x = replacement->new;
|
||
code = GET_CODE (x);
|
||
}
|
||
break;
|
||
|
||
case REG:
|
||
case CC0:
|
||
case PC:
|
||
case CONST_INT:
|
||
case CONST:
|
||
case SYMBOL_REF:
|
||
case LABEL_REF:
|
||
case CONST_DOUBLE:
|
||
case CONST_VECTOR:
|
||
return;
|
||
|
||
case SIGN_EXTRACT:
|
||
case ZERO_EXTRACT:
|
||
/* Note that in some cases those types of expressions are altered
|
||
by optimize_bit_field, and do not survive to get here. */
|
||
if (XEXP (x, 0) == var
|
||
|| (GET_CODE (XEXP (x, 0)) == SUBREG
|
||
&& SUBREG_REG (XEXP (x, 0)) == var))
|
||
{
|
||
/* Get TEM as a valid MEM in the mode presently in the insn.
|
||
|
||
We don't worry about the possibility of MATCH_DUP here; it
|
||
is highly unlikely and would be tricky to handle. */
|
||
|
||
tem = XEXP (x, 0);
|
||
if (GET_CODE (tem) == SUBREG)
|
||
{
|
||
if (GET_MODE_BITSIZE (GET_MODE (tem))
|
||
> GET_MODE_BITSIZE (GET_MODE (var)))
|
||
{
|
||
replacement = find_fixup_replacement (replacements, var);
|
||
if (replacement->new == 0)
|
||
replacement->new = gen_reg_rtx (GET_MODE (var));
|
||
SUBREG_REG (tem) = replacement->new;
|
||
|
||
/* The following code works only if we have a MEM, so we
|
||
need to handle the subreg here. We directly substitute
|
||
it assuming that a subreg must be OK here. We already
|
||
scheduled a replacement to copy the mem into the
|
||
subreg. */
|
||
XEXP (x, 0) = tem;
|
||
return;
|
||
}
|
||
else
|
||
tem = fixup_memory_subreg (tem, insn, promoted_mode, 0);
|
||
}
|
||
else
|
||
tem = fixup_stack_1 (tem, insn);
|
||
|
||
/* Unless we want to load from memory, get TEM into the proper mode
|
||
for an extract from memory. This can only be done if the
|
||
extract is at a constant position and length. */
|
||
|
||
if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
|
||
&& GET_CODE (XEXP (x, 2)) == CONST_INT
|
||
&& ! mode_dependent_address_p (XEXP (tem, 0))
|
||
&& ! MEM_VOLATILE_P (tem))
|
||
{
|
||
enum machine_mode wanted_mode = VOIDmode;
|
||
enum machine_mode is_mode = GET_MODE (tem);
|
||
HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
|
||
|
||
if (GET_CODE (x) == ZERO_EXTRACT)
|
||
{
|
||
enum machine_mode new_mode
|
||
= mode_for_extraction (EP_extzv, 1);
|
||
if (new_mode != MAX_MACHINE_MODE)
|
||
wanted_mode = new_mode;
|
||
}
|
||
else if (GET_CODE (x) == SIGN_EXTRACT)
|
||
{
|
||
enum machine_mode new_mode
|
||
= mode_for_extraction (EP_extv, 1);
|
||
if (new_mode != MAX_MACHINE_MODE)
|
||
wanted_mode = new_mode;
|
||
}
|
||
|
||
/* If we have a narrower mode, we can do something. */
|
||
if (wanted_mode != VOIDmode
|
||
&& GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
|
||
{
|
||
HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
|
||
rtx old_pos = XEXP (x, 2);
|
||
rtx newmem;
|
||
|
||
/* If the bytes and bits are counted differently, we
|
||
must adjust the offset. */
|
||
if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
|
||
offset = (GET_MODE_SIZE (is_mode)
|
||
- GET_MODE_SIZE (wanted_mode) - offset);
|
||
|
||
pos %= GET_MODE_BITSIZE (wanted_mode);
|
||
|
||
newmem = adjust_address_nv (tem, wanted_mode, offset);
|
||
|
||
/* Make the change and see if the insn remains valid. */
|
||
INSN_CODE (insn) = -1;
|
||
XEXP (x, 0) = newmem;
|
||
XEXP (x, 2) = GEN_INT (pos);
|
||
|
||
if (recog_memoized (insn) >= 0)
|
||
return;
|
||
|
||
/* Otherwise, restore old position. XEXP (x, 0) will be
|
||
restored later. */
|
||
XEXP (x, 2) = old_pos;
|
||
}
|
||
}
|
||
|
||
/* If we get here, the bitfield extract insn can't accept a memory
|
||
reference. Copy the input into a register. */
|
||
|
||
tem1 = gen_reg_rtx (GET_MODE (tem));
|
||
emit_insn_before (gen_move_insn (tem1, tem), insn);
|
||
XEXP (x, 0) = tem1;
|
||
return;
|
||
}
|
||
break;
|
||
|
||
case SUBREG:
|
||
if (SUBREG_REG (x) == var)
|
||
{
|
||
/* If this is a special SUBREG made because VAR was promoted
|
||
from a wider mode, replace it with VAR and call ourself
|
||
recursively, this time saying that the object previously
|
||
had its current mode (by virtue of the SUBREG). */
|
||
|
||
if (SUBREG_PROMOTED_VAR_P (x))
|
||
{
|
||
*loc = var;
|
||
fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements,
|
||
no_share);
|
||
return;
|
||
}
|
||
|
||
/* If this SUBREG makes VAR wider, it has become a paradoxical
|
||
SUBREG with VAR in memory, but these aren't allowed at this
|
||
stage of the compilation. So load VAR into a pseudo and take
|
||
a SUBREG of that pseudo. */
|
||
if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
|
||
{
|
||
replacement = find_fixup_replacement (replacements, var);
|
||
if (replacement->new == 0)
|
||
replacement->new = gen_reg_rtx (promoted_mode);
|
||
SUBREG_REG (x) = replacement->new;
|
||
return;
|
||
}
|
||
|
||
/* See if we have already found a replacement for this SUBREG.
|
||
If so, use it. Otherwise, make a MEM and see if the insn
|
||
is recognized. If not, or if we should force MEM into a register,
|
||
make a pseudo for this SUBREG. */
|
||
replacement = find_fixup_replacement (replacements, x);
|
||
if (replacement->new)
|
||
{
|
||
enum machine_mode mode = GET_MODE (x);
|
||
*loc = replacement->new;
|
||
|
||
/* Careful! We may have just replaced a SUBREG by a MEM, which
|
||
means that the insn may have become invalid again. We can't
|
||
in this case make a new replacement since we already have one
|
||
and we must deal with MATCH_DUPs. */
|
||
if (GET_CODE (replacement->new) == MEM)
|
||
{
|
||
INSN_CODE (insn) = -1;
|
||
if (recog_memoized (insn) >= 0)
|
||
return;
|
||
|
||
fixup_var_refs_1 (replacement->new, mode, &PATTERN (insn),
|
||
insn, replacements, no_share);
|
||
}
|
||
|
||
return;
|
||
}
|
||
|
||
replacement->new = *loc = fixup_memory_subreg (x, insn,
|
||
promoted_mode, 0);
|
||
|
||
INSN_CODE (insn) = -1;
|
||
if (! flag_force_mem && recog_memoized (insn) >= 0)
|
||
return;
|
||
|
||
*loc = replacement->new = gen_reg_rtx (GET_MODE (x));
|
||
return;
|
||
}
|
||
break;
|
||
|
||
case SET:
|
||
/* First do special simplification of bit-field references. */
|
||
if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
|
||
|| GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
|
||
optimize_bit_field (x, insn, 0);
|
||
if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
|
||
|| GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
|
||
optimize_bit_field (x, insn, 0);
|
||
|
||
/* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
|
||
into a register and then store it back out. */
|
||
if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
|
||
&& GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
|
||
&& SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
|
||
&& (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
|
||
> GET_MODE_SIZE (GET_MODE (var))))
|
||
{
|
||
replacement = find_fixup_replacement (replacements, var);
|
||
if (replacement->new == 0)
|
||
replacement->new = gen_reg_rtx (GET_MODE (var));
|
||
|
||
SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
|
||
emit_insn_after (gen_move_insn (var, replacement->new), insn);
|
||
}
|
||
|
||
/* If SET_DEST is now a paradoxical SUBREG, put the result of this
|
||
insn into a pseudo and store the low part of the pseudo into VAR. */
|
||
if (GET_CODE (SET_DEST (x)) == SUBREG
|
||
&& SUBREG_REG (SET_DEST (x)) == var
|
||
&& (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
|
||
> GET_MODE_SIZE (GET_MODE (var))))
|
||
{
|
||
SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
|
||
emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
|
||
tem)),
|
||
insn);
|
||
break;
|
||
}
|
||
|
||
{
|
||
rtx dest = SET_DEST (x);
|
||
rtx src = SET_SRC (x);
|
||
rtx outerdest = dest;
|
||
|
||
while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
|
||
|| GET_CODE (dest) == SIGN_EXTRACT
|
||
|| GET_CODE (dest) == ZERO_EXTRACT)
|
||
dest = XEXP (dest, 0);
|
||
|
||
if (GET_CODE (src) == SUBREG)
|
||
src = SUBREG_REG (src);
|
||
|
||
/* If VAR does not appear at the top level of the SET
|
||
just scan the lower levels of the tree. */
|
||
|
||
if (src != var && dest != var)
|
||
break;
|
||
|
||
/* We will need to rerecognize this insn. */
|
||
INSN_CODE (insn) = -1;
|
||
|
||
if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var
|
||
&& mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
|
||
{
|
||
/* Since this case will return, ensure we fixup all the
|
||
operands here. */
|
||
fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
|
||
insn, replacements, no_share);
|
||
fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
|
||
insn, replacements, no_share);
|
||
fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
|
||
insn, replacements, no_share);
|
||
|
||
tem = XEXP (outerdest, 0);
|
||
|
||
/* Clean up (SUBREG:SI (MEM:mode ...) 0)
|
||
that may appear inside a ZERO_EXTRACT.
|
||
This was legitimate when the MEM was a REG. */
|
||
if (GET_CODE (tem) == SUBREG
|
||
&& SUBREG_REG (tem) == var)
|
||
tem = fixup_memory_subreg (tem, insn, promoted_mode, 0);
|
||
else
|
||
tem = fixup_stack_1 (tem, insn);
|
||
|
||
if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
|
||
&& GET_CODE (XEXP (outerdest, 2)) == CONST_INT
|
||
&& ! mode_dependent_address_p (XEXP (tem, 0))
|
||
&& ! MEM_VOLATILE_P (tem))
|
||
{
|
||
enum machine_mode wanted_mode;
|
||
enum machine_mode is_mode = GET_MODE (tem);
|
||
HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));
|
||
|
||
wanted_mode = mode_for_extraction (EP_insv, 0);
|
||
|
||
/* If we have a narrower mode, we can do something. */
|
||
if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
|
||
{
|
||
HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
|
||
rtx old_pos = XEXP (outerdest, 2);
|
||
rtx newmem;
|
||
|
||
if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
|
||
offset = (GET_MODE_SIZE (is_mode)
|
||
- GET_MODE_SIZE (wanted_mode) - offset);
|
||
|
||
pos %= GET_MODE_BITSIZE (wanted_mode);
|
||
|
||
newmem = adjust_address_nv (tem, wanted_mode, offset);
|
||
|
||
/* Make the change and see if the insn remains valid. */
|
||
INSN_CODE (insn) = -1;
|
||
XEXP (outerdest, 0) = newmem;
|
||
XEXP (outerdest, 2) = GEN_INT (pos);
|
||
|
||
if (recog_memoized (insn) >= 0)
|
||
return;
|
||
|
||
/* Otherwise, restore old position. XEXP (x, 0) will be
|
||
restored later. */
|
||
XEXP (outerdest, 2) = old_pos;
|
||
}
|
||
}
|
||
|
||
/* If we get here, the bit-field store doesn't allow memory
|
||
or isn't located at a constant position. Load the value into
|
||
a register, do the store, and put it back into memory. */
|
||
|
||
tem1 = gen_reg_rtx (GET_MODE (tem));
|
||
emit_insn_before (gen_move_insn (tem1, tem), insn);
|
||
emit_insn_after (gen_move_insn (tem, tem1), insn);
|
||
XEXP (outerdest, 0) = tem1;
|
||
return;
|
||
}
|
||
|
||
/* STRICT_LOW_PART is a no-op on memory references
|
||
and it can cause combinations to be unrecognizable,
|
||
so eliminate it. */
|
||
|
||
if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
|
||
SET_DEST (x) = XEXP (SET_DEST (x), 0);
|
||
|
||
/* A valid insn to copy VAR into or out of a register
|
||
must be left alone, to avoid an infinite loop here.
|
||
If the reference to VAR is by a subreg, fix that up,
|
||
since SUBREG is not valid for a memref.
|
||
Also fix up the address of the stack slot.
|
||
|
||
Note that we must not try to recognize the insn until
|
||
after we know that we have valid addresses and no
|
||
(subreg (mem ...) ...) constructs, since these interfere
|
||
with determining the validity of the insn. */
|
||
|
||
if ((SET_SRC (x) == var
|
||
|| (GET_CODE (SET_SRC (x)) == SUBREG
|
||
&& SUBREG_REG (SET_SRC (x)) == var))
|
||
&& (GET_CODE (SET_DEST (x)) == REG
|
||
|| (GET_CODE (SET_DEST (x)) == SUBREG
|
||
&& GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
|
||
&& GET_MODE (var) == promoted_mode
|
||
&& x == single_set (insn))
|
||
{
|
||
rtx pat, last;
|
||
|
||
if (GET_CODE (SET_SRC (x)) == SUBREG
|
||
&& (GET_MODE_SIZE (GET_MODE (SET_SRC (x)))
|
||
> GET_MODE_SIZE (GET_MODE (var))))
|
||
{
|
||
/* This (subreg VAR) is now a paradoxical subreg. We need
|
||
to replace VAR instead of the subreg. */
|
||
replacement = find_fixup_replacement (replacements, var);
|
||
if (replacement->new == NULL_RTX)
|
||
replacement->new = gen_reg_rtx (GET_MODE (var));
|
||
SUBREG_REG (SET_SRC (x)) = replacement->new;
|
||
}
|
||
else
|
||
{
|
||
replacement = find_fixup_replacement (replacements, SET_SRC (x));
|
||
if (replacement->new)
|
||
SET_SRC (x) = replacement->new;
|
||
else if (GET_CODE (SET_SRC (x)) == SUBREG)
|
||
SET_SRC (x) = replacement->new
|
||
= fixup_memory_subreg (SET_SRC (x), insn, promoted_mode,
|
||
0);
|
||
else
|
||
SET_SRC (x) = replacement->new
|
||
= fixup_stack_1 (SET_SRC (x), insn);
|
||
}
|
||
|
||
if (recog_memoized (insn) >= 0)
|
||
return;
|
||
|
||
/* INSN is not valid, but we know that we want to
|
||
copy SET_SRC (x) to SET_DEST (x) in some way. So
|
||
we generate the move and see whether it requires more
|
||
than one insn. If it does, we emit those insns and
|
||
delete INSN. Otherwise, we can just replace the pattern
|
||
of INSN; we have already verified above that INSN has
|
||
no other function that to do X. */
|
||
|
||
pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
|
||
if (NEXT_INSN (pat) != NULL_RTX)
|
||
{
|
||
last = emit_insn_before (pat, insn);
|
||
|
||
/* INSN might have REG_RETVAL or other important notes, so
|
||
we need to store the pattern of the last insn in the
|
||
sequence into INSN similarly to the normal case. LAST
|
||
should not have REG_NOTES, but we allow them if INSN has
|
||
no REG_NOTES. */
|
||
if (REG_NOTES (last) && REG_NOTES (insn))
|
||
abort ();
|
||
if (REG_NOTES (last))
|
||
REG_NOTES (insn) = REG_NOTES (last);
|
||
PATTERN (insn) = PATTERN (last);
|
||
|
||
delete_insn (last);
|
||
}
|
||
else
|
||
PATTERN (insn) = PATTERN (pat);
|
||
|
||
return;
|
||
}
|
||
|
||
if ((SET_DEST (x) == var
|
||
|| (GET_CODE (SET_DEST (x)) == SUBREG
|
||
&& SUBREG_REG (SET_DEST (x)) == var))
|
||
&& (GET_CODE (SET_SRC (x)) == REG
|
||
|| (GET_CODE (SET_SRC (x)) == SUBREG
|
||
&& GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
|
||
&& GET_MODE (var) == promoted_mode
|
||
&& x == single_set (insn))
|
||
{
|
||
rtx pat, last;
|
||
|
||
if (GET_CODE (SET_DEST (x)) == SUBREG)
|
||
SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn,
|
||
promoted_mode, 0);
|
||
else
|
||
SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
|
||
|
||
if (recog_memoized (insn) >= 0)
|
||
return;
|
||
|
||
pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
|
||
if (NEXT_INSN (pat) != NULL_RTX)
|
||
{
|
||
last = emit_insn_before (pat, insn);
|
||
|
||
/* INSN might have REG_RETVAL or other important notes, so
|
||
we need to store the pattern of the last insn in the
|
||
sequence into INSN similarly to the normal case. LAST
|
||
should not have REG_NOTES, but we allow them if INSN has
|
||
no REG_NOTES. */
|
||
if (REG_NOTES (last) && REG_NOTES (insn))
|
||
abort ();
|
||
if (REG_NOTES (last))
|
||
REG_NOTES (insn) = REG_NOTES (last);
|
||
PATTERN (insn) = PATTERN (last);
|
||
|
||
delete_insn (last);
|
||
}
|
||
else
|
||
PATTERN (insn) = PATTERN (pat);
|
||
|
||
return;
|
||
}
|
||
|
||
/* Otherwise, storing into VAR must be handled specially
|
||
by storing into a temporary and copying that into VAR
|
||
with a new insn after this one. Note that this case
|
||
will be used when storing into a promoted scalar since
|
||
the insn will now have different modes on the input
|
||
and output and hence will be invalid (except for the case
|
||
of setting it to a constant, which does not need any
|
||
change if it is valid). We generate extra code in that case,
|
||
but combine.c will eliminate it. */
|
||
|
||
if (dest == var)
|
||
{
|
||
rtx temp;
|
||
rtx fixeddest = SET_DEST (x);
|
||
enum machine_mode temp_mode;
|
||
|
||
/* STRICT_LOW_PART can be discarded, around a MEM. */
|
||
if (GET_CODE (fixeddest) == STRICT_LOW_PART)
|
||
fixeddest = XEXP (fixeddest, 0);
|
||
/* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
|
||
if (GET_CODE (fixeddest) == SUBREG)
|
||
{
|
||
fixeddest = fixup_memory_subreg (fixeddest, insn,
|
||
promoted_mode, 0);
|
||
temp_mode = GET_MODE (fixeddest);
|
||
}
|
||
else
|
||
{
|
||
fixeddest = fixup_stack_1 (fixeddest, insn);
|
||
temp_mode = promoted_mode;
|
||
}
|
||
|
||
temp = gen_reg_rtx (temp_mode);
|
||
|
||
emit_insn_after (gen_move_insn (fixeddest,
|
||
gen_lowpart (GET_MODE (fixeddest),
|
||
temp)),
|
||
insn);
|
||
|
||
SET_DEST (x) = temp;
|
||
}
|
||
}
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Nothing special about this RTX; fix its operands. */
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements,
|
||
no_share);
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
int j;
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
|
||
insn, replacements, no_share);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Previously, X had the form (SUBREG:m1 (REG:PROMOTED_MODE ...)).
|
||
The REG was placed on the stack, so X now has the form (SUBREG:m1
|
||
(MEM:m2 ...)).
|
||
|
||
Return an rtx (MEM:m1 newaddr) which is equivalent. If any insns
|
||
must be emitted to compute NEWADDR, put them before INSN.
|
||
|
||
UNCRITICAL nonzero means accept paradoxical subregs.
|
||
This is used for subregs found inside REG_NOTES. */
|
||
|
||
static rtx
|
||
fixup_memory_subreg (rtx x, rtx insn, enum machine_mode promoted_mode, int uncritical)
|
||
{
|
||
int offset;
|
||
rtx mem = SUBREG_REG (x);
|
||
rtx addr = XEXP (mem, 0);
|
||
enum machine_mode mode = GET_MODE (x);
|
||
rtx result, seq;
|
||
|
||
/* Paradoxical SUBREGs are usually invalid during RTL generation. */
|
||
if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (mem)) && ! uncritical)
|
||
abort ();
|
||
|
||
offset = SUBREG_BYTE (x);
|
||
if (BYTES_BIG_ENDIAN)
|
||
/* If the PROMOTED_MODE is wider than the mode of the MEM, adjust
|
||
the offset so that it points to the right location within the
|
||
MEM. */
|
||
offset -= (GET_MODE_SIZE (promoted_mode) - GET_MODE_SIZE (GET_MODE (mem)));
|
||
|
||
if (!flag_force_addr
|
||
&& memory_address_p (mode, plus_constant (addr, offset)))
|
||
/* Shortcut if no insns need be emitted. */
|
||
return adjust_address (mem, mode, offset);
|
||
|
||
start_sequence ();
|
||
result = adjust_address (mem, mode, offset);
|
||
seq = get_insns ();
|
||
end_sequence ();
|
||
|
||
emit_insn_before (seq, insn);
|
||
return result;
|
||
}
|
||
|
||
/* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
|
||
Replace subexpressions of X in place.
|
||
If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
|
||
Otherwise return X, with its contents possibly altered.
|
||
|
||
INSN, PROMOTED_MODE and UNCRITICAL are as for
|
||
fixup_memory_subreg. */
|
||
|
||
static rtx
|
||
walk_fixup_memory_subreg (rtx x, rtx insn, enum machine_mode promoted_mode,
|
||
int uncritical)
|
||
{
|
||
enum rtx_code code;
|
||
const char *fmt;
|
||
int i;
|
||
|
||
if (x == 0)
|
||
return 0;
|
||
|
||
code = GET_CODE (x);
|
||
|
||
if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
|
||
return fixup_memory_subreg (x, insn, promoted_mode, uncritical);
|
||
|
||
/* Nothing special about this RTX; fix its operands. */
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn,
|
||
promoted_mode, uncritical);
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
int j;
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
XVECEXP (x, i, j)
|
||
= walk_fixup_memory_subreg (XVECEXP (x, i, j), insn,
|
||
promoted_mode, uncritical);
|
||
}
|
||
}
|
||
return x;
|
||
}
|
||
|
||
/* For each memory ref within X, if it refers to a stack slot
|
||
with an out of range displacement, put the address in a temp register
|
||
(emitting new insns before INSN to load these registers)
|
||
and alter the memory ref to use that register.
|
||
Replace each such MEM rtx with a copy, to avoid clobberage. */
|
||
|
||
static rtx
|
||
fixup_stack_1 (rtx x, rtx insn)
|
||
{
|
||
int i;
|
||
RTX_CODE code = GET_CODE (x);
|
||
const char *fmt;
|
||
|
||
if (code == MEM)
|
||
{
|
||
rtx ad = XEXP (x, 0);
|
||
/* If we have address of a stack slot but it's not valid
|
||
(displacement is too large), compute the sum in a register. */
|
||
if (GET_CODE (ad) == PLUS
|
||
&& GET_CODE (XEXP (ad, 0)) == REG
|
||
&& ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
|
||
&& REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
|
||
|| REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
|
||
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
|
||
|| REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
|
||
#endif
|
||
|| REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
|
||
|| REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
|
||
|| XEXP (ad, 0) == current_function_internal_arg_pointer)
|
||
&& GET_CODE (XEXP (ad, 1)) == CONST_INT)
|
||
{
|
||
rtx temp, seq;
|
||
if (memory_address_p (GET_MODE (x), ad))
|
||
return x;
|
||
|
||
start_sequence ();
|
||
temp = copy_to_reg (ad);
|
||
seq = get_insns ();
|
||
end_sequence ();
|
||
emit_insn_before (seq, insn);
|
||
return replace_equiv_address (x, temp);
|
||
}
|
||
return x;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
int j;
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
|
||
}
|
||
}
|
||
return x;
|
||
}
|
||
|
||
/* Optimization: a bit-field instruction whose field
|
||
happens to be a byte or halfword in memory
|
||
can be changed to a move instruction.
|
||
|
||
We call here when INSN is an insn to examine or store into a bit-field.
|
||
BODY is the SET-rtx to be altered.
|
||
|
||
EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
|
||
(Currently this is called only from function.c, and EQUIV_MEM
|
||
is always 0.) */
|
||
|
||
static void
|
||
optimize_bit_field (rtx body, rtx insn, rtx *equiv_mem)
|
||
{
|
||
rtx bitfield;
|
||
int destflag;
|
||
rtx seq = 0;
|
||
enum machine_mode mode;
|
||
|
||
if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
|
||
|| GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
|
||
bitfield = SET_DEST (body), destflag = 1;
|
||
else
|
||
bitfield = SET_SRC (body), destflag = 0;
|
||
|
||
/* First check that the field being stored has constant size and position
|
||
and is in fact a byte or halfword suitably aligned. */
|
||
|
||
if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
|
||
&& GET_CODE (XEXP (bitfield, 2)) == CONST_INT
|
||
&& ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
|
||
!= BLKmode)
|
||
&& INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
|
||
{
|
||
rtx memref = 0;
|
||
|
||
/* Now check that the containing word is memory, not a register,
|
||
and that it is safe to change the machine mode. */
|
||
|
||
if (GET_CODE (XEXP (bitfield, 0)) == MEM)
|
||
memref = XEXP (bitfield, 0);
|
||
else if (GET_CODE (XEXP (bitfield, 0)) == REG
|
||
&& equiv_mem != 0)
|
||
memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
|
||
else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
|
||
&& GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
|
||
memref = SUBREG_REG (XEXP (bitfield, 0));
|
||
else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
|
||
&& equiv_mem != 0
|
||
&& GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
|
||
memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
|
||
|
||
if (memref
|
||
&& ! mode_dependent_address_p (XEXP (memref, 0))
|
||
&& ! MEM_VOLATILE_P (memref))
|
||
{
|
||
/* Now adjust the address, first for any subreg'ing
|
||
that we are now getting rid of,
|
||
and then for which byte of the word is wanted. */
|
||
|
||
HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
|
||
rtx insns;
|
||
|
||
/* Adjust OFFSET to count bits from low-address byte. */
|
||
if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
|
||
offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
|
||
- offset - INTVAL (XEXP (bitfield, 1)));
|
||
|
||
/* Adjust OFFSET to count bytes from low-address byte. */
|
||
offset /= BITS_PER_UNIT;
|
||
if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
|
||
{
|
||
offset += (SUBREG_BYTE (XEXP (bitfield, 0))
|
||
/ UNITS_PER_WORD) * UNITS_PER_WORD;
|
||
if (BYTES_BIG_ENDIAN)
|
||
offset -= (MIN (UNITS_PER_WORD,
|
||
GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
|
||
- MIN (UNITS_PER_WORD,
|
||
GET_MODE_SIZE (GET_MODE (memref))));
|
||
}
|
||
|
||
start_sequence ();
|
||
memref = adjust_address (memref, mode, offset);
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
emit_insn_before (insns, insn);
|
||
|
||
/* Store this memory reference where
|
||
we found the bit field reference. */
|
||
|
||
if (destflag)
|
||
{
|
||
validate_change (insn, &SET_DEST (body), memref, 1);
|
||
if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
|
||
{
|
||
rtx src = SET_SRC (body);
|
||
while (GET_CODE (src) == SUBREG
|
||
&& SUBREG_BYTE (src) == 0)
|
||
src = SUBREG_REG (src);
|
||
if (GET_MODE (src) != GET_MODE (memref))
|
||
src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
|
||
validate_change (insn, &SET_SRC (body), src, 1);
|
||
}
|
||
else if (GET_MODE (SET_SRC (body)) != VOIDmode
|
||
&& GET_MODE (SET_SRC (body)) != GET_MODE (memref))
|
||
/* This shouldn't happen because anything that didn't have
|
||
one of these modes should have got converted explicitly
|
||
and then referenced through a subreg.
|
||
This is so because the original bit-field was
|
||
handled by agg_mode and so its tree structure had
|
||
the same mode that memref now has. */
|
||
abort ();
|
||
}
|
||
else
|
||
{
|
||
rtx dest = SET_DEST (body);
|
||
|
||
while (GET_CODE (dest) == SUBREG
|
||
&& SUBREG_BYTE (dest) == 0
|
||
&& (GET_MODE_CLASS (GET_MODE (dest))
|
||
== GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
|
||
&& (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
|
||
<= UNITS_PER_WORD))
|
||
dest = SUBREG_REG (dest);
|
||
|
||
validate_change (insn, &SET_DEST (body), dest, 1);
|
||
|
||
if (GET_MODE (dest) == GET_MODE (memref))
|
||
validate_change (insn, &SET_SRC (body), memref, 1);
|
||
else
|
||
{
|
||
/* Convert the mem ref to the destination mode. */
|
||
rtx newreg = gen_reg_rtx (GET_MODE (dest));
|
||
|
||
start_sequence ();
|
||
convert_move (newreg, memref,
|
||
GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
|
||
seq = get_insns ();
|
||
end_sequence ();
|
||
|
||
validate_change (insn, &SET_SRC (body), newreg, 1);
|
||
}
|
||
}
|
||
|
||
/* See if we can convert this extraction or insertion into
|
||
a simple move insn. We might not be able to do so if this
|
||
was, for example, part of a PARALLEL.
|
||
|
||
If we succeed, write out any needed conversions. If we fail,
|
||
it is hard to guess why we failed, so don't do anything
|
||
special; just let the optimization be suppressed. */
|
||
|
||
if (apply_change_group () && seq)
|
||
emit_insn_before (seq, insn);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* These routines are responsible for converting virtual register references
|
||
to the actual hard register references once RTL generation is complete.
|
||
|
||
The following four variables are used for communication between the
|
||
routines. They contain the offsets of the virtual registers from their
|
||
respective hard registers. */
|
||
|
||
static int in_arg_offset;
|
||
static int var_offset;
|
||
static int dynamic_offset;
|
||
static int out_arg_offset;
|
||
static int cfa_offset;
|
||
|
||
/* In most machines, the stack pointer register is equivalent to the bottom
|
||
of the stack. */
|
||
|
||
#ifndef STACK_POINTER_OFFSET
|
||
#define STACK_POINTER_OFFSET 0
|
||
#endif
|
||
|
||
/* If not defined, pick an appropriate default for the offset of dynamically
|
||
allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
|
||
REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
|
||
|
||
#ifndef STACK_DYNAMIC_OFFSET
|
||
|
||
/* The bottom of the stack points to the actual arguments. If
|
||
REG_PARM_STACK_SPACE is defined, this includes the space for the register
|
||
parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
|
||
stack space for register parameters is not pushed by the caller, but
|
||
rather part of the fixed stack areas and hence not included in
|
||
`current_function_outgoing_args_size'. Nevertheless, we must allow
|
||
for it when allocating stack dynamic objects. */
|
||
|
||
#if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
|
||
#define STACK_DYNAMIC_OFFSET(FNDECL) \
|
||
((ACCUMULATE_OUTGOING_ARGS \
|
||
? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
|
||
+ (STACK_POINTER_OFFSET)) \
|
||
|
||
#else
|
||
#define STACK_DYNAMIC_OFFSET(FNDECL) \
|
||
((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
|
||
+ (STACK_POINTER_OFFSET))
|
||
#endif
|
||
#endif
|
||
|
||
/* On most machines, the CFA coincides with the first incoming parm. */
|
||
|
||
#ifndef ARG_POINTER_CFA_OFFSET
|
||
#define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
|
||
#endif
|
||
|
||
/* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just
|
||
had its address taken. DECL is the decl or SAVE_EXPR for the
|
||
object stored in the register, for later use if we do need to force
|
||
REG into the stack. REG is overwritten by the MEM like in
|
||
put_reg_into_stack. RESCAN is true if previously emitted
|
||
instructions must be rescanned and modified now that the REG has
|
||
been transformed. */
|
||
|
||
rtx
|
||
gen_mem_addressof (rtx reg, tree decl, int rescan)
|
||
{
|
||
rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
|
||
REGNO (reg), decl);
|
||
|
||
/* Calculate this before we start messing with decl's RTL. */
|
||
HOST_WIDE_INT set = decl ? get_alias_set (decl) : 0;
|
||
|
||
/* If the original REG was a user-variable, then so is the REG whose
|
||
address is being taken. Likewise for unchanging. */
|
||
REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
|
||
RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);
|
||
|
||
PUT_CODE (reg, MEM);
|
||
MEM_ATTRS (reg) = 0;
|
||
XEXP (reg, 0) = r;
|
||
|
||
if (decl)
|
||
{
|
||
tree type = TREE_TYPE (decl);
|
||
enum machine_mode decl_mode
|
||
= (DECL_P (decl) ? DECL_MODE (decl) : TYPE_MODE (TREE_TYPE (decl)));
|
||
rtx decl_rtl = (TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl)
|
||
: DECL_RTL_IF_SET (decl));
|
||
|
||
PUT_MODE (reg, decl_mode);
|
||
|
||
/* Clear DECL_RTL momentarily so functions below will work
|
||
properly, then set it again. */
|
||
if (DECL_P (decl) && decl_rtl == reg)
|
||
SET_DECL_RTL (decl, 0);
|
||
|
||
set_mem_attributes (reg, decl, 1);
|
||
set_mem_alias_set (reg, set);
|
||
|
||
if (DECL_P (decl) && decl_rtl == reg)
|
||
SET_DECL_RTL (decl, reg);
|
||
|
||
if (rescan
|
||
&& (TREE_USED (decl) || (DECL_P (decl) && DECL_INITIAL (decl) != 0)))
|
||
fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type), reg, 0);
|
||
}
|
||
else if (rescan)
|
||
{
|
||
/* This can only happen during reload. Clear the same flag bits as
|
||
reload. */
|
||
MEM_VOLATILE_P (reg) = 0;
|
||
RTX_UNCHANGING_P (reg) = 0;
|
||
MEM_IN_STRUCT_P (reg) = 0;
|
||
MEM_SCALAR_P (reg) = 0;
|
||
MEM_ATTRS (reg) = 0;
|
||
|
||
fixup_var_refs (reg, GET_MODE (reg), 0, reg, 0);
|
||
}
|
||
|
||
return reg;
|
||
}
|
||
|
||
/* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
|
||
|
||
void
|
||
flush_addressof (tree decl)
|
||
{
|
||
if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
|
||
&& DECL_RTL (decl) != 0
|
||
&& GET_CODE (DECL_RTL (decl)) == MEM
|
||
&& GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
|
||
&& GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
|
||
put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
|
||
}
|
||
|
||
/* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
|
||
|
||
static void
|
||
put_addressof_into_stack (rtx r, htab_t ht)
|
||
{
|
||
tree decl, type;
|
||
bool volatile_p, used_p;
|
||
|
||
rtx reg = XEXP (r, 0);
|
||
|
||
if (GET_CODE (reg) != REG)
|
||
abort ();
|
||
|
||
decl = ADDRESSOF_DECL (r);
|
||
if (decl)
|
||
{
|
||
type = TREE_TYPE (decl);
|
||
volatile_p = (TREE_CODE (decl) != SAVE_EXPR
|
||
&& TREE_THIS_VOLATILE (decl));
|
||
used_p = (TREE_USED (decl)
|
||
|| (DECL_P (decl) && DECL_INITIAL (decl) != 0));
|
||
}
|
||
else
|
||
{
|
||
type = NULL_TREE;
|
||
volatile_p = false;
|
||
used_p = true;
|
||
}
|
||
|
||
put_reg_into_stack (0, reg, type, GET_MODE (reg), ADDRESSOF_REGNO (r),
|
||
volatile_p, used_p, false, ht);
|
||
}
|
||
|
||
/* List of replacements made below in purge_addressof_1 when creating
|
||
bitfield insertions. */
|
||
static rtx purge_bitfield_addressof_replacements;
|
||
|
||
/* List of replacements made below in purge_addressof_1 for patterns
|
||
(MEM (ADDRESSOF (REG ...))). The key of the list entry is the
|
||
corresponding (ADDRESSOF (REG ...)) and value is a substitution for
|
||
the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
|
||
enough in complex cases, e.g. when some field values can be
|
||
extracted by usage MEM with narrower mode. */
|
||
static rtx purge_addressof_replacements;
|
||
|
||
/* Helper function for purge_addressof. See if the rtx expression at *LOC
|
||
in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
|
||
the stack. If the function returns FALSE then the replacement could not
|
||
be made. If MAY_POSTPONE is true and we would not put the addressof
|
||
to stack, postpone processing of the insn. */
|
||
|
||
static bool
|
||
purge_addressof_1 (rtx *loc, rtx insn, int force, int store, int may_postpone,
|
||
htab_t ht)
|
||
{
|
||
rtx x;
|
||
RTX_CODE code;
|
||
int i, j;
|
||
const char *fmt;
|
||
bool result = true;
|
||
bool libcall = false;
|
||
|
||
/* Re-start here to avoid recursion in common cases. */
|
||
restart:
|
||
|
||
x = *loc;
|
||
if (x == 0)
|
||
return true;
|
||
|
||
/* Is this a libcall? */
|
||
if (!insn)
|
||
libcall = REG_NOTE_KIND (*loc) == REG_RETVAL;
|
||
|
||
code = GET_CODE (x);
|
||
|
||
/* If we don't return in any of the cases below, we will recurse inside
|
||
the RTX, which will normally result in any ADDRESSOF being forced into
|
||
memory. */
|
||
if (code == SET)
|
||
{
|
||
result = purge_addressof_1 (&SET_DEST (x), insn, force, 1,
|
||
may_postpone, ht);
|
||
result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0,
|
||
may_postpone, ht);
|
||
return result;
|
||
}
|
||
else if (code == ADDRESSOF)
|
||
{
|
||
rtx sub, insns;
|
||
|
||
if (GET_CODE (XEXP (x, 0)) != MEM)
|
||
put_addressof_into_stack (x, ht);
|
||
|
||
/* We must create a copy of the rtx because it was created by
|
||
overwriting a REG rtx which is always shared. */
|
||
sub = copy_rtx (XEXP (XEXP (x, 0), 0));
|
||
if (validate_change (insn, loc, sub, 0)
|
||
|| validate_replace_rtx (x, sub, insn))
|
||
return true;
|
||
|
||
start_sequence ();
|
||
|
||
/* If SUB is a hard or virtual register, try it as a pseudo-register.
|
||
Otherwise, perhaps SUB is an expression, so generate code to compute
|
||
it. */
|
||
if (GET_CODE (sub) == REG && REGNO (sub) <= LAST_VIRTUAL_REGISTER)
|
||
sub = copy_to_reg (sub);
|
||
else
|
||
sub = force_operand (sub, NULL_RTX);
|
||
|
||
if (! validate_change (insn, loc, sub, 0)
|
||
&& ! validate_replace_rtx (x, sub, insn))
|
||
abort ();
|
||
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
emit_insn_before (insns, insn);
|
||
return true;
|
||
}
|
||
|
||
else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
|
||
{
|
||
rtx sub = XEXP (XEXP (x, 0), 0);
|
||
|
||
if (GET_CODE (sub) == MEM)
|
||
sub = adjust_address_nv (sub, GET_MODE (x), 0);
|
||
else if (GET_CODE (sub) == REG
|
||
&& (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
|
||
;
|
||
else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
|
||
{
|
||
int size_x, size_sub;
|
||
|
||
if (may_postpone)
|
||
{
|
||
/* Postpone for now, so that we do not emit bitfield arithmetics
|
||
unless there is some benefit from it. */
|
||
if (!postponed_insns || XEXP (postponed_insns, 0) != insn)
|
||
postponed_insns = alloc_INSN_LIST (insn, postponed_insns);
|
||
return true;
|
||
}
|
||
|
||
if (!insn)
|
||
{
|
||
/* When processing REG_NOTES look at the list of
|
||
replacements done on the insn to find the register that X
|
||
was replaced by. */
|
||
rtx tem;
|
||
|
||
for (tem = purge_bitfield_addressof_replacements;
|
||
tem != NULL_RTX;
|
||
tem = XEXP (XEXP (tem, 1), 1))
|
||
if (rtx_equal_p (x, XEXP (tem, 0)))
|
||
{
|
||
*loc = XEXP (XEXP (tem, 1), 0);
|
||
return true;
|
||
}
|
||
|
||
/* See comment for purge_addressof_replacements. */
|
||
for (tem = purge_addressof_replacements;
|
||
tem != NULL_RTX;
|
||
tem = XEXP (XEXP (tem, 1), 1))
|
||
if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
|
||
{
|
||
rtx z = XEXP (XEXP (tem, 1), 0);
|
||
|
||
if (GET_MODE (x) == GET_MODE (z)
|
||
|| (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG
|
||
&& GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
|
||
abort ();
|
||
|
||
/* It can happen that the note may speak of things
|
||
in a wider (or just different) mode than the
|
||
code did. This is especially true of
|
||
REG_RETVAL. */
|
||
|
||
if (GET_CODE (z) == SUBREG && SUBREG_BYTE (z) == 0)
|
||
z = SUBREG_REG (z);
|
||
|
||
if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
|
||
&& (GET_MODE_SIZE (GET_MODE (x))
|
||
> GET_MODE_SIZE (GET_MODE (z))))
|
||
{
|
||
/* This can occur as a result in invalid
|
||
pointer casts, e.g. float f; ...
|
||
*(long long int *)&f.
|
||
??? We could emit a warning here, but
|
||
without a line number that wouldn't be
|
||
very helpful. */
|
||
z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
|
||
}
|
||
else
|
||
z = gen_lowpart (GET_MODE (x), z);
|
||
|
||
*loc = z;
|
||
return true;
|
||
}
|
||
|
||
/* When we are processing the REG_NOTES of the last instruction
|
||
of a libcall, there will be typically no replacements
|
||
for that insn; the replacements happened before, piecemeal
|
||
fashion. OTOH we are not interested in the details of
|
||
this for the REG_EQUAL note, we want to know the big picture,
|
||
which can be succinctly described with a simple SUBREG.
|
||
Note that removing the REG_EQUAL note is not an option
|
||
on the last insn of a libcall, so we must do a replacement. */
|
||
|
||
/* In compile/990107-1.c:7 compiled at -O1 -m1 for sh-elf,
|
||
we got
|
||
(mem:DI (addressof:SI (reg/v:DF 160) 159 0x401c8510)
|
||
[0 S8 A32]), which can be expressed with a simple
|
||
same-size subreg */
|
||
if ((GET_MODE_SIZE (GET_MODE (x))
|
||
<= GET_MODE_SIZE (GET_MODE (sub)))
|
||
/* Again, invalid pointer casts (as in
|
||
compile/990203-1.c) can require paradoxical
|
||
subregs. */
|
||
|| (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
|
||
&& (GET_MODE_SIZE (GET_MODE (x))
|
||
> GET_MODE_SIZE (GET_MODE (sub)))
|
||
&& libcall))
|
||
{
|
||
*loc = gen_rtx_SUBREG (GET_MODE (x), sub, 0);
|
||
return true;
|
||
}
|
||
/* ??? Are there other cases we should handle? */
|
||
|
||
/* Sometimes we may not be able to find the replacement. For
|
||
example when the original insn was a MEM in a wider mode,
|
||
and the note is part of a sign extension of a narrowed
|
||
version of that MEM. Gcc testcase compile/990829-1.c can
|
||
generate an example of this situation. Rather than complain
|
||
we return false, which will prompt our caller to remove the
|
||
offending note. */
|
||
return false;
|
||
}
|
||
|
||
size_x = GET_MODE_BITSIZE (GET_MODE (x));
|
||
size_sub = GET_MODE_BITSIZE (GET_MODE (sub));
|
||
|
||
/* Do not frob unchanging MEMs. If a later reference forces the
|
||
pseudo to the stack, we can wind up with multiple writes to
|
||
an unchanging memory, which is invalid. */
|
||
if (RTX_UNCHANGING_P (x) && size_x != size_sub)
|
||
;
|
||
|
||
/* Don't even consider working with paradoxical subregs,
|
||
or the moral equivalent seen here. */
|
||
else if (size_x <= size_sub
|
||
&& int_mode_for_mode (GET_MODE (sub)) != BLKmode)
|
||
{
|
||
/* Do a bitfield insertion to mirror what would happen
|
||
in memory. */
|
||
|
||
rtx val, seq;
|
||
|
||
if (store)
|
||
{
|
||
rtx p = PREV_INSN (insn);
|
||
|
||
start_sequence ();
|
||
val = gen_reg_rtx (GET_MODE (x));
|
||
if (! validate_change (insn, loc, val, 0))
|
||
{
|
||
/* Discard the current sequence and put the
|
||
ADDRESSOF on stack. */
|
||
end_sequence ();
|
||
goto give_up;
|
||
}
|
||
seq = get_insns ();
|
||
end_sequence ();
|
||
emit_insn_before (seq, insn);
|
||
compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
|
||
insn, ht);
|
||
|
||
start_sequence ();
|
||
store_bit_field (sub, size_x, 0, GET_MODE (x),
|
||
val, GET_MODE_SIZE (GET_MODE (sub)));
|
||
|
||
/* Make sure to unshare any shared rtl that store_bit_field
|
||
might have created. */
|
||
unshare_all_rtl_again (get_insns ());
|
||
|
||
seq = get_insns ();
|
||
end_sequence ();
|
||
p = emit_insn_after (seq, insn);
|
||
if (NEXT_INSN (insn))
|
||
compute_insns_for_mem (NEXT_INSN (insn),
|
||
p ? NEXT_INSN (p) : NULL_RTX,
|
||
ht);
|
||
}
|
||
else
|
||
{
|
||
rtx p = PREV_INSN (insn);
|
||
|
||
start_sequence ();
|
||
val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
|
||
GET_MODE (x), GET_MODE (x),
|
||
GET_MODE_SIZE (GET_MODE (sub)));
|
||
|
||
if (! validate_change (insn, loc, val, 0))
|
||
{
|
||
/* Discard the current sequence and put the
|
||
ADDRESSOF on stack. */
|
||
end_sequence ();
|
||
goto give_up;
|
||
}
|
||
|
||
seq = get_insns ();
|
||
end_sequence ();
|
||
emit_insn_before (seq, insn);
|
||
compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
|
||
insn, ht);
|
||
}
|
||
|
||
/* Remember the replacement so that the same one can be done
|
||
on the REG_NOTES. */
|
||
purge_bitfield_addressof_replacements
|
||
= gen_rtx_EXPR_LIST (VOIDmode, x,
|
||
gen_rtx_EXPR_LIST
|
||
(VOIDmode, val,
|
||
purge_bitfield_addressof_replacements));
|
||
|
||
/* We replaced with a reg -- all done. */
|
||
return true;
|
||
}
|
||
}
|
||
|
||
else if (validate_change (insn, loc, sub, 0))
|
||
{
|
||
/* Remember the replacement so that the same one can be done
|
||
on the REG_NOTES. */
|
||
if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG)
|
||
{
|
||
rtx tem;
|
||
|
||
for (tem = purge_addressof_replacements;
|
||
tem != NULL_RTX;
|
||
tem = XEXP (XEXP (tem, 1), 1))
|
||
if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
|
||
{
|
||
XEXP (XEXP (tem, 1), 0) = sub;
|
||
return true;
|
||
}
|
||
purge_addressof_replacements
|
||
= gen_rtx (EXPR_LIST, VOIDmode, XEXP (x, 0),
|
||
gen_rtx_EXPR_LIST (VOIDmode, sub,
|
||
purge_addressof_replacements));
|
||
return true;
|
||
}
|
||
goto restart;
|
||
}
|
||
}
|
||
|
||
give_up:
|
||
/* Scan all subexpressions. */
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
|
||
{
|
||
if (*fmt == 'e')
|
||
result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0,
|
||
may_postpone, ht);
|
||
else if (*fmt == 'E')
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0,
|
||
may_postpone, ht);
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Return a hash value for K, a REG. */
|
||
|
||
static hashval_t
|
||
insns_for_mem_hash (const void *k)
|
||
{
|
||
/* Use the address of the key for the hash value. */
|
||
struct insns_for_mem_entry *m = (struct insns_for_mem_entry *) k;
|
||
return htab_hash_pointer (m->key);
|
||
}
|
||
|
||
/* Return nonzero if K1 and K2 (two REGs) are the same. */
|
||
|
||
static int
|
||
insns_for_mem_comp (const void *k1, const void *k2)
|
||
{
|
||
struct insns_for_mem_entry *m1 = (struct insns_for_mem_entry *) k1;
|
||
struct insns_for_mem_entry *m2 = (struct insns_for_mem_entry *) k2;
|
||
return m1->key == m2->key;
|
||
}
|
||
|
||
struct insns_for_mem_walk_info
|
||
{
|
||
/* The hash table that we are using to record which INSNs use which
|
||
MEMs. */
|
||
htab_t ht;
|
||
|
||
/* The INSN we are currently processing. */
|
||
rtx insn;
|
||
|
||
/* Zero if we are walking to find ADDRESSOFs, one if we are walking
|
||
to find the insns that use the REGs in the ADDRESSOFs. */
|
||
int pass;
|
||
};
|
||
|
||
/* Called from compute_insns_for_mem via for_each_rtx. If R is a REG
|
||
that might be used in an ADDRESSOF expression, record this INSN in
|
||
the hash table given by DATA (which is really a pointer to an
|
||
insns_for_mem_walk_info structure). */
|
||
|
||
static int
|
||
insns_for_mem_walk (rtx *r, void *data)
|
||
{
|
||
struct insns_for_mem_walk_info *ifmwi
|
||
= (struct insns_for_mem_walk_info *) data;
|
||
struct insns_for_mem_entry tmp;
|
||
tmp.insns = NULL_RTX;
|
||
|
||
if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF
|
||
&& GET_CODE (XEXP (*r, 0)) == REG)
|
||
{
|
||
void **e;
|
||
tmp.key = XEXP (*r, 0);
|
||
e = htab_find_slot (ifmwi->ht, &tmp, INSERT);
|
||
if (*e == NULL)
|
||
{
|
||
*e = ggc_alloc (sizeof (tmp));
|
||
memcpy (*e, &tmp, sizeof (tmp));
|
||
}
|
||
}
|
||
else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG)
|
||
{
|
||
struct insns_for_mem_entry *ifme;
|
||
tmp.key = *r;
|
||
ifme = htab_find (ifmwi->ht, &tmp);
|
||
|
||
/* If we have not already recorded this INSN, do so now. Since
|
||
we process the INSNs in order, we know that if we have
|
||
recorded it it must be at the front of the list. */
|
||
if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn))
|
||
ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn,
|
||
ifme->insns);
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
|
||
which REGs in HT. */
|
||
|
||
static void
|
||
compute_insns_for_mem (rtx insns, rtx last_insn, htab_t ht)
|
||
{
|
||
rtx insn;
|
||
struct insns_for_mem_walk_info ifmwi;
|
||
ifmwi.ht = ht;
|
||
|
||
for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass)
|
||
for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn))
|
||
if (INSN_P (insn))
|
||
{
|
||
ifmwi.insn = insn;
|
||
for_each_rtx (&insn, insns_for_mem_walk, &ifmwi);
|
||
}
|
||
}
|
||
|
||
/* Helper function for purge_addressof called through for_each_rtx.
|
||
Returns true iff the rtl is an ADDRESSOF. */
|
||
|
||
static int
|
||
is_addressof (rtx *rtl, void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
return GET_CODE (*rtl) == ADDRESSOF;
|
||
}
|
||
|
||
/* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
|
||
(MEM (ADDRESSOF)) patterns, and force any needed registers into the
|
||
stack. */
|
||
|
||
void
|
||
purge_addressof (rtx insns)
|
||
{
|
||
rtx insn, tmp;
|
||
htab_t ht;
|
||
|
||
/* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That
|
||
requires a fixup pass over the instruction stream to correct
|
||
INSNs that depended on the REG being a REG, and not a MEM. But,
|
||
these fixup passes are slow. Furthermore, most MEMs are not
|
||
mentioned in very many instructions. So, we speed up the process
|
||
by pre-calculating which REGs occur in which INSNs; that allows
|
||
us to perform the fixup passes much more quickly. */
|
||
ht = htab_create_ggc (1000, insns_for_mem_hash, insns_for_mem_comp, NULL);
|
||
compute_insns_for_mem (insns, NULL_RTX, ht);
|
||
|
||
postponed_insns = NULL;
|
||
|
||
for (insn = insns; insn; insn = NEXT_INSN (insn))
|
||
if (INSN_P (insn))
|
||
{
|
||
if (! purge_addressof_1 (&PATTERN (insn), insn,
|
||
asm_noperands (PATTERN (insn)) > 0, 0, 1, ht))
|
||
/* If we could not replace the ADDRESSOFs in the insn,
|
||
something is wrong. */
|
||
abort ();
|
||
|
||
if (! purge_addressof_1 (®_NOTES (insn), NULL_RTX, 0, 0, 0, ht))
|
||
{
|
||
/* If we could not replace the ADDRESSOFs in the insn's notes,
|
||
we can just remove the offending notes instead. */
|
||
rtx note;
|
||
|
||
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
||
{
|
||
/* If we find a REG_RETVAL note then the insn is a libcall.
|
||
Such insns must have REG_EQUAL notes as well, in order
|
||
for later passes of the compiler to work. So it is not
|
||
safe to delete the notes here, and instead we abort. */
|
||
if (REG_NOTE_KIND (note) == REG_RETVAL)
|
||
abort ();
|
||
if (for_each_rtx (¬e, is_addressof, NULL))
|
||
remove_note (insn, note);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Process the postponed insns. */
|
||
while (postponed_insns)
|
||
{
|
||
insn = XEXP (postponed_insns, 0);
|
||
tmp = postponed_insns;
|
||
postponed_insns = XEXP (postponed_insns, 1);
|
||
free_INSN_LIST_node (tmp);
|
||
|
||
if (! purge_addressof_1 (&PATTERN (insn), insn,
|
||
asm_noperands (PATTERN (insn)) > 0, 0, 0, ht))
|
||
abort ();
|
||
}
|
||
|
||
/* Clean up. */
|
||
purge_bitfield_addressof_replacements = 0;
|
||
purge_addressof_replacements = 0;
|
||
|
||
/* REGs are shared. purge_addressof will destructively replace a REG
|
||
with a MEM, which creates shared MEMs.
|
||
|
||
Unfortunately, the children of put_reg_into_stack assume that MEMs
|
||
referring to the same stack slot are shared (fixup_var_refs and
|
||
the associated hash table code).
|
||
|
||
So, we have to do another unsharing pass after we have flushed any
|
||
REGs that had their address taken into the stack.
|
||
|
||
It may be worth tracking whether or not we converted any REGs into
|
||
MEMs to avoid this overhead when it is not needed. */
|
||
unshare_all_rtl_again (get_insns ());
|
||
}
|
||
|
||
/* Convert a SET of a hard subreg to a set of the appropriate hard
|
||
register. A subroutine of purge_hard_subreg_sets. */
|
||
|
||
static void
|
||
purge_single_hard_subreg_set (rtx pattern)
|
||
{
|
||
rtx reg = SET_DEST (pattern);
|
||
enum machine_mode mode = GET_MODE (SET_DEST (pattern));
|
||
int offset = 0;
|
||
|
||
if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG
|
||
&& REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
|
||
GET_MODE (SUBREG_REG (reg)),
|
||
SUBREG_BYTE (reg),
|
||
GET_MODE (reg));
|
||
reg = SUBREG_REG (reg);
|
||
}
|
||
|
||
|
||
if (GET_CODE (reg) == REG && REGNO (reg) < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
reg = gen_rtx_REG (mode, REGNO (reg) + offset);
|
||
SET_DEST (pattern) = reg;
|
||
}
|
||
}
|
||
|
||
/* Eliminate all occurrences of SETs of hard subregs from INSNS. The
|
||
only such SETs that we expect to see are those left in because
|
||
integrate can't handle sets of parts of a return value register.
|
||
|
||
We don't use alter_subreg because we only want to eliminate subregs
|
||
of hard registers. */
|
||
|
||
void
|
||
purge_hard_subreg_sets (rtx insn)
|
||
{
|
||
for (; insn; insn = NEXT_INSN (insn))
|
||
{
|
||
if (INSN_P (insn))
|
||
{
|
||
rtx pattern = PATTERN (insn);
|
||
switch (GET_CODE (pattern))
|
||
{
|
||
case SET:
|
||
if (GET_CODE (SET_DEST (pattern)) == SUBREG)
|
||
purge_single_hard_subreg_set (pattern);
|
||
break;
|
||
case PARALLEL:
|
||
{
|
||
int j;
|
||
for (j = XVECLEN (pattern, 0) - 1; j >= 0; j--)
|
||
{
|
||
rtx inner_pattern = XVECEXP (pattern, 0, j);
|
||
if (GET_CODE (inner_pattern) == SET
|
||
&& GET_CODE (SET_DEST (inner_pattern)) == SUBREG)
|
||
purge_single_hard_subreg_set (inner_pattern);
|
||
}
|
||
}
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Pass through the INSNS of function FNDECL and convert virtual register
|
||
references to hard register references. */
|
||
|
||
void
|
||
instantiate_virtual_regs (tree fndecl, rtx insns)
|
||
{
|
||
rtx insn;
|
||
unsigned int i;
|
||
|
||
/* Compute the offsets to use for this function. */
|
||
in_arg_offset = FIRST_PARM_OFFSET (fndecl);
|
||
var_offset = STARTING_FRAME_OFFSET;
|
||
dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
|
||
out_arg_offset = STACK_POINTER_OFFSET;
|
||
cfa_offset = ARG_POINTER_CFA_OFFSET (fndecl);
|
||
|
||
/* Scan all variables and parameters of this function. For each that is
|
||
in memory, instantiate all virtual registers if the result is a valid
|
||
address. If not, we do it later. That will handle most uses of virtual
|
||
regs on many machines. */
|
||
instantiate_decls (fndecl, 1);
|
||
|
||
/* Initialize recognition, indicating that volatile is OK. */
|
||
init_recog ();
|
||
|
||
/* Scan through all the insns, instantiating every virtual register still
|
||
present. */
|
||
for (insn = insns; insn; insn = NEXT_INSN (insn))
|
||
if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
|
||
|| GET_CODE (insn) == CALL_INSN)
|
||
{
|
||
instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
|
||
if (INSN_DELETED_P (insn))
|
||
continue;
|
||
instantiate_virtual_regs_1 (®_NOTES (insn), NULL_RTX, 0);
|
||
/* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
|
||
if (GET_CODE (insn) == CALL_INSN)
|
||
instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
|
||
NULL_RTX, 0);
|
||
|
||
/* Past this point all ASM statements should match. Verify that
|
||
to avoid failures later in the compilation process. */
|
||
if (asm_noperands (PATTERN (insn)) >= 0
|
||
&& ! check_asm_operands (PATTERN (insn)))
|
||
instantiate_virtual_regs_lossage (insn);
|
||
}
|
||
|
||
/* Instantiate the stack slots for the parm registers, for later use in
|
||
addressof elimination. */
|
||
for (i = 0; i < max_parm_reg; ++i)
|
||
if (parm_reg_stack_loc[i])
|
||
instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
|
||
|
||
/* Now instantiate the remaining register equivalences for debugging info.
|
||
These will not be valid addresses. */
|
||
instantiate_decls (fndecl, 0);
|
||
|
||
/* Indicate that, from now on, assign_stack_local should use
|
||
frame_pointer_rtx. */
|
||
virtuals_instantiated = 1;
|
||
}
|
||
|
||
/* Scan all decls in FNDECL (both variables and parameters) and instantiate
|
||
all virtual registers in their DECL_RTL's.
|
||
|
||
If VALID_ONLY, do this only if the resulting address is still valid.
|
||
Otherwise, always do it. */
|
||
|
||
static void
|
||
instantiate_decls (tree fndecl, int valid_only)
|
||
{
|
||
tree decl;
|
||
|
||
/* Process all parameters of the function. */
|
||
for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
|
||
{
|
||
HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
|
||
HOST_WIDE_INT size_rtl;
|
||
|
||
instantiate_decl (DECL_RTL (decl), size, valid_only);
|
||
|
||
/* If the parameter was promoted, then the incoming RTL mode may be
|
||
larger than the declared type size. We must use the larger of
|
||
the two sizes. */
|
||
size_rtl = GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl)));
|
||
size = MAX (size_rtl, size);
|
||
instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
|
||
}
|
||
|
||
/* Now process all variables defined in the function or its subblocks. */
|
||
instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
|
||
}
|
||
|
||
/* Subroutine of instantiate_decls: Process all decls in the given
|
||
BLOCK node and all its subblocks. */
|
||
|
||
static void
|
||
instantiate_decls_1 (tree let, int valid_only)
|
||
{
|
||
tree t;
|
||
|
||
for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
|
||
if (DECL_RTL_SET_P (t))
|
||
instantiate_decl (DECL_RTL (t),
|
||
int_size_in_bytes (TREE_TYPE (t)),
|
||
valid_only);
|
||
|
||
/* Process all subblocks. */
|
||
for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
|
||
instantiate_decls_1 (t, valid_only);
|
||
}
|
||
|
||
/* Subroutine of the preceding procedures: Given RTL representing a
|
||
decl and the size of the object, do any instantiation required.
|
||
|
||
If VALID_ONLY is nonzero, it means that the RTL should only be
|
||
changed if the new address is valid. */
|
||
|
||
static void
|
||
instantiate_decl (rtx x, HOST_WIDE_INT size, int valid_only)
|
||
{
|
||
enum machine_mode mode;
|
||
rtx addr;
|
||
|
||
if (x == 0)
|
||
return;
|
||
|
||
/* If this is a CONCAT, recurse for the pieces. */
|
||
if (GET_CODE (x) == CONCAT)
|
||
{
|
||
instantiate_decl (XEXP (x, 0), size / 2, valid_only);
|
||
instantiate_decl (XEXP (x, 1), size / 2, valid_only);
|
||
return;
|
||
}
|
||
|
||
/* If this is not a MEM, no need to do anything. Similarly if the
|
||
address is a constant or a register that is not a virtual register. */
|
||
if (GET_CODE (x) != MEM)
|
||
return;
|
||
|
||
addr = XEXP (x, 0);
|
||
if (CONSTANT_P (addr)
|
||
|| (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
|
||
|| (GET_CODE (addr) == REG
|
||
&& (REGNO (addr) < FIRST_VIRTUAL_REGISTER
|
||
|| REGNO (addr) > LAST_VIRTUAL_REGISTER)))
|
||
return;
|
||
|
||
/* If we should only do this if the address is valid, copy the address.
|
||
We need to do this so we can undo any changes that might make the
|
||
address invalid. This copy is unfortunate, but probably can't be
|
||
avoided. */
|
||
|
||
if (valid_only)
|
||
addr = copy_rtx (addr);
|
||
|
||
instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
|
||
|
||
if (valid_only && size >= 0)
|
||
{
|
||
unsigned HOST_WIDE_INT decl_size = size;
|
||
|
||
/* Now verify that the resulting address is valid for every integer or
|
||
floating-point mode up to and including SIZE bytes long. We do this
|
||
since the object might be accessed in any mode and frame addresses
|
||
are shared. */
|
||
|
||
for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
|
||
mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
|
||
mode = GET_MODE_WIDER_MODE (mode))
|
||
if (! memory_address_p (mode, addr))
|
||
return;
|
||
|
||
for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
|
||
mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
|
||
mode = GET_MODE_WIDER_MODE (mode))
|
||
if (! memory_address_p (mode, addr))
|
||
return;
|
||
}
|
||
|
||
/* Put back the address now that we have updated it and we either know
|
||
it is valid or we don't care whether it is valid. */
|
||
|
||
XEXP (x, 0) = addr;
|
||
}
|
||
|
||
/* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
|
||
is a virtual register, return the equivalent hard register and set the
|
||
offset indirectly through the pointer. Otherwise, return 0. */
|
||
|
||
static rtx
|
||
instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
|
||
{
|
||
rtx new;
|
||
HOST_WIDE_INT offset;
|
||
|
||
if (x == virtual_incoming_args_rtx)
|
||
new = arg_pointer_rtx, offset = in_arg_offset;
|
||
else if (x == virtual_stack_vars_rtx)
|
||
new = frame_pointer_rtx, offset = var_offset;
|
||
else if (x == virtual_stack_dynamic_rtx)
|
||
new = stack_pointer_rtx, offset = dynamic_offset;
|
||
else if (x == virtual_outgoing_args_rtx)
|
||
new = stack_pointer_rtx, offset = out_arg_offset;
|
||
else if (x == virtual_cfa_rtx)
|
||
new = arg_pointer_rtx, offset = cfa_offset;
|
||
else
|
||
return 0;
|
||
|
||
*poffset = offset;
|
||
return new;
|
||
}
|
||
|
||
|
||
/* Called when instantiate_virtual_regs has failed to update the instruction.
|
||
Usually this means that non-matching instruction has been emit, however for
|
||
asm statements it may be the problem in the constraints. */
|
||
static void
|
||
instantiate_virtual_regs_lossage (rtx insn)
|
||
{
|
||
if (asm_noperands (PATTERN (insn)) >= 0)
|
||
{
|
||
error_for_asm (insn, "impossible constraint in `asm'");
|
||
delete_insn (insn);
|
||
}
|
||
else
|
||
abort ();
|
||
}
|
||
/* Given a pointer to a piece of rtx and an optional pointer to the
|
||
containing object, instantiate any virtual registers present in it.
|
||
|
||
If EXTRA_INSNS, we always do the replacement and generate
|
||
any extra insns before OBJECT. If it zero, we do nothing if replacement
|
||
is not valid.
|
||
|
||
Return 1 if we either had nothing to do or if we were able to do the
|
||
needed replacement. Return 0 otherwise; we only return zero if
|
||
EXTRA_INSNS is zero.
|
||
|
||
We first try some simple transformations to avoid the creation of extra
|
||
pseudos. */
|
||
|
||
static int
|
||
instantiate_virtual_regs_1 (rtx *loc, rtx object, int extra_insns)
|
||
{
|
||
rtx x;
|
||
RTX_CODE code;
|
||
rtx new = 0;
|
||
HOST_WIDE_INT offset = 0;
|
||
rtx temp;
|
||
rtx seq;
|
||
int i, j;
|
||
const char *fmt;
|
||
|
||
/* Re-start here to avoid recursion in common cases. */
|
||
restart:
|
||
|
||
x = *loc;
|
||
if (x == 0)
|
||
return 1;
|
||
|
||
/* We may have detected and deleted invalid asm statements. */
|
||
if (object && INSN_P (object) && INSN_DELETED_P (object))
|
||
return 1;
|
||
|
||
code = GET_CODE (x);
|
||
|
||
/* Check for some special cases. */
|
||
switch (code)
|
||
{
|
||
case CONST_INT:
|
||
case CONST_DOUBLE:
|
||
case CONST_VECTOR:
|
||
case CONST:
|
||
case SYMBOL_REF:
|
||
case CODE_LABEL:
|
||
case PC:
|
||
case CC0:
|
||
case ASM_INPUT:
|
||
case ADDR_VEC:
|
||
case ADDR_DIFF_VEC:
|
||
case RETURN:
|
||
return 1;
|
||
|
||
case SET:
|
||
/* We are allowed to set the virtual registers. This means that
|
||
the actual register should receive the source minus the
|
||
appropriate offset. This is used, for example, in the handling
|
||
of non-local gotos. */
|
||
if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
|
||
{
|
||
rtx src = SET_SRC (x);
|
||
|
||
/* We are setting the register, not using it, so the relevant
|
||
offset is the negative of the offset to use were we using
|
||
the register. */
|
||
offset = - offset;
|
||
instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
|
||
|
||
/* The only valid sources here are PLUS or REG. Just do
|
||
the simplest possible thing to handle them. */
|
||
if (GET_CODE (src) != REG && GET_CODE (src) != PLUS)
|
||
{
|
||
instantiate_virtual_regs_lossage (object);
|
||
return 1;
|
||
}
|
||
|
||
start_sequence ();
|
||
if (GET_CODE (src) != REG)
|
||
temp = force_operand (src, NULL_RTX);
|
||
else
|
||
temp = src;
|
||
temp = force_operand (plus_constant (temp, offset), NULL_RTX);
|
||
seq = get_insns ();
|
||
end_sequence ();
|
||
|
||
emit_insn_before (seq, object);
|
||
SET_DEST (x) = new;
|
||
|
||
if (! validate_change (object, &SET_SRC (x), temp, 0)
|
||
|| ! extra_insns)
|
||
instantiate_virtual_regs_lossage (object);
|
||
|
||
return 1;
|
||
}
|
||
|
||
instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
|
||
loc = &SET_SRC (x);
|
||
goto restart;
|
||
|
||
case PLUS:
|
||
/* Handle special case of virtual register plus constant. */
|
||
if (CONSTANT_P (XEXP (x, 1)))
|
||
{
|
||
rtx old, new_offset;
|
||
|
||
/* Check for (plus (plus VIRT foo) (const_int)) first. */
|
||
if (GET_CODE (XEXP (x, 0)) == PLUS)
|
||
{
|
||
if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
|
||
{
|
||
instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
|
||
extra_insns);
|
||
new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
|
||
}
|
||
else
|
||
{
|
||
loc = &XEXP (x, 0);
|
||
goto restart;
|
||
}
|
||
}
|
||
|
||
#ifdef POINTERS_EXTEND_UNSIGNED
|
||
/* If we have (plus (subreg (virtual-reg)) (const_int)), we know
|
||
we can commute the PLUS and SUBREG because pointers into the
|
||
frame are well-behaved. */
|
||
else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
|
||
&& GET_CODE (XEXP (x, 1)) == CONST_INT
|
||
&& 0 != (new
|
||
= instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
|
||
&offset))
|
||
&& validate_change (object, loc,
|
||
plus_constant (gen_lowpart (ptr_mode,
|
||
new),
|
||
offset
|
||
+ INTVAL (XEXP (x, 1))),
|
||
0))
|
||
return 1;
|
||
#endif
|
||
else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
|
||
{
|
||
/* We know the second operand is a constant. Unless the
|
||
first operand is a REG (which has been already checked),
|
||
it needs to be checked. */
|
||
if (GET_CODE (XEXP (x, 0)) != REG)
|
||
{
|
||
loc = &XEXP (x, 0);
|
||
goto restart;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
new_offset = plus_constant (XEXP (x, 1), offset);
|
||
|
||
/* If the new constant is zero, try to replace the sum with just
|
||
the register. */
|
||
if (new_offset == const0_rtx
|
||
&& validate_change (object, loc, new, 0))
|
||
return 1;
|
||
|
||
/* Next try to replace the register and new offset.
|
||
There are two changes to validate here and we can't assume that
|
||
in the case of old offset equals new just changing the register
|
||
will yield a valid insn. In the interests of a little efficiency,
|
||
however, we only call validate change once (we don't queue up the
|
||
changes and then call apply_change_group). */
|
||
|
||
old = XEXP (x, 0);
|
||
if (offset == 0
|
||
? ! validate_change (object, &XEXP (x, 0), new, 0)
|
||
: (XEXP (x, 0) = new,
|
||
! validate_change (object, &XEXP (x, 1), new_offset, 0)))
|
||
{
|
||
if (! extra_insns)
|
||
{
|
||
XEXP (x, 0) = old;
|
||
return 0;
|
||
}
|
||
|
||
/* Otherwise copy the new constant into a register and replace
|
||
constant with that register. */
|
||
temp = gen_reg_rtx (Pmode);
|
||
XEXP (x, 0) = new;
|
||
if (validate_change (object, &XEXP (x, 1), temp, 0))
|
||
emit_insn_before (gen_move_insn (temp, new_offset), object);
|
||
else
|
||
{
|
||
/* If that didn't work, replace this expression with a
|
||
register containing the sum. */
|
||
|
||
XEXP (x, 0) = old;
|
||
new = gen_rtx_PLUS (Pmode, new, new_offset);
|
||
|
||
start_sequence ();
|
||
temp = force_operand (new, NULL_RTX);
|
||
seq = get_insns ();
|
||
end_sequence ();
|
||
|
||
emit_insn_before (seq, object);
|
||
if (! validate_change (object, loc, temp, 0)
|
||
&& ! validate_replace_rtx (x, temp, object))
|
||
{
|
||
instantiate_virtual_regs_lossage (object);
|
||
return 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Fall through to generic two-operand expression case. */
|
||
case EXPR_LIST:
|
||
case CALL:
|
||
case COMPARE:
|
||
case MINUS:
|
||
case MULT:
|
||
case DIV: case UDIV:
|
||
case MOD: case UMOD:
|
||
case AND: case IOR: case XOR:
|
||
case ROTATERT: case ROTATE:
|
||
case ASHIFTRT: case LSHIFTRT: case ASHIFT:
|
||
case NE: case EQ:
|
||
case GE: case GT: case GEU: case GTU:
|
||
case LE: case LT: case LEU: case LTU:
|
||
if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
|
||
instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
|
||
loc = &XEXP (x, 0);
|
||
goto restart;
|
||
|
||
case MEM:
|
||
/* Most cases of MEM that convert to valid addresses have already been
|
||
handled by our scan of decls. The only special handling we
|
||
need here is to make a copy of the rtx to ensure it isn't being
|
||
shared if we have to change it to a pseudo.
|
||
|
||
If the rtx is a simple reference to an address via a virtual register,
|
||
it can potentially be shared. In such cases, first try to make it
|
||
a valid address, which can also be shared. Otherwise, copy it and
|
||
proceed normally.
|
||
|
||
First check for common cases that need no processing. These are
|
||
usually due to instantiation already being done on a previous instance
|
||
of a shared rtx. */
|
||
|
||
temp = XEXP (x, 0);
|
||
if (CONSTANT_ADDRESS_P (temp)
|
||
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
|
||
|| temp == arg_pointer_rtx
|
||
#endif
|
||
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
|
||
|| temp == hard_frame_pointer_rtx
|
||
#endif
|
||
|| temp == frame_pointer_rtx)
|
||
return 1;
|
||
|
||
if (GET_CODE (temp) == PLUS
|
||
&& CONSTANT_ADDRESS_P (XEXP (temp, 1))
|
||
&& (XEXP (temp, 0) == frame_pointer_rtx
|
||
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
|
||
|| XEXP (temp, 0) == hard_frame_pointer_rtx
|
||
#endif
|
||
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
|
||
|| XEXP (temp, 0) == arg_pointer_rtx
|
||
#endif
|
||
))
|
||
return 1;
|
||
|
||
if (temp == virtual_stack_vars_rtx
|
||
|| temp == virtual_incoming_args_rtx
|
||
|| (GET_CODE (temp) == PLUS
|
||
&& CONSTANT_ADDRESS_P (XEXP (temp, 1))
|
||
&& (XEXP (temp, 0) == virtual_stack_vars_rtx
|
||
|| XEXP (temp, 0) == virtual_incoming_args_rtx)))
|
||
{
|
||
/* This MEM may be shared. If the substitution can be done without
|
||
the need to generate new pseudos, we want to do it in place
|
||
so all copies of the shared rtx benefit. The call below will
|
||
only make substitutions if the resulting address is still
|
||
valid.
|
||
|
||
Note that we cannot pass X as the object in the recursive call
|
||
since the insn being processed may not allow all valid
|
||
addresses. However, if we were not passed on object, we can
|
||
only modify X without copying it if X will have a valid
|
||
address.
|
||
|
||
??? Also note that this can still lose if OBJECT is an insn that
|
||
has less restrictions on an address that some other insn.
|
||
In that case, we will modify the shared address. This case
|
||
doesn't seem very likely, though. One case where this could
|
||
happen is in the case of a USE or CLOBBER reference, but we
|
||
take care of that below. */
|
||
|
||
if (instantiate_virtual_regs_1 (&XEXP (x, 0),
|
||
object ? object : x, 0))
|
||
return 1;
|
||
|
||
/* Otherwise make a copy and process that copy. We copy the entire
|
||
RTL expression since it might be a PLUS which could also be
|
||
shared. */
|
||
*loc = x = copy_rtx (x);
|
||
}
|
||
|
||
/* Fall through to generic unary operation case. */
|
||
case PREFETCH:
|
||
case SUBREG:
|
||
case STRICT_LOW_PART:
|
||
case NEG: case NOT:
|
||
case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
|
||
case SIGN_EXTEND: case ZERO_EXTEND:
|
||
case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
|
||
case FLOAT: case FIX:
|
||
case UNSIGNED_FIX: case UNSIGNED_FLOAT:
|
||
case ABS:
|
||
case SQRT:
|
||
case FFS:
|
||
case CLZ: case CTZ:
|
||
case POPCOUNT: case PARITY:
|
||
/* These case either have just one operand or we know that we need not
|
||
check the rest of the operands. */
|
||
loc = &XEXP (x, 0);
|
||
goto restart;
|
||
|
||
case USE:
|
||
case CLOBBER:
|
||
/* If the operand is a MEM, see if the change is a valid MEM. If not,
|
||
go ahead and make the invalid one, but do it to a copy. For a REG,
|
||
just make the recursive call, since there's no chance of a problem. */
|
||
|
||
if ((GET_CODE (XEXP (x, 0)) == MEM
|
||
&& instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
|
||
0))
|
||
|| (GET_CODE (XEXP (x, 0)) == REG
|
||
&& instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
|
||
return 1;
|
||
|
||
XEXP (x, 0) = copy_rtx (XEXP (x, 0));
|
||
loc = &XEXP (x, 0);
|
||
goto restart;
|
||
|
||
case REG:
|
||
/* Try to replace with a PLUS. If that doesn't work, compute the sum
|
||
in front of this insn and substitute the temporary. */
|
||
if ((new = instantiate_new_reg (x, &offset)) != 0)
|
||
{
|
||
temp = plus_constant (new, offset);
|
||
if (!validate_change (object, loc, temp, 0))
|
||
{
|
||
if (! extra_insns)
|
||
return 0;
|
||
|
||
start_sequence ();
|
||
temp = force_operand (temp, NULL_RTX);
|
||
seq = get_insns ();
|
||
end_sequence ();
|
||
|
||
emit_insn_before (seq, object);
|
||
if (! validate_change (object, loc, temp, 0)
|
||
&& ! validate_replace_rtx (x, temp, object))
|
||
instantiate_virtual_regs_lossage (object);
|
||
}
|
||
}
|
||
|
||
return 1;
|
||
|
||
case ADDRESSOF:
|
||
if (GET_CODE (XEXP (x, 0)) == REG)
|
||
return 1;
|
||
|
||
else if (GET_CODE (XEXP (x, 0)) == MEM)
|
||
{
|
||
/* If we have a (addressof (mem ..)), do any instantiation inside
|
||
since we know we'll be making the inside valid when we finally
|
||
remove the ADDRESSOF. */
|
||
instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
|
||
return 1;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Scan all subexpressions. */
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
|
||
if (*fmt == 'e')
|
||
{
|
||
if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
|
||
return 0;
|
||
}
|
||
else if (*fmt == 'E')
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
|
||
extra_insns))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Optimization: assuming this function does not receive nonlocal gotos,
|
||
delete the handlers for such, as well as the insns to establish
|
||
and disestablish them. */
|
||
|
||
static void
|
||
delete_handlers (void)
|
||
{
|
||
rtx insn;
|
||
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
||
{
|
||
/* Delete the handler by turning off the flag that would
|
||
prevent jump_optimize from deleting it.
|
||
Also permit deletion of the nonlocal labels themselves
|
||
if nothing local refers to them. */
|
||
if (GET_CODE (insn) == CODE_LABEL)
|
||
{
|
||
tree t, last_t;
|
||
|
||
LABEL_PRESERVE_P (insn) = 0;
|
||
|
||
/* Remove it from the nonlocal_label list, to avoid confusing
|
||
flow. */
|
||
for (t = nonlocal_labels, last_t = 0; t;
|
||
last_t = t, t = TREE_CHAIN (t))
|
||
if (DECL_RTL (TREE_VALUE (t)) == insn)
|
||
break;
|
||
if (t)
|
||
{
|
||
if (! last_t)
|
||
nonlocal_labels = TREE_CHAIN (nonlocal_labels);
|
||
else
|
||
TREE_CHAIN (last_t) = TREE_CHAIN (t);
|
||
}
|
||
}
|
||
if (GET_CODE (insn) == INSN)
|
||
{
|
||
int can_delete = 0;
|
||
rtx t;
|
||
for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1))
|
||
if (reg_mentioned_p (t, PATTERN (insn)))
|
||
{
|
||
can_delete = 1;
|
||
break;
|
||
}
|
||
if (can_delete
|
||
|| (nonlocal_goto_stack_level != 0
|
||
&& reg_mentioned_p (nonlocal_goto_stack_level,
|
||
PATTERN (insn))))
|
||
delete_related_insns (insn);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Return the first insn following those generated by `assign_parms'. */
|
||
|
||
rtx
|
||
get_first_nonparm_insn (void)
|
||
{
|
||
if (last_parm_insn)
|
||
return NEXT_INSN (last_parm_insn);
|
||
return get_insns ();
|
||
}
|
||
|
||
/* Return 1 if EXP is an aggregate type (or a value with aggregate type).
|
||
This means a type for which function calls must pass an address to the
|
||
function or get an address back from the function.
|
||
EXP may be a type node or an expression (whose type is tested). */
|
||
|
||
int
|
||
aggregate_value_p (tree exp, tree fntype)
|
||
{
|
||
int i, regno, nregs;
|
||
rtx reg;
|
||
|
||
tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
|
||
|
||
if (fntype)
|
||
switch (TREE_CODE (fntype))
|
||
{
|
||
case CALL_EXPR:
|
||
fntype = get_callee_fndecl (fntype);
|
||
fntype = fntype ? TREE_TYPE (fntype) : 0;
|
||
break;
|
||
case FUNCTION_DECL:
|
||
fntype = TREE_TYPE (fntype);
|
||
break;
|
||
case FUNCTION_TYPE:
|
||
case METHOD_TYPE:
|
||
break;
|
||
case IDENTIFIER_NODE:
|
||
fntype = 0;
|
||
break;
|
||
default:
|
||
/* We don't expect other rtl types here. */
|
||
abort();
|
||
}
|
||
|
||
if (TREE_CODE (type) == VOID_TYPE)
|
||
return 0;
|
||
if (targetm.calls.return_in_memory (type, fntype))
|
||
return 1;
|
||
/* Types that are TREE_ADDRESSABLE must be constructed in memory,
|
||
and thus can't be returned in registers. */
|
||
if (TREE_ADDRESSABLE (type))
|
||
return 1;
|
||
if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
|
||
return 1;
|
||
/* Make sure we have suitable call-clobbered regs to return
|
||
the value in; if not, we must return it in memory. */
|
||
reg = hard_function_value (type, 0, 0);
|
||
|
||
/* If we have something other than a REG (e.g. a PARALLEL), then assume
|
||
it is OK. */
|
||
if (GET_CODE (reg) != REG)
|
||
return 0;
|
||
|
||
regno = REGNO (reg);
|
||
nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
|
||
for (i = 0; i < nregs; i++)
|
||
if (! call_used_regs[regno + i])
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
/* Assign RTL expressions to the function's parameters.
|
||
This may involve copying them into registers and using
|
||
those registers as the RTL for them. */
|
||
|
||
void
|
||
assign_parms (tree fndecl)
|
||
{
|
||
tree parm;
|
||
CUMULATIVE_ARGS args_so_far;
|
||
/* Total space needed so far for args on the stack,
|
||
given as a constant and a tree-expression. */
|
||
struct args_size stack_args_size;
|
||
tree fntype = TREE_TYPE (fndecl);
|
||
tree fnargs = DECL_ARGUMENTS (fndecl), orig_fnargs;
|
||
/* This is used for the arg pointer when referring to stack args. */
|
||
rtx internal_arg_pointer;
|
||
/* This is a dummy PARM_DECL that we used for the function result if
|
||
the function returns a structure. */
|
||
tree function_result_decl = 0;
|
||
int varargs_setup = 0;
|
||
int reg_parm_stack_space ATTRIBUTE_UNUSED = 0;
|
||
rtx conversion_insns = 0;
|
||
|
||
/* Nonzero if function takes extra anonymous args.
|
||
This means the last named arg must be on the stack
|
||
right before the anonymous ones. */
|
||
int stdarg
|
||
= (TYPE_ARG_TYPES (fntype) != 0
|
||
&& (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
|
||
!= void_type_node));
|
||
|
||
current_function_stdarg = stdarg;
|
||
|
||
/* If the reg that the virtual arg pointer will be translated into is
|
||
not a fixed reg or is the stack pointer, make a copy of the virtual
|
||
arg pointer, and address parms via the copy. The frame pointer is
|
||
considered fixed even though it is not marked as such.
|
||
|
||
The second time through, simply use ap to avoid generating rtx. */
|
||
|
||
if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
|
||
|| ! (fixed_regs[ARG_POINTER_REGNUM]
|
||
|| ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
|
||
internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
|
||
else
|
||
internal_arg_pointer = virtual_incoming_args_rtx;
|
||
current_function_internal_arg_pointer = internal_arg_pointer;
|
||
|
||
stack_args_size.constant = 0;
|
||
stack_args_size.var = 0;
|
||
|
||
/* If struct value address is treated as the first argument, make it so. */
|
||
if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
|
||
&& ! current_function_returns_pcc_struct
|
||
&& targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
|
||
{
|
||
tree type = build_pointer_type (TREE_TYPE (fntype));
|
||
|
||
function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
|
||
|
||
DECL_ARG_TYPE (function_result_decl) = type;
|
||
TREE_CHAIN (function_result_decl) = fnargs;
|
||
fnargs = function_result_decl;
|
||
}
|
||
|
||
orig_fnargs = fnargs;
|
||
|
||
max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
|
||
parm_reg_stack_loc = ggc_alloc_cleared (max_parm_reg * sizeof (rtx));
|
||
|
||
/* If the target wants to split complex arguments into scalars, do so. */
|
||
if (targetm.calls.split_complex_arg)
|
||
fnargs = split_complex_args (fnargs);
|
||
|
||
#ifdef REG_PARM_STACK_SPACE
|
||
#ifdef MAYBE_REG_PARM_STACK_SPACE
|
||
reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
|
||
#else
|
||
reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
|
||
#endif
|
||
#endif
|
||
|
||
#ifdef INIT_CUMULATIVE_INCOMING_ARGS
|
||
INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
|
||
#else
|
||
INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, fndecl, -1);
|
||
#endif
|
||
|
||
/* We haven't yet found an argument that we must push and pretend the
|
||
caller did. */
|
||
current_function_pretend_args_size = 0;
|
||
|
||
for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
|
||
{
|
||
rtx entry_parm;
|
||
rtx stack_parm;
|
||
enum machine_mode promoted_mode, passed_mode;
|
||
enum machine_mode nominal_mode, promoted_nominal_mode;
|
||
int unsignedp;
|
||
struct locate_and_pad_arg_data locate;
|
||
int passed_pointer = 0;
|
||
int did_conversion = 0;
|
||
tree passed_type = DECL_ARG_TYPE (parm);
|
||
tree nominal_type = TREE_TYPE (parm);
|
||
int last_named = 0, named_arg;
|
||
int in_regs;
|
||
int partial = 0;
|
||
int pretend_bytes = 0;
|
||
|
||
/* Set LAST_NAMED if this is last named arg before last
|
||
anonymous args. */
|
||
if (stdarg)
|
||
{
|
||
tree tem;
|
||
|
||
for (tem = TREE_CHAIN (parm); tem; tem = TREE_CHAIN (tem))
|
||
if (DECL_NAME (tem))
|
||
break;
|
||
|
||
if (tem == 0)
|
||
last_named = 1;
|
||
}
|
||
/* Set NAMED_ARG if this arg should be treated as a named arg. For
|
||
most machines, if this is a varargs/stdarg function, then we treat
|
||
the last named arg as if it were anonymous too. */
|
||
named_arg = targetm.calls.strict_argument_naming (&args_so_far) ? 1 : ! last_named;
|
||
|
||
if (TREE_TYPE (parm) == error_mark_node
|
||
/* This can happen after weird syntax errors
|
||
or if an enum type is defined among the parms. */
|
||
|| TREE_CODE (parm) != PARM_DECL
|
||
|| passed_type == NULL)
|
||
{
|
||
SET_DECL_RTL (parm, gen_rtx_MEM (BLKmode, const0_rtx));
|
||
DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
|
||
TREE_USED (parm) = 1;
|
||
continue;
|
||
}
|
||
|
||
/* Find mode of arg as it is passed, and mode of arg
|
||
as it should be during execution of this function. */
|
||
passed_mode = TYPE_MODE (passed_type);
|
||
nominal_mode = TYPE_MODE (nominal_type);
|
||
|
||
/* If the parm's mode is VOID, its value doesn't matter,
|
||
and avoid the usual things like emit_move_insn that could crash. */
|
||
if (nominal_mode == VOIDmode)
|
||
{
|
||
SET_DECL_RTL (parm, const0_rtx);
|
||
DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
|
||
continue;
|
||
}
|
||
|
||
/* If the parm is to be passed as a transparent union, use the
|
||
type of the first field for the tests below. We have already
|
||
verified that the modes are the same. */
|
||
if (DECL_TRANSPARENT_UNION (parm)
|
||
|| (TREE_CODE (passed_type) == UNION_TYPE
|
||
&& TYPE_TRANSPARENT_UNION (passed_type)))
|
||
passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
|
||
|
||
/* See if this arg was passed by invisible reference. It is if
|
||
it is an object whose size depends on the contents of the
|
||
object itself or if the machine requires these objects be passed
|
||
that way. */
|
||
|
||
if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (passed_type))
|
||
|| TREE_ADDRESSABLE (passed_type)
|
||
#ifdef FUNCTION_ARG_PASS_BY_REFERENCE
|
||
|| FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
|
||
passed_type, named_arg)
|
||
#endif
|
||
)
|
||
{
|
||
passed_type = nominal_type = build_pointer_type (passed_type);
|
||
passed_pointer = 1;
|
||
passed_mode = nominal_mode = Pmode;
|
||
}
|
||
/* See if the frontend wants to pass this by invisible reference. */
|
||
else if (passed_type != nominal_type
|
||
&& POINTER_TYPE_P (passed_type)
|
||
&& TREE_TYPE (passed_type) == nominal_type)
|
||
{
|
||
nominal_type = passed_type;
|
||
passed_pointer = 1;
|
||
passed_mode = nominal_mode = Pmode;
|
||
}
|
||
|
||
promoted_mode = passed_mode;
|
||
|
||
if (targetm.calls.promote_function_args (TREE_TYPE (fndecl)))
|
||
{
|
||
/* Compute the mode in which the arg is actually extended to. */
|
||
unsignedp = TREE_UNSIGNED (passed_type);
|
||
promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
|
||
}
|
||
|
||
/* Let machine desc say which reg (if any) the parm arrives in.
|
||
0 means it arrives on the stack. */
|
||
#ifdef FUNCTION_INCOMING_ARG
|
||
entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
|
||
passed_type, named_arg);
|
||
#else
|
||
entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
|
||
passed_type, named_arg);
|
||
#endif
|
||
|
||
if (entry_parm == 0)
|
||
promoted_mode = passed_mode;
|
||
|
||
/* If this is the last named parameter, do any required setup for
|
||
varargs or stdargs. We need to know about the case of this being an
|
||
addressable type, in which case we skip the registers it
|
||
would have arrived in.
|
||
|
||
For stdargs, LAST_NAMED will be set for two parameters, the one that
|
||
is actually the last named, and the dummy parameter. We only
|
||
want to do this action once.
|
||
|
||
Also, indicate when RTL generation is to be suppressed. */
|
||
if (last_named && !varargs_setup)
|
||
{
|
||
int varargs_pretend_bytes = 0;
|
||
targetm.calls.setup_incoming_varargs (&args_so_far, promoted_mode,
|
||
passed_type,
|
||
&varargs_pretend_bytes, 0);
|
||
varargs_setup = 1;
|
||
|
||
/* If the back-end has requested extra stack space, record how
|
||
much is needed. Do not change pretend_args_size otherwise
|
||
since it may be nonzero from an earlier partial argument. */
|
||
if (varargs_pretend_bytes > 0)
|
||
current_function_pretend_args_size = varargs_pretend_bytes;
|
||
}
|
||
|
||
/* Determine parm's home in the stack,
|
||
in case it arrives in the stack or we should pretend it did.
|
||
|
||
Compute the stack position and rtx where the argument arrives
|
||
and its size.
|
||
|
||
There is one complexity here: If this was a parameter that would
|
||
have been passed in registers, but wasn't only because it is
|
||
__builtin_va_alist, we want locate_and_pad_parm to treat it as if
|
||
it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
|
||
In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
|
||
0 as it was the previous time. */
|
||
in_regs = entry_parm != 0;
|
||
#ifdef STACK_PARMS_IN_REG_PARM_AREA
|
||
in_regs = 1;
|
||
#endif
|
||
if (!in_regs && !named_arg)
|
||
{
|
||
int pretend_named =
|
||
targetm.calls.pretend_outgoing_varargs_named (&args_so_far);
|
||
if (pretend_named)
|
||
{
|
||
#ifdef FUNCTION_INCOMING_ARG
|
||
in_regs = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
|
||
passed_type,
|
||
pretend_named) != 0;
|
||
#else
|
||
in_regs = FUNCTION_ARG (args_so_far, promoted_mode,
|
||
passed_type,
|
||
pretend_named) != 0;
|
||
#endif
|
||
}
|
||
}
|
||
|
||
/* If this parameter was passed both in registers and in the stack,
|
||
use the copy on the stack. */
|
||
if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
|
||
entry_parm = 0;
|
||
|
||
#ifdef FUNCTION_ARG_PARTIAL_NREGS
|
||
if (entry_parm)
|
||
{
|
||
partial = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
|
||
passed_type, named_arg);
|
||
if (partial
|
||
#ifndef MAYBE_REG_PARM_STACK_SPACE
|
||
/* The caller might already have allocated stack space
|
||
for the register parameters. */
|
||
&& reg_parm_stack_space == 0
|
||
#endif
|
||
)
|
||
{
|
||
/* Part of this argument is passed in registers and part
|
||
is passed on the stack. Ask the prologue code to extend
|
||
the stack part so that we can recreate the full value.
|
||
|
||
PRETEND_BYTES is the size of the registers we need to store.
|
||
CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
|
||
stack space that the prologue should allocate.
|
||
|
||
Internally, gcc assumes that the argument pointer is
|
||
aligned to STACK_BOUNDARY bits. This is used both for
|
||
alignment optimizations (see init_emit) and to locate
|
||
arguments that are aligned to more than PARM_BOUNDARY
|
||
bits. We must preserve this invariant by rounding
|
||
CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to a stack
|
||
boundary. */
|
||
pretend_bytes = partial * UNITS_PER_WORD;
|
||
current_function_pretend_args_size
|
||
= CEIL_ROUND (pretend_bytes, STACK_BYTES);
|
||
|
||
/* If PRETEND_BYTES != CURRENT_FUNCTION_PRETEND_ARGS_SIZE,
|
||
insert the padding before the start of the first pretend
|
||
argument. */
|
||
stack_args_size.constant
|
||
= (current_function_pretend_args_size - pretend_bytes);
|
||
}
|
||
}
|
||
#endif
|
||
|
||
memset (&locate, 0, sizeof (locate));
|
||
locate_and_pad_parm (promoted_mode, passed_type, in_regs,
|
||
entry_parm ? partial : 0, fndecl,
|
||
&stack_args_size, &locate);
|
||
|
||
{
|
||
rtx offset_rtx;
|
||
unsigned int align, boundary;
|
||
|
||
/* If we're passing this arg using a reg, make its stack home
|
||
the aligned stack slot. */
|
||
if (entry_parm)
|
||
offset_rtx = ARGS_SIZE_RTX (locate.slot_offset);
|
||
else
|
||
offset_rtx = ARGS_SIZE_RTX (locate.offset);
|
||
|
||
if (offset_rtx == const0_rtx)
|
||
stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
|
||
else
|
||
stack_parm = gen_rtx_MEM (promoted_mode,
|
||
gen_rtx_PLUS (Pmode,
|
||
internal_arg_pointer,
|
||
offset_rtx));
|
||
|
||
set_mem_attributes (stack_parm, parm, 1);
|
||
|
||
boundary = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
|
||
align = 0;
|
||
|
||
/* If we're padding upward, we know that the alignment of the slot
|
||
is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
|
||
intentionally forcing upward padding. Otherwise we have to come
|
||
up with a guess at the alignment based on OFFSET_RTX. */
|
||
if (locate.where_pad == upward || entry_parm)
|
||
align = boundary;
|
||
else if (GET_CODE (offset_rtx) == CONST_INT)
|
||
{
|
||
align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
|
||
align = align & -align;
|
||
}
|
||
if (align > 0)
|
||
set_mem_align (stack_parm, align);
|
||
|
||
if (entry_parm)
|
||
set_reg_attrs_for_parm (entry_parm, stack_parm);
|
||
}
|
||
|
||
/* If this parm was passed part in regs and part in memory,
|
||
pretend it arrived entirely in memory
|
||
by pushing the register-part onto the stack.
|
||
|
||
In the special case of a DImode or DFmode that is split,
|
||
we could put it together in a pseudoreg directly,
|
||
but for now that's not worth bothering with. */
|
||
|
||
if (partial)
|
||
{
|
||
/* Handle calls that pass values in multiple non-contiguous
|
||
locations. The Irix 6 ABI has examples of this. */
|
||
if (GET_CODE (entry_parm) == PARALLEL)
|
||
emit_group_store (validize_mem (stack_parm), entry_parm,
|
||
TREE_TYPE (parm),
|
||
int_size_in_bytes (TREE_TYPE (parm)));
|
||
|
||
else
|
||
move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
|
||
partial);
|
||
|
||
entry_parm = stack_parm;
|
||
}
|
||
|
||
/* If we didn't decide this parm came in a register,
|
||
by default it came on the stack. */
|
||
if (entry_parm == 0)
|
||
entry_parm = stack_parm;
|
||
|
||
/* Record permanently how this parm was passed. */
|
||
DECL_INCOMING_RTL (parm) = entry_parm;
|
||
|
||
/* If there is actually space on the stack for this parm,
|
||
count it in stack_args_size; otherwise set stack_parm to 0
|
||
to indicate there is no preallocated stack slot for the parm. */
|
||
|
||
if (entry_parm == stack_parm
|
||
|| (GET_CODE (entry_parm) == PARALLEL
|
||
&& XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
|
||
#if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
|
||
/* On some machines, even if a parm value arrives in a register
|
||
there is still an (uninitialized) stack slot allocated for it.
|
||
|
||
??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
|
||
whether this parameter already has a stack slot allocated,
|
||
because an arg block exists only if current_function_args_size
|
||
is larger than some threshold, and we haven't calculated that
|
||
yet. So, for now, we just assume that stack slots never exist
|
||
in this case. */
|
||
|| REG_PARM_STACK_SPACE (fndecl) > 0
|
||
#endif
|
||
)
|
||
{
|
||
stack_args_size.constant += pretend_bytes + locate.size.constant;
|
||
if (locate.size.var)
|
||
ADD_PARM_SIZE (stack_args_size, locate.size.var);
|
||
}
|
||
else
|
||
/* No stack slot was pushed for this parm. */
|
||
stack_parm = 0;
|
||
|
||
/* Update info on where next arg arrives in registers. */
|
||
|
||
FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
|
||
passed_type, named_arg);
|
||
|
||
/* If we can't trust the parm stack slot to be aligned enough
|
||
for its ultimate type, don't use that slot after entry.
|
||
We'll make another stack slot, if we need one. */
|
||
if (STRICT_ALIGNMENT && stack_parm
|
||
&& GET_MODE_ALIGNMENT (nominal_mode) > MEM_ALIGN (stack_parm))
|
||
stack_parm = 0;
|
||
|
||
/* If parm was passed in memory, and we need to convert it on entry,
|
||
don't store it back in that same slot. */
|
||
if (entry_parm == stack_parm
|
||
&& nominal_mode != BLKmode && nominal_mode != passed_mode)
|
||
stack_parm = 0;
|
||
|
||
/* When an argument is passed in multiple locations, we can't
|
||
make use of this information, but we can save some copying if
|
||
the whole argument is passed in a single register. */
|
||
if (GET_CODE (entry_parm) == PARALLEL
|
||
&& nominal_mode != BLKmode && passed_mode != BLKmode)
|
||
{
|
||
int i, len = XVECLEN (entry_parm, 0);
|
||
|
||
for (i = 0; i < len; i++)
|
||
if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
|
||
&& GET_CODE (XEXP (XVECEXP (entry_parm, 0, i), 0)) == REG
|
||
&& (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
|
||
== passed_mode)
|
||
&& INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
|
||
{
|
||
entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
|
||
DECL_INCOMING_RTL (parm) = entry_parm;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* ENTRY_PARM is an RTX for the parameter as it arrives,
|
||
in the mode in which it arrives.
|
||
STACK_PARM is an RTX for a stack slot where the parameter can live
|
||
during the function (in case we want to put it there).
|
||
STACK_PARM is 0 if no stack slot was pushed for it.
|
||
|
||
Now output code if necessary to convert ENTRY_PARM to
|
||
the type in which this function declares it,
|
||
and store that result in an appropriate place,
|
||
which may be a pseudo reg, may be STACK_PARM,
|
||
or may be a local stack slot if STACK_PARM is 0.
|
||
|
||
Set DECL_RTL to that place. */
|
||
|
||
if (GET_CODE (entry_parm) == PARALLEL && nominal_mode != BLKmode
|
||
&& XVECLEN (entry_parm, 0) > 1)
|
||
{
|
||
/* Reconstitute objects the size of a register or larger using
|
||
register operations instead of the stack. */
|
||
rtx parmreg = gen_reg_rtx (nominal_mode);
|
||
|
||
if (REG_P (parmreg))
|
||
{
|
||
unsigned int regno = REGNO (parmreg);
|
||
|
||
emit_group_store (parmreg, entry_parm, TREE_TYPE (parm),
|
||
int_size_in_bytes (TREE_TYPE (parm)));
|
||
SET_DECL_RTL (parm, parmreg);
|
||
|
||
if (regno >= max_parm_reg)
|
||
{
|
||
rtx *new;
|
||
int old_max_parm_reg = max_parm_reg;
|
||
|
||
/* It's slow to expand this one register at a time,
|
||
but it's also rare and we need max_parm_reg to be
|
||
precisely correct. */
|
||
max_parm_reg = regno + 1;
|
||
new = ggc_realloc (parm_reg_stack_loc,
|
||
max_parm_reg * sizeof (rtx));
|
||
memset (new + old_max_parm_reg, 0,
|
||
(max_parm_reg - old_max_parm_reg) * sizeof (rtx));
|
||
parm_reg_stack_loc = new;
|
||
parm_reg_stack_loc[regno] = stack_parm;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (nominal_mode == BLKmode
|
||
#ifdef BLOCK_REG_PADDING
|
||
|| (locate.where_pad == (BYTES_BIG_ENDIAN ? upward : downward)
|
||
&& GET_MODE_SIZE (promoted_mode) < UNITS_PER_WORD)
|
||
#endif
|
||
|| GET_CODE (entry_parm) == PARALLEL)
|
||
{
|
||
/* If a BLKmode arrives in registers, copy it to a stack slot.
|
||
Handle calls that pass values in multiple non-contiguous
|
||
locations. The Irix 6 ABI has examples of this. */
|
||
if (GET_CODE (entry_parm) == REG
|
||
|| GET_CODE (entry_parm) == PARALLEL)
|
||
{
|
||
int size = int_size_in_bytes (TREE_TYPE (parm));
|
||
int size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
|
||
rtx mem;
|
||
|
||
/* Note that we will be storing an integral number of words.
|
||
So we have to be careful to ensure that we allocate an
|
||
integral number of words. We do this below in the
|
||
assign_stack_local if space was not allocated in the argument
|
||
list. If it was, this will not work if PARM_BOUNDARY is not
|
||
a multiple of BITS_PER_WORD. It isn't clear how to fix this
|
||
if it becomes a problem. Exception is when BLKmode arrives
|
||
with arguments not conforming to word_mode. */
|
||
|
||
if (stack_parm == 0)
|
||
{
|
||
stack_parm = assign_stack_local (BLKmode, size_stored, 0);
|
||
PUT_MODE (stack_parm, GET_MODE (entry_parm));
|
||
set_mem_attributes (stack_parm, parm, 1);
|
||
}
|
||
else if (GET_CODE (entry_parm) == PARALLEL)
|
||
;
|
||
else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
|
||
abort ();
|
||
|
||
mem = validize_mem (stack_parm);
|
||
|
||
/* Handle calls that pass values in multiple non-contiguous
|
||
locations. The Irix 6 ABI has examples of this. */
|
||
if (GET_CODE (entry_parm) == PARALLEL)
|
||
emit_group_store (mem, entry_parm, TREE_TYPE (parm), size);
|
||
|
||
else if (size == 0)
|
||
;
|
||
|
||
/* If SIZE is that of a mode no bigger than a word, just use
|
||
that mode's store operation. */
|
||
else if (size <= UNITS_PER_WORD)
|
||
{
|
||
enum machine_mode mode
|
||
= mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
|
||
|
||
if (mode != BLKmode
|
||
#ifdef BLOCK_REG_PADDING
|
||
&& (size == UNITS_PER_WORD
|
||
|| (BLOCK_REG_PADDING (mode, TREE_TYPE (parm), 1)
|
||
!= (BYTES_BIG_ENDIAN ? upward : downward)))
|
||
#endif
|
||
)
|
||
{
|
||
rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
|
||
emit_move_insn (change_address (mem, mode, 0), reg);
|
||
}
|
||
|
||
/* Blocks smaller than a word on a BYTES_BIG_ENDIAN
|
||
machine must be aligned to the left before storing
|
||
to memory. Note that the previous test doesn't
|
||
handle all cases (e.g. SIZE == 3). */
|
||
else if (size != UNITS_PER_WORD
|
||
#ifdef BLOCK_REG_PADDING
|
||
&& (BLOCK_REG_PADDING (mode, TREE_TYPE (parm), 1)
|
||
== downward)
|
||
#else
|
||
&& BYTES_BIG_ENDIAN
|
||
#endif
|
||
)
|
||
{
|
||
rtx tem, x;
|
||
int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
|
||
rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
|
||
|
||
x = expand_binop (word_mode, ashl_optab, reg,
|
||
GEN_INT (by), 0, 1, OPTAB_WIDEN);
|
||
tem = change_address (mem, word_mode, 0);
|
||
emit_move_insn (tem, x);
|
||
}
|
||
else
|
||
move_block_from_reg (REGNO (entry_parm), mem,
|
||
size_stored / UNITS_PER_WORD);
|
||
}
|
||
else
|
||
move_block_from_reg (REGNO (entry_parm), mem,
|
||
size_stored / UNITS_PER_WORD);
|
||
}
|
||
/* If parm is already bound to register pair, don't change
|
||
this binding. */
|
||
if (! DECL_RTL_SET_P (parm))
|
||
SET_DECL_RTL (parm, stack_parm);
|
||
}
|
||
else if (! ((! optimize
|
||
&& ! DECL_REGISTER (parm))
|
||
|| TREE_SIDE_EFFECTS (parm)
|
||
/* If -ffloat-store specified, don't put explicit
|
||
float variables into registers. */
|
||
|| (flag_float_store
|
||
&& TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
|
||
/* Always assign pseudo to structure return or item passed
|
||
by invisible reference. */
|
||
|| passed_pointer || parm == function_result_decl)
|
||
{
|
||
/* Store the parm in a pseudoregister during the function, but we
|
||
may need to do it in a wider mode. */
|
||
|
||
rtx parmreg;
|
||
unsigned int regno, regnoi = 0, regnor = 0;
|
||
|
||
unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
|
||
|
||
promoted_nominal_mode
|
||
= promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
|
||
|
||
parmreg = gen_reg_rtx (promoted_nominal_mode);
|
||
mark_user_reg (parmreg);
|
||
|
||
/* If this was an item that we received a pointer to, set DECL_RTL
|
||
appropriately. */
|
||
if (passed_pointer)
|
||
{
|
||
rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)),
|
||
parmreg);
|
||
set_mem_attributes (x, parm, 1);
|
||
SET_DECL_RTL (parm, x);
|
||
}
|
||
else
|
||
{
|
||
SET_DECL_RTL (parm, parmreg);
|
||
maybe_set_unchanging (DECL_RTL (parm), parm);
|
||
}
|
||
|
||
/* Copy the value into the register. */
|
||
if (nominal_mode != passed_mode
|
||
|| promoted_nominal_mode != promoted_mode)
|
||
{
|
||
int save_tree_used;
|
||
/* ENTRY_PARM has been converted to PROMOTED_MODE, its
|
||
mode, by the caller. We now have to convert it to
|
||
NOMINAL_MODE, if different. However, PARMREG may be in
|
||
a different mode than NOMINAL_MODE if it is being stored
|
||
promoted.
|
||
|
||
If ENTRY_PARM is a hard register, it might be in a register
|
||
not valid for operating in its mode (e.g., an odd-numbered
|
||
register for a DFmode). In that case, moves are the only
|
||
thing valid, so we can't do a convert from there. This
|
||
occurs when the calling sequence allow such misaligned
|
||
usages.
|
||
|
||
In addition, the conversion may involve a call, which could
|
||
clobber parameters which haven't been copied to pseudo
|
||
registers yet. Therefore, we must first copy the parm to
|
||
a pseudo reg here, and save the conversion until after all
|
||
parameters have been moved. */
|
||
|
||
rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
|
||
|
||
emit_move_insn (tempreg, validize_mem (entry_parm));
|
||
|
||
push_to_sequence (conversion_insns);
|
||
tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
|
||
|
||
if (GET_CODE (tempreg) == SUBREG
|
||
&& GET_MODE (tempreg) == nominal_mode
|
||
&& GET_CODE (SUBREG_REG (tempreg)) == REG
|
||
&& nominal_mode == passed_mode
|
||
&& GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (entry_parm)
|
||
&& GET_MODE_SIZE (GET_MODE (tempreg))
|
||
< GET_MODE_SIZE (GET_MODE (entry_parm)))
|
||
{
|
||
/* The argument is already sign/zero extended, so note it
|
||
into the subreg. */
|
||
SUBREG_PROMOTED_VAR_P (tempreg) = 1;
|
||
SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
|
||
}
|
||
|
||
/* TREE_USED gets set erroneously during expand_assignment. */
|
||
save_tree_used = TREE_USED (parm);
|
||
expand_assignment (parm,
|
||
make_tree (nominal_type, tempreg), 0);
|
||
TREE_USED (parm) = save_tree_used;
|
||
conversion_insns = get_insns ();
|
||
did_conversion = 1;
|
||
end_sequence ();
|
||
}
|
||
else
|
||
emit_move_insn (parmreg, validize_mem (entry_parm));
|
||
|
||
/* If we were passed a pointer but the actual value
|
||
can safely live in a register, put it in one. */
|
||
if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
|
||
/* If by-reference argument was promoted, demote it. */
|
||
&& (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
|
||
|| ! ((! optimize
|
||
&& ! DECL_REGISTER (parm))
|
||
|| TREE_SIDE_EFFECTS (parm)
|
||
/* If -ffloat-store specified, don't put explicit
|
||
float variables into registers. */
|
||
|| (flag_float_store
|
||
&& TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))))
|
||
{
|
||
/* We can't use nominal_mode, because it will have been set to
|
||
Pmode above. We must use the actual mode of the parm. */
|
||
parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
|
||
mark_user_reg (parmreg);
|
||
if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
|
||
{
|
||
rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
|
||
int unsigned_p = TREE_UNSIGNED (TREE_TYPE (parm));
|
||
push_to_sequence (conversion_insns);
|
||
emit_move_insn (tempreg, DECL_RTL (parm));
|
||
SET_DECL_RTL (parm,
|
||
convert_to_mode (GET_MODE (parmreg),
|
||
tempreg,
|
||
unsigned_p));
|
||
emit_move_insn (parmreg, DECL_RTL (parm));
|
||
conversion_insns = get_insns();
|
||
did_conversion = 1;
|
||
end_sequence ();
|
||
}
|
||
else
|
||
emit_move_insn (parmreg, DECL_RTL (parm));
|
||
SET_DECL_RTL (parm, parmreg);
|
||
/* STACK_PARM is the pointer, not the parm, and PARMREG is
|
||
now the parm. */
|
||
stack_parm = 0;
|
||
}
|
||
#ifdef FUNCTION_ARG_CALLEE_COPIES
|
||
/* If we are passed an arg by reference and it is our responsibility
|
||
to make a copy, do it now.
|
||
PASSED_TYPE and PASSED mode now refer to the pointer, not the
|
||
original argument, so we must recreate them in the call to
|
||
FUNCTION_ARG_CALLEE_COPIES. */
|
||
/* ??? Later add code to handle the case that if the argument isn't
|
||
modified, don't do the copy. */
|
||
|
||
else if (passed_pointer
|
||
&& FUNCTION_ARG_CALLEE_COPIES (args_so_far,
|
||
TYPE_MODE (TREE_TYPE (passed_type)),
|
||
TREE_TYPE (passed_type),
|
||
named_arg)
|
||
&& ! TREE_ADDRESSABLE (TREE_TYPE (passed_type)))
|
||
{
|
||
rtx copy;
|
||
tree type = TREE_TYPE (passed_type);
|
||
|
||
/* This sequence may involve a library call perhaps clobbering
|
||
registers that haven't been copied to pseudos yet. */
|
||
|
||
push_to_sequence (conversion_insns);
|
||
|
||
if (!COMPLETE_TYPE_P (type)
|
||
|| TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
|
||
/* This is a variable sized object. */
|
||
copy = gen_rtx_MEM (BLKmode,
|
||
allocate_dynamic_stack_space
|
||
(expr_size (parm), NULL_RTX,
|
||
TYPE_ALIGN (type)));
|
||
else
|
||
copy = assign_stack_temp (TYPE_MODE (type),
|
||
int_size_in_bytes (type), 1);
|
||
set_mem_attributes (copy, parm, 1);
|
||
|
||
store_expr (parm, copy, 0);
|
||
emit_move_insn (parmreg, XEXP (copy, 0));
|
||
conversion_insns = get_insns ();
|
||
did_conversion = 1;
|
||
end_sequence ();
|
||
}
|
||
#endif /* FUNCTION_ARG_CALLEE_COPIES */
|
||
|
||
/* In any case, record the parm's desired stack location
|
||
in case we later discover it must live in the stack.
|
||
|
||
If it is a COMPLEX value, store the stack location for both
|
||
halves. */
|
||
|
||
if (GET_CODE (parmreg) == CONCAT)
|
||
regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
|
||
else
|
||
regno = REGNO (parmreg);
|
||
|
||
if (regno >= max_parm_reg)
|
||
{
|
||
rtx *new;
|
||
int old_max_parm_reg = max_parm_reg;
|
||
|
||
/* It's slow to expand this one register at a time,
|
||
but it's also rare and we need max_parm_reg to be
|
||
precisely correct. */
|
||
max_parm_reg = regno + 1;
|
||
new = ggc_realloc (parm_reg_stack_loc,
|
||
max_parm_reg * sizeof (rtx));
|
||
memset (new + old_max_parm_reg, 0,
|
||
(max_parm_reg - old_max_parm_reg) * sizeof (rtx));
|
||
parm_reg_stack_loc = new;
|
||
}
|
||
|
||
if (GET_CODE (parmreg) == CONCAT)
|
||
{
|
||
enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
|
||
|
||
regnor = REGNO (gen_realpart (submode, parmreg));
|
||
regnoi = REGNO (gen_imagpart (submode, parmreg));
|
||
|
||
if (stack_parm != 0)
|
||
{
|
||
parm_reg_stack_loc[regnor]
|
||
= gen_realpart (submode, stack_parm);
|
||
parm_reg_stack_loc[regnoi]
|
||
= gen_imagpart (submode, stack_parm);
|
||
}
|
||
else
|
||
{
|
||
parm_reg_stack_loc[regnor] = 0;
|
||
parm_reg_stack_loc[regnoi] = 0;
|
||
}
|
||
}
|
||
else
|
||
parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
|
||
|
||
/* Mark the register as eliminable if we did no conversion
|
||
and it was copied from memory at a fixed offset,
|
||
and the arg pointer was not copied to a pseudo-reg.
|
||
If the arg pointer is a pseudo reg or the offset formed
|
||
an invalid address, such memory-equivalences
|
||
as we make here would screw up life analysis for it. */
|
||
if (nominal_mode == passed_mode
|
||
&& ! did_conversion
|
||
&& stack_parm != 0
|
||
&& GET_CODE (stack_parm) == MEM
|
||
&& locate.offset.var == 0
|
||
&& reg_mentioned_p (virtual_incoming_args_rtx,
|
||
XEXP (stack_parm, 0)))
|
||
{
|
||
rtx linsn = get_last_insn ();
|
||
rtx sinsn, set;
|
||
|
||
/* Mark complex types separately. */
|
||
if (GET_CODE (parmreg) == CONCAT)
|
||
/* Scan backwards for the set of the real and
|
||
imaginary parts. */
|
||
for (sinsn = linsn; sinsn != 0;
|
||
sinsn = prev_nonnote_insn (sinsn))
|
||
{
|
||
set = single_set (sinsn);
|
||
if (set != 0
|
||
&& SET_DEST (set) == regno_reg_rtx [regnoi])
|
||
REG_NOTES (sinsn)
|
||
= gen_rtx_EXPR_LIST (REG_EQUIV,
|
||
parm_reg_stack_loc[regnoi],
|
||
REG_NOTES (sinsn));
|
||
else if (set != 0
|
||
&& SET_DEST (set) == regno_reg_rtx [regnor])
|
||
REG_NOTES (sinsn)
|
||
= gen_rtx_EXPR_LIST (REG_EQUIV,
|
||
parm_reg_stack_loc[regnor],
|
||
REG_NOTES (sinsn));
|
||
}
|
||
else if ((set = single_set (linsn)) != 0
|
||
&& SET_DEST (set) == parmreg)
|
||
REG_NOTES (linsn)
|
||
= gen_rtx_EXPR_LIST (REG_EQUIV,
|
||
stack_parm, REG_NOTES (linsn));
|
||
}
|
||
|
||
/* For pointer data type, suggest pointer register. */
|
||
if (POINTER_TYPE_P (TREE_TYPE (parm)))
|
||
mark_reg_pointer (parmreg,
|
||
TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
|
||
|
||
/* If something wants our address, try to use ADDRESSOF. */
|
||
if (TREE_ADDRESSABLE (parm))
|
||
{
|
||
/* If we end up putting something into the stack,
|
||
fixup_var_refs_insns will need to make a pass over
|
||
all the instructions. It looks through the pending
|
||
sequences -- but it can't see the ones in the
|
||
CONVERSION_INSNS, if they're not on the sequence
|
||
stack. So, we go back to that sequence, just so that
|
||
the fixups will happen. */
|
||
push_to_sequence (conversion_insns);
|
||
put_var_into_stack (parm, /*rescan=*/true);
|
||
conversion_insns = get_insns ();
|
||
end_sequence ();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Value must be stored in the stack slot STACK_PARM
|
||
during function execution. */
|
||
|
||
if (promoted_mode != nominal_mode)
|
||
{
|
||
/* Conversion is required. */
|
||
rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
|
||
|
||
emit_move_insn (tempreg, validize_mem (entry_parm));
|
||
|
||
push_to_sequence (conversion_insns);
|
||
entry_parm = convert_to_mode (nominal_mode, tempreg,
|
||
TREE_UNSIGNED (TREE_TYPE (parm)));
|
||
if (stack_parm)
|
||
/* ??? This may need a big-endian conversion on sparc64. */
|
||
stack_parm = adjust_address (stack_parm, nominal_mode, 0);
|
||
|
||
conversion_insns = get_insns ();
|
||
did_conversion = 1;
|
||
end_sequence ();
|
||
}
|
||
|
||
if (entry_parm != stack_parm)
|
||
{
|
||
if (stack_parm == 0)
|
||
{
|
||
stack_parm
|
||
= assign_stack_local (GET_MODE (entry_parm),
|
||
GET_MODE_SIZE (GET_MODE (entry_parm)),
|
||
0);
|
||
set_mem_attributes (stack_parm, parm, 1);
|
||
}
|
||
|
||
if (promoted_mode != nominal_mode)
|
||
{
|
||
push_to_sequence (conversion_insns);
|
||
emit_move_insn (validize_mem (stack_parm),
|
||
validize_mem (entry_parm));
|
||
conversion_insns = get_insns ();
|
||
end_sequence ();
|
||
}
|
||
else
|
||
emit_move_insn (validize_mem (stack_parm),
|
||
validize_mem (entry_parm));
|
||
}
|
||
|
||
SET_DECL_RTL (parm, stack_parm);
|
||
}
|
||
}
|
||
|
||
if (targetm.calls.split_complex_arg && fnargs != orig_fnargs)
|
||
{
|
||
for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
|
||
{
|
||
if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
|
||
&& targetm.calls.split_complex_arg (TREE_TYPE (parm)))
|
||
{
|
||
rtx tmp, real, imag;
|
||
enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
|
||
|
||
real = DECL_RTL (fnargs);
|
||
imag = DECL_RTL (TREE_CHAIN (fnargs));
|
||
if (inner != GET_MODE (real))
|
||
{
|
||
real = gen_lowpart_SUBREG (inner, real);
|
||
imag = gen_lowpart_SUBREG (inner, imag);
|
||
}
|
||
tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
|
||
SET_DECL_RTL (parm, tmp);
|
||
|
||
real = DECL_INCOMING_RTL (fnargs);
|
||
imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
|
||
if (inner != GET_MODE (real))
|
||
{
|
||
real = gen_lowpart_SUBREG (inner, real);
|
||
imag = gen_lowpart_SUBREG (inner, imag);
|
||
}
|
||
tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
|
||
DECL_INCOMING_RTL (parm) = tmp;
|
||
fnargs = TREE_CHAIN (fnargs);
|
||
}
|
||
else
|
||
{
|
||
SET_DECL_RTL (parm, DECL_RTL (fnargs));
|
||
DECL_INCOMING_RTL (parm) = DECL_INCOMING_RTL (fnargs);
|
||
}
|
||
fnargs = TREE_CHAIN (fnargs);
|
||
}
|
||
}
|
||
|
||
/* Output all parameter conversion instructions (possibly including calls)
|
||
now that all parameters have been copied out of hard registers. */
|
||
emit_insn (conversion_insns);
|
||
|
||
/* If we are receiving a struct value address as the first argument, set up
|
||
the RTL for the function result. As this might require code to convert
|
||
the transmitted address to Pmode, we do this here to ensure that possible
|
||
preliminary conversions of the address have been emitted already. */
|
||
if (function_result_decl)
|
||
{
|
||
tree result = DECL_RESULT (fndecl);
|
||
rtx addr = DECL_RTL (function_result_decl);
|
||
rtx x;
|
||
|
||
addr = convert_memory_address (Pmode, addr);
|
||
x = gen_rtx_MEM (DECL_MODE (result), addr);
|
||
set_mem_attributes (x, result, 1);
|
||
SET_DECL_RTL (result, x);
|
||
}
|
||
|
||
last_parm_insn = get_last_insn ();
|
||
|
||
current_function_args_size = stack_args_size.constant;
|
||
|
||
/* Adjust function incoming argument size for alignment and
|
||
minimum length. */
|
||
|
||
#ifdef REG_PARM_STACK_SPACE
|
||
#ifndef MAYBE_REG_PARM_STACK_SPACE
|
||
current_function_args_size = MAX (current_function_args_size,
|
||
REG_PARM_STACK_SPACE (fndecl));
|
||
#endif
|
||
#endif
|
||
|
||
current_function_args_size
|
||
= ((current_function_args_size + STACK_BYTES - 1)
|
||
/ STACK_BYTES) * STACK_BYTES;
|
||
|
||
#ifdef ARGS_GROW_DOWNWARD
|
||
current_function_arg_offset_rtx
|
||
= (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
|
||
: expand_expr (size_diffop (stack_args_size.var,
|
||
size_int (-stack_args_size.constant)),
|
||
NULL_RTX, VOIDmode, 0));
|
||
#else
|
||
current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
|
||
#endif
|
||
|
||
/* See how many bytes, if any, of its args a function should try to pop
|
||
on return. */
|
||
|
||
current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
|
||
current_function_args_size);
|
||
|
||
/* For stdarg.h function, save info about
|
||
regs and stack space used by the named args. */
|
||
|
||
current_function_args_info = args_so_far;
|
||
|
||
/* Set the rtx used for the function return value. Put this in its
|
||
own variable so any optimizers that need this information don't have
|
||
to include tree.h. Do this here so it gets done when an inlined
|
||
function gets output. */
|
||
|
||
current_function_return_rtx
|
||
= (DECL_RTL_SET_P (DECL_RESULT (fndecl))
|
||
? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
|
||
|
||
/* If scalar return value was computed in a pseudo-reg, or was a named
|
||
return value that got dumped to the stack, copy that to the hard
|
||
return register. */
|
||
if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
|
||
{
|
||
tree decl_result = DECL_RESULT (fndecl);
|
||
rtx decl_rtl = DECL_RTL (decl_result);
|
||
|
||
if (REG_P (decl_rtl)
|
||
? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
|
||
: DECL_REGISTER (decl_result))
|
||
{
|
||
rtx real_decl_rtl;
|
||
|
||
#ifdef FUNCTION_OUTGOING_VALUE
|
||
real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
|
||
fndecl);
|
||
#else
|
||
real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
|
||
fndecl);
|
||
#endif
|
||
REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
|
||
/* The delay slot scheduler assumes that current_function_return_rtx
|
||
holds the hard register containing the return value, not a
|
||
temporary pseudo. */
|
||
current_function_return_rtx = real_decl_rtl;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If ARGS contains entries with complex types, split the entry into two
|
||
entries of the component type. Return a new list of substitutions are
|
||
needed, else the old list. */
|
||
|
||
static tree
|
||
split_complex_args (tree args)
|
||
{
|
||
tree p;
|
||
|
||
/* Before allocating memory, check for the common case of no complex. */
|
||
for (p = args; p; p = TREE_CHAIN (p))
|
||
{
|
||
tree type = TREE_TYPE (p);
|
||
if (TREE_CODE (type) == COMPLEX_TYPE
|
||
&& targetm.calls.split_complex_arg (type))
|
||
goto found;
|
||
}
|
||
return args;
|
||
|
||
found:
|
||
args = copy_list (args);
|
||
|
||
for (p = args; p; p = TREE_CHAIN (p))
|
||
{
|
||
tree type = TREE_TYPE (p);
|
||
if (TREE_CODE (type) == COMPLEX_TYPE
|
||
&& targetm.calls.split_complex_arg (type))
|
||
{
|
||
tree decl;
|
||
tree subtype = TREE_TYPE (type);
|
||
|
||
/* Rewrite the PARM_DECL's type with its component. */
|
||
TREE_TYPE (p) = subtype;
|
||
DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
|
||
DECL_MODE (p) = VOIDmode;
|
||
DECL_SIZE (p) = NULL;
|
||
DECL_SIZE_UNIT (p) = NULL;
|
||
layout_decl (p, 0);
|
||
|
||
/* Build a second synthetic decl. */
|
||
decl = build_decl (PARM_DECL, NULL_TREE, subtype);
|
||
DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
|
||
layout_decl (decl, 0);
|
||
|
||
/* Splice it in; skip the new decl. */
|
||
TREE_CHAIN (decl) = TREE_CHAIN (p);
|
||
TREE_CHAIN (p) = decl;
|
||
p = decl;
|
||
}
|
||
}
|
||
|
||
return args;
|
||
}
|
||
|
||
/* Indicate whether REGNO is an incoming argument to the current function
|
||
that was promoted to a wider mode. If so, return the RTX for the
|
||
register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
|
||
that REGNO is promoted from and whether the promotion was signed or
|
||
unsigned. */
|
||
|
||
rtx
|
||
promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
|
||
{
|
||
tree arg;
|
||
|
||
for (arg = DECL_ARGUMENTS (current_function_decl); arg;
|
||
arg = TREE_CHAIN (arg))
|
||
if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
|
||
&& REGNO (DECL_INCOMING_RTL (arg)) == regno
|
||
&& TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
|
||
{
|
||
enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
|
||
int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
|
||
|
||
mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
|
||
if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
|
||
&& mode != DECL_MODE (arg))
|
||
{
|
||
*pmode = DECL_MODE (arg);
|
||
*punsignedp = unsignedp;
|
||
return DECL_INCOMING_RTL (arg);
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Compute the size and offset from the start of the stacked arguments for a
|
||
parm passed in mode PASSED_MODE and with type TYPE.
|
||
|
||
INITIAL_OFFSET_PTR points to the current offset into the stacked
|
||
arguments.
|
||
|
||
The starting offset and size for this parm are returned in
|
||
LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
|
||
nonzero, the offset is that of stack slot, which is returned in
|
||
LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
|
||
padding required from the initial offset ptr to the stack slot.
|
||
|
||
IN_REGS is nonzero if the argument will be passed in registers. It will
|
||
never be set if REG_PARM_STACK_SPACE is not defined.
|
||
|
||
FNDECL is the function in which the argument was defined.
|
||
|
||
There are two types of rounding that are done. The first, controlled by
|
||
FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
|
||
list to be aligned to the specific boundary (in bits). This rounding
|
||
affects the initial and starting offsets, but not the argument size.
|
||
|
||
The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
|
||
optionally rounds the size of the parm to PARM_BOUNDARY. The
|
||
initial offset is not affected by this rounding, while the size always
|
||
is and the starting offset may be. */
|
||
|
||
/* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
|
||
INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
|
||
callers pass in the total size of args so far as
|
||
INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
|
||
|
||
void
|
||
locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
|
||
int partial, tree fndecl ATTRIBUTE_UNUSED,
|
||
struct args_size *initial_offset_ptr,
|
||
struct locate_and_pad_arg_data *locate)
|
||
{
|
||
tree sizetree;
|
||
enum direction where_pad;
|
||
int boundary;
|
||
int reg_parm_stack_space = 0;
|
||
int part_size_in_regs;
|
||
|
||
#ifdef REG_PARM_STACK_SPACE
|
||
#ifdef MAYBE_REG_PARM_STACK_SPACE
|
||
reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
|
||
#else
|
||
reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
|
||
#endif
|
||
|
||
/* If we have found a stack parm before we reach the end of the
|
||
area reserved for registers, skip that area. */
|
||
if (! in_regs)
|
||
{
|
||
if (reg_parm_stack_space > 0)
|
||
{
|
||
if (initial_offset_ptr->var)
|
||
{
|
||
initial_offset_ptr->var
|
||
= size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
|
||
ssize_int (reg_parm_stack_space));
|
||
initial_offset_ptr->constant = 0;
|
||
}
|
||
else if (initial_offset_ptr->constant < reg_parm_stack_space)
|
||
initial_offset_ptr->constant = reg_parm_stack_space;
|
||
}
|
||
}
|
||
#endif /* REG_PARM_STACK_SPACE */
|
||
|
||
part_size_in_regs = 0;
|
||
if (reg_parm_stack_space == 0)
|
||
part_size_in_regs = ((partial * UNITS_PER_WORD)
|
||
/ (PARM_BOUNDARY / BITS_PER_UNIT)
|
||
* (PARM_BOUNDARY / BITS_PER_UNIT));
|
||
|
||
sizetree
|
||
= type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
|
||
where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
|
||
boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
|
||
locate->where_pad = where_pad;
|
||
|
||
#ifdef ARGS_GROW_DOWNWARD
|
||
locate->slot_offset.constant = -initial_offset_ptr->constant;
|
||
if (initial_offset_ptr->var)
|
||
locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
|
||
initial_offset_ptr->var);
|
||
|
||
{
|
||
tree s2 = sizetree;
|
||
if (where_pad != none
|
||
&& (!host_integerp (sizetree, 1)
|
||
|| (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
|
||
s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
|
||
SUB_PARM_SIZE (locate->slot_offset, s2);
|
||
}
|
||
|
||
locate->slot_offset.constant += part_size_in_regs;
|
||
|
||
if (!in_regs
|
||
#ifdef REG_PARM_STACK_SPACE
|
||
|| REG_PARM_STACK_SPACE (fndecl) > 0
|
||
#endif
|
||
)
|
||
pad_to_arg_alignment (&locate->slot_offset, boundary,
|
||
&locate->alignment_pad);
|
||
|
||
locate->size.constant = (-initial_offset_ptr->constant
|
||
- locate->slot_offset.constant);
|
||
if (initial_offset_ptr->var)
|
||
locate->size.var = size_binop (MINUS_EXPR,
|
||
size_binop (MINUS_EXPR,
|
||
ssize_int (0),
|
||
initial_offset_ptr->var),
|
||
locate->slot_offset.var);
|
||
|
||
/* Pad_below needs the pre-rounded size to know how much to pad
|
||
below. */
|
||
locate->offset = locate->slot_offset;
|
||
if (where_pad == downward)
|
||
pad_below (&locate->offset, passed_mode, sizetree);
|
||
|
||
#else /* !ARGS_GROW_DOWNWARD */
|
||
if (!in_regs
|
||
#ifdef REG_PARM_STACK_SPACE
|
||
|| REG_PARM_STACK_SPACE (fndecl) > 0
|
||
#endif
|
||
)
|
||
pad_to_arg_alignment (initial_offset_ptr, boundary,
|
||
&locate->alignment_pad);
|
||
locate->slot_offset = *initial_offset_ptr;
|
||
|
||
#ifdef PUSH_ROUNDING
|
||
if (passed_mode != BLKmode)
|
||
sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
|
||
#endif
|
||
|
||
/* Pad_below needs the pre-rounded size to know how much to pad below
|
||
so this must be done before rounding up. */
|
||
locate->offset = locate->slot_offset;
|
||
if (where_pad == downward)
|
||
pad_below (&locate->offset, passed_mode, sizetree);
|
||
|
||
if (where_pad != none
|
||
&& (!host_integerp (sizetree, 1)
|
||
|| (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
|
||
sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
|
||
|
||
ADD_PARM_SIZE (locate->size, sizetree);
|
||
|
||
locate->size.constant -= part_size_in_regs;
|
||
#endif /* ARGS_GROW_DOWNWARD */
|
||
}
|
||
|
||
/* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
|
||
BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
|
||
|
||
static void
|
||
pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
|
||
struct args_size *alignment_pad)
|
||
{
|
||
tree save_var = NULL_TREE;
|
||
HOST_WIDE_INT save_constant = 0;
|
||
int boundary_in_bytes = boundary / BITS_PER_UNIT;
|
||
HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
|
||
|
||
#ifdef SPARC_STACK_BOUNDARY_HACK
|
||
/* The sparc port has a bug. It sometimes claims a STACK_BOUNDARY
|
||
higher than the real alignment of %sp. However, when it does this,
|
||
the alignment of %sp+STACK_POINTER_OFFSET will be STACK_BOUNDARY.
|
||
This is a temporary hack while the sparc port is fixed. */
|
||
if (SPARC_STACK_BOUNDARY_HACK)
|
||
sp_offset = 0;
|
||
#endif
|
||
|
||
if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
|
||
{
|
||
save_var = offset_ptr->var;
|
||
save_constant = offset_ptr->constant;
|
||
}
|
||
|
||
alignment_pad->var = NULL_TREE;
|
||
alignment_pad->constant = 0;
|
||
|
||
if (boundary > BITS_PER_UNIT)
|
||
{
|
||
if (offset_ptr->var)
|
||
{
|
||
tree sp_offset_tree = ssize_int (sp_offset);
|
||
tree offset = size_binop (PLUS_EXPR,
|
||
ARGS_SIZE_TREE (*offset_ptr),
|
||
sp_offset_tree);
|
||
#ifdef ARGS_GROW_DOWNWARD
|
||
tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
|
||
#else
|
||
tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
|
||
#endif
|
||
|
||
offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
|
||
/* ARGS_SIZE_TREE includes constant term. */
|
||
offset_ptr->constant = 0;
|
||
if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
|
||
alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
|
||
save_var);
|
||
}
|
||
else
|
||
{
|
||
offset_ptr->constant = -sp_offset +
|
||
#ifdef ARGS_GROW_DOWNWARD
|
||
FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
|
||
#else
|
||
CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
|
||
#endif
|
||
if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
|
||
alignment_pad->constant = offset_ptr->constant - save_constant;
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
|
||
{
|
||
if (passed_mode != BLKmode)
|
||
{
|
||
if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
|
||
offset_ptr->constant
|
||
+= (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
|
||
/ PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
|
||
- GET_MODE_SIZE (passed_mode));
|
||
}
|
||
else
|
||
{
|
||
if (TREE_CODE (sizetree) != INTEGER_CST
|
||
|| (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
|
||
{
|
||
/* Round the size up to multiple of PARM_BOUNDARY bits. */
|
||
tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
|
||
/* Add it in. */
|
||
ADD_PARM_SIZE (*offset_ptr, s2);
|
||
SUB_PARM_SIZE (*offset_ptr, sizetree);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Walk the tree of blocks describing the binding levels within a function
|
||
and warn about uninitialized variables.
|
||
This is done after calling flow_analysis and before global_alloc
|
||
clobbers the pseudo-regs to hard regs. */
|
||
|
||
void
|
||
uninitialized_vars_warning (tree block)
|
||
{
|
||
tree decl, sub;
|
||
for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
|
||
{
|
||
if (warn_uninitialized
|
||
&& TREE_CODE (decl) == VAR_DECL
|
||
/* These warnings are unreliable for and aggregates
|
||
because assigning the fields one by one can fail to convince
|
||
flow.c that the entire aggregate was initialized.
|
||
Unions are troublesome because members may be shorter. */
|
||
&& ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
|
||
&& DECL_RTL_SET_P (decl)
|
||
&& GET_CODE (DECL_RTL (decl)) == REG
|
||
/* Global optimizations can make it difficult to determine if a
|
||
particular variable has been initialized. However, a VAR_DECL
|
||
with a nonzero DECL_INITIAL had an initializer, so do not
|
||
claim it is potentially uninitialized.
|
||
|
||
When the DECL_INITIAL is NULL call the language hook to tell us
|
||
if we want to warn. */
|
||
&& (DECL_INITIAL (decl) == NULL_TREE || lang_hooks.decl_uninit (decl))
|
||
&& regno_uninitialized (REGNO (DECL_RTL (decl))))
|
||
warning ("%J'%D' might be used uninitialized in this function",
|
||
decl, decl);
|
||
if (extra_warnings
|
||
&& TREE_CODE (decl) == VAR_DECL
|
||
&& DECL_RTL_SET_P (decl)
|
||
&& GET_CODE (DECL_RTL (decl)) == REG
|
||
&& regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
|
||
warning ("%Jvariable '%D' might be clobbered by `longjmp' or `vfork'",
|
||
decl, decl);
|
||
}
|
||
for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
|
||
uninitialized_vars_warning (sub);
|
||
}
|
||
|
||
/* Do the appropriate part of uninitialized_vars_warning
|
||
but for arguments instead of local variables. */
|
||
|
||
void
|
||
setjmp_args_warning (void)
|
||
{
|
||
tree decl;
|
||
for (decl = DECL_ARGUMENTS (current_function_decl);
|
||
decl; decl = TREE_CHAIN (decl))
|
||
if (DECL_RTL (decl) != 0
|
||
&& GET_CODE (DECL_RTL (decl)) == REG
|
||
&& regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
|
||
warning ("%Jargument '%D' might be clobbered by `longjmp' or `vfork'",
|
||
decl, decl);
|
||
}
|
||
|
||
/* If this function call setjmp, put all vars into the stack
|
||
unless they were declared `register'. */
|
||
|
||
void
|
||
setjmp_protect (tree block)
|
||
{
|
||
tree decl, sub;
|
||
for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
|
||
if ((TREE_CODE (decl) == VAR_DECL
|
||
|| TREE_CODE (decl) == PARM_DECL)
|
||
&& DECL_RTL (decl) != 0
|
||
&& (GET_CODE (DECL_RTL (decl)) == REG
|
||
|| (GET_CODE (DECL_RTL (decl)) == MEM
|
||
&& GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
|
||
/* If this variable came from an inline function, it must be
|
||
that its life doesn't overlap the setjmp. If there was a
|
||
setjmp in the function, it would already be in memory. We
|
||
must exclude such variable because their DECL_RTL might be
|
||
set to strange things such as virtual_stack_vars_rtx. */
|
||
&& ! DECL_FROM_INLINE (decl)
|
||
&& (
|
||
#ifdef NON_SAVING_SETJMP
|
||
/* If longjmp doesn't restore the registers,
|
||
don't put anything in them. */
|
||
NON_SAVING_SETJMP
|
||
||
|
||
#endif
|
||
! DECL_REGISTER (decl)))
|
||
put_var_into_stack (decl, /*rescan=*/true);
|
||
for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
|
||
setjmp_protect (sub);
|
||
}
|
||
|
||
/* Like the previous function, but for args instead of local variables. */
|
||
|
||
void
|
||
setjmp_protect_args (void)
|
||
{
|
||
tree decl;
|
||
for (decl = DECL_ARGUMENTS (current_function_decl);
|
||
decl; decl = TREE_CHAIN (decl))
|
||
if ((TREE_CODE (decl) == VAR_DECL
|
||
|| TREE_CODE (decl) == PARM_DECL)
|
||
&& DECL_RTL (decl) != 0
|
||
&& (GET_CODE (DECL_RTL (decl)) == REG
|
||
|| (GET_CODE (DECL_RTL (decl)) == MEM
|
||
&& GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
|
||
&& (
|
||
/* If longjmp doesn't restore the registers,
|
||
don't put anything in them. */
|
||
#ifdef NON_SAVING_SETJMP
|
||
NON_SAVING_SETJMP
|
||
||
|
||
#endif
|
||
! DECL_REGISTER (decl)))
|
||
put_var_into_stack (decl, /*rescan=*/true);
|
||
}
|
||
|
||
/* Return the context-pointer register corresponding to DECL,
|
||
or 0 if it does not need one. */
|
||
|
||
rtx
|
||
lookup_static_chain (tree decl)
|
||
{
|
||
tree context = decl_function_context (decl);
|
||
tree link;
|
||
|
||
if (context == 0
|
||
|| (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
|
||
return 0;
|
||
|
||
/* We treat inline_function_decl as an alias for the current function
|
||
because that is the inline function whose vars, types, etc.
|
||
are being merged into the current function.
|
||
See expand_inline_function. */
|
||
if (context == current_function_decl || context == inline_function_decl)
|
||
return virtual_stack_vars_rtx;
|
||
|
||
for (link = context_display; link; link = TREE_CHAIN (link))
|
||
if (TREE_PURPOSE (link) == context)
|
||
return RTL_EXPR_RTL (TREE_VALUE (link));
|
||
|
||
abort ();
|
||
}
|
||
|
||
/* Convert a stack slot address ADDR for variable VAR
|
||
(from a containing function)
|
||
into an address valid in this function (using a static chain). */
|
||
|
||
rtx
|
||
fix_lexical_addr (rtx addr, tree var)
|
||
{
|
||
rtx basereg;
|
||
HOST_WIDE_INT displacement;
|
||
tree context = decl_function_context (var);
|
||
struct function *fp;
|
||
rtx base = 0;
|
||
|
||
/* If this is the present function, we need not do anything. */
|
||
if (context == current_function_decl || context == inline_function_decl)
|
||
return addr;
|
||
|
||
fp = find_function_data (context);
|
||
|
||
if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
|
||
addr = XEXP (XEXP (addr, 0), 0);
|
||
|
||
/* Decode given address as base reg plus displacement. */
|
||
if (GET_CODE (addr) == REG)
|
||
basereg = addr, displacement = 0;
|
||
else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
|
||
basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
|
||
else
|
||
abort ();
|
||
|
||
/* We accept vars reached via the containing function's
|
||
incoming arg pointer and via its stack variables pointer. */
|
||
if (basereg == fp->internal_arg_pointer)
|
||
{
|
||
/* If reached via arg pointer, get the arg pointer value
|
||
out of that function's stack frame.
|
||
|
||
There are two cases: If a separate ap is needed, allocate a
|
||
slot in the outer function for it and dereference it that way.
|
||
This is correct even if the real ap is actually a pseudo.
|
||
Otherwise, just adjust the offset from the frame pointer to
|
||
compensate. */
|
||
|
||
#ifdef NEED_SEPARATE_AP
|
||
rtx addr;
|
||
|
||
addr = get_arg_pointer_save_area (fp);
|
||
addr = fix_lexical_addr (XEXP (addr, 0), var);
|
||
addr = memory_address (Pmode, addr);
|
||
|
||
base = gen_rtx_MEM (Pmode, addr);
|
||
set_mem_alias_set (base, get_frame_alias_set ());
|
||
base = copy_to_reg (base);
|
||
#else
|
||
displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
|
||
base = lookup_static_chain (var);
|
||
#endif
|
||
}
|
||
|
||
else if (basereg == virtual_stack_vars_rtx)
|
||
{
|
||
/* This is the same code as lookup_static_chain, duplicated here to
|
||
avoid an extra call to decl_function_context. */
|
||
tree link;
|
||
|
||
for (link = context_display; link; link = TREE_CHAIN (link))
|
||
if (TREE_PURPOSE (link) == context)
|
||
{
|
||
base = RTL_EXPR_RTL (TREE_VALUE (link));
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (base == 0)
|
||
abort ();
|
||
|
||
/* Use same offset, relative to appropriate static chain or argument
|
||
pointer. */
|
||
return plus_constant (base, displacement);
|
||
}
|
||
|
||
/* Return the address of the trampoline for entering nested fn FUNCTION.
|
||
If necessary, allocate a trampoline (in the stack frame)
|
||
and emit rtl to initialize its contents (at entry to this function). */
|
||
|
||
rtx
|
||
trampoline_address (tree function)
|
||
{
|
||
tree link;
|
||
tree rtlexp;
|
||
rtx tramp;
|
||
struct function *fp;
|
||
tree fn_context;
|
||
|
||
/* Find an existing trampoline and return it. */
|
||
for (link = trampoline_list; link; link = TREE_CHAIN (link))
|
||
if (TREE_PURPOSE (link) == function)
|
||
return
|
||
adjust_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
|
||
|
||
for (fp = outer_function_chain; fp; fp = fp->outer)
|
||
for (link = fp->x_trampoline_list; link; link = TREE_CHAIN (link))
|
||
if (TREE_PURPOSE (link) == function)
|
||
{
|
||
tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
|
||
function);
|
||
return adjust_trampoline_addr (tramp);
|
||
}
|
||
|
||
/* None exists; we must make one. */
|
||
|
||
/* Find the `struct function' for the function containing FUNCTION. */
|
||
fp = 0;
|
||
fn_context = decl_function_context (function);
|
||
if (fn_context != current_function_decl
|
||
&& fn_context != inline_function_decl)
|
||
fp = find_function_data (fn_context);
|
||
|
||
/* Allocate run-time space for this trampoline. */
|
||
/* If rounding needed, allocate extra space
|
||
to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
|
||
#define TRAMPOLINE_REAL_SIZE \
|
||
(TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
|
||
tramp = assign_stack_local_1 (BLKmode, TRAMPOLINE_REAL_SIZE, 0,
|
||
fp ? fp : cfun);
|
||
/* Record the trampoline for reuse and note it for later initialization
|
||
by expand_function_end. */
|
||
if (fp != 0)
|
||
{
|
||
rtlexp = make_node (RTL_EXPR);
|
||
RTL_EXPR_RTL (rtlexp) = tramp;
|
||
fp->x_trampoline_list = tree_cons (function, rtlexp,
|
||
fp->x_trampoline_list);
|
||
}
|
||
else
|
||
{
|
||
/* Make the RTL_EXPR node temporary, not momentary, so that the
|
||
trampoline_list doesn't become garbage. */
|
||
rtlexp = make_node (RTL_EXPR);
|
||
|
||
RTL_EXPR_RTL (rtlexp) = tramp;
|
||
trampoline_list = tree_cons (function, rtlexp, trampoline_list);
|
||
}
|
||
|
||
tramp = fix_lexical_addr (XEXP (tramp, 0), function);
|
||
return adjust_trampoline_addr (tramp);
|
||
}
|
||
|
||
/* Given a trampoline address,
|
||
round it to multiple of TRAMPOLINE_ALIGNMENT. */
|
||
|
||
static rtx
|
||
round_trampoline_addr (rtx tramp)
|
||
{
|
||
/* Round address up to desired boundary. */
|
||
rtx temp = gen_reg_rtx (Pmode);
|
||
rtx addend = GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1);
|
||
rtx mask = GEN_INT (-TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT);
|
||
|
||
temp = expand_simple_binop (Pmode, PLUS, tramp, addend,
|
||
temp, 0, OPTAB_LIB_WIDEN);
|
||
tramp = expand_simple_binop (Pmode, AND, temp, mask,
|
||
temp, 0, OPTAB_LIB_WIDEN);
|
||
|
||
return tramp;
|
||
}
|
||
|
||
/* Given a trampoline address, round it then apply any
|
||
platform-specific adjustments so that the result can be used for a
|
||
function call . */
|
||
|
||
static rtx
|
||
adjust_trampoline_addr (rtx tramp)
|
||
{
|
||
tramp = round_trampoline_addr (tramp);
|
||
#ifdef TRAMPOLINE_ADJUST_ADDRESS
|
||
TRAMPOLINE_ADJUST_ADDRESS (tramp);
|
||
#endif
|
||
return tramp;
|
||
}
|
||
|
||
/* Put all this function's BLOCK nodes including those that are chained
|
||
onto the first block into a vector, and return it.
|
||
Also store in each NOTE for the beginning or end of a block
|
||
the index of that block in the vector.
|
||
The arguments are BLOCK, the chain of top-level blocks of the function,
|
||
and INSNS, the insn chain of the function. */
|
||
|
||
void
|
||
identify_blocks (void)
|
||
{
|
||
int n_blocks;
|
||
tree *block_vector, *last_block_vector;
|
||
tree *block_stack;
|
||
tree block = DECL_INITIAL (current_function_decl);
|
||
|
||
if (block == 0)
|
||
return;
|
||
|
||
/* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
|
||
depth-first order. */
|
||
block_vector = get_block_vector (block, &n_blocks);
|
||
block_stack = xmalloc (n_blocks * sizeof (tree));
|
||
|
||
last_block_vector = identify_blocks_1 (get_insns (),
|
||
block_vector + 1,
|
||
block_vector + n_blocks,
|
||
block_stack);
|
||
|
||
/* If we didn't use all of the subblocks, we've misplaced block notes. */
|
||
/* ??? This appears to happen all the time. Latent bugs elsewhere? */
|
||
if (0 && last_block_vector != block_vector + n_blocks)
|
||
abort ();
|
||
|
||
free (block_vector);
|
||
free (block_stack);
|
||
}
|
||
|
||
/* Subroutine of identify_blocks. Do the block substitution on the
|
||
insn chain beginning with INSNS. Recurse for CALL_PLACEHOLDER chains.
|
||
|
||
BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
|
||
BLOCK_VECTOR is incremented for each block seen. */
|
||
|
||
static tree *
|
||
identify_blocks_1 (rtx insns, tree *block_vector, tree *end_block_vector,
|
||
tree *orig_block_stack)
|
||
{
|
||
rtx insn;
|
||
tree *block_stack = orig_block_stack;
|
||
|
||
for (insn = insns; insn; insn = NEXT_INSN (insn))
|
||
{
|
||
if (GET_CODE (insn) == NOTE)
|
||
{
|
||
if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
|
||
{
|
||
tree b;
|
||
|
||
/* If there are more block notes than BLOCKs, something
|
||
is badly wrong. */
|
||
if (block_vector == end_block_vector)
|
||
abort ();
|
||
|
||
b = *block_vector++;
|
||
NOTE_BLOCK (insn) = b;
|
||
*block_stack++ = b;
|
||
}
|
||
else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
|
||
{
|
||
/* If there are more NOTE_INSN_BLOCK_ENDs than
|
||
NOTE_INSN_BLOCK_BEGs, something is badly wrong. */
|
||
if (block_stack == orig_block_stack)
|
||
abort ();
|
||
|
||
NOTE_BLOCK (insn) = *--block_stack;
|
||
}
|
||
}
|
||
else if (GET_CODE (insn) == CALL_INSN
|
||
&& GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
|
||
{
|
||
rtx cp = PATTERN (insn);
|
||
|
||
block_vector = identify_blocks_1 (XEXP (cp, 0), block_vector,
|
||
end_block_vector, block_stack);
|
||
if (XEXP (cp, 1))
|
||
block_vector = identify_blocks_1 (XEXP (cp, 1), block_vector,
|
||
end_block_vector, block_stack);
|
||
if (XEXP (cp, 2))
|
||
block_vector = identify_blocks_1 (XEXP (cp, 2), block_vector,
|
||
end_block_vector, block_stack);
|
||
}
|
||
}
|
||
|
||
/* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
|
||
something is badly wrong. */
|
||
if (block_stack != orig_block_stack)
|
||
abort ();
|
||
|
||
return block_vector;
|
||
}
|
||
|
||
/* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
|
||
and create duplicate blocks. */
|
||
/* ??? Need an option to either create block fragments or to create
|
||
abstract origin duplicates of a source block. It really depends
|
||
on what optimization has been performed. */
|
||
|
||
void
|
||
reorder_blocks (void)
|
||
{
|
||
tree block = DECL_INITIAL (current_function_decl);
|
||
varray_type block_stack;
|
||
|
||
if (block == NULL_TREE)
|
||
return;
|
||
|
||
VARRAY_TREE_INIT (block_stack, 10, "block_stack");
|
||
|
||
/* Reset the TREE_ASM_WRITTEN bit for all blocks. */
|
||
reorder_blocks_0 (block);
|
||
|
||
/* Prune the old trees away, so that they don't get in the way. */
|
||
BLOCK_SUBBLOCKS (block) = NULL_TREE;
|
||
BLOCK_CHAIN (block) = NULL_TREE;
|
||
|
||
/* Recreate the block tree from the note nesting. */
|
||
reorder_blocks_1 (get_insns (), block, &block_stack);
|
||
BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
|
||
|
||
/* Remove deleted blocks from the block fragment chains. */
|
||
reorder_fix_fragments (block);
|
||
}
|
||
|
||
/* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
|
||
|
||
static void
|
||
reorder_blocks_0 (tree block)
|
||
{
|
||
while (block)
|
||
{
|
||
TREE_ASM_WRITTEN (block) = 0;
|
||
reorder_blocks_0 (BLOCK_SUBBLOCKS (block));
|
||
block = BLOCK_CHAIN (block);
|
||
}
|
||
}
|
||
|
||
static void
|
||
reorder_blocks_1 (rtx insns, tree current_block, varray_type *p_block_stack)
|
||
{
|
||
rtx insn;
|
||
|
||
for (insn = insns; insn; insn = NEXT_INSN (insn))
|
||
{
|
||
if (GET_CODE (insn) == NOTE)
|
||
{
|
||
if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
|
||
{
|
||
tree block = NOTE_BLOCK (insn);
|
||
|
||
/* If we have seen this block before, that means it now
|
||
spans multiple address regions. Create a new fragment. */
|
||
if (TREE_ASM_WRITTEN (block))
|
||
{
|
||
tree new_block = copy_node (block);
|
||
tree origin;
|
||
|
||
origin = (BLOCK_FRAGMENT_ORIGIN (block)
|
||
? BLOCK_FRAGMENT_ORIGIN (block)
|
||
: block);
|
||
BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
|
||
BLOCK_FRAGMENT_CHAIN (new_block)
|
||
= BLOCK_FRAGMENT_CHAIN (origin);
|
||
BLOCK_FRAGMENT_CHAIN (origin) = new_block;
|
||
|
||
NOTE_BLOCK (insn) = new_block;
|
||
block = new_block;
|
||
}
|
||
|
||
BLOCK_SUBBLOCKS (block) = 0;
|
||
TREE_ASM_WRITTEN (block) = 1;
|
||
/* When there's only one block for the entire function,
|
||
current_block == block and we mustn't do this, it
|
||
will cause infinite recursion. */
|
||
if (block != current_block)
|
||
{
|
||
BLOCK_SUPERCONTEXT (block) = current_block;
|
||
BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
|
||
BLOCK_SUBBLOCKS (current_block) = block;
|
||
current_block = block;
|
||
}
|
||
VARRAY_PUSH_TREE (*p_block_stack, block);
|
||
}
|
||
else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
|
||
{
|
||
NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
|
||
VARRAY_POP (*p_block_stack);
|
||
BLOCK_SUBBLOCKS (current_block)
|
||
= blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
|
||
current_block = BLOCK_SUPERCONTEXT (current_block);
|
||
}
|
||
}
|
||
else if (GET_CODE (insn) == CALL_INSN
|
||
&& GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
|
||
{
|
||
rtx cp = PATTERN (insn);
|
||
reorder_blocks_1 (XEXP (cp, 0), current_block, p_block_stack);
|
||
if (XEXP (cp, 1))
|
||
reorder_blocks_1 (XEXP (cp, 1), current_block, p_block_stack);
|
||
if (XEXP (cp, 2))
|
||
reorder_blocks_1 (XEXP (cp, 2), current_block, p_block_stack);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
|
||
appears in the block tree, select one of the fragments to become
|
||
the new origin block. */
|
||
|
||
static void
|
||
reorder_fix_fragments (tree block)
|
||
{
|
||
while (block)
|
||
{
|
||
tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
|
||
tree new_origin = NULL_TREE;
|
||
|
||
if (dup_origin)
|
||
{
|
||
if (! TREE_ASM_WRITTEN (dup_origin))
|
||
{
|
||
new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
|
||
|
||
/* Find the first of the remaining fragments. There must
|
||
be at least one -- the current block. */
|
||
while (! TREE_ASM_WRITTEN (new_origin))
|
||
new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
|
||
BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
|
||
}
|
||
}
|
||
else if (! dup_origin)
|
||
new_origin = block;
|
||
|
||
/* Re-root the rest of the fragments to the new origin. In the
|
||
case that DUP_ORIGIN was null, that means BLOCK was the origin
|
||
of a chain of fragments and we want to remove those fragments
|
||
that didn't make it to the output. */
|
||
if (new_origin)
|
||
{
|
||
tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
|
||
tree chain = *pp;
|
||
|
||
while (chain)
|
||
{
|
||
if (TREE_ASM_WRITTEN (chain))
|
||
{
|
||
BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
|
||
*pp = chain;
|
||
pp = &BLOCK_FRAGMENT_CHAIN (chain);
|
||
}
|
||
chain = BLOCK_FRAGMENT_CHAIN (chain);
|
||
}
|
||
*pp = NULL_TREE;
|
||
}
|
||
|
||
reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
|
||
block = BLOCK_CHAIN (block);
|
||
}
|
||
}
|
||
|
||
/* Reverse the order of elements in the chain T of blocks,
|
||
and return the new head of the chain (old last element). */
|
||
|
||
static tree
|
||
blocks_nreverse (tree t)
|
||
{
|
||
tree prev = 0, decl, next;
|
||
for (decl = t; decl; decl = next)
|
||
{
|
||
next = BLOCK_CHAIN (decl);
|
||
BLOCK_CHAIN (decl) = prev;
|
||
prev = decl;
|
||
}
|
||
return prev;
|
||
}
|
||
|
||
/* Count the subblocks of the list starting with BLOCK. If VECTOR is
|
||
non-NULL, list them all into VECTOR, in a depth-first preorder
|
||
traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
|
||
blocks. */
|
||
|
||
static int
|
||
all_blocks (tree block, tree *vector)
|
||
{
|
||
int n_blocks = 0;
|
||
|
||
while (block)
|
||
{
|
||
TREE_ASM_WRITTEN (block) = 0;
|
||
|
||
/* Record this block. */
|
||
if (vector)
|
||
vector[n_blocks] = block;
|
||
|
||
++n_blocks;
|
||
|
||
/* Record the subblocks, and their subblocks... */
|
||
n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
|
||
vector ? vector + n_blocks : 0);
|
||
block = BLOCK_CHAIN (block);
|
||
}
|
||
|
||
return n_blocks;
|
||
}
|
||
|
||
/* Return a vector containing all the blocks rooted at BLOCK. The
|
||
number of elements in the vector is stored in N_BLOCKS_P. The
|
||
vector is dynamically allocated; it is the caller's responsibility
|
||
to call `free' on the pointer returned. */
|
||
|
||
static tree *
|
||
get_block_vector (tree block, int *n_blocks_p)
|
||
{
|
||
tree *block_vector;
|
||
|
||
*n_blocks_p = all_blocks (block, NULL);
|
||
block_vector = xmalloc (*n_blocks_p * sizeof (tree));
|
||
all_blocks (block, block_vector);
|
||
|
||
return block_vector;
|
||
}
|
||
|
||
static GTY(()) int next_block_index = 2;
|
||
|
||
/* Set BLOCK_NUMBER for all the blocks in FN. */
|
||
|
||
void
|
||
number_blocks (tree fn)
|
||
{
|
||
int i;
|
||
int n_blocks;
|
||
tree *block_vector;
|
||
|
||
/* For SDB and XCOFF debugging output, we start numbering the blocks
|
||
from 1 within each function, rather than keeping a running
|
||
count. */
|
||
#if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
|
||
if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
|
||
next_block_index = 1;
|
||
#endif
|
||
|
||
block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
|
||
|
||
/* The top-level BLOCK isn't numbered at all. */
|
||
for (i = 1; i < n_blocks; ++i)
|
||
/* We number the blocks from two. */
|
||
BLOCK_NUMBER (block_vector[i]) = next_block_index++;
|
||
|
||
free (block_vector);
|
||
|
||
return;
|
||
}
|
||
|
||
/* If VAR is present in a subblock of BLOCK, return the subblock. */
|
||
|
||
tree
|
||
debug_find_var_in_block_tree (tree var, tree block)
|
||
{
|
||
tree t;
|
||
|
||
for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
|
||
if (t == var)
|
||
return block;
|
||
|
||
for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
|
||
{
|
||
tree ret = debug_find_var_in_block_tree (var, t);
|
||
if (ret)
|
||
return ret;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Allocate a function structure for FNDECL and set its contents
|
||
to the defaults. */
|
||
|
||
void
|
||
allocate_struct_function (tree fndecl)
|
||
{
|
||
tree result;
|
||
|
||
cfun = ggc_alloc_cleared (sizeof (struct function));
|
||
|
||
max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
|
||
|
||
cfun->stack_alignment_needed = STACK_BOUNDARY;
|
||
cfun->preferred_stack_boundary = STACK_BOUNDARY;
|
||
|
||
current_function_funcdef_no = funcdef_no++;
|
||
|
||
cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
|
||
|
||
init_stmt_for_function ();
|
||
init_eh_for_function ();
|
||
|
||
(*lang_hooks.function.init) (cfun);
|
||
if (init_machine_status)
|
||
cfun->machine = (*init_machine_status) ();
|
||
|
||
if (fndecl == NULL)
|
||
return;
|
||
|
||
DECL_SAVED_INSNS (fndecl) = cfun;
|
||
cfun->decl = fndecl;
|
||
|
||
result = DECL_RESULT (fndecl);
|
||
if (aggregate_value_p (result, fndecl))
|
||
{
|
||
#ifdef PCC_STATIC_STRUCT_RETURN
|
||
current_function_returns_pcc_struct = 1;
|
||
#endif
|
||
current_function_returns_struct = 1;
|
||
}
|
||
|
||
current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
|
||
|
||
current_function_needs_context
|
||
= (decl_function_context (current_function_decl) != 0
|
||
&& ! DECL_NO_STATIC_CHAIN (current_function_decl));
|
||
}
|
||
|
||
/* Reset cfun, and other non-struct-function variables to defaults as
|
||
appropriate for emitting rtl at the start of a function. */
|
||
|
||
static void
|
||
prepare_function_start (tree fndecl)
|
||
{
|
||
if (fndecl && DECL_SAVED_INSNS (fndecl))
|
||
cfun = DECL_SAVED_INSNS (fndecl);
|
||
else
|
||
allocate_struct_function (fndecl);
|
||
init_emit ();
|
||
init_varasm_status (cfun);
|
||
init_expr ();
|
||
|
||
cse_not_expected = ! optimize;
|
||
|
||
/* Caller save not needed yet. */
|
||
caller_save_needed = 0;
|
||
|
||
/* We haven't done register allocation yet. */
|
||
reg_renumber = 0;
|
||
|
||
/* Indicate that we need to distinguish between the return value of the
|
||
present function and the return value of a function being called. */
|
||
rtx_equal_function_value_matters = 1;
|
||
|
||
/* Indicate that we have not instantiated virtual registers yet. */
|
||
virtuals_instantiated = 0;
|
||
|
||
/* Indicate that we want CONCATs now. */
|
||
generating_concat_p = 1;
|
||
|
||
/* Indicate we have no need of a frame pointer yet. */
|
||
frame_pointer_needed = 0;
|
||
}
|
||
|
||
/* Initialize the rtl expansion mechanism so that we can do simple things
|
||
like generate sequences. This is used to provide a context during global
|
||
initialization of some passes. */
|
||
void
|
||
init_dummy_function_start (void)
|
||
{
|
||
prepare_function_start (NULL);
|
||
}
|
||
|
||
/* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
|
||
and initialize static variables for generating RTL for the statements
|
||
of the function. */
|
||
|
||
void
|
||
init_function_start (tree subr)
|
||
{
|
||
prepare_function_start (subr);
|
||
|
||
/* Within function body, compute a type's size as soon it is laid out. */
|
||
immediate_size_expand++;
|
||
|
||
/* Prevent ever trying to delete the first instruction of a
|
||
function. Also tell final how to output a linenum before the
|
||
function prologue. Note linenums could be missing, e.g. when
|
||
compiling a Java .class file. */
|
||
if (DECL_SOURCE_LINE (subr))
|
||
emit_line_note (DECL_SOURCE_LOCATION (subr));
|
||
|
||
/* Make sure first insn is a note even if we don't want linenums.
|
||
This makes sure the first insn will never be deleted.
|
||
Also, final expects a note to appear there. */
|
||
emit_note (NOTE_INSN_DELETED);
|
||
|
||
/* Warn if this value is an aggregate type,
|
||
regardless of which calling convention we are using for it. */
|
||
if (warn_aggregate_return
|
||
&& AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
|
||
warning ("function returns an aggregate");
|
||
}
|
||
|
||
/* Make sure all values used by the optimization passes have sane
|
||
defaults. */
|
||
void
|
||
init_function_for_compilation (void)
|
||
{
|
||
reg_renumber = 0;
|
||
|
||
/* No prologue/epilogue insns yet. */
|
||
VARRAY_GROW (prologue, 0);
|
||
VARRAY_GROW (epilogue, 0);
|
||
VARRAY_GROW (sibcall_epilogue, 0);
|
||
}
|
||
|
||
/* Expand a call to __main at the beginning of a possible main function. */
|
||
|
||
#if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
|
||
#undef HAS_INIT_SECTION
|
||
#define HAS_INIT_SECTION
|
||
#endif
|
||
|
||
void
|
||
expand_main_function (void)
|
||
{
|
||
#ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
|
||
if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
|
||
{
|
||
int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
|
||
rtx tmp, seq;
|
||
|
||
start_sequence ();
|
||
/* Forcibly align the stack. */
|
||
#ifdef STACK_GROWS_DOWNWARD
|
||
tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
|
||
stack_pointer_rtx, 1, OPTAB_WIDEN);
|
||
#else
|
||
tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
|
||
GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
|
||
tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
|
||
stack_pointer_rtx, 1, OPTAB_WIDEN);
|
||
#endif
|
||
if (tmp != stack_pointer_rtx)
|
||
emit_move_insn (stack_pointer_rtx, tmp);
|
||
|
||
/* Enlist allocate_dynamic_stack_space to pick up the pieces. */
|
||
tmp = force_reg (Pmode, const0_rtx);
|
||
allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
|
||
seq = get_insns ();
|
||
end_sequence ();
|
||
|
||
for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp))
|
||
if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG)
|
||
break;
|
||
if (tmp)
|
||
emit_insn_before (seq, tmp);
|
||
else
|
||
emit_insn (seq);
|
||
}
|
||
#endif
|
||
|
||
#ifndef HAS_INIT_SECTION
|
||
emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
|
||
#endif
|
||
}
|
||
|
||
/* The PENDING_SIZES represent the sizes of variable-sized types.
|
||
Create RTL for the various sizes now (using temporary variables),
|
||
so that we can refer to the sizes from the RTL we are generating
|
||
for the current function. The PENDING_SIZES are a TREE_LIST. The
|
||
TREE_VALUE of each node is a SAVE_EXPR. */
|
||
|
||
void
|
||
expand_pending_sizes (tree pending_sizes)
|
||
{
|
||
tree tem;
|
||
|
||
/* Evaluate now the sizes of any types declared among the arguments. */
|
||
for (tem = pending_sizes; tem; tem = TREE_CHAIN (tem))
|
||
{
|
||
expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode, 0);
|
||
/* Flush the queue in case this parameter declaration has
|
||
side-effects. */
|
||
emit_queue ();
|
||
}
|
||
}
|
||
|
||
/* Start the RTL for a new function, and set variables used for
|
||
emitting RTL.
|
||
SUBR is the FUNCTION_DECL node.
|
||
PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
|
||
the function's parameters, which must be run at any return statement. */
|
||
|
||
void
|
||
expand_function_start (tree subr, int parms_have_cleanups)
|
||
{
|
||
tree tem;
|
||
rtx last_ptr = NULL_RTX;
|
||
|
||
/* Make sure volatile mem refs aren't considered
|
||
valid operands of arithmetic insns. */
|
||
init_recog_no_volatile ();
|
||
|
||
current_function_instrument_entry_exit
|
||
= (flag_instrument_function_entry_exit
|
||
&& ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
|
||
|
||
current_function_profile
|
||
= (profile_flag
|
||
&& ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
|
||
|
||
current_function_limit_stack
|
||
= (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
|
||
|
||
/* If function gets a static chain arg, store it in the stack frame.
|
||
Do this first, so it gets the first stack slot offset. */
|
||
if (current_function_needs_context)
|
||
{
|
||
last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
|
||
|
||
/* Delay copying static chain if it is not a register to avoid
|
||
conflicts with regs used for parameters. */
|
||
if (! SMALL_REGISTER_CLASSES
|
||
|| GET_CODE (static_chain_incoming_rtx) == REG)
|
||
emit_move_insn (last_ptr, static_chain_incoming_rtx);
|
||
}
|
||
|
||
/* If the parameters of this function need cleaning up, get a label
|
||
for the beginning of the code which executes those cleanups. This must
|
||
be done before doing anything with return_label. */
|
||
if (parms_have_cleanups)
|
||
cleanup_label = gen_label_rtx ();
|
||
else
|
||
cleanup_label = 0;
|
||
|
||
/* Make the label for return statements to jump to. Do not special
|
||
case machines with special return instructions -- they will be
|
||
handled later during jump, ifcvt, or epilogue creation. */
|
||
return_label = gen_label_rtx ();
|
||
|
||
/* Initialize rtx used to return the value. */
|
||
/* Do this before assign_parms so that we copy the struct value address
|
||
before any library calls that assign parms might generate. */
|
||
|
||
/* Decide whether to return the value in memory or in a register. */
|
||
if (aggregate_value_p (DECL_RESULT (subr), subr))
|
||
{
|
||
/* Returning something that won't go in a register. */
|
||
rtx value_address = 0;
|
||
|
||
#ifdef PCC_STATIC_STRUCT_RETURN
|
||
if (current_function_returns_pcc_struct)
|
||
{
|
||
int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
|
||
value_address = assemble_static_space (size);
|
||
}
|
||
else
|
||
#endif
|
||
{
|
||
rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 1);
|
||
/* Expect to be passed the address of a place to store the value.
|
||
If it is passed as an argument, assign_parms will take care of
|
||
it. */
|
||
if (sv)
|
||
{
|
||
value_address = gen_reg_rtx (Pmode);
|
||
emit_move_insn (value_address, sv);
|
||
}
|
||
}
|
||
if (value_address)
|
||
{
|
||
rtx x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
|
||
set_mem_attributes (x, DECL_RESULT (subr), 1);
|
||
SET_DECL_RTL (DECL_RESULT (subr), x);
|
||
}
|
||
}
|
||
else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
|
||
/* If return mode is void, this decl rtl should not be used. */
|
||
SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
|
||
else
|
||
{
|
||
/* Compute the return values into a pseudo reg, which we will copy
|
||
into the true return register after the cleanups are done. */
|
||
|
||
/* In order to figure out what mode to use for the pseudo, we
|
||
figure out what the mode of the eventual return register will
|
||
actually be, and use that. */
|
||
rtx hard_reg
|
||
= hard_function_value (TREE_TYPE (DECL_RESULT (subr)),
|
||
subr, 1);
|
||
|
||
/* Structures that are returned in registers are not aggregate_value_p,
|
||
so we may see a PARALLEL or a REG. */
|
||
if (REG_P (hard_reg))
|
||
SET_DECL_RTL (DECL_RESULT (subr), gen_reg_rtx (GET_MODE (hard_reg)));
|
||
else if (GET_CODE (hard_reg) == PARALLEL)
|
||
SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
|
||
else
|
||
abort ();
|
||
|
||
/* Set DECL_REGISTER flag so that expand_function_end will copy the
|
||
result to the real return register(s). */
|
||
DECL_REGISTER (DECL_RESULT (subr)) = 1;
|
||
}
|
||
|
||
/* Initialize rtx for parameters and local variables.
|
||
In some cases this requires emitting insns. */
|
||
|
||
assign_parms (subr);
|
||
|
||
/* Copy the static chain now if it wasn't a register. The delay is to
|
||
avoid conflicts with the parameter passing registers. */
|
||
|
||
if (SMALL_REGISTER_CLASSES && current_function_needs_context)
|
||
if (GET_CODE (static_chain_incoming_rtx) != REG)
|
||
emit_move_insn (last_ptr, static_chain_incoming_rtx);
|
||
|
||
/* The following was moved from init_function_start.
|
||
The move is supposed to make sdb output more accurate. */
|
||
/* Indicate the beginning of the function body,
|
||
as opposed to parm setup. */
|
||
emit_note (NOTE_INSN_FUNCTION_BEG);
|
||
|
||
if (GET_CODE (get_last_insn ()) != NOTE)
|
||
emit_note (NOTE_INSN_DELETED);
|
||
parm_birth_insn = get_last_insn ();
|
||
|
||
context_display = 0;
|
||
if (current_function_needs_context)
|
||
{
|
||
/* Fetch static chain values for containing functions. */
|
||
tem = decl_function_context (current_function_decl);
|
||
/* Copy the static chain pointer into a pseudo. If we have
|
||
small register classes, copy the value from memory if
|
||
static_chain_incoming_rtx is a REG. */
|
||
if (tem)
|
||
{
|
||
/* If the static chain originally came in a register, put it back
|
||
there, then move it out in the next insn. The reason for
|
||
this peculiar code is to satisfy function integration. */
|
||
if (SMALL_REGISTER_CLASSES
|
||
&& GET_CODE (static_chain_incoming_rtx) == REG)
|
||
emit_move_insn (static_chain_incoming_rtx, last_ptr);
|
||
last_ptr = copy_to_reg (static_chain_incoming_rtx);
|
||
}
|
||
|
||
while (tem)
|
||
{
|
||
tree rtlexp = make_node (RTL_EXPR);
|
||
|
||
RTL_EXPR_RTL (rtlexp) = last_ptr;
|
||
context_display = tree_cons (tem, rtlexp, context_display);
|
||
tem = decl_function_context (tem);
|
||
if (tem == 0)
|
||
break;
|
||
/* Chain through stack frames, assuming pointer to next lexical frame
|
||
is found at the place we always store it. */
|
||
#ifdef FRAME_GROWS_DOWNWARD
|
||
last_ptr = plus_constant (last_ptr,
|
||
-(HOST_WIDE_INT) GET_MODE_SIZE (Pmode));
|
||
#endif
|
||
last_ptr = gen_rtx_MEM (Pmode, memory_address (Pmode, last_ptr));
|
||
set_mem_alias_set (last_ptr, get_frame_alias_set ());
|
||
last_ptr = copy_to_reg (last_ptr);
|
||
|
||
/* If we are not optimizing, ensure that we know that this
|
||
piece of context is live over the entire function. */
|
||
if (! optimize)
|
||
save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr,
|
||
save_expr_regs);
|
||
}
|
||
}
|
||
|
||
if (current_function_instrument_entry_exit)
|
||
{
|
||
rtx fun = DECL_RTL (current_function_decl);
|
||
if (GET_CODE (fun) == MEM)
|
||
fun = XEXP (fun, 0);
|
||
else
|
||
abort ();
|
||
emit_library_call (profile_function_entry_libfunc, LCT_NORMAL, VOIDmode,
|
||
2, fun, Pmode,
|
||
expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
|
||
0,
|
||
hard_frame_pointer_rtx),
|
||
Pmode);
|
||
}
|
||
|
||
if (current_function_profile)
|
||
{
|
||
#ifdef PROFILE_HOOK
|
||
PROFILE_HOOK (current_function_funcdef_no);
|
||
#endif
|
||
}
|
||
|
||
/* After the display initializations is where the tail-recursion label
|
||
should go, if we end up needing one. Ensure we have a NOTE here
|
||
since some things (like trampolines) get placed before this. */
|
||
tail_recursion_reentry = emit_note (NOTE_INSN_DELETED);
|
||
|
||
/* Evaluate now the sizes of any types declared among the arguments. */
|
||
expand_pending_sizes (nreverse (get_pending_sizes ()));
|
||
|
||
/* Make sure there is a line number after the function entry setup code. */
|
||
force_next_line_note ();
|
||
}
|
||
|
||
/* Undo the effects of init_dummy_function_start. */
|
||
void
|
||
expand_dummy_function_end (void)
|
||
{
|
||
/* End any sequences that failed to be closed due to syntax errors. */
|
||
while (in_sequence_p ())
|
||
end_sequence ();
|
||
|
||
/* Outside function body, can't compute type's actual size
|
||
until next function's body starts. */
|
||
|
||
free_after_parsing (cfun);
|
||
free_after_compilation (cfun);
|
||
cfun = 0;
|
||
}
|
||
|
||
/* Call DOIT for each hard register used as a return value from
|
||
the current function. */
|
||
|
||
void
|
||
diddle_return_value (void (*doit) (rtx, void *), void *arg)
|
||
{
|
||
rtx outgoing = current_function_return_rtx;
|
||
|
||
if (! outgoing)
|
||
return;
|
||
|
||
if (GET_CODE (outgoing) == REG)
|
||
(*doit) (outgoing, arg);
|
||
else if (GET_CODE (outgoing) == PARALLEL)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < XVECLEN (outgoing, 0); i++)
|
||
{
|
||
rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
|
||
|
||
if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
|
||
(*doit) (x, arg);
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
|
||
{
|
||
emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
|
||
}
|
||
|
||
void
|
||
clobber_return_register (void)
|
||
{
|
||
diddle_return_value (do_clobber_return_reg, NULL);
|
||
|
||
/* In case we do use pseudo to return value, clobber it too. */
|
||
if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
|
||
{
|
||
tree decl_result = DECL_RESULT (current_function_decl);
|
||
rtx decl_rtl = DECL_RTL (decl_result);
|
||
if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
|
||
{
|
||
do_clobber_return_reg (decl_rtl, NULL);
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
|
||
{
|
||
emit_insn (gen_rtx_USE (VOIDmode, reg));
|
||
}
|
||
|
||
void
|
||
use_return_register (void)
|
||
{
|
||
diddle_return_value (do_use_return_reg, NULL);
|
||
}
|
||
|
||
/* Possibly warn about unused parameters. */
|
||
void
|
||
do_warn_unused_parameter (tree fn)
|
||
{
|
||
tree decl;
|
||
|
||
for (decl = DECL_ARGUMENTS (fn);
|
||
decl; decl = TREE_CHAIN (decl))
|
||
if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
|
||
&& DECL_NAME (decl) && !DECL_ARTIFICIAL (decl))
|
||
warning ("%Junused parameter '%D'", decl, decl);
|
||
}
|
||
|
||
static GTY(()) rtx initial_trampoline;
|
||
|
||
/* Generate RTL for the end of the current function. */
|
||
|
||
void
|
||
expand_function_end (void)
|
||
{
|
||
tree link;
|
||
rtx clobber_after;
|
||
|
||
finish_expr_for_function ();
|
||
|
||
/* If arg_pointer_save_area was referenced only from a nested
|
||
function, we will not have initialized it yet. Do that now. */
|
||
if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
|
||
get_arg_pointer_save_area (cfun);
|
||
|
||
#ifdef NON_SAVING_SETJMP
|
||
/* Don't put any variables in registers if we call setjmp
|
||
on a machine that fails to restore the registers. */
|
||
if (NON_SAVING_SETJMP && current_function_calls_setjmp)
|
||
{
|
||
if (DECL_INITIAL (current_function_decl) != error_mark_node)
|
||
setjmp_protect (DECL_INITIAL (current_function_decl));
|
||
|
||
setjmp_protect_args ();
|
||
}
|
||
#endif
|
||
|
||
/* Initialize any trampolines required by this function. */
|
||
for (link = trampoline_list; link; link = TREE_CHAIN (link))
|
||
{
|
||
tree function = TREE_PURPOSE (link);
|
||
rtx context ATTRIBUTE_UNUSED = lookup_static_chain (function);
|
||
rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
|
||
#ifdef TRAMPOLINE_TEMPLATE
|
||
rtx blktramp;
|
||
#endif
|
||
rtx seq;
|
||
|
||
#ifdef TRAMPOLINE_TEMPLATE
|
||
/* First make sure this compilation has a template for
|
||
initializing trampolines. */
|
||
if (initial_trampoline == 0)
|
||
{
|
||
initial_trampoline
|
||
= gen_rtx_MEM (BLKmode, assemble_trampoline_template ());
|
||
set_mem_align (initial_trampoline, TRAMPOLINE_ALIGNMENT);
|
||
}
|
||
#endif
|
||
|
||
/* Generate insns to initialize the trampoline. */
|
||
start_sequence ();
|
||
tramp = round_trampoline_addr (XEXP (tramp, 0));
|
||
#ifdef TRAMPOLINE_TEMPLATE
|
||
blktramp = replace_equiv_address (initial_trampoline, tramp);
|
||
emit_block_move (blktramp, initial_trampoline,
|
||
GEN_INT (TRAMPOLINE_SIZE), BLOCK_OP_NORMAL);
|
||
#endif
|
||
trampolines_created = 1;
|
||
INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
|
||
seq = get_insns ();
|
||
end_sequence ();
|
||
|
||
/* Put those insns at entry to the containing function (this one). */
|
||
emit_insn_before (seq, tail_recursion_reentry);
|
||
}
|
||
|
||
/* If we are doing stack checking and this function makes calls,
|
||
do a stack probe at the start of the function to ensure we have enough
|
||
space for another stack frame. */
|
||
if (flag_stack_check && ! STACK_CHECK_BUILTIN)
|
||
{
|
||
rtx insn, seq;
|
||
|
||
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
||
if (GET_CODE (insn) == CALL_INSN)
|
||
{
|
||
start_sequence ();
|
||
probe_stack_range (STACK_CHECK_PROTECT,
|
||
GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
|
||
seq = get_insns ();
|
||
end_sequence ();
|
||
emit_insn_before (seq, tail_recursion_reentry);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Possibly warn about unused parameters.
|
||
When frontend does unit-at-a-time, the warning is already
|
||
issued at finalization time. */
|
||
if (warn_unused_parameter
|
||
&& !lang_hooks.callgraph.expand_function)
|
||
do_warn_unused_parameter (current_function_decl);
|
||
|
||
/* Delete handlers for nonlocal gotos if nothing uses them. */
|
||
if (nonlocal_goto_handler_slots != 0
|
||
&& ! current_function_has_nonlocal_label)
|
||
delete_handlers ();
|
||
|
||
/* End any sequences that failed to be closed due to syntax errors. */
|
||
while (in_sequence_p ())
|
||
end_sequence ();
|
||
|
||
/* Outside function body, can't compute type's actual size
|
||
until next function's body starts. */
|
||
immediate_size_expand--;
|
||
|
||
clear_pending_stack_adjust ();
|
||
do_pending_stack_adjust ();
|
||
|
||
/* ??? This is a kludge. We want to ensure that instructions that
|
||
may trap are not moved into the epilogue by scheduling, because
|
||
we don't always emit unwind information for the epilogue.
|
||
However, not all machine descriptions define a blockage insn, so
|
||
emit an ASM_INPUT to act as one. */
|
||
if (flag_non_call_exceptions)
|
||
emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
|
||
|
||
/* Mark the end of the function body.
|
||
If control reaches this insn, the function can drop through
|
||
without returning a value. */
|
||
emit_note (NOTE_INSN_FUNCTION_END);
|
||
|
||
/* Must mark the last line number note in the function, so that the test
|
||
coverage code can avoid counting the last line twice. This just tells
|
||
the code to ignore the immediately following line note, since there
|
||
already exists a copy of this note somewhere above. This line number
|
||
note is still needed for debugging though, so we can't delete it. */
|
||
if (flag_test_coverage)
|
||
emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
|
||
|
||
/* Output a linenumber for the end of the function.
|
||
SDB depends on this. */
|
||
force_next_line_note ();
|
||
emit_line_note (input_location);
|
||
|
||
/* Before the return label (if any), clobber the return
|
||
registers so that they are not propagated live to the rest of
|
||
the function. This can only happen with functions that drop
|
||
through; if there had been a return statement, there would
|
||
have either been a return rtx, or a jump to the return label.
|
||
|
||
We delay actual code generation after the current_function_value_rtx
|
||
is computed. */
|
||
clobber_after = get_last_insn ();
|
||
|
||
/* Output the label for the actual return from the function,
|
||
if one is expected. This happens either because a function epilogue
|
||
is used instead of a return instruction, or because a return was done
|
||
with a goto in order to run local cleanups, or because of pcc-style
|
||
structure returning. */
|
||
if (return_label)
|
||
emit_label (return_label);
|
||
|
||
if (current_function_instrument_entry_exit)
|
||
{
|
||
rtx fun = DECL_RTL (current_function_decl);
|
||
if (GET_CODE (fun) == MEM)
|
||
fun = XEXP (fun, 0);
|
||
else
|
||
abort ();
|
||
emit_library_call (profile_function_exit_libfunc, LCT_NORMAL, VOIDmode,
|
||
2, fun, Pmode,
|
||
expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
|
||
0,
|
||
hard_frame_pointer_rtx),
|
||
Pmode);
|
||
}
|
||
|
||
#ifdef TARGET_PROFILER_EPILOGUE
|
||
if (current_function_profile && TARGET_PROFILER_EPILOGUE)
|
||
{
|
||
static rtx mexitcount_libfunc;
|
||
static int initialized;
|
||
|
||
if (!initialized)
|
||
{
|
||
mexitcount_libfunc = init_one_libfunc (".mexitcount");
|
||
initialized = 1;
|
||
}
|
||
emit_library_call (mexitcount_libfunc, LCT_NORMAL, VOIDmode, 0);
|
||
}
|
||
#endif
|
||
|
||
/* Let except.c know where it should emit the call to unregister
|
||
the function context for sjlj exceptions. */
|
||
if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
|
||
sjlj_emit_function_exit_after (get_last_insn ());
|
||
|
||
/* If we had calls to alloca, and this machine needs
|
||
an accurate stack pointer to exit the function,
|
||
insert some code to save and restore the stack pointer. */
|
||
if (! EXIT_IGNORE_STACK
|
||
&& current_function_calls_alloca)
|
||
{
|
||
rtx tem = 0;
|
||
|
||
emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
|
||
emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
|
||
}
|
||
|
||
/* If scalar return value was computed in a pseudo-reg, or was a named
|
||
return value that got dumped to the stack, copy that to the hard
|
||
return register. */
|
||
if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
|
||
{
|
||
tree decl_result = DECL_RESULT (current_function_decl);
|
||
rtx decl_rtl = DECL_RTL (decl_result);
|
||
|
||
if (REG_P (decl_rtl)
|
||
? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
|
||
: DECL_REGISTER (decl_result))
|
||
{
|
||
rtx real_decl_rtl = current_function_return_rtx;
|
||
|
||
/* This should be set in assign_parms. */
|
||
if (! REG_FUNCTION_VALUE_P (real_decl_rtl))
|
||
abort ();
|
||
|
||
/* If this is a BLKmode structure being returned in registers,
|
||
then use the mode computed in expand_return. Note that if
|
||
decl_rtl is memory, then its mode may have been changed,
|
||
but that current_function_return_rtx has not. */
|
||
if (GET_MODE (real_decl_rtl) == BLKmode)
|
||
PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
|
||
|
||
/* If a named return value dumped decl_return to memory, then
|
||
we may need to re-do the PROMOTE_MODE signed/unsigned
|
||
extension. */
|
||
if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
|
||
{
|
||
int unsignedp = TREE_UNSIGNED (TREE_TYPE (decl_result));
|
||
|
||
if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
|
||
promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
|
||
&unsignedp, 1);
|
||
|
||
convert_move (real_decl_rtl, decl_rtl, unsignedp);
|
||
}
|
||
else if (GET_CODE (real_decl_rtl) == PARALLEL)
|
||
{
|
||
/* If expand_function_start has created a PARALLEL for decl_rtl,
|
||
move the result to the real return registers. Otherwise, do
|
||
a group load from decl_rtl for a named return. */
|
||
if (GET_CODE (decl_rtl) == PARALLEL)
|
||
emit_group_move (real_decl_rtl, decl_rtl);
|
||
else
|
||
emit_group_load (real_decl_rtl, decl_rtl,
|
||
TREE_TYPE (decl_result),
|
||
int_size_in_bytes (TREE_TYPE (decl_result)));
|
||
}
|
||
else
|
||
emit_move_insn (real_decl_rtl, decl_rtl);
|
||
}
|
||
}
|
||
|
||
/* If returning a structure, arrange to return the address of the value
|
||
in a place where debuggers expect to find it.
|
||
|
||
If returning a structure PCC style,
|
||
the caller also depends on this value.
|
||
And current_function_returns_pcc_struct is not necessarily set. */
|
||
if (current_function_returns_struct
|
||
|| current_function_returns_pcc_struct)
|
||
{
|
||
rtx value_address
|
||
= XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
|
||
tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
|
||
#ifdef FUNCTION_OUTGOING_VALUE
|
||
rtx outgoing
|
||
= FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
|
||
current_function_decl);
|
||
#else
|
||
rtx outgoing
|
||
= FUNCTION_VALUE (build_pointer_type (type), current_function_decl);
|
||
#endif
|
||
|
||
/* Mark this as a function return value so integrate will delete the
|
||
assignment and USE below when inlining this function. */
|
||
REG_FUNCTION_VALUE_P (outgoing) = 1;
|
||
|
||
/* The address may be ptr_mode and OUTGOING may be Pmode. */
|
||
value_address = convert_memory_address (GET_MODE (outgoing),
|
||
value_address);
|
||
|
||
emit_move_insn (outgoing, value_address);
|
||
|
||
/* Show return register used to hold result (in this case the address
|
||
of the result. */
|
||
current_function_return_rtx = outgoing;
|
||
}
|
||
|
||
/* If this is an implementation of throw, do what's necessary to
|
||
communicate between __builtin_eh_return and the epilogue. */
|
||
expand_eh_return ();
|
||
|
||
/* Emit the actual code to clobber return register. */
|
||
{
|
||
rtx seq, after;
|
||
|
||
start_sequence ();
|
||
clobber_return_register ();
|
||
seq = get_insns ();
|
||
end_sequence ();
|
||
|
||
after = emit_insn_after (seq, clobber_after);
|
||
|
||
if (clobber_after != after)
|
||
cfun->x_clobber_return_insn = after;
|
||
}
|
||
|
||
/* Output the label for the naked return from the function, if one is
|
||
expected. This is currently used only by __builtin_return. */
|
||
if (naked_return_label)
|
||
emit_label (naked_return_label);
|
||
|
||
/* ??? This should no longer be necessary since stupid is no longer with
|
||
us, but there are some parts of the compiler (eg reload_combine, and
|
||
sh mach_dep_reorg) that still try and compute their own lifetime info
|
||
instead of using the general framework. */
|
||
use_return_register ();
|
||
|
||
/* Fix up any gotos that jumped out to the outermost
|
||
binding level of the function.
|
||
Must follow emitting RETURN_LABEL. */
|
||
|
||
/* If you have any cleanups to do at this point,
|
||
and they need to create temporary variables,
|
||
then you will lose. */
|
||
expand_fixups (get_insns ());
|
||
}
|
||
|
||
rtx
|
||
get_arg_pointer_save_area (struct function *f)
|
||
{
|
||
rtx ret = f->x_arg_pointer_save_area;
|
||
|
||
if (! ret)
|
||
{
|
||
ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
|
||
f->x_arg_pointer_save_area = ret;
|
||
}
|
||
|
||
if (f == cfun && ! f->arg_pointer_save_area_init)
|
||
{
|
||
rtx seq;
|
||
|
||
/* Save the arg pointer at the beginning of the function. The
|
||
generated stack slot may not be a valid memory address, so we
|
||
have to check it and fix it if necessary. */
|
||
start_sequence ();
|
||
emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
|
||
seq = get_insns ();
|
||
end_sequence ();
|
||
|
||
push_topmost_sequence ();
|
||
emit_insn_after (seq, get_insns ());
|
||
pop_topmost_sequence ();
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Extend a vector that records the INSN_UIDs of INSNS
|
||
(a list of one or more insns). */
|
||
|
||
static void
|
||
record_insns (rtx insns, varray_type *vecp)
|
||
{
|
||
int i, len;
|
||
rtx tmp;
|
||
|
||
tmp = insns;
|
||
len = 0;
|
||
while (tmp != NULL_RTX)
|
||
{
|
||
len++;
|
||
tmp = NEXT_INSN (tmp);
|
||
}
|
||
|
||
i = VARRAY_SIZE (*vecp);
|
||
VARRAY_GROW (*vecp, i + len);
|
||
tmp = insns;
|
||
while (tmp != NULL_RTX)
|
||
{
|
||
VARRAY_INT (*vecp, i) = INSN_UID (tmp);
|
||
i++;
|
||
tmp = NEXT_INSN (tmp);
|
||
}
|
||
}
|
||
|
||
/* Set the locator of the insn chain starting at INSN to LOC. */
|
||
static void
|
||
set_insn_locators (rtx insn, int loc)
|
||
{
|
||
while (insn != NULL_RTX)
|
||
{
|
||
if (INSN_P (insn))
|
||
INSN_LOCATOR (insn) = loc;
|
||
insn = NEXT_INSN (insn);
|
||
}
|
||
}
|
||
|
||
/* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
|
||
be running after reorg, SEQUENCE rtl is possible. */
|
||
|
||
static int
|
||
contains (rtx insn, varray_type vec)
|
||
{
|
||
int i, j;
|
||
|
||
if (GET_CODE (insn) == INSN
|
||
&& GET_CODE (PATTERN (insn)) == SEQUENCE)
|
||
{
|
||
int count = 0;
|
||
for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
|
||
for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
|
||
if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
|
||
count++;
|
||
return count;
|
||
}
|
||
else
|
||
{
|
||
for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
|
||
if (INSN_UID (insn) == VARRAY_INT (vec, j))
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
prologue_epilogue_contains (rtx insn)
|
||
{
|
||
if (contains (insn, prologue))
|
||
return 1;
|
||
if (contains (insn, epilogue))
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
sibcall_epilogue_contains (rtx insn)
|
||
{
|
||
if (sibcall_epilogue)
|
||
return contains (insn, sibcall_epilogue);
|
||
return 0;
|
||
}
|
||
|
||
#ifdef HAVE_return
|
||
/* Insert gen_return at the end of block BB. This also means updating
|
||
block_for_insn appropriately. */
|
||
|
||
static void
|
||
emit_return_into_block (basic_block bb, rtx line_note)
|
||
{
|
||
emit_jump_insn_after (gen_return (), BB_END (bb));
|
||
if (line_note)
|
||
emit_note_copy_after (line_note, PREV_INSN (BB_END (bb)));
|
||
}
|
||
#endif /* HAVE_return */
|
||
|
||
#if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
|
||
|
||
/* These functions convert the epilogue into a variant that does not modify the
|
||
stack pointer. This is used in cases where a function returns an object
|
||
whose size is not known until it is computed. The called function leaves the
|
||
object on the stack, leaves the stack depressed, and returns a pointer to
|
||
the object.
|
||
|
||
What we need to do is track all modifications and references to the stack
|
||
pointer, deleting the modifications and changing the references to point to
|
||
the location the stack pointer would have pointed to had the modifications
|
||
taken place.
|
||
|
||
These functions need to be portable so we need to make as few assumptions
|
||
about the epilogue as we can. However, the epilogue basically contains
|
||
three things: instructions to reset the stack pointer, instructions to
|
||
reload registers, possibly including the frame pointer, and an
|
||
instruction to return to the caller.
|
||
|
||
If we can't be sure of what a relevant epilogue insn is doing, we abort.
|
||
We also make no attempt to validate the insns we make since if they are
|
||
invalid, we probably can't do anything valid. The intent is that these
|
||
routines get "smarter" as more and more machines start to use them and
|
||
they try operating on different epilogues.
|
||
|
||
We use the following structure to track what the part of the epilogue that
|
||
we've already processed has done. We keep two copies of the SP equivalence,
|
||
one for use during the insn we are processing and one for use in the next
|
||
insn. The difference is because one part of a PARALLEL may adjust SP
|
||
and the other may use it. */
|
||
|
||
struct epi_info
|
||
{
|
||
rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
|
||
HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
|
||
rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
|
||
HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
|
||
rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
|
||
should be set to once we no longer need
|
||
its value. */
|
||
rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
|
||
for registers. */
|
||
};
|
||
|
||
static void handle_epilogue_set (rtx, struct epi_info *);
|
||
static void update_epilogue_consts (rtx, rtx, void *);
|
||
static void emit_equiv_load (struct epi_info *);
|
||
|
||
/* Modify INSN, a list of one or more insns that is part of the epilogue, to
|
||
no modifications to the stack pointer. Return the new list of insns. */
|
||
|
||
static rtx
|
||
keep_stack_depressed (rtx insns)
|
||
{
|
||
int j;
|
||
struct epi_info info;
|
||
rtx insn, next;
|
||
|
||
/* If the epilogue is just a single instruction, it must be OK as is. */
|
||
if (NEXT_INSN (insns) == NULL_RTX)
|
||
return insns;
|
||
|
||
/* Otherwise, start a sequence, initialize the information we have, and
|
||
process all the insns we were given. */
|
||
start_sequence ();
|
||
|
||
info.sp_equiv_reg = stack_pointer_rtx;
|
||
info.sp_offset = 0;
|
||
info.equiv_reg_src = 0;
|
||
|
||
for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
|
||
info.const_equiv[j] = 0;
|
||
|
||
insn = insns;
|
||
next = NULL_RTX;
|
||
while (insn != NULL_RTX)
|
||
{
|
||
next = NEXT_INSN (insn);
|
||
|
||
if (!INSN_P (insn))
|
||
{
|
||
add_insn (insn);
|
||
insn = next;
|
||
continue;
|
||
}
|
||
|
||
/* If this insn references the register that SP is equivalent to and
|
||
we have a pending load to that register, we must force out the load
|
||
first and then indicate we no longer know what SP's equivalent is. */
|
||
if (info.equiv_reg_src != 0
|
||
&& reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
|
||
{
|
||
emit_equiv_load (&info);
|
||
info.sp_equiv_reg = 0;
|
||
}
|
||
|
||
info.new_sp_equiv_reg = info.sp_equiv_reg;
|
||
info.new_sp_offset = info.sp_offset;
|
||
|
||
/* If this is a (RETURN) and the return address is on the stack,
|
||
update the address and change to an indirect jump. */
|
||
if (GET_CODE (PATTERN (insn)) == RETURN
|
||
|| (GET_CODE (PATTERN (insn)) == PARALLEL
|
||
&& GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
|
||
{
|
||
rtx retaddr = INCOMING_RETURN_ADDR_RTX;
|
||
rtx base = 0;
|
||
HOST_WIDE_INT offset = 0;
|
||
rtx jump_insn, jump_set;
|
||
|
||
/* If the return address is in a register, we can emit the insn
|
||
unchanged. Otherwise, it must be a MEM and we see what the
|
||
base register and offset are. In any case, we have to emit any
|
||
pending load to the equivalent reg of SP, if any. */
|
||
if (GET_CODE (retaddr) == REG)
|
||
{
|
||
emit_equiv_load (&info);
|
||
add_insn (insn);
|
||
insn = next;
|
||
continue;
|
||
}
|
||
else if (GET_CODE (retaddr) == MEM
|
||
&& GET_CODE (XEXP (retaddr, 0)) == REG)
|
||
base = gen_rtx_REG (Pmode, REGNO (XEXP (retaddr, 0))), offset = 0;
|
||
else if (GET_CODE (retaddr) == MEM
|
||
&& GET_CODE (XEXP (retaddr, 0)) == PLUS
|
||
&& GET_CODE (XEXP (XEXP (retaddr, 0), 0)) == REG
|
||
&& GET_CODE (XEXP (XEXP (retaddr, 0), 1)) == CONST_INT)
|
||
{
|
||
base = gen_rtx_REG (Pmode, REGNO (XEXP (XEXP (retaddr, 0), 0)));
|
||
offset = INTVAL (XEXP (XEXP (retaddr, 0), 1));
|
||
}
|
||
else
|
||
abort ();
|
||
|
||
/* If the base of the location containing the return pointer
|
||
is SP, we must update it with the replacement address. Otherwise,
|
||
just build the necessary MEM. */
|
||
retaddr = plus_constant (base, offset);
|
||
if (base == stack_pointer_rtx)
|
||
retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
|
||
plus_constant (info.sp_equiv_reg,
|
||
info.sp_offset));
|
||
|
||
retaddr = gen_rtx_MEM (Pmode, retaddr);
|
||
|
||
/* If there is a pending load to the equivalent register for SP
|
||
and we reference that register, we must load our address into
|
||
a scratch register and then do that load. */
|
||
if (info.equiv_reg_src
|
||
&& reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
|
||
{
|
||
unsigned int regno;
|
||
rtx reg;
|
||
|
||
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
||
if (HARD_REGNO_MODE_OK (regno, Pmode)
|
||
&& !fixed_regs[regno]
|
||
&& TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
|
||
&& !REGNO_REG_SET_P (EXIT_BLOCK_PTR->global_live_at_start,
|
||
regno)
|
||
&& !refers_to_regno_p (regno,
|
||
regno + HARD_REGNO_NREGS (regno,
|
||
Pmode),
|
||
info.equiv_reg_src, NULL)
|
||
&& info.const_equiv[regno] == 0)
|
||
break;
|
||
|
||
if (regno == FIRST_PSEUDO_REGISTER)
|
||
abort ();
|
||
|
||
reg = gen_rtx_REG (Pmode, regno);
|
||
emit_move_insn (reg, retaddr);
|
||
retaddr = reg;
|
||
}
|
||
|
||
emit_equiv_load (&info);
|
||
jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
|
||
|
||
/* Show the SET in the above insn is a RETURN. */
|
||
jump_set = single_set (jump_insn);
|
||
if (jump_set == 0)
|
||
abort ();
|
||
else
|
||
SET_IS_RETURN_P (jump_set) = 1;
|
||
}
|
||
|
||
/* If SP is not mentioned in the pattern and its equivalent register, if
|
||
any, is not modified, just emit it. Otherwise, if neither is set,
|
||
replace the reference to SP and emit the insn. If none of those are
|
||
true, handle each SET individually. */
|
||
else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
|
||
&& (info.sp_equiv_reg == stack_pointer_rtx
|
||
|| !reg_set_p (info.sp_equiv_reg, insn)))
|
||
add_insn (insn);
|
||
else if (! reg_set_p (stack_pointer_rtx, insn)
|
||
&& (info.sp_equiv_reg == stack_pointer_rtx
|
||
|| !reg_set_p (info.sp_equiv_reg, insn)))
|
||
{
|
||
if (! validate_replace_rtx (stack_pointer_rtx,
|
||
plus_constant (info.sp_equiv_reg,
|
||
info.sp_offset),
|
||
insn))
|
||
abort ();
|
||
|
||
add_insn (insn);
|
||
}
|
||
else if (GET_CODE (PATTERN (insn)) == SET)
|
||
handle_epilogue_set (PATTERN (insn), &info);
|
||
else if (GET_CODE (PATTERN (insn)) == PARALLEL)
|
||
{
|
||
for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
|
||
if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
|
||
handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
|
||
}
|
||
else
|
||
add_insn (insn);
|
||
|
||
info.sp_equiv_reg = info.new_sp_equiv_reg;
|
||
info.sp_offset = info.new_sp_offset;
|
||
|
||
/* Now update any constants this insn sets. */
|
||
note_stores (PATTERN (insn), update_epilogue_consts, &info);
|
||
insn = next;
|
||
}
|
||
|
||
insns = get_insns ();
|
||
end_sequence ();
|
||
return insns;
|
||
}
|
||
|
||
/* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
|
||
structure that contains information about what we've seen so far. We
|
||
process this SET by either updating that data or by emitting one or
|
||
more insns. */
|
||
|
||
static void
|
||
handle_epilogue_set (rtx set, struct epi_info *p)
|
||
{
|
||
/* First handle the case where we are setting SP. Record what it is being
|
||
set from. If unknown, abort. */
|
||
if (reg_set_p (stack_pointer_rtx, set))
|
||
{
|
||
if (SET_DEST (set) != stack_pointer_rtx)
|
||
abort ();
|
||
|
||
if (GET_CODE (SET_SRC (set)) == PLUS)
|
||
{
|
||
p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
|
||
if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
|
||
p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
|
||
else if (GET_CODE (XEXP (SET_SRC (set), 1)) == REG
|
||
&& REGNO (XEXP (SET_SRC (set), 1)) < FIRST_PSEUDO_REGISTER
|
||
&& p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))] != 0)
|
||
p->new_sp_offset
|
||
= INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
|
||
else
|
||
abort ();
|
||
}
|
||
else
|
||
p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
|
||
|
||
/* If we are adjusting SP, we adjust from the old data. */
|
||
if (p->new_sp_equiv_reg == stack_pointer_rtx)
|
||
{
|
||
p->new_sp_equiv_reg = p->sp_equiv_reg;
|
||
p->new_sp_offset += p->sp_offset;
|
||
}
|
||
|
||
if (p->new_sp_equiv_reg == 0 || GET_CODE (p->new_sp_equiv_reg) != REG)
|
||
abort ();
|
||
|
||
return;
|
||
}
|
||
|
||
/* Next handle the case where we are setting SP's equivalent register.
|
||
If we already have a value to set it to, abort. We could update, but
|
||
there seems little point in handling that case. Note that we have
|
||
to allow for the case where we are setting the register set in
|
||
the previous part of a PARALLEL inside a single insn. But use the
|
||
old offset for any updates within this insn. We must allow for the case
|
||
where the register is being set in a different (usually wider) mode than
|
||
Pmode). */
|
||
else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
|
||
{
|
||
if (p->equiv_reg_src != 0
|
||
|| GET_CODE (p->new_sp_equiv_reg) != REG
|
||
|| GET_CODE (SET_DEST (set)) != REG
|
||
|| GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) > BITS_PER_WORD
|
||
|| REGNO (p->new_sp_equiv_reg) != REGNO (SET_DEST (set)))
|
||
abort ();
|
||
else
|
||
p->equiv_reg_src
|
||
= simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
|
||
plus_constant (p->sp_equiv_reg,
|
||
p->sp_offset));
|
||
}
|
||
|
||
/* Otherwise, replace any references to SP in the insn to its new value
|
||
and emit the insn. */
|
||
else
|
||
{
|
||
SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
|
||
plus_constant (p->sp_equiv_reg,
|
||
p->sp_offset));
|
||
SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
|
||
plus_constant (p->sp_equiv_reg,
|
||
p->sp_offset));
|
||
emit_insn (set);
|
||
}
|
||
}
|
||
|
||
/* Update the tracking information for registers set to constants. */
|
||
|
||
static void
|
||
update_epilogue_consts (rtx dest, rtx x, void *data)
|
||
{
|
||
struct epi_info *p = (struct epi_info *) data;
|
||
|
||
if (GET_CODE (dest) != REG || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
|
||
return;
|
||
else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x))
|
||
|| GET_CODE (SET_SRC (x)) != CONST_INT)
|
||
p->const_equiv[REGNO (dest)] = 0;
|
||
else
|
||
p->const_equiv[REGNO (dest)] = SET_SRC (x);
|
||
}
|
||
|
||
/* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
|
||
|
||
static void
|
||
emit_equiv_load (struct epi_info *p)
|
||
{
|
||
if (p->equiv_reg_src != 0)
|
||
{
|
||
rtx dest = p->sp_equiv_reg;
|
||
|
||
if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
|
||
dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
|
||
REGNO (p->sp_equiv_reg));
|
||
|
||
emit_move_insn (dest, p->equiv_reg_src);
|
||
p->equiv_reg_src = 0;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/* Generate the prologue and epilogue RTL if the machine supports it. Thread
|
||
this into place with notes indicating where the prologue ends and where
|
||
the epilogue begins. Update the basic block information when possible. */
|
||
|
||
void
|
||
thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
|
||
{
|
||
int inserted = 0;
|
||
edge e;
|
||
#if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
|
||
rtx seq;
|
||
#endif
|
||
#ifdef HAVE_prologue
|
||
rtx prologue_end = NULL_RTX;
|
||
#endif
|
||
#if defined (HAVE_epilogue) || defined(HAVE_return)
|
||
rtx epilogue_end = NULL_RTX;
|
||
#endif
|
||
|
||
#ifdef HAVE_prologue
|
||
if (HAVE_prologue)
|
||
{
|
||
start_sequence ();
|
||
seq = gen_prologue ();
|
||
emit_insn (seq);
|
||
|
||
/* Retain a map of the prologue insns. */
|
||
record_insns (seq, &prologue);
|
||
prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
|
||
|
||
seq = get_insns ();
|
||
end_sequence ();
|
||
set_insn_locators (seq, prologue_locator);
|
||
|
||
/* Can't deal with multiple successors of the entry block
|
||
at the moment. Function should always have at least one
|
||
entry point. */
|
||
if (!ENTRY_BLOCK_PTR->succ || ENTRY_BLOCK_PTR->succ->succ_next)
|
||
abort ();
|
||
|
||
insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
|
||
inserted = 1;
|
||
}
|
||
#endif
|
||
|
||
/* If the exit block has no non-fake predecessors, we don't need
|
||
an epilogue. */
|
||
for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
|
||
if ((e->flags & EDGE_FAKE) == 0)
|
||
break;
|
||
if (e == NULL)
|
||
goto epilogue_done;
|
||
|
||
#ifdef HAVE_return
|
||
if (optimize && HAVE_return)
|
||
{
|
||
/* If we're allowed to generate a simple return instruction,
|
||
then by definition we don't need a full epilogue. Examine
|
||
the block that falls through to EXIT. If it does not
|
||
contain any code, examine its predecessors and try to
|
||
emit (conditional) return instructions. */
|
||
|
||
basic_block last;
|
||
edge e_next;
|
||
rtx label;
|
||
|
||
for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
|
||
if (e->flags & EDGE_FALLTHRU)
|
||
break;
|
||
if (e == NULL)
|
||
goto epilogue_done;
|
||
last = e->src;
|
||
|
||
/* Verify that there are no active instructions in the last block. */
|
||
label = BB_END (last);
|
||
while (label && GET_CODE (label) != CODE_LABEL)
|
||
{
|
||
if (active_insn_p (label))
|
||
break;
|
||
label = PREV_INSN (label);
|
||
}
|
||
|
||
if (BB_HEAD (last) == label && GET_CODE (label) == CODE_LABEL)
|
||
{
|
||
rtx epilogue_line_note = NULL_RTX;
|
||
|
||
/* Locate the line number associated with the closing brace,
|
||
if we can find one. */
|
||
for (seq = get_last_insn ();
|
||
seq && ! active_insn_p (seq);
|
||
seq = PREV_INSN (seq))
|
||
if (GET_CODE (seq) == NOTE && NOTE_LINE_NUMBER (seq) > 0)
|
||
{
|
||
epilogue_line_note = seq;
|
||
break;
|
||
}
|
||
|
||
for (e = last->pred; e; e = e_next)
|
||
{
|
||
basic_block bb = e->src;
|
||
rtx jump;
|
||
|
||
e_next = e->pred_next;
|
||
if (bb == ENTRY_BLOCK_PTR)
|
||
continue;
|
||
|
||
jump = BB_END (bb);
|
||
if ((GET_CODE (jump) != JUMP_INSN) || JUMP_LABEL (jump) != label)
|
||
continue;
|
||
|
||
/* If we have an unconditional jump, we can replace that
|
||
with a simple return instruction. */
|
||
if (simplejump_p (jump))
|
||
{
|
||
emit_return_into_block (bb, epilogue_line_note);
|
||
delete_insn (jump);
|
||
}
|
||
|
||
/* If we have a conditional jump, we can try to replace
|
||
that with a conditional return instruction. */
|
||
else if (condjump_p (jump))
|
||
{
|
||
if (! redirect_jump (jump, 0, 0))
|
||
continue;
|
||
|
||
/* If this block has only one successor, it both jumps
|
||
and falls through to the fallthru block, so we can't
|
||
delete the edge. */
|
||
if (bb->succ->succ_next == NULL)
|
||
continue;
|
||
}
|
||
else
|
||
continue;
|
||
|
||
/* Fix up the CFG for the successful change we just made. */
|
||
redirect_edge_succ (e, EXIT_BLOCK_PTR);
|
||
}
|
||
|
||
/* Emit a return insn for the exit fallthru block. Whether
|
||
this is still reachable will be determined later. */
|
||
|
||
emit_barrier_after (BB_END (last));
|
||
emit_return_into_block (last, epilogue_line_note);
|
||
epilogue_end = BB_END (last);
|
||
last->succ->flags &= ~EDGE_FALLTHRU;
|
||
goto epilogue_done;
|
||
}
|
||
}
|
||
#endif
|
||
#ifdef HAVE_epilogue
|
||
if (HAVE_epilogue)
|
||
{
|
||
/* Find the edge that falls through to EXIT. Other edges may exist
|
||
due to RETURN instructions, but those don't need epilogues.
|
||
There really shouldn't be a mixture -- either all should have
|
||
been converted or none, however... */
|
||
|
||
for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
|
||
if (e->flags & EDGE_FALLTHRU)
|
||
break;
|
||
if (e == NULL)
|
||
goto epilogue_done;
|
||
|
||
start_sequence ();
|
||
epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
|
||
|
||
seq = gen_epilogue ();
|
||
|
||
#ifdef INCOMING_RETURN_ADDR_RTX
|
||
/* If this function returns with the stack depressed and we can support
|
||
it, massage the epilogue to actually do that. */
|
||
if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
|
||
&& TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
|
||
seq = keep_stack_depressed (seq);
|
||
#endif
|
||
|
||
emit_jump_insn (seq);
|
||
|
||
/* Retain a map of the epilogue insns. */
|
||
record_insns (seq, &epilogue);
|
||
set_insn_locators (seq, epilogue_locator);
|
||
|
||
seq = get_insns ();
|
||
end_sequence ();
|
||
|
||
insert_insn_on_edge (seq, e);
|
||
inserted = 1;
|
||
}
|
||
#endif
|
||
epilogue_done:
|
||
|
||
if (inserted)
|
||
commit_edge_insertions ();
|
||
|
||
#ifdef HAVE_sibcall_epilogue
|
||
/* Emit sibling epilogues before any sibling call sites. */
|
||
for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
|
||
{
|
||
basic_block bb = e->src;
|
||
rtx insn = BB_END (bb);
|
||
rtx i;
|
||
rtx newinsn;
|
||
|
||
if (GET_CODE (insn) != CALL_INSN
|
||
|| ! SIBLING_CALL_P (insn))
|
||
continue;
|
||
|
||
start_sequence ();
|
||
emit_insn (gen_sibcall_epilogue ());
|
||
seq = get_insns ();
|
||
end_sequence ();
|
||
|
||
/* Retain a map of the epilogue insns. Used in life analysis to
|
||
avoid getting rid of sibcall epilogue insns. Do this before we
|
||
actually emit the sequence. */
|
||
record_insns (seq, &sibcall_epilogue);
|
||
set_insn_locators (seq, epilogue_locator);
|
||
|
||
i = PREV_INSN (insn);
|
||
newinsn = emit_insn_before (seq, insn);
|
||
}
|
||
#endif
|
||
|
||
#ifdef HAVE_prologue
|
||
/* This is probably all useless now that we use locators. */
|
||
if (prologue_end)
|
||
{
|
||
rtx insn, prev;
|
||
|
||
/* GDB handles `break f' by setting a breakpoint on the first
|
||
line note after the prologue. Which means (1) that if
|
||
there are line number notes before where we inserted the
|
||
prologue we should move them, and (2) we should generate a
|
||
note before the end of the first basic block, if there isn't
|
||
one already there.
|
||
|
||
??? This behavior is completely broken when dealing with
|
||
multiple entry functions. We simply place the note always
|
||
into first basic block and let alternate entry points
|
||
to be missed.
|
||
*/
|
||
|
||
for (insn = prologue_end; insn; insn = prev)
|
||
{
|
||
prev = PREV_INSN (insn);
|
||
if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
|
||
{
|
||
/* Note that we cannot reorder the first insn in the
|
||
chain, since rest_of_compilation relies on that
|
||
remaining constant. */
|
||
if (prev == NULL)
|
||
break;
|
||
reorder_insns (insn, insn, prologue_end);
|
||
}
|
||
}
|
||
|
||
/* Find the last line number note in the first block. */
|
||
for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb);
|
||
insn != prologue_end && insn;
|
||
insn = PREV_INSN (insn))
|
||
if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
|
||
break;
|
||
|
||
/* If we didn't find one, make a copy of the first line number
|
||
we run across. */
|
||
if (! insn)
|
||
{
|
||
for (insn = next_active_insn (prologue_end);
|
||
insn;
|
||
insn = PREV_INSN (insn))
|
||
if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
|
||
{
|
||
emit_note_copy_after (insn, prologue_end);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
#ifdef HAVE_epilogue
|
||
if (epilogue_end)
|
||
{
|
||
rtx insn, next;
|
||
|
||
/* Similarly, move any line notes that appear after the epilogue.
|
||
There is no need, however, to be quite so anal about the existence
|
||
of such a note. Also move the NOTE_INSN_FUNCTION_END and (possibly)
|
||
NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
|
||
info generation. */
|
||
for (insn = epilogue_end; insn; insn = next)
|
||
{
|
||
next = NEXT_INSN (insn);
|
||
if (GET_CODE (insn) == NOTE
|
||
&& (NOTE_LINE_NUMBER (insn) > 0
|
||
|| NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG
|
||
|| NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END))
|
||
reorder_insns (insn, insn, PREV_INSN (epilogue_end));
|
||
}
|
||
}
|
||
#endif
|
||
}
|
||
|
||
/* Reposition the prologue-end and epilogue-begin notes after instruction
|
||
scheduling and delayed branch scheduling. */
|
||
|
||
void
|
||
reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
|
||
{
|
||
#if defined (HAVE_prologue) || defined (HAVE_epilogue)
|
||
rtx insn, last, note;
|
||
int len;
|
||
|
||
if ((len = VARRAY_SIZE (prologue)) > 0)
|
||
{
|
||
last = 0, note = 0;
|
||
|
||
/* Scan from the beginning until we reach the last prologue insn.
|
||
We apparently can't depend on basic_block_{head,end} after
|
||
reorg has run. */
|
||
for (insn = f; insn; insn = NEXT_INSN (insn))
|
||
{
|
||
if (GET_CODE (insn) == NOTE)
|
||
{
|
||
if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
|
||
note = insn;
|
||
}
|
||
else if (contains (insn, prologue))
|
||
{
|
||
last = insn;
|
||
if (--len == 0)
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (last)
|
||
{
|
||
/* Find the prologue-end note if we haven't already, and
|
||
move it to just after the last prologue insn. */
|
||
if (note == 0)
|
||
{
|
||
for (note = last; (note = NEXT_INSN (note));)
|
||
if (GET_CODE (note) == NOTE
|
||
&& NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
|
||
break;
|
||
}
|
||
|
||
/* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
|
||
if (GET_CODE (last) == CODE_LABEL)
|
||
last = NEXT_INSN (last);
|
||
reorder_insns (note, note, last);
|
||
}
|
||
}
|
||
|
||
if ((len = VARRAY_SIZE (epilogue)) > 0)
|
||
{
|
||
last = 0, note = 0;
|
||
|
||
/* Scan from the end until we reach the first epilogue insn.
|
||
We apparently can't depend on basic_block_{head,end} after
|
||
reorg has run. */
|
||
for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
|
||
{
|
||
if (GET_CODE (insn) == NOTE)
|
||
{
|
||
if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
|
||
note = insn;
|
||
}
|
||
else if (contains (insn, epilogue))
|
||
{
|
||
last = insn;
|
||
if (--len == 0)
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (last)
|
||
{
|
||
/* Find the epilogue-begin note if we haven't already, and
|
||
move it to just before the first epilogue insn. */
|
||
if (note == 0)
|
||
{
|
||
for (note = insn; (note = PREV_INSN (note));)
|
||
if (GET_CODE (note) == NOTE
|
||
&& NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
|
||
break;
|
||
}
|
||
|
||
if (PREV_INSN (last) != note)
|
||
reorder_insns (note, note, PREV_INSN (last));
|
||
}
|
||
}
|
||
#endif /* HAVE_prologue or HAVE_epilogue */
|
||
}
|
||
|
||
/* Called once, at initialization, to initialize function.c. */
|
||
|
||
void
|
||
init_function_once (void)
|
||
{
|
||
VARRAY_INT_INIT (prologue, 0, "prologue");
|
||
VARRAY_INT_INIT (epilogue, 0, "epilogue");
|
||
VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
|
||
}
|
||
|
||
/* Returns the name of the current function. */
|
||
const char *
|
||
current_function_name (void)
|
||
{
|
||
return (*lang_hooks.decl_printable_name) (cfun->decl, 2);
|
||
}
|
||
|
||
#include "gt-function.h"
|