freebsd-dev/sys/i386/isa/npx.c
John Baldwin 824fc46089 MFamd64: Add support for extended FPU states on i386. This includes
support for AVX on i386.
- Similar to amd64, move the FPU save area out of the PCB and instead
  store saved FPU state in a variable-sized buffer after the PCB on the
  stack.
- To support the variable PCB location, alter the locore code to only use
  the bottom-most page of proc0stack for init386().  init386() returns
  the correct stack pointer to locore which adjusts the stack for thread0
  before calling mi_startup().
- Don't bother setting cr3 in thread0's pcb in locore before calling
  init386().  It wasn't used (init386() overwrote it at the end) and
  it doesn't work with the variable-sized FPU save area.
- Remove the new-bus attachment from npx.  This was only ever useful for
  external co-processors using IRQ13, but those have not been supported
  for several years.  npxinit() is now called much earlier during boot
  (init386()) similar to amd64.
- Implement PT_{GET,SET}XSTATE and I386_GET_XFPUSTATE.
- npxsave() is now only called from context switch contexts so it can
  use XSAVEOPT.

Differential Revision:	https://reviews.freebsd.org/D1058
Reviewed by:	kib
Tested on:	FreeBSD/i386 VM under bhyve on Intel i5-2520
2014-11-02 22:58:30 +00:00

1375 lines
35 KiB
C

/*-
* Copyright (c) 1990 William Jolitz.
* Copyright (c) 1991 The Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)npx.c 7.2 (Berkeley) 5/12/91
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_cpu.h"
#include "opt_isa.h"
#include "opt_npx.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/smp.h>
#include <sys/sysctl.h>
#include <machine/bus.h>
#include <sys/rman.h>
#ifdef NPX_DEBUG
#include <sys/syslog.h>
#endif
#include <sys/signalvar.h>
#include <vm/uma.h>
#include <machine/asmacros.h>
#include <machine/cputypes.h>
#include <machine/frame.h>
#include <machine/md_var.h>
#include <machine/pcb.h>
#include <machine/psl.h>
#include <machine/resource.h>
#include <machine/specialreg.h>
#include <machine/segments.h>
#include <machine/ucontext.h>
#include <machine/intr_machdep.h>
#ifdef XEN
#include <xen/xen-os.h>
#include <xen/hypervisor.h>
#endif
#ifdef DEV_ISA
#include <isa/isavar.h>
#endif
#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
#define CPU_ENABLE_SSE
#endif
/*
* 387 and 287 Numeric Coprocessor Extension (NPX) Driver.
*/
#if defined(__GNUCLIKE_ASM) && !defined(lint)
#define fldcw(cw) __asm __volatile("fldcw %0" : : "m" (cw))
#define fnclex() __asm __volatile("fnclex")
#define fninit() __asm __volatile("fninit")
#define fnsave(addr) __asm __volatile("fnsave %0" : "=m" (*(addr)))
#define fnstcw(addr) __asm __volatile("fnstcw %0" : "=m" (*(addr)))
#define fnstsw(addr) __asm __volatile("fnstsw %0" : "=am" (*(addr)))
#define fp_divide_by_0() __asm __volatile( \
"fldz; fld1; fdiv %st,%st(1); fnop")
#define frstor(addr) __asm __volatile("frstor %0" : : "m" (*(addr)))
#ifdef CPU_ENABLE_SSE
#define fxrstor(addr) __asm __volatile("fxrstor %0" : : "m" (*(addr)))
#define fxsave(addr) __asm __volatile("fxsave %0" : "=m" (*(addr)))
#define ldmxcsr(csr) __asm __volatile("ldmxcsr %0" : : "m" (csr))
#define stmxcsr(addr) __asm __volatile("stmxcsr %0" : : "m" (*(addr)))
static __inline void
xrstor(char *addr, uint64_t mask)
{
uint32_t low, hi;
low = mask;
hi = mask >> 32;
__asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
}
static __inline void
xsave(char *addr, uint64_t mask)
{
uint32_t low, hi;
low = mask;
hi = mask >> 32;
__asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
"memory");
}
static __inline void
xsaveopt(char *addr, uint64_t mask)
{
uint32_t low, hi;
low = mask;
hi = mask >> 32;
__asm __volatile("xsaveopt %0" : "=m" (*addr) : "a" (low), "d" (hi) :
"memory");
}
#endif
#else /* !(__GNUCLIKE_ASM && !lint) */
void fldcw(u_short cw);
void fnclex(void);
void fninit(void);
void fnsave(caddr_t addr);
void fnstcw(caddr_t addr);
void fnstsw(caddr_t addr);
void fp_divide_by_0(void);
void frstor(caddr_t addr);
#ifdef CPU_ENABLE_SSE
void fxsave(caddr_t addr);
void fxrstor(caddr_t addr);
void ldmxcsr(u_int csr);
void stmxcsr(u_int *csr);
void xrstor(char *addr, uint64_t mask);
void xsave(char *addr, uint64_t mask);
void xsaveopt(char *addr, uint64_t mask);
#endif
#endif /* __GNUCLIKE_ASM && !lint */
#ifdef XEN
#define start_emulating() (HYPERVISOR_fpu_taskswitch(1))
#define stop_emulating() (HYPERVISOR_fpu_taskswitch(0))
#else
#define start_emulating() load_cr0(rcr0() | CR0_TS)
#define stop_emulating() clts()
#endif
#ifdef CPU_ENABLE_SSE
#define GET_FPU_CW(thread) \
(cpu_fxsr ? \
(thread)->td_pcb->pcb_save->sv_xmm.sv_env.en_cw : \
(thread)->td_pcb->pcb_save->sv_87.sv_env.en_cw)
#define GET_FPU_SW(thread) \
(cpu_fxsr ? \
(thread)->td_pcb->pcb_save->sv_xmm.sv_env.en_sw : \
(thread)->td_pcb->pcb_save->sv_87.sv_env.en_sw)
#define SET_FPU_CW(savefpu, value) do { \
if (cpu_fxsr) \
(savefpu)->sv_xmm.sv_env.en_cw = (value); \
else \
(savefpu)->sv_87.sv_env.en_cw = (value); \
} while (0)
#else /* CPU_ENABLE_SSE */
#define GET_FPU_CW(thread) \
(thread->td_pcb->pcb_save->sv_87.sv_env.en_cw)
#define GET_FPU_SW(thread) \
(thread->td_pcb->pcb_save->sv_87.sv_env.en_sw)
#define SET_FPU_CW(savefpu, value) \
(savefpu)->sv_87.sv_env.en_cw = (value)
#endif /* CPU_ENABLE_SSE */
#ifdef CPU_ENABLE_SSE
CTASSERT(sizeof(union savefpu) == 512);
CTASSERT(sizeof(struct xstate_hdr) == 64);
CTASSERT(sizeof(struct savefpu_ymm) == 832);
/*
* This requirement is to make it easier for asm code to calculate
* offset of the fpu save area from the pcb address. FPU save area
* must be 64-byte aligned.
*/
CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
static void fpu_clean_state(void);
#endif
static void fpusave(union savefpu *);
static void fpurstor(union savefpu *);
int hw_float;
SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
&hw_float, 0, "Floating point instructions executed in hardware");
int use_xsave;
uint64_t xsave_mask;
static uma_zone_t fpu_save_area_zone;
static union savefpu *npx_initialstate;
struct xsave_area_elm_descr {
u_int offset;
u_int size;
} *xsave_area_desc;
static int use_xsaveopt;
static volatile u_int npx_traps_while_probing;
alias_for_inthand_t probetrap;
__asm(" \n\
.text \n\
.p2align 2,0x90 \n\
.type " __XSTRING(CNAME(probetrap)) ",@function \n\
" __XSTRING(CNAME(probetrap)) ": \n\
ss \n\
incl " __XSTRING(CNAME(npx_traps_while_probing)) " \n\
fnclex \n\
iret \n\
");
/*
* Determine if an FPU is present and how to use it.
*/
static int
npx_probe(void)
{
struct gate_descriptor save_idt_npxtrap;
u_short control, status;
/*
* Modern CPUs all have an FPU that uses the INT16 interface
* and provide a simple way to verify that, so handle the
* common case right away.
*/
if (cpu_feature & CPUID_FPU) {
hw_float = 1;
return (1);
}
save_idt_npxtrap = idt[IDT_MF];
setidt(IDT_MF, probetrap, SDT_SYS386TGT, SEL_KPL,
GSEL(GCODE_SEL, SEL_KPL));
/*
* Don't trap while we're probing.
*/
stop_emulating();
/*
* Finish resetting the coprocessor, if any. If there is an error
* pending, then we may get a bogus IRQ13, but npx_intr() will handle
* it OK. Bogus halts have never been observed, but we enabled
* IRQ13 and cleared the BUSY# latch early to handle them anyway.
*/
fninit();
/*
* Don't use fwait here because it might hang.
* Don't use fnop here because it usually hangs if there is no FPU.
*/
DELAY(1000); /* wait for any IRQ13 */
#ifdef DIAGNOSTIC
if (npx_traps_while_probing != 0)
printf("fninit caused %u bogus npx trap(s)\n",
npx_traps_while_probing);
#endif
/*
* Check for a status of mostly zero.
*/
status = 0x5a5a;
fnstsw(&status);
if ((status & 0xb8ff) == 0) {
/*
* Good, now check for a proper control word.
*/
control = 0x5a5a;
fnstcw(&control);
if ((control & 0x1f3f) == 0x033f) {
/*
* We have an npx, now divide by 0 to see if exception
* 16 works.
*/
control &= ~(1 << 2); /* enable divide by 0 trap */
fldcw(control);
#ifdef FPU_ERROR_BROKEN
/*
* FPU error signal doesn't work on some CPU
* accelerator board.
*/
hw_float = 1;
return (1);
#endif
npx_traps_while_probing = 0;
fp_divide_by_0();
if (npx_traps_while_probing != 0) {
/*
* Good, exception 16 works.
*/
hw_float = 1;
goto cleanup;
}
printf(
"FPU does not use exception 16 for error reporting\n");
goto cleanup;
}
}
/*
* Probe failed. Floating point simply won't work.
* Notify user and disable FPU/MMX/SSE instruction execution.
*/
printf("WARNING: no FPU!\n");
__asm __volatile("smsw %%ax; orb %0,%%al; lmsw %%ax" : :
"n" (CR0_EM | CR0_MP) : "ax");
cleanup:
idt[IDT_MF] = save_idt_npxtrap;
return (hw_float);
}
/*
* Enable XSAVE if supported and allowed by user.
* Calculate the xsave_mask.
*/
static void
npxinit_bsp1(void)
{
u_int cp[4];
uint64_t xsave_mask_user;
if (cpu_fxsr && (cpu_feature2 & CPUID2_XSAVE) != 0) {
use_xsave = 1;
TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
}
if (!use_xsave)
return;
cpuid_count(0xd, 0x0, cp);
xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
if ((cp[0] & xsave_mask) != xsave_mask)
panic("CPU0 does not support X87 or SSE: %x", cp[0]);
xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
xsave_mask_user = xsave_mask;
TUNABLE_QUAD_FETCH("hw.xsave_mask", &xsave_mask_user);
xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
xsave_mask &= xsave_mask_user;
if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
xsave_mask &= ~XFEATURE_AVX512;
if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
xsave_mask &= ~XFEATURE_MPX;
cpuid_count(0xd, 0x1, cp);
if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0)
use_xsaveopt = 1;
}
/*
* Calculate the fpu save area size.
*/
static void
npxinit_bsp2(void)
{
u_int cp[4];
if (use_xsave) {
cpuid_count(0xd, 0x0, cp);
cpu_max_ext_state_size = cp[1];
/*
* Reload the cpu_feature2, since we enabled OSXSAVE.
*/
do_cpuid(1, cp);
cpu_feature2 = cp[2];
} else
cpu_max_ext_state_size = sizeof(union savefpu);
}
/*
* Initialize floating point unit.
*/
void
npxinit(bool bsp)
{
static union savefpu dummy;
register_t saveintr;
u_int mxcsr;
u_short control;
if (bsp) {
if (!npx_probe())
return;
npxinit_bsp1();
}
if (use_xsave) {
load_cr4(rcr4() | CR4_XSAVE);
load_xcr(XCR0, xsave_mask);
}
/*
* XCR0 shall be set up before CPU can report the save area size.
*/
if (bsp)
npxinit_bsp2();
/*
* fninit has the same h/w bugs as fnsave. Use the detoxified
* fnsave to throw away any junk in the fpu. fpusave() initializes
* the fpu.
*
* It is too early for critical_enter() to work on AP.
*/
saveintr = intr_disable();
stop_emulating();
#ifdef CPU_ENABLE_SSE
if (cpu_fxsr)
fninit();
else
#endif
fnsave(&dummy);
control = __INITIAL_NPXCW__;
fldcw(control);
#ifdef CPU_ENABLE_SSE
if (cpu_fxsr) {
mxcsr = __INITIAL_MXCSR__;
ldmxcsr(mxcsr);
}
#endif
start_emulating();
intr_restore(saveintr);
}
/*
* On the boot CPU we generate a clean state that is used to
* initialize the floating point unit when it is first used by a
* process.
*/
static void
npxinitstate(void *arg __unused)
{
register_t saveintr;
int cp[4], i, max_ext_n;
if (!hw_float)
return;
npx_initialstate = malloc(cpu_max_ext_state_size, M_DEVBUF,
M_WAITOK | M_ZERO);
saveintr = intr_disable();
stop_emulating();
fpusave(npx_initialstate);
#ifdef CPU_ENABLE_SSE
if (cpu_fxsr) {
if (npx_initialstate->sv_xmm.sv_env.en_mxcsr_mask)
cpu_mxcsr_mask =
npx_initialstate->sv_xmm.sv_env.en_mxcsr_mask;
else
cpu_mxcsr_mask = 0xFFBF;
/*
* The fninit instruction does not modify XMM
* registers. The fpusave call dumped the garbage
* contained in the registers after reset to the
* initial state saved. Clear XMM registers file
* image to make the startup program state and signal
* handler XMM register content predictable.
*/
bzero(npx_initialstate->sv_xmm.sv_fp,
sizeof(npx_initialstate->sv_xmm.sv_fp));
bzero(npx_initialstate->sv_xmm.sv_xmm,
sizeof(npx_initialstate->sv_xmm.sv_xmm));
} else
#endif
bzero(npx_initialstate->sv_87.sv_ac,
sizeof(npx_initialstate->sv_87.sv_ac));
/*
* Create a table describing the layout of the CPU Extended
* Save Area.
*/
if (use_xsave) {
if (xsave_mask >> 32 != 0)
max_ext_n = fls(xsave_mask >> 32) + 32;
else
max_ext_n = fls(xsave_mask);
xsave_area_desc = malloc(max_ext_n * sizeof(struct
xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
/* x87 state */
xsave_area_desc[0].offset = 0;
xsave_area_desc[0].size = 160;
/* XMM */
xsave_area_desc[1].offset = 160;
xsave_area_desc[1].size = 288 - 160;
for (i = 2; i < max_ext_n; i++) {
cpuid_count(0xd, i, cp);
xsave_area_desc[i].offset = cp[1];
xsave_area_desc[i].size = cp[0];
}
}
fpu_save_area_zone = uma_zcreate("FPU_save_area",
cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
XSAVE_AREA_ALIGN - 1, 0);
start_emulating();
intr_restore(saveintr);
}
SYSINIT(npxinitstate, SI_SUB_DRIVERS, SI_ORDER_ANY, npxinitstate, NULL);
/*
* Free coprocessor (if we have it).
*/
void
npxexit(td)
struct thread *td;
{
critical_enter();
if (curthread == PCPU_GET(fpcurthread)) {
stop_emulating();
fpusave(curpcb->pcb_save);
start_emulating();
PCPU_SET(fpcurthread, NULL);
}
critical_exit();
#ifdef NPX_DEBUG
if (hw_float) {
u_int masked_exceptions;
masked_exceptions = GET_FPU_CW(td) & GET_FPU_SW(td) & 0x7f;
/*
* Log exceptions that would have trapped with the old
* control word (overflow, divide by 0, and invalid operand).
*/
if (masked_exceptions & 0x0d)
log(LOG_ERR,
"pid %d (%s) exited with masked floating point exceptions 0x%02x\n",
td->td_proc->p_pid, td->td_proc->p_comm,
masked_exceptions);
}
#endif
}
int
npxformat()
{
if (!hw_float)
return (_MC_FPFMT_NODEV);
#ifdef CPU_ENABLE_SSE
if (cpu_fxsr)
return (_MC_FPFMT_XMM);
#endif
return (_MC_FPFMT_387);
}
/*
* The following mechanism is used to ensure that the FPE_... value
* that is passed as a trapcode to the signal handler of the user
* process does not have more than one bit set.
*
* Multiple bits may be set if the user process modifies the control
* word while a status word bit is already set. While this is a sign
* of bad coding, we have no choise than to narrow them down to one
* bit, since we must not send a trapcode that is not exactly one of
* the FPE_ macros.
*
* The mechanism has a static table with 127 entries. Each combination
* of the 7 FPU status word exception bits directly translates to a
* position in this table, where a single FPE_... value is stored.
* This FPE_... value stored there is considered the "most important"
* of the exception bits and will be sent as the signal code. The
* precedence of the bits is based upon Intel Document "Numerical
* Applications", Chapter "Special Computational Situations".
*
* The macro to choose one of these values does these steps: 1) Throw
* away status word bits that cannot be masked. 2) Throw away the bits
* currently masked in the control word, assuming the user isn't
* interested in them anymore. 3) Reinsert status word bit 7 (stack
* fault) if it is set, which cannot be masked but must be presered.
* 4) Use the remaining bits to point into the trapcode table.
*
* The 6 maskable bits in order of their preference, as stated in the
* above referenced Intel manual:
* 1 Invalid operation (FP_X_INV)
* 1a Stack underflow
* 1b Stack overflow
* 1c Operand of unsupported format
* 1d SNaN operand.
* 2 QNaN operand (not an exception, irrelavant here)
* 3 Any other invalid-operation not mentioned above or zero divide
* (FP_X_INV, FP_X_DZ)
* 4 Denormal operand (FP_X_DNML)
* 5 Numeric over/underflow (FP_X_OFL, FP_X_UFL)
* 6 Inexact result (FP_X_IMP)
*/
static char fpetable[128] = {
0,
FPE_FLTINV, /* 1 - INV */
FPE_FLTUND, /* 2 - DNML */
FPE_FLTINV, /* 3 - INV | DNML */
FPE_FLTDIV, /* 4 - DZ */
FPE_FLTINV, /* 5 - INV | DZ */
FPE_FLTDIV, /* 6 - DNML | DZ */
FPE_FLTINV, /* 7 - INV | DNML | DZ */
FPE_FLTOVF, /* 8 - OFL */
FPE_FLTINV, /* 9 - INV | OFL */
FPE_FLTUND, /* A - DNML | OFL */
FPE_FLTINV, /* B - INV | DNML | OFL */
FPE_FLTDIV, /* C - DZ | OFL */
FPE_FLTINV, /* D - INV | DZ | OFL */
FPE_FLTDIV, /* E - DNML | DZ | OFL */
FPE_FLTINV, /* F - INV | DNML | DZ | OFL */
FPE_FLTUND, /* 10 - UFL */
FPE_FLTINV, /* 11 - INV | UFL */
FPE_FLTUND, /* 12 - DNML | UFL */
FPE_FLTINV, /* 13 - INV | DNML | UFL */
FPE_FLTDIV, /* 14 - DZ | UFL */
FPE_FLTINV, /* 15 - INV | DZ | UFL */
FPE_FLTDIV, /* 16 - DNML | DZ | UFL */
FPE_FLTINV, /* 17 - INV | DNML | DZ | UFL */
FPE_FLTOVF, /* 18 - OFL | UFL */
FPE_FLTINV, /* 19 - INV | OFL | UFL */
FPE_FLTUND, /* 1A - DNML | OFL | UFL */
FPE_FLTINV, /* 1B - INV | DNML | OFL | UFL */
FPE_FLTDIV, /* 1C - DZ | OFL | UFL */
FPE_FLTINV, /* 1D - INV | DZ | OFL | UFL */
FPE_FLTDIV, /* 1E - DNML | DZ | OFL | UFL */
FPE_FLTINV, /* 1F - INV | DNML | DZ | OFL | UFL */
FPE_FLTRES, /* 20 - IMP */
FPE_FLTINV, /* 21 - INV | IMP */
FPE_FLTUND, /* 22 - DNML | IMP */
FPE_FLTINV, /* 23 - INV | DNML | IMP */
FPE_FLTDIV, /* 24 - DZ | IMP */
FPE_FLTINV, /* 25 - INV | DZ | IMP */
FPE_FLTDIV, /* 26 - DNML | DZ | IMP */
FPE_FLTINV, /* 27 - INV | DNML | DZ | IMP */
FPE_FLTOVF, /* 28 - OFL | IMP */
FPE_FLTINV, /* 29 - INV | OFL | IMP */
FPE_FLTUND, /* 2A - DNML | OFL | IMP */
FPE_FLTINV, /* 2B - INV | DNML | OFL | IMP */
FPE_FLTDIV, /* 2C - DZ | OFL | IMP */
FPE_FLTINV, /* 2D - INV | DZ | OFL | IMP */
FPE_FLTDIV, /* 2E - DNML | DZ | OFL | IMP */
FPE_FLTINV, /* 2F - INV | DNML | DZ | OFL | IMP */
FPE_FLTUND, /* 30 - UFL | IMP */
FPE_FLTINV, /* 31 - INV | UFL | IMP */
FPE_FLTUND, /* 32 - DNML | UFL | IMP */
FPE_FLTINV, /* 33 - INV | DNML | UFL | IMP */
FPE_FLTDIV, /* 34 - DZ | UFL | IMP */
FPE_FLTINV, /* 35 - INV | DZ | UFL | IMP */
FPE_FLTDIV, /* 36 - DNML | DZ | UFL | IMP */
FPE_FLTINV, /* 37 - INV | DNML | DZ | UFL | IMP */
FPE_FLTOVF, /* 38 - OFL | UFL | IMP */
FPE_FLTINV, /* 39 - INV | OFL | UFL | IMP */
FPE_FLTUND, /* 3A - DNML | OFL | UFL | IMP */
FPE_FLTINV, /* 3B - INV | DNML | OFL | UFL | IMP */
FPE_FLTDIV, /* 3C - DZ | OFL | UFL | IMP */
FPE_FLTINV, /* 3D - INV | DZ | OFL | UFL | IMP */
FPE_FLTDIV, /* 3E - DNML | DZ | OFL | UFL | IMP */
FPE_FLTINV, /* 3F - INV | DNML | DZ | OFL | UFL | IMP */
FPE_FLTSUB, /* 40 - STK */
FPE_FLTSUB, /* 41 - INV | STK */
FPE_FLTUND, /* 42 - DNML | STK */
FPE_FLTSUB, /* 43 - INV | DNML | STK */
FPE_FLTDIV, /* 44 - DZ | STK */
FPE_FLTSUB, /* 45 - INV | DZ | STK */
FPE_FLTDIV, /* 46 - DNML | DZ | STK */
FPE_FLTSUB, /* 47 - INV | DNML | DZ | STK */
FPE_FLTOVF, /* 48 - OFL | STK */
FPE_FLTSUB, /* 49 - INV | OFL | STK */
FPE_FLTUND, /* 4A - DNML | OFL | STK */
FPE_FLTSUB, /* 4B - INV | DNML | OFL | STK */
FPE_FLTDIV, /* 4C - DZ | OFL | STK */
FPE_FLTSUB, /* 4D - INV | DZ | OFL | STK */
FPE_FLTDIV, /* 4E - DNML | DZ | OFL | STK */
FPE_FLTSUB, /* 4F - INV | DNML | DZ | OFL | STK */
FPE_FLTUND, /* 50 - UFL | STK */
FPE_FLTSUB, /* 51 - INV | UFL | STK */
FPE_FLTUND, /* 52 - DNML | UFL | STK */
FPE_FLTSUB, /* 53 - INV | DNML | UFL | STK */
FPE_FLTDIV, /* 54 - DZ | UFL | STK */
FPE_FLTSUB, /* 55 - INV | DZ | UFL | STK */
FPE_FLTDIV, /* 56 - DNML | DZ | UFL | STK */
FPE_FLTSUB, /* 57 - INV | DNML | DZ | UFL | STK */
FPE_FLTOVF, /* 58 - OFL | UFL | STK */
FPE_FLTSUB, /* 59 - INV | OFL | UFL | STK */
FPE_FLTUND, /* 5A - DNML | OFL | UFL | STK */
FPE_FLTSUB, /* 5B - INV | DNML | OFL | UFL | STK */
FPE_FLTDIV, /* 5C - DZ | OFL | UFL | STK */
FPE_FLTSUB, /* 5D - INV | DZ | OFL | UFL | STK */
FPE_FLTDIV, /* 5E - DNML | DZ | OFL | UFL | STK */
FPE_FLTSUB, /* 5F - INV | DNML | DZ | OFL | UFL | STK */
FPE_FLTRES, /* 60 - IMP | STK */
FPE_FLTSUB, /* 61 - INV | IMP | STK */
FPE_FLTUND, /* 62 - DNML | IMP | STK */
FPE_FLTSUB, /* 63 - INV | DNML | IMP | STK */
FPE_FLTDIV, /* 64 - DZ | IMP | STK */
FPE_FLTSUB, /* 65 - INV | DZ | IMP | STK */
FPE_FLTDIV, /* 66 - DNML | DZ | IMP | STK */
FPE_FLTSUB, /* 67 - INV | DNML | DZ | IMP | STK */
FPE_FLTOVF, /* 68 - OFL | IMP | STK */
FPE_FLTSUB, /* 69 - INV | OFL | IMP | STK */
FPE_FLTUND, /* 6A - DNML | OFL | IMP | STK */
FPE_FLTSUB, /* 6B - INV | DNML | OFL | IMP | STK */
FPE_FLTDIV, /* 6C - DZ | OFL | IMP | STK */
FPE_FLTSUB, /* 6D - INV | DZ | OFL | IMP | STK */
FPE_FLTDIV, /* 6E - DNML | DZ | OFL | IMP | STK */
FPE_FLTSUB, /* 6F - INV | DNML | DZ | OFL | IMP | STK */
FPE_FLTUND, /* 70 - UFL | IMP | STK */
FPE_FLTSUB, /* 71 - INV | UFL | IMP | STK */
FPE_FLTUND, /* 72 - DNML | UFL | IMP | STK */
FPE_FLTSUB, /* 73 - INV | DNML | UFL | IMP | STK */
FPE_FLTDIV, /* 74 - DZ | UFL | IMP | STK */
FPE_FLTSUB, /* 75 - INV | DZ | UFL | IMP | STK */
FPE_FLTDIV, /* 76 - DNML | DZ | UFL | IMP | STK */
FPE_FLTSUB, /* 77 - INV | DNML | DZ | UFL | IMP | STK */
FPE_FLTOVF, /* 78 - OFL | UFL | IMP | STK */
FPE_FLTSUB, /* 79 - INV | OFL | UFL | IMP | STK */
FPE_FLTUND, /* 7A - DNML | OFL | UFL | IMP | STK */
FPE_FLTSUB, /* 7B - INV | DNML | OFL | UFL | IMP | STK */
FPE_FLTDIV, /* 7C - DZ | OFL | UFL | IMP | STK */
FPE_FLTSUB, /* 7D - INV | DZ | OFL | UFL | IMP | STK */
FPE_FLTDIV, /* 7E - DNML | DZ | OFL | UFL | IMP | STK */
FPE_FLTSUB, /* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
};
/*
* Read the FP status and control words, then generate si_code value
* for SIGFPE. The error code chosen will be one of the
* FPE_... macros. It will be sent as the second argument to old
* BSD-style signal handlers and as "siginfo_t->si_code" (second
* argument) to SA_SIGINFO signal handlers.
*
* Some time ago, we cleared the x87 exceptions with FNCLEX there.
* Clearing exceptions was necessary mainly to avoid IRQ13 bugs. The
* usermode code which understands the FPU hardware enough to enable
* the exceptions, can also handle clearing the exception state in the
* handler. The only consequence of not clearing the exception is the
* rethrow of the SIGFPE on return from the signal handler and
* reexecution of the corresponding instruction.
*
* For XMM traps, the exceptions were never cleared.
*/
int
npxtrap_x87(void)
{
u_short control, status;
if (!hw_float) {
printf(
"npxtrap_x87: fpcurthread = %p, curthread = %p, hw_float = %d\n",
PCPU_GET(fpcurthread), curthread, hw_float);
panic("npxtrap from nowhere");
}
critical_enter();
/*
* Interrupt handling (for another interrupt) may have pushed the
* state to memory. Fetch the relevant parts of the state from
* wherever they are.
*/
if (PCPU_GET(fpcurthread) != curthread) {
control = GET_FPU_CW(curthread);
status = GET_FPU_SW(curthread);
} else {
fnstcw(&control);
fnstsw(&status);
}
critical_exit();
return (fpetable[status & ((~control & 0x3f) | 0x40)]);
}
#ifdef CPU_ENABLE_SSE
int
npxtrap_sse(void)
{
u_int mxcsr;
if (!hw_float) {
printf(
"npxtrap_sse: fpcurthread = %p, curthread = %p, hw_float = %d\n",
PCPU_GET(fpcurthread), curthread, hw_float);
panic("npxtrap from nowhere");
}
critical_enter();
if (PCPU_GET(fpcurthread) != curthread)
mxcsr = curthread->td_pcb->pcb_save->sv_xmm.sv_env.en_mxcsr;
else
stmxcsr(&mxcsr);
critical_exit();
return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
}
#endif
/*
* Implement device not available (DNA) exception
*
* It would be better to switch FP context here (if curthread != fpcurthread)
* and not necessarily for every context switch, but it is too hard to
* access foreign pcb's.
*/
static int err_count = 0;
int
npxdna(void)
{
if (!hw_float)
return (0);
critical_enter();
if (PCPU_GET(fpcurthread) == curthread) {
printf("npxdna: fpcurthread == curthread %d times\n",
++err_count);
stop_emulating();
critical_exit();
return (1);
}
if (PCPU_GET(fpcurthread) != NULL) {
printf("npxdna: fpcurthread = %p (%d), curthread = %p (%d)\n",
PCPU_GET(fpcurthread),
PCPU_GET(fpcurthread)->td_proc->p_pid,
curthread, curthread->td_proc->p_pid);
panic("npxdna");
}
stop_emulating();
/*
* Record new context early in case frstor causes a trap.
*/
PCPU_SET(fpcurthread, curthread);
#ifdef CPU_ENABLE_SSE
if (cpu_fxsr)
fpu_clean_state();
#endif
if ((curpcb->pcb_flags & PCB_NPXINITDONE) == 0) {
/*
* This is the first time this thread has used the FPU or
* the PCB doesn't contain a clean FPU state. Explicitly
* load an initial state.
*
* We prefer to restore the state from the actual save
* area in PCB instead of directly loading from
* npx_initialstate, to ignite the XSAVEOPT
* tracking engine.
*/
bcopy(npx_initialstate, curpcb->pcb_save, cpu_max_ext_state_size);
fpurstor(curpcb->pcb_save);
if (curpcb->pcb_initial_npxcw != __INITIAL_NPXCW__)
fldcw(curpcb->pcb_initial_npxcw);
curpcb->pcb_flags |= PCB_NPXINITDONE;
if (PCB_USER_FPU(curpcb))
curpcb->pcb_flags |= PCB_NPXUSERINITDONE;
} else {
fpurstor(curpcb->pcb_save);
}
critical_exit();
return (1);
}
/*
* Wrapper for fpusave() called from context switch routines.
*
* npxsave() must be called with interrupts disabled, so that it clears
* fpcurthread atomically with saving the state. We require callers to do the
* disabling, since most callers need to disable interrupts anyway to call
* npxsave() atomically with checking fpcurthread.
*/
void
npxsave(addr)
union savefpu *addr;
{
stop_emulating();
if (use_xsaveopt)
xsaveopt((char *)addr, xsave_mask);
else
fpusave(addr);
start_emulating();
PCPU_SET(fpcurthread, NULL);
}
/*
* Unconditionally save the current co-processor state across suspend and
* resume.
*/
void
npxsuspend(union savefpu *addr)
{
register_t cr0;
if (!hw_float)
return;
if (PCPU_GET(fpcurthread) == NULL) {
bcopy(npx_initialstate, addr, cpu_max_ext_state_size);
return;
}
cr0 = rcr0();
stop_emulating();
fpusave(addr);
load_cr0(cr0);
}
void
npxresume(union savefpu *addr)
{
register_t cr0;
if (!hw_float)
return;
cr0 = rcr0();
npxinit(false);
stop_emulating();
fpurstor(addr);
load_cr0(cr0);
}
void
npxdrop()
{
struct thread *td;
/*
* Discard pending exceptions in the !cpu_fxsr case so that unmasked
* ones don't cause a panic on the next frstor.
*/
#ifdef CPU_ENABLE_SSE
if (!cpu_fxsr)
#endif
fnclex();
td = PCPU_GET(fpcurthread);
KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
CRITICAL_ASSERT(td);
PCPU_SET(fpcurthread, NULL);
td->td_pcb->pcb_flags &= ~PCB_NPXINITDONE;
start_emulating();
}
/*
* Get the user state of the FPU into pcb->pcb_user_save without
* dropping ownership (if possible). It returns the FPU ownership
* status.
*/
int
npxgetregs(struct thread *td)
{
struct pcb *pcb;
uint64_t *xstate_bv, bit;
char *sa;
int max_ext_n, i, owned;
if (!hw_float)
return (_MC_FPOWNED_NONE);
pcb = td->td_pcb;
if ((pcb->pcb_flags & PCB_NPXINITDONE) == 0) {
bcopy(npx_initialstate, get_pcb_user_save_pcb(pcb),
cpu_max_ext_state_size);
SET_FPU_CW(get_pcb_user_save_pcb(pcb), pcb->pcb_initial_npxcw);
npxuserinited(td);
return (_MC_FPOWNED_PCB);
}
critical_enter();
if (td == PCPU_GET(fpcurthread)) {
fpusave(get_pcb_user_save_pcb(pcb));
#ifdef CPU_ENABLE_SSE
if (!cpu_fxsr)
#endif
/*
* fnsave initializes the FPU and destroys whatever
* context it contains. Make sure the FPU owner
* starts with a clean state next time.
*/
npxdrop();
owned = _MC_FPOWNED_FPU;
} else {
owned = _MC_FPOWNED_PCB;
}
critical_exit();
if (use_xsave) {
/*
* Handle partially saved state.
*/
sa = (char *)get_pcb_user_save_pcb(pcb);
xstate_bv = (uint64_t *)(sa + sizeof(union savefpu) +
offsetof(struct xstate_hdr, xstate_bv));
if (xsave_mask >> 32 != 0)
max_ext_n = fls(xsave_mask >> 32) + 32;
else
max_ext_n = fls(xsave_mask);
for (i = 0; i < max_ext_n; i++) {
bit = 1ULL << i;
if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
continue;
bcopy((char *)npx_initialstate +
xsave_area_desc[i].offset,
sa + xsave_area_desc[i].offset,
xsave_area_desc[i].size);
*xstate_bv |= bit;
}
}
return (owned);
}
void
npxuserinited(struct thread *td)
{
struct pcb *pcb;
pcb = td->td_pcb;
if (PCB_USER_FPU(pcb))
pcb->pcb_flags |= PCB_NPXINITDONE;
pcb->pcb_flags |= PCB_NPXUSERINITDONE;
}
int
npxsetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
{
struct xstate_hdr *hdr, *ehdr;
size_t len, max_len;
uint64_t bv;
/* XXXKIB should we clear all extended state in xstate_bv instead ? */
if (xfpustate == NULL)
return (0);
if (!use_xsave)
return (EOPNOTSUPP);
len = xfpustate_size;
if (len < sizeof(struct xstate_hdr))
return (EINVAL);
max_len = cpu_max_ext_state_size - sizeof(union savefpu);
if (len > max_len)
return (EINVAL);
ehdr = (struct xstate_hdr *)xfpustate;
bv = ehdr->xstate_bv;
/*
* Avoid #gp.
*/
if (bv & ~xsave_mask)
return (EINVAL);
hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
hdr->xstate_bv = bv;
bcopy(xfpustate + sizeof(struct xstate_hdr),
(char *)(hdr + 1), len - sizeof(struct xstate_hdr));
return (0);
}
int
npxsetregs(struct thread *td, union savefpu *addr, char *xfpustate,
size_t xfpustate_size)
{
struct pcb *pcb;
int error;
if (!hw_float)
return (ENXIO);
pcb = td->td_pcb;
critical_enter();
if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
error = npxsetxstate(td, xfpustate, xfpustate_size);
if (error != 0) {
critical_exit();
return (error);
}
#ifdef CPU_ENABLE_SSE
if (!cpu_fxsr)
#endif
fnclex(); /* As in npxdrop(). */
bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
fpurstor(get_pcb_user_save_td(td));
critical_exit();
pcb->pcb_flags |= PCB_NPXUSERINITDONE | PCB_NPXINITDONE;
} else {
critical_exit();
error = npxsetxstate(td, xfpustate, xfpustate_size);
if (error != 0)
return (error);
bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
npxuserinited(td);
}
return (0);
}
static void
fpusave(addr)
union savefpu *addr;
{
#ifdef CPU_ENABLE_SSE
if (use_xsave)
xsave((char *)addr, xsave_mask);
else if (cpu_fxsr)
fxsave(addr);
else
#endif
fnsave(addr);
}
#ifdef CPU_ENABLE_SSE
/*
* On AuthenticAMD processors, the fxrstor instruction does not restore
* the x87's stored last instruction pointer, last data pointer, and last
* opcode values, except in the rare case in which the exception summary
* (ES) bit in the x87 status word is set to 1.
*
* In order to avoid leaking this information across processes, we clean
* these values by performing a dummy load before executing fxrstor().
*/
static void
fpu_clean_state(void)
{
static float dummy_variable = 0.0;
u_short status;
/*
* Clear the ES bit in the x87 status word if it is currently
* set, in order to avoid causing a fault in the upcoming load.
*/
fnstsw(&status);
if (status & 0x80)
fnclex();
/*
* Load the dummy variable into the x87 stack. This mangles
* the x87 stack, but we don't care since we're about to call
* fxrstor() anyway.
*/
__asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
}
#endif /* CPU_ENABLE_SSE */
static void
fpurstor(addr)
union savefpu *addr;
{
#ifdef CPU_ENABLE_SSE
if (use_xsave)
xrstor((char *)addr, xsave_mask);
else if (cpu_fxsr)
fxrstor(addr);
else
#endif
frstor(addr);
}
#ifdef DEV_ISA
/*
* This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
*/
static struct isa_pnp_id npxisa_ids[] = {
{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
{ 0 }
};
static int
npxisa_probe(device_t dev)
{
int result;
if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, npxisa_ids)) <= 0) {
device_quiet(dev);
}
return(result);
}
static int
npxisa_attach(device_t dev)
{
return (0);
}
static device_method_t npxisa_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, npxisa_probe),
DEVMETHOD(device_attach, npxisa_attach),
DEVMETHOD(device_detach, bus_generic_detach),
DEVMETHOD(device_shutdown, bus_generic_shutdown),
DEVMETHOD(device_suspend, bus_generic_suspend),
DEVMETHOD(device_resume, bus_generic_resume),
{ 0, 0 }
};
static driver_t npxisa_driver = {
"npxisa",
npxisa_methods,
1, /* no softc */
};
static devclass_t npxisa_devclass;
DRIVER_MODULE(npxisa, isa, npxisa_driver, npxisa_devclass, 0, 0);
#ifndef PC98
DRIVER_MODULE(npxisa, acpi, npxisa_driver, npxisa_devclass, 0, 0);
#endif
#endif /* DEV_ISA */
static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
"Kernel contexts for FPU state");
#define FPU_KERN_CTX_NPXINITDONE 0x01
#define FPU_KERN_CTX_DUMMY 0x02
struct fpu_kern_ctx {
union savefpu *prev;
uint32_t flags;
char hwstate1[];
};
struct fpu_kern_ctx *
fpu_kern_alloc_ctx(u_int flags)
{
struct fpu_kern_ctx *res;
size_t sz;
sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN +
cpu_max_ext_state_size;
res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ?
M_NOWAIT : M_WAITOK) | M_ZERO);
return (res);
}
void
fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
{
/* XXXKIB clear the memory ? */
free(ctx, M_FPUKERN_CTX);
}
static union savefpu *
fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
{
vm_offset_t p;
p = (vm_offset_t)&ctx->hwstate1;
p = roundup2(p, XSAVE_AREA_ALIGN);
return ((union savefpu *)p);
}
int
fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
{
struct pcb *pcb;
if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
ctx->flags = FPU_KERN_CTX_DUMMY;
return (0);
}
pcb = td->td_pcb;
KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
ctx->flags = 0;
if ((pcb->pcb_flags & PCB_NPXINITDONE) != 0)
ctx->flags |= FPU_KERN_CTX_NPXINITDONE;
npxexit(td);
ctx->prev = pcb->pcb_save;
pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
pcb->pcb_flags |= PCB_KERNNPX;
pcb->pcb_flags &= ~PCB_NPXINITDONE;
return (0);
}
int
fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
{
struct pcb *pcb;
if (is_fpu_kern_thread(0) && (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
return (0);
pcb = td->td_pcb;
critical_enter();
if (curthread == PCPU_GET(fpcurthread))
npxdrop();
critical_exit();
pcb->pcb_save = ctx->prev;
if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
if ((pcb->pcb_flags & PCB_NPXUSERINITDONE) != 0)
pcb->pcb_flags |= PCB_NPXINITDONE;
else
pcb->pcb_flags &= ~PCB_NPXINITDONE;
pcb->pcb_flags &= ~PCB_KERNNPX;
} else {
if ((ctx->flags & FPU_KERN_CTX_NPXINITDONE) != 0)
pcb->pcb_flags |= PCB_NPXINITDONE;
else
pcb->pcb_flags &= ~PCB_NPXINITDONE;
KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
}
return (0);
}
int
fpu_kern_thread(u_int flags)
{
struct pcb *pcb;
pcb = curpcb;
KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
("Only kthread may use fpu_kern_thread"));
KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
("mangled pcb_save"));
KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
curpcb->pcb_flags |= PCB_KERNNPX;
return (0);
}
int
is_fpu_kern_thread(u_int flags)
{
if ((curthread->td_pflags & TDP_KTHREAD) == 0)
return (0);
return ((curpcb->pcb_flags & PCB_KERNNPX) != 0);
}
/*
* FPU save area alloc/free/init utility routines
*/
union savefpu *
fpu_save_area_alloc(void)
{
return (uma_zalloc(fpu_save_area_zone, 0));
}
void
fpu_save_area_free(union savefpu *fsa)
{
uma_zfree(fpu_save_area_zone, fsa);
}
void
fpu_save_area_reset(union savefpu *fsa)
{
bcopy(npx_initialstate, fsa, cpu_max_ext_state_size);
}