freebsd-dev/sys/contrib/dev/acpica/hwsleep.c
2003-07-13 22:44:13 +00:00

537 lines
17 KiB
C

/******************************************************************************
*
* Name: hwsleep.c - ACPI Hardware Sleep/Wake Interface
* $Revision: 56 $
*
*****************************************************************************/
/******************************************************************************
*
* 1. Copyright Notice
*
* Some or all of this work - Copyright (c) 1999 - 2003, Intel Corp.
* All rights reserved.
*
* 2. License
*
* 2.1. This is your license from Intel Corp. under its intellectual property
* rights. You may have additional license terms from the party that provided
* you this software, covering your right to use that party's intellectual
* property rights.
*
* 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a
* copy of the source code appearing in this file ("Covered Code") an
* irrevocable, perpetual, worldwide license under Intel's copyrights in the
* base code distributed originally by Intel ("Original Intel Code") to copy,
* make derivatives, distribute, use and display any portion of the Covered
* Code in any form, with the right to sublicense such rights; and
*
* 2.3. Intel grants Licensee a non-exclusive and non-transferable patent
* license (with the right to sublicense), under only those claims of Intel
* patents that are infringed by the Original Intel Code, to make, use, sell,
* offer to sell, and import the Covered Code and derivative works thereof
* solely to the minimum extent necessary to exercise the above copyright
* license, and in no event shall the patent license extend to any additions
* to or modifications of the Original Intel Code. No other license or right
* is granted directly or by implication, estoppel or otherwise;
*
* The above copyright and patent license is granted only if the following
* conditions are met:
*
* 3. Conditions
*
* 3.1. Redistribution of Source with Rights to Further Distribute Source.
* Redistribution of source code of any substantial portion of the Covered
* Code or modification with rights to further distribute source must include
* the above Copyright Notice, the above License, this list of Conditions,
* and the following Disclaimer and Export Compliance provision. In addition,
* Licensee must cause all Covered Code to which Licensee contributes to
* contain a file documenting the changes Licensee made to create that Covered
* Code and the date of any change. Licensee must include in that file the
* documentation of any changes made by any predecessor Licensee. Licensee
* must include a prominent statement that the modification is derived,
* directly or indirectly, from Original Intel Code.
*
* 3.2. Redistribution of Source with no Rights to Further Distribute Source.
* Redistribution of source code of any substantial portion of the Covered
* Code or modification without rights to further distribute source must
* include the following Disclaimer and Export Compliance provision in the
* documentation and/or other materials provided with distribution. In
* addition, Licensee may not authorize further sublicense of source of any
* portion of the Covered Code, and must include terms to the effect that the
* license from Licensee to its licensee is limited to the intellectual
* property embodied in the software Licensee provides to its licensee, and
* not to intellectual property embodied in modifications its licensee may
* make.
*
* 3.3. Redistribution of Executable. Redistribution in executable form of any
* substantial portion of the Covered Code or modification must reproduce the
* above Copyright Notice, and the following Disclaimer and Export Compliance
* provision in the documentation and/or other materials provided with the
* distribution.
*
* 3.4. Intel retains all right, title, and interest in and to the Original
* Intel Code.
*
* 3.5. Neither the name Intel nor any other trademark owned or controlled by
* Intel shall be used in advertising or otherwise to promote the sale, use or
* other dealings in products derived from or relating to the Covered Code
* without prior written authorization from Intel.
*
* 4. Disclaimer and Export Compliance
*
* 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED
* HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE
* IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE,
* INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY
* UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY
* IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A
* PARTICULAR PURPOSE.
*
* 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES
* OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR
* COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT,
* SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY
* CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL
* HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS
* SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY
* LIMITED REMEDY.
*
* 4.3. Licensee shall not export, either directly or indirectly, any of this
* software or system incorporating such software without first obtaining any
* required license or other approval from the U. S. Department of Commerce or
* any other agency or department of the United States Government. In the
* event Licensee exports any such software from the United States or
* re-exports any such software from a foreign destination, Licensee shall
* ensure that the distribution and export/re-export of the software is in
* compliance with all laws, regulations, orders, or other restrictions of the
* U.S. Export Administration Regulations. Licensee agrees that neither it nor
* any of its subsidiaries will export/re-export any technical data, process,
* software, or service, directly or indirectly, to any country for which the
* United States government or any agency thereof requires an export license,
* other governmental approval, or letter of assurance, without first obtaining
* such license, approval or letter.
*
*****************************************************************************/
#include "acpi.h"
#define _COMPONENT ACPI_HARDWARE
ACPI_MODULE_NAME ("hwsleep")
/******************************************************************************
*
* FUNCTION: AcpiSetFirmwareWakingVector
*
* PARAMETERS: PhysicalAddress - Physical address of ACPI real mode
* entry point.
*
* RETURN: Status
*
* DESCRIPTION: Access function for dFirmwareWakingVector field in FACS
*
******************************************************************************/
ACPI_STATUS
AcpiSetFirmwareWakingVector (
ACPI_PHYSICAL_ADDRESS PhysicalAddress)
{
ACPI_FUNCTION_TRACE ("AcpiSetFirmwareWakingVector");
/* Set the vector */
if (AcpiGbl_CommonFACS.VectorWidth == 32)
{
*(ACPI_CAST_PTR (UINT32, AcpiGbl_CommonFACS.FirmwareWakingVector))
= (UINT32) PhysicalAddress;
}
else
{
*AcpiGbl_CommonFACS.FirmwareWakingVector
= PhysicalAddress;
}
return_ACPI_STATUS (AE_OK);
}
/******************************************************************************
*
* FUNCTION: AcpiGetFirmwareWakingVector
*
* PARAMETERS: *PhysicalAddress - Output buffer where contents of
* the FirmwareWakingVector field of
* the FACS will be stored.
*
* RETURN: Status
*
* DESCRIPTION: Access function for FirmwareWakingVector field in FACS
*
******************************************************************************/
ACPI_STATUS
AcpiGetFirmwareWakingVector (
ACPI_PHYSICAL_ADDRESS *PhysicalAddress)
{
ACPI_FUNCTION_TRACE ("AcpiGetFirmwareWakingVector");
if (!PhysicalAddress)
{
return_ACPI_STATUS (AE_BAD_PARAMETER);
}
/* Get the vector */
if (AcpiGbl_CommonFACS.VectorWidth == 32)
{
*PhysicalAddress = (ACPI_PHYSICAL_ADDRESS)
*(ACPI_CAST_PTR (UINT32, AcpiGbl_CommonFACS.FirmwareWakingVector));
}
else
{
*PhysicalAddress =
*AcpiGbl_CommonFACS.FirmwareWakingVector;
}
return_ACPI_STATUS (AE_OK);
}
/******************************************************************************
*
* FUNCTION: AcpiEnterSleepStatePrep
*
* PARAMETERS: SleepState - Which sleep state to enter
*
* RETURN: Status
*
* DESCRIPTION: Prepare to enter a system sleep state (see ACPI 2.0 spec p 231)
* This function must execute with interrupts enabled.
* We break sleeping into 2 stages so that OSPM can handle
* various OS-specific tasks between the two steps.
*
******************************************************************************/
ACPI_STATUS
AcpiEnterSleepStatePrep (
UINT8 SleepState)
{
ACPI_STATUS Status;
ACPI_OBJECT_LIST ArgList;
ACPI_OBJECT Arg;
ACPI_FUNCTION_TRACE ("AcpiEnterSleepStatePrep");
/*
* _PSW methods could be run here to enable wake-on keyboard, LAN, etc.
*/
Status = AcpiGetSleepTypeData (SleepState,
&AcpiGbl_SleepTypeA, &AcpiGbl_SleepTypeB);
if (ACPI_FAILURE (Status))
{
return_ACPI_STATUS (Status);
}
/* Setup parameter object */
ArgList.Count = 1;
ArgList.Pointer = &Arg;
Arg.Type = ACPI_TYPE_INTEGER;
Arg.Integer.Value = SleepState;
/* Run the _PTS and _GTS methods */
Status = AcpiEvaluateObject (NULL, "\\_PTS", &ArgList, NULL);
if (ACPI_FAILURE (Status) && Status != AE_NOT_FOUND)
{
return_ACPI_STATUS (Status);
}
Status = AcpiEvaluateObject (NULL, "\\_GTS", &ArgList, NULL);
if (ACPI_FAILURE (Status) && Status != AE_NOT_FOUND)
{
return_ACPI_STATUS (Status);
}
return_ACPI_STATUS (AE_OK);
}
/******************************************************************************
*
* FUNCTION: AcpiEnterSleepState
*
* PARAMETERS: SleepState - Which sleep state to enter
*
* RETURN: Status
*
* DESCRIPTION: Enter a system sleep state (see ACPI 2.0 spec p 231)
* THIS FUNCTION MUST BE CALLED WITH INTERRUPTS DISABLED
*
******************************************************************************/
ACPI_STATUS
AcpiEnterSleepState (
UINT8 SleepState)
{
UINT32 PM1AControl;
UINT32 PM1BControl;
ACPI_BIT_REGISTER_INFO *SleepTypeRegInfo;
ACPI_BIT_REGISTER_INFO *SleepEnableRegInfo;
UINT32 InValue;
ACPI_STATUS Status;
ACPI_FUNCTION_TRACE ("AcpiEnterSleepState");
if ((AcpiGbl_SleepTypeA > ACPI_SLEEP_TYPE_MAX) ||
(AcpiGbl_SleepTypeB > ACPI_SLEEP_TYPE_MAX))
{
ACPI_REPORT_ERROR (("Sleep values out of range: A=%X B=%X\n",
AcpiGbl_SleepTypeA, AcpiGbl_SleepTypeB));
return_ACPI_STATUS (AE_AML_OPERAND_VALUE);
}
SleepTypeRegInfo = AcpiHwGetBitRegisterInfo (ACPI_BITREG_SLEEP_TYPE_A);
SleepEnableRegInfo = AcpiHwGetBitRegisterInfo (ACPI_BITREG_SLEEP_ENABLE);
/* Clear wake status */
Status = AcpiSetRegister (ACPI_BITREG_WAKE_STATUS, 1, ACPI_MTX_DO_NOT_LOCK);
if (ACPI_FAILURE (Status))
{
return_ACPI_STATUS (Status);
}
Status = AcpiHwClearAcpiStatus(ACPI_MTX_DO_NOT_LOCK);
if (ACPI_FAILURE (Status))
{
return_ACPI_STATUS (Status);
}
/* Disable BM arbitration */
Status = AcpiSetRegister (ACPI_BITREG_ARB_DISABLE, 1, ACPI_MTX_DO_NOT_LOCK);
if (ACPI_FAILURE (Status))
{
return_ACPI_STATUS (Status);
}
Status = AcpiHwDisableNonWakeupGpes();
if (ACPI_FAILURE (Status))
{
return_ACPI_STATUS (Status);
}
/* Get current value of PM1A control */
Status = AcpiHwRegisterRead (ACPI_MTX_DO_NOT_LOCK, ACPI_REGISTER_PM1_CONTROL, &PM1AControl);
if (ACPI_FAILURE (Status))
{
return_ACPI_STATUS (Status);
}
ACPI_DEBUG_PRINT ((ACPI_DB_INIT, "Entering sleep state [S%d]\n", SleepState));
/* Clear SLP_EN and SLP_TYP fields */
PM1AControl &= ~(SleepTypeRegInfo->AccessBitMask | SleepEnableRegInfo->AccessBitMask);
PM1BControl = PM1AControl;
/* Insert SLP_TYP bits */
PM1AControl |= (AcpiGbl_SleepTypeA << SleepTypeRegInfo->BitPosition);
PM1BControl |= (AcpiGbl_SleepTypeB << SleepTypeRegInfo->BitPosition);
/* Write #1: fill in SLP_TYP data */
Status = AcpiHwRegisterWrite (ACPI_MTX_DO_NOT_LOCK, ACPI_REGISTER_PM1A_CONTROL, PM1AControl);
if (ACPI_FAILURE (Status))
{
return_ACPI_STATUS (Status);
}
Status = AcpiHwRegisterWrite (ACPI_MTX_DO_NOT_LOCK, ACPI_REGISTER_PM1B_CONTROL, PM1BControl);
if (ACPI_FAILURE (Status))
{
return_ACPI_STATUS (Status);
}
/* Insert SLP_ENABLE bit */
PM1AControl |= SleepEnableRegInfo->AccessBitMask;
PM1BControl |= SleepEnableRegInfo->AccessBitMask;
/* Write #2: SLP_TYP + SLP_EN */
ACPI_FLUSH_CPU_CACHE ();
Status = AcpiHwRegisterWrite (ACPI_MTX_DO_NOT_LOCK, ACPI_REGISTER_PM1A_CONTROL, PM1AControl);
if (ACPI_FAILURE (Status))
{
return_ACPI_STATUS (Status);
}
Status = AcpiHwRegisterWrite (ACPI_MTX_DO_NOT_LOCK, ACPI_REGISTER_PM1B_CONTROL, PM1BControl);
if (ACPI_FAILURE (Status))
{
return_ACPI_STATUS (Status);
}
/*
* Wait a second, then try again. This is to get S4/5 to work on all machines.
*/
if (SleepState > ACPI_STATE_S3)
{
/*
* We wait so long to allow chipsets that poll this reg very slowly to
* still read the right value. Ideally, this entire block would go
* away entirely.
*/
AcpiOsStall (10000000);
Status = AcpiHwRegisterWrite (ACPI_MTX_DO_NOT_LOCK, ACPI_REGISTER_PM1_CONTROL,
SleepEnableRegInfo->AccessBitMask);
if (ACPI_FAILURE (Status))
{
return_ACPI_STATUS (Status);
}
}
/* Wait until we enter sleep state */
do
{
Status = AcpiGetRegister (ACPI_BITREG_WAKE_STATUS, &InValue, ACPI_MTX_DO_NOT_LOCK);
if (ACPI_FAILURE (Status))
{
return_ACPI_STATUS (Status);
}
/* Spin until we wake */
} while (!InValue);
return_ACPI_STATUS (AE_OK);
}
/******************************************************************************
*
* FUNCTION: AcpiEnterSleepStateS4bios
*
* PARAMETERS: None
*
* RETURN: Status
*
* DESCRIPTION: Perform a S4 bios request.
* THIS FUNCTION MUST BE CALLED WITH INTERRUPTS DISABLED
*
******************************************************************************/
ACPI_STATUS
AcpiEnterSleepStateS4bios (
void)
{
UINT32 InValue;
ACPI_STATUS Status;
ACPI_FUNCTION_TRACE ("AcpiEnterSleepStateS4bios");
AcpiSetRegister (ACPI_BITREG_WAKE_STATUS, 1, ACPI_MTX_DO_NOT_LOCK);
AcpiHwClearAcpiStatus(ACPI_MTX_DO_NOT_LOCK);
AcpiHwDisableNonWakeupGpes();
ACPI_FLUSH_CPU_CACHE();
Status = AcpiOsWritePort (AcpiGbl_FADT->SmiCmd, (UINT32) AcpiGbl_FADT->S4BiosReq, 8);
do {
AcpiOsStall(1000);
Status = AcpiGetRegister (ACPI_BITREG_WAKE_STATUS, &InValue, ACPI_MTX_DO_NOT_LOCK);
if (ACPI_FAILURE (Status))
{
return_ACPI_STATUS (Status);
}
} while (!InValue);
return_ACPI_STATUS (AE_OK);
}
/******************************************************************************
*
* FUNCTION: AcpiLeaveSleepState
*
* PARAMETERS: SleepState - Which sleep state we just exited
*
* RETURN: Status
*
* DESCRIPTION: Perform OS-independent ACPI cleanup after a sleep
*
******************************************************************************/
ACPI_STATUS
AcpiLeaveSleepState (
UINT8 SleepState)
{
ACPI_OBJECT_LIST ArgList;
ACPI_OBJECT Arg;
ACPI_STATUS Status;
ACPI_FUNCTION_TRACE ("AcpiLeaveSleepState");
/* Ensure EnterSleepStatePrep -> EnterSleepState ordering */
AcpiGbl_SleepTypeA = ACPI_SLEEP_TYPE_INVALID;
/* Setup parameter object */
ArgList.Count = 1;
ArgList.Pointer = &Arg;
Arg.Type = ACPI_TYPE_INTEGER;
Arg.Integer.Value = SleepState;
/* Ignore any errors from these methods */
Status = AcpiEvaluateObject (NULL, "\\_BFS", &ArgList, NULL);
if (ACPI_FAILURE (Status) && Status != AE_NOT_FOUND)
{
ACPI_REPORT_ERROR (("Method _BFS failed, %s\n", AcpiFormatException (Status)));
}
Status = AcpiEvaluateObject (NULL, "\\_WAK", &ArgList, NULL);
if (ACPI_FAILURE (Status) && Status != AE_NOT_FOUND)
{
ACPI_REPORT_ERROR (("Method _WAK failed, %s\n", AcpiFormatException (Status)));
}
/* _WAK returns stuff - do we want to look at it? */
Status = AcpiHwEnableNonWakeupGpes();
if (ACPI_FAILURE (Status))
{
return_ACPI_STATUS (Status);
}
/* Disable BM arbitration */
Status = AcpiSetRegister (ACPI_BITREG_ARB_DISABLE, 0, ACPI_MTX_LOCK);
return_ACPI_STATUS (Status);
}