freebsd-dev/sys/kern/subr_trap.c
jhb 3740c3ca81 - Release Giant a bit earlier on syscall exit.
- Don't try to grab Giant before postsig() in userret() as it is no longer
  needed.
- Don't grab Giant before psignal() in ast() but get the proc lock instead.
2001-03-07 03:53:39 +00:00

1321 lines
32 KiB
C

/*-
* Copyright (C) 1994, David Greenman
* Copyright (c) 1990, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the University of Utah, and William Jolitz.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)trap.c 7.4 (Berkeley) 5/13/91
* $FreeBSD$
*/
/*
* 386 Trap and System call handling
*/
#include "opt_clock.h"
#include "opt_cpu.h"
#include "opt_ddb.h"
#include "opt_isa.h"
#include "opt_ktrace.h"
#include "opt_npx.h"
#include "opt_trap.h"
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/pioctl.h>
#include <sys/ipl.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/mutex.h>
#include <sys/resourcevar.h>
#include <sys/signalvar.h>
#include <sys/syscall.h>
#include <sys/sysctl.h>
#include <sys/sysent.h>
#include <sys/uio.h>
#include <sys/vmmeter.h>
#ifdef KTRACE
#include <sys/ktrace.h>
#endif
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <sys/lock.h>
#include <vm/pmap.h>
#include <vm/vm_kern.h>
#include <vm/vm_map.h>
#include <vm/vm_page.h>
#include <vm/vm_extern.h>
#include <machine/cpu.h>
#include <machine/md_var.h>
#include <machine/pcb.h>
#ifdef SMP
#include <machine/smp.h>
#endif
#include <machine/tss.h>
#include <i386/isa/icu.h>
#include <i386/isa/intr_machdep.h>
#ifdef POWERFAIL_NMI
#include <sys/syslog.h>
#include <machine/clock.h>
#endif
#include <machine/vm86.h>
#include <ddb/ddb.h>
#include <sys/sysctl.h>
int (*pmath_emulate) __P((struct trapframe *));
extern void trap __P((struct trapframe frame));
extern int trapwrite __P((unsigned addr));
extern void syscall __P((struct trapframe frame));
extern void ast __P((struct trapframe *framep));
static int trap_pfault __P((struct trapframe *, int, vm_offset_t));
static void trap_fatal __P((struct trapframe *, vm_offset_t));
void dblfault_handler __P((void));
extern inthand_t IDTVEC(lcall_syscall);
#define MAX_TRAP_MSG 28
static char *trap_msg[] = {
"", /* 0 unused */
"privileged instruction fault", /* 1 T_PRIVINFLT */
"", /* 2 unused */
"breakpoint instruction fault", /* 3 T_BPTFLT */
"", /* 4 unused */
"", /* 5 unused */
"arithmetic trap", /* 6 T_ARITHTRAP */
"", /* 7 unused */
"", /* 8 unused */
"general protection fault", /* 9 T_PROTFLT */
"trace trap", /* 10 T_TRCTRAP */
"", /* 11 unused */
"page fault", /* 12 T_PAGEFLT */
"", /* 13 unused */
"alignment fault", /* 14 T_ALIGNFLT */
"", /* 15 unused */
"", /* 16 unused */
"", /* 17 unused */
"integer divide fault", /* 18 T_DIVIDE */
"non-maskable interrupt trap", /* 19 T_NMI */
"overflow trap", /* 20 T_OFLOW */
"FPU bounds check fault", /* 21 T_BOUND */
"FPU device not available", /* 22 T_DNA */
"double fault", /* 23 T_DOUBLEFLT */
"FPU operand fetch fault", /* 24 T_FPOPFLT */
"invalid TSS fault", /* 25 T_TSSFLT */
"segment not present fault", /* 26 T_SEGNPFLT */
"stack fault", /* 27 T_STKFLT */
"machine check trap", /* 28 T_MCHK */
};
#if defined(I586_CPU) && !defined(NO_F00F_HACK)
extern int has_f00f_bug;
#endif
#ifdef DDB
static int ddb_on_nmi = 1;
SYSCTL_INT(_machdep, OID_AUTO, ddb_on_nmi, CTLFLAG_RW,
&ddb_on_nmi, 0, "Go to DDB on NMI");
#endif
static int panic_on_nmi = 1;
SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RW,
&panic_on_nmi, 0, "Panic on NMI");
#ifdef WITNESS
extern char *syscallnames[];
#endif
void
userret(p, frame, oticks)
struct proc *p;
struct trapframe *frame;
u_quad_t oticks;
{
int sig;
while ((sig = CURSIG(p)) != 0)
postsig(sig);
mtx_lock_spin(&sched_lock);
p->p_pri.pri_level = p->p_pri.pri_user;
if (resched_wanted()) {
/*
* Since we are curproc, clock will normally just change
* our priority without moving us from one queue to another
* (since the running process is not on a queue.)
* If that happened after we setrunqueue ourselves but before we
* mi_switch()'ed, we might not be on the queue indicated by
* our priority.
*/
DROP_GIANT_NOSWITCH();
setrunqueue(p);
p->p_stats->p_ru.ru_nivcsw++;
mi_switch();
mtx_unlock_spin(&sched_lock);
PICKUP_GIANT();
while ((sig = CURSIG(p)) != 0)
postsig(sig);
mtx_lock_spin(&sched_lock);
}
/*
* Charge system time if profiling.
*/
if (p->p_sflag & PS_PROFIL) {
mtx_unlock_spin(&sched_lock);
/* XXX - do we need Giant? */
if (!mtx_owned(&Giant))
mtx_lock(&Giant);
addupc_task(p, TRAPF_PC(frame),
(u_int)(p->p_sticks - oticks) * psratio);
} else
mtx_unlock_spin(&sched_lock);
}
/*
* Exception, fault, and trap interface to the FreeBSD kernel.
* This common code is called from assembly language IDT gate entry
* routines that prepare a suitable stack frame, and restore this
* frame after the exception has been processed.
*/
void
trap(frame)
struct trapframe frame;
{
struct proc *p = curproc;
u_quad_t sticks = 0;
int i = 0, ucode = 0, type, code;
vm_offset_t eva;
#ifdef POWERFAIL_NMI
static int lastalert = 0;
#endif
atomic_add_int(&cnt.v_trap, 1);
if ((frame.tf_eflags & PSL_I) == 0) {
/*
* Buggy application or kernel code has disabled
* interrupts and then trapped. Enabling interrupts
* now is wrong, but it is better than running with
* interrupts disabled until they are accidentally
* enabled later. XXX This is really bad if we trap
* while holding a spin lock.
*/
type = frame.tf_trapno;
if (ISPL(frame.tf_cs) == SEL_UPL || (frame.tf_eflags & PSL_VM))
printf(
"pid %ld (%s): trap %d with interrupts disabled\n",
(long)curproc->p_pid, curproc->p_comm, type);
else if (type != T_BPTFLT && type != T_TRCTRAP) {
/*
* XXX not quite right, since this may be for a
* multiple fault in user mode.
*/
printf("kernel trap %d with interrupts disabled\n",
type);
/*
* We should walk p_heldmtx here and see if any are
* spin mutexes, and not do this if so.
*/
enable_intr();
}
}
eva = 0;
#if defined(I586_CPU) && !defined(NO_F00F_HACK)
restart:
#endif
type = frame.tf_trapno;
code = frame.tf_err;
if ((ISPL(frame.tf_cs) == SEL_UPL) ||
((frame.tf_eflags & PSL_VM) && !in_vm86call)) {
/* user trap */
mtx_lock_spin(&sched_lock);
sticks = p->p_sticks;
mtx_unlock_spin(&sched_lock);
p->p_md.md_regs = &frame;
switch (type) {
case T_PRIVINFLT: /* privileged instruction fault */
ucode = type;
i = SIGILL;
break;
case T_BPTFLT: /* bpt instruction fault */
case T_TRCTRAP: /* trace trap */
frame.tf_eflags &= ~PSL_T;
i = SIGTRAP;
break;
case T_ARITHTRAP: /* arithmetic trap */
ucode = code;
i = SIGFPE;
break;
/*
* The following two traps can happen in
* vm86 mode, and, if so, we want to handle
* them specially.
*/
case T_PROTFLT: /* general protection fault */
case T_STKFLT: /* stack fault */
if (frame.tf_eflags & PSL_VM) {
mtx_lock(&Giant);
i = vm86_emulate((struct vm86frame *)&frame);
mtx_unlock(&Giant);
if (i == 0)
goto user;
break;
}
/* FALL THROUGH */
case T_SEGNPFLT: /* segment not present fault */
case T_TSSFLT: /* invalid TSS fault */
case T_DOUBLEFLT: /* double fault */
default:
ucode = code + BUS_SEGM_FAULT ;
i = SIGBUS;
break;
case T_PAGEFLT: /* page fault */
/*
* For some Cyrix CPUs, %cr2 is clobbered by
* interrupts. This problem is worked around by using
* an interrupt gate for the pagefault handler. We
* are finally ready to read %cr2 and then must
* reenable interrupts.
*/
eva = rcr2();
enable_intr();
mtx_lock(&Giant);
i = trap_pfault(&frame, TRUE, eva);
mtx_unlock(&Giant);
#if defined(I586_CPU) && !defined(NO_F00F_HACK)
if (i == -2) {
/*
* f00f hack workaround has triggered, treat
* as illegal instruction not page fault.
*/
frame.tf_trapno = T_PRIVINFLT;
goto restart;
}
#endif
if (i == -1)
goto out;
if (i == 0)
goto user;
ucode = T_PAGEFLT;
break;
case T_DIVIDE: /* integer divide fault */
ucode = FPE_INTDIV;
i = SIGFPE;
break;
#ifdef DEV_ISA
case T_NMI:
#ifdef POWERFAIL_NMI
#ifndef TIMER_FREQ
# define TIMER_FREQ 1193182
#endif
mtx_lock(&Giant);
if (time_second - lastalert > 10) {
log(LOG_WARNING, "NMI: power fail\n");
sysbeep(TIMER_FREQ/880, hz);
lastalert = time_second;
}
mtx_unlock(&Giant);
goto out;
#else /* !POWERFAIL_NMI */
/* machine/parity/power fail/"kitchen sink" faults */
/* XXX Giant */
if (isa_nmi(code) == 0) {
#ifdef DDB
/*
* NMI can be hooked up to a pushbutton
* for debugging.
*/
if (ddb_on_nmi) {
printf ("NMI ... going to debugger\n");
kdb_trap (type, 0, &frame);
}
#endif /* DDB */
goto out;
} else if (panic_on_nmi)
panic("NMI indicates hardware failure");
break;
#endif /* POWERFAIL_NMI */
#endif /* DEV_ISA */
case T_OFLOW: /* integer overflow fault */
ucode = FPE_INTOVF;
i = SIGFPE;
break;
case T_BOUND: /* bounds check fault */
ucode = FPE_FLTSUB;
i = SIGFPE;
break;
case T_DNA:
#ifdef DEV_NPX
/* transparent fault (due to context switch "late") */
if (npxdna())
goto out;
#endif
if (!pmath_emulate) {
i = SIGFPE;
ucode = FPE_FPU_NP_TRAP;
break;
}
mtx_lock(&Giant);
i = (*pmath_emulate)(&frame);
mtx_unlock(&Giant);
if (i == 0) {
if (!(frame.tf_eflags & PSL_T))
goto out;
frame.tf_eflags &= ~PSL_T;
i = SIGTRAP;
}
/* else ucode = emulator_only_knows() XXX */
break;
case T_FPOPFLT: /* FPU operand fetch fault */
ucode = T_FPOPFLT;
i = SIGILL;
break;
}
} else {
/* kernel trap */
switch (type) {
case T_PAGEFLT: /* page fault */
/*
* For some Cyrix CPUs, %cr2 is clobbered by
* interrupts. This problem is worked around by using
* an interrupt gate for the pagefault handler. We
* are finally ready to read %cr2 and then must
* reenable interrupts.
*/
eva = rcr2();
enable_intr();
mtx_lock(&Giant);
(void) trap_pfault(&frame, FALSE, eva);
mtx_unlock(&Giant);
goto out;
case T_DNA:
#ifdef DEV_NPX
/*
* The kernel is apparently using npx for copying.
* XXX this should be fatal unless the kernel has
* registered such use.
*/
if (npxdna())
goto out;
#endif
break;
/*
* The following two traps can happen in
* vm86 mode, and, if so, we want to handle
* them specially.
*/
case T_PROTFLT: /* general protection fault */
case T_STKFLT: /* stack fault */
if (frame.tf_eflags & PSL_VM) {
mtx_lock(&Giant);
i = vm86_emulate((struct vm86frame *)&frame);
mtx_unlock(&Giant);
if (i != 0)
/*
* returns to original process
*/
vm86_trap((struct vm86frame *)&frame);
goto out;
}
if (type == T_STKFLT)
break;
/* FALL THROUGH */
case T_SEGNPFLT: /* segment not present fault */
if (in_vm86call)
break;
if (p->p_intr_nesting_level != 0)
break;
/*
* Invalid %fs's and %gs's can be created using
* procfs or PT_SETREGS or by invalidating the
* underlying LDT entry. This causes a fault
* in kernel mode when the kernel attempts to
* switch contexts. Lose the bad context
* (XXX) so that we can continue, and generate
* a signal.
*/
if (frame.tf_eip == (int)cpu_switch_load_gs) {
PCPU_GET(curpcb)->pcb_gs = 0;
PROC_LOCK(p);
psignal(p, SIGBUS);
PROC_UNLOCK(p);
goto out;
}
/*
* Invalid segment selectors and out of bounds
* %eip's and %esp's can be set up in user mode.
* This causes a fault in kernel mode when the
* kernel tries to return to user mode. We want
* to get this fault so that we can fix the
* problem here and not have to check all the
* selectors and pointers when the user changes
* them.
*/
if (frame.tf_eip == (int)doreti_iret) {
frame.tf_eip = (int)doreti_iret_fault;
goto out;
}
if (frame.tf_eip == (int)doreti_popl_ds) {
frame.tf_eip = (int)doreti_popl_ds_fault;
goto out;
}
if (frame.tf_eip == (int)doreti_popl_es) {
frame.tf_eip = (int)doreti_popl_es_fault;
goto out;
}
if (frame.tf_eip == (int)doreti_popl_fs) {
frame.tf_eip = (int)doreti_popl_fs_fault;
goto out;
}
if (PCPU_GET(curpcb) != NULL &&
PCPU_GET(curpcb)->pcb_onfault != NULL) {
frame.tf_eip =
(int)PCPU_GET(curpcb)->pcb_onfault;
goto out;
}
break;
case T_TSSFLT:
/*
* PSL_NT can be set in user mode and isn't cleared
* automatically when the kernel is entered. This
* causes a TSS fault when the kernel attempts to
* `iret' because the TSS link is uninitialized. We
* want to get this fault so that we can fix the
* problem here and not every time the kernel is
* entered.
*/
if (frame.tf_eflags & PSL_NT) {
frame.tf_eflags &= ~PSL_NT;
goto out;
}
break;
case T_TRCTRAP: /* trace trap */
if (frame.tf_eip == (int)IDTVEC(lcall_syscall)) {
/*
* We've just entered system mode via the
* syscall lcall. Continue single stepping
* silently until the syscall handler has
* saved the flags.
*/
goto out;
}
if (frame.tf_eip == (int)IDTVEC(lcall_syscall) + 1) {
/*
* The syscall handler has now saved the
* flags. Stop single stepping it.
*/
frame.tf_eflags &= ~PSL_T;
goto out;
}
/*
* Ignore debug register trace traps due to
* accesses in the user's address space, which
* can happen under several conditions such as
* if a user sets a watchpoint on a buffer and
* then passes that buffer to a system call.
* We still want to get TRCTRAPS for addresses
* in kernel space because that is useful when
* debugging the kernel.
*/
/* XXX Giant */
if (user_dbreg_trap() && !in_vm86call) {
/*
* Reset breakpoint bits because the
* processor doesn't
*/
load_dr6(rdr6() & 0xfffffff0);
goto out;
}
/*
* Fall through (TRCTRAP kernel mode, kernel address)
*/
case T_BPTFLT:
/*
* If DDB is enabled, let it handle the debugger trap.
* Otherwise, debugger traps "can't happen".
*/
#ifdef DDB
/* XXX Giant */
if (kdb_trap (type, 0, &frame))
goto out;
#endif
break;
#ifdef DEV_ISA
case T_NMI:
#ifdef POWERFAIL_NMI
mtx_lock(&Giant);
if (time_second - lastalert > 10) {
log(LOG_WARNING, "NMI: power fail\n");
sysbeep(TIMER_FREQ/880, hz);
lastalert = time_second;
}
mtx_unlock(&Giant);
goto out;
#else /* !POWERFAIL_NMI */
/* XXX Giant */
/* machine/parity/power fail/"kitchen sink" faults */
if (isa_nmi(code) == 0) {
#ifdef DDB
/*
* NMI can be hooked up to a pushbutton
* for debugging.
*/
if (ddb_on_nmi) {
printf ("NMI ... going to debugger\n");
kdb_trap (type, 0, &frame);
}
#endif /* DDB */
goto out;
} else if (panic_on_nmi == 0)
goto out;
/* FALL THROUGH */
#endif /* POWERFAIL_NMI */
#endif /* DEV_ISA */
}
mtx_lock(&Giant);
trap_fatal(&frame, eva);
mtx_unlock(&Giant);
goto out;
}
mtx_lock(&Giant);
/* Translate fault for emulators (e.g. Linux) */
if (*p->p_sysent->sv_transtrap)
i = (*p->p_sysent->sv_transtrap)(i, type);
trapsignal(p, i, ucode);
#ifdef DEBUG
if (type <= MAX_TRAP_MSG) {
uprintf("fatal process exception: %s",
trap_msg[type]);
if ((type == T_PAGEFLT) || (type == T_PROTFLT))
uprintf(", fault VA = 0x%lx", (u_long)eva);
uprintf("\n");
}
#endif
mtx_unlock(&Giant);
user:
userret(p, &frame, sticks);
if (mtx_owned(&Giant))
mtx_unlock(&Giant);
out:
return;
}
#ifdef notyet
/*
* This version doesn't allow a page fault to user space while
* in the kernel. The rest of the kernel needs to be made "safe"
* before this can be used. I think the only things remaining
* to be made safe are the iBCS2 code and the process tracing/
* debugging code.
*/
static int
trap_pfault(frame, usermode, eva)
struct trapframe *frame;
int usermode;
vm_offset_t eva;
{
vm_offset_t va;
struct vmspace *vm = NULL;
vm_map_t map = 0;
int rv = 0;
vm_prot_t ftype;
struct proc *p = curproc;
if (frame->tf_err & PGEX_W)
ftype = VM_PROT_WRITE;
else
ftype = VM_PROT_READ;
va = trunc_page(eva);
if (va < VM_MIN_KERNEL_ADDRESS) {
vm_offset_t v;
vm_page_t mpte;
if (p == NULL ||
(!usermode && va < VM_MAXUSER_ADDRESS &&
(p->p_intr_nesting_level != 0 ||
PCPU_GET(curpcb) == NULL ||
PCPU_GET(curpcb)->pcb_onfault == NULL))) {
trap_fatal(frame, eva);
return (-1);
}
/*
* This is a fault on non-kernel virtual memory.
* vm is initialized above to NULL. If curproc is NULL
* or curproc->p_vmspace is NULL the fault is fatal.
*/
vm = p->p_vmspace;
if (vm == NULL)
goto nogo;
map = &vm->vm_map;
/*
* Keep swapout from messing with us during this
* critical time.
*/
PROC_LOCK(p);
++p->p_lock;
PROC_UNLOCK(p);
/*
* Grow the stack if necessary
*/
/* grow_stack returns false only if va falls into
* a growable stack region and the stack growth
* fails. It returns true if va was not within
* a growable stack region, or if the stack
* growth succeeded.
*/
if (!grow_stack (p, va)) {
rv = KERN_FAILURE;
PROC_LOCK(p);
--p->p_lock;
PROC_UNLOCK(p);
goto nogo;
}
/* Fault in the user page: */
rv = vm_fault(map, va, ftype,
(ftype & VM_PROT_WRITE) ? VM_FAULT_DIRTY
: VM_FAULT_NORMAL);
PROC_LOCK(p);
--p->p_lock;
PROC_UNLOCK(p);
} else {
/*
* Don't allow user-mode faults in kernel address space.
*/
if (usermode)
goto nogo;
/*
* Since we know that kernel virtual address addresses
* always have pte pages mapped, we just have to fault
* the page.
*/
rv = vm_fault(kernel_map, va, ftype, VM_FAULT_NORMAL);
}
if (rv == KERN_SUCCESS)
return (0);
nogo:
if (!usermode) {
if (p->p_intr_nesting_level == 0 &&
PCPU_GET(curpcb) != NULL &&
PCPU_GET(curpcb)->pcb_onfault != NULL) {
frame->tf_eip = (int)PCPU_GET(curpcb)->pcb_onfault;
return (0);
}
trap_fatal(frame, eva);
return (-1);
}
/* kludge to pass faulting virtual address to sendsig */
frame->tf_err = eva;
return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
}
#endif
int
trap_pfault(frame, usermode, eva)
struct trapframe *frame;
int usermode;
vm_offset_t eva;
{
vm_offset_t va;
struct vmspace *vm = NULL;
vm_map_t map = 0;
int rv = 0;
vm_prot_t ftype;
struct proc *p = curproc;
va = trunc_page(eva);
if (va >= KERNBASE) {
/*
* Don't allow user-mode faults in kernel address space.
* An exception: if the faulting address is the invalid
* instruction entry in the IDT, then the Intel Pentium
* F00F bug workaround was triggered, and we need to
* treat it is as an illegal instruction, and not a page
* fault.
*/
#if defined(I586_CPU) && !defined(NO_F00F_HACK)
if ((eva == (unsigned int)&idt[6]) && has_f00f_bug)
return -2;
#endif
if (usermode)
goto nogo;
map = kernel_map;
} else {
/*
* This is a fault on non-kernel virtual memory.
* vm is initialized above to NULL. If curproc is NULL
* or curproc->p_vmspace is NULL the fault is fatal.
*/
if (p != NULL)
vm = p->p_vmspace;
if (vm == NULL)
goto nogo;
map = &vm->vm_map;
}
if (frame->tf_err & PGEX_W)
ftype = VM_PROT_WRITE;
else
ftype = VM_PROT_READ;
if (map != kernel_map) {
/*
* Keep swapout from messing with us during this
* critical time.
*/
PROC_LOCK(p);
++p->p_lock;
PROC_UNLOCK(p);
/*
* Grow the stack if necessary
*/
/* grow_stack returns false only if va falls into
* a growable stack region and the stack growth
* fails. It returns true if va was not within
* a growable stack region, or if the stack
* growth succeeded.
*/
if (!grow_stack (p, va)) {
rv = KERN_FAILURE;
PROC_LOCK(p);
--p->p_lock;
PROC_UNLOCK(p);
goto nogo;
}
/* Fault in the user page: */
rv = vm_fault(map, va, ftype,
(ftype & VM_PROT_WRITE) ? VM_FAULT_DIRTY
: VM_FAULT_NORMAL);
PROC_LOCK(p);
--p->p_lock;
PROC_UNLOCK(p);
} else {
/*
* Don't have to worry about process locking or stacks in the
* kernel.
*/
rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
}
if (rv == KERN_SUCCESS)
return (0);
nogo:
if (!usermode) {
if (p->p_intr_nesting_level == 0 &&
PCPU_GET(curpcb) != NULL &&
PCPU_GET(curpcb)->pcb_onfault != NULL) {
frame->tf_eip = (int)PCPU_GET(curpcb)->pcb_onfault;
return (0);
}
trap_fatal(frame, eva);
return (-1);
}
/* kludge to pass faulting virtual address to sendsig */
frame->tf_err = eva;
return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
}
static void
trap_fatal(frame, eva)
struct trapframe *frame;
vm_offset_t eva;
{
int code, type, ss, esp;
struct soft_segment_descriptor softseg;
code = frame->tf_err;
type = frame->tf_trapno;
sdtossd(&gdt[IDXSEL(frame->tf_cs & 0xffff)].sd, &softseg);
if (type <= MAX_TRAP_MSG)
printf("\n\nFatal trap %d: %s while in %s mode\n",
type, trap_msg[type],
frame->tf_eflags & PSL_VM ? "vm86" :
ISPL(frame->tf_cs) == SEL_UPL ? "user" : "kernel");
#ifdef SMP
/* two separate prints in case of a trap on an unmapped page */
printf("cpuid = %d; ", PCPU_GET(cpuid));
printf("lapic.id = %08x\n", lapic.id);
#endif
if (type == T_PAGEFLT) {
printf("fault virtual address = 0x%x\n", eva);
printf("fault code = %s %s, %s\n",
code & PGEX_U ? "user" : "supervisor",
code & PGEX_W ? "write" : "read",
code & PGEX_P ? "protection violation" : "page not present");
}
printf("instruction pointer = 0x%x:0x%x\n",
frame->tf_cs & 0xffff, frame->tf_eip);
if ((ISPL(frame->tf_cs) == SEL_UPL) || (frame->tf_eflags & PSL_VM)) {
ss = frame->tf_ss & 0xffff;
esp = frame->tf_esp;
} else {
ss = GSEL(GDATA_SEL, SEL_KPL);
esp = (int)&frame->tf_esp;
}
printf("stack pointer = 0x%x:0x%x\n", ss, esp);
printf("frame pointer = 0x%x:0x%x\n", ss, frame->tf_ebp);
printf("code segment = base 0x%x, limit 0x%x, type 0x%x\n",
softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type);
printf(" = DPL %d, pres %d, def32 %d, gran %d\n",
softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_def32,
softseg.ssd_gran);
printf("processor eflags = ");
if (frame->tf_eflags & PSL_T)
printf("trace trap, ");
if (frame->tf_eflags & PSL_I)
printf("interrupt enabled, ");
if (frame->tf_eflags & PSL_NT)
printf("nested task, ");
if (frame->tf_eflags & PSL_RF)
printf("resume, ");
if (frame->tf_eflags & PSL_VM)
printf("vm86, ");
printf("IOPL = %d\n", (frame->tf_eflags & PSL_IOPL) >> 12);
printf("current process = ");
if (curproc) {
printf("%lu (%s)\n",
(u_long)curproc->p_pid, curproc->p_comm ?
curproc->p_comm : "");
} else {
printf("Idle\n");
}
#ifdef KDB
if (kdb_trap(&psl))
return;
#endif
#ifdef DDB
if ((debugger_on_panic || db_active) && kdb_trap(type, 0, frame))
return;
#endif
printf("trap number = %d\n", type);
if (type <= MAX_TRAP_MSG)
panic(trap_msg[type]);
else
panic("unknown/reserved trap");
}
/*
* Double fault handler. Called when a fault occurs while writing
* a frame for a trap/exception onto the stack. This usually occurs
* when the stack overflows (such is the case with infinite recursion,
* for example).
*
* XXX Note that the current PTD gets replaced by IdlePTD when the
* task switch occurs. This means that the stack that was active at
* the time of the double fault is not available at <kstack> unless
* the machine was idle when the double fault occurred. The downside
* of this is that "trace <ebp>" in ddb won't work.
*/
void
dblfault_handler()
{
printf("\nFatal double fault:\n");
printf("eip = 0x%x\n", PCPU_GET(common_tss.tss_eip));
printf("esp = 0x%x\n", PCPU_GET(common_tss.tss_esp));
printf("ebp = 0x%x\n", PCPU_GET(common_tss.tss_ebp));
#ifdef SMP
/* two separate prints in case of a trap on an unmapped page */
printf("cpuid = %d; ", PCPU_GET(cpuid));
printf("lapic.id = %08x\n", lapic.id);
#endif
panic("double fault");
}
/*
* Compensate for 386 brain damage (missing URKR).
* This is a little simpler than the pagefault handler in trap() because
* it the page tables have already been faulted in and high addresses
* are thrown out early for other reasons.
*/
int trapwrite(addr)
unsigned addr;
{
struct proc *p;
vm_offset_t va;
struct vmspace *vm;
int rv;
va = trunc_page((vm_offset_t)addr);
/*
* XXX - MAX is END. Changed > to >= for temp. fix.
*/
if (va >= VM_MAXUSER_ADDRESS)
return (1);
p = curproc;
vm = p->p_vmspace;
PROC_LOCK(p);
++p->p_lock;
PROC_UNLOCK(p);
if (!grow_stack (p, va)) {
PROC_LOCK(p);
--p->p_lock;
PROC_UNLOCK(p);
return (1);
}
/*
* fault the data page
*/
rv = vm_fault(&vm->vm_map, va, VM_PROT_WRITE, VM_FAULT_DIRTY);
PROC_LOCK(p);
--p->p_lock;
PROC_UNLOCK(p);
if (rv != KERN_SUCCESS)
return 1;
return (0);
}
/*
* syscall - MP aware system call request C handler
*
* A system call is essentially treated as a trap except that the
* MP lock is not held on entry or return. We are responsible for
* obtaining the MP lock if necessary and for handling ASTs
* (e.g. a task switch) prior to return.
*
* In general, only simple access and manipulation of curproc and
* the current stack is allowed without having to hold MP lock.
*/
void
syscall(frame)
struct trapframe frame;
{
caddr_t params;
int i;
struct sysent *callp;
struct proc *p = curproc;
u_quad_t sticks;
int error;
int narg;
int args[8];
u_int code;
atomic_add_int(&cnt.v_syscall, 1);
#ifdef DIAGNOSTIC
if (ISPL(frame.tf_cs) != SEL_UPL) {
mtx_lock(&Giant);
panic("syscall");
/* NOT REACHED */
}
#endif
mtx_lock_spin(&sched_lock);
sticks = p->p_sticks;
mtx_unlock_spin(&sched_lock);
p->p_md.md_regs = &frame;
params = (caddr_t)frame.tf_esp + sizeof(int);
code = frame.tf_eax;
if (p->p_sysent->sv_prepsyscall) {
/*
* The prep code is not MP aware.
*/
mtx_lock(&Giant);
(*p->p_sysent->sv_prepsyscall)(&frame, args, &code, &params);
mtx_unlock(&Giant);
} else {
/*
* Need to check if this is a 32 bit or 64 bit syscall.
* fuword is MP aware.
*/
if (code == SYS_syscall) {
/*
* Code is first argument, followed by actual args.
*/
code = fuword(params);
params += sizeof(int);
} else if (code == SYS___syscall) {
/*
* Like syscall, but code is a quad, so as to maintain
* quad alignment for the rest of the arguments.
*/
code = fuword(params);
params += sizeof(quad_t);
}
}
if (p->p_sysent->sv_mask)
code &= p->p_sysent->sv_mask;
if (code >= p->p_sysent->sv_size)
callp = &p->p_sysent->sv_table[0];
else
callp = &p->p_sysent->sv_table[code];
narg = callp->sy_narg & SYF_ARGMASK;
/*
* copyin is MP aware, but the tracing code is not
*/
if (params && (i = narg * sizeof(int)) &&
(error = copyin(params, (caddr_t)args, (u_int)i))) {
mtx_lock(&Giant);
#ifdef KTRACE
if (KTRPOINT(p, KTR_SYSCALL))
ktrsyscall(p->p_tracep, code, narg, args);
#endif
goto bad;
}
/*
* Try to run the syscall without the MP lock if the syscall
* is MP safe. We have to obtain the MP lock no matter what if
* we are ktracing
*/
if ((callp->sy_narg & SYF_MPSAFE) == 0) {
mtx_lock(&Giant);
}
#ifdef KTRACE
if (KTRPOINT(p, KTR_SYSCALL)) {
if (!mtx_owned(&Giant))
mtx_lock(&Giant);
ktrsyscall(p->p_tracep, code, narg, args);
}
#endif
p->p_retval[0] = 0;
p->p_retval[1] = frame.tf_edx;
STOPEVENT(p, S_SCE, narg); /* MP aware */
error = (*callp->sy_call)(p, args);
/*
* MP SAFE (we may or may not have the MP lock at this point)
*/
switch (error) {
case 0:
frame.tf_eax = p->p_retval[0];
frame.tf_edx = p->p_retval[1];
frame.tf_eflags &= ~PSL_C;
break;
case ERESTART:
/*
* Reconstruct pc, assuming lcall $X,y is 7 bytes,
* int 0x80 is 2 bytes. We saved this in tf_err.
*/
frame.tf_eip -= frame.tf_err;
break;
case EJUSTRETURN:
break;
default:
bad:
if (p->p_sysent->sv_errsize) {
if (error >= p->p_sysent->sv_errsize)
error = -1; /* XXX */
else
error = p->p_sysent->sv_errtbl[error];
}
frame.tf_eax = error;
frame.tf_eflags |= PSL_C;
break;
}
/*
* Traced syscall. trapsignal() is not MP aware.
*/
if ((frame.tf_eflags & PSL_T) && !(frame.tf_eflags & PSL_VM)) {
if (!mtx_owned(&Giant))
mtx_lock(&Giant);
frame.tf_eflags &= ~PSL_T;
trapsignal(p, SIGTRAP, 0);
}
/*
* Handle reschedule and other end-of-syscall issues
*/
userret(p, &frame, sticks);
#ifdef KTRACE
if (KTRPOINT(p, KTR_SYSRET)) {
if (!mtx_owned(&Giant))
mtx_lock(&Giant);
ktrsysret(p->p_tracep, code, error, p->p_retval[0]);
}
#endif
/*
* Release Giant if we had to get it
*/
if (mtx_owned(&Giant))
mtx_unlock(&Giant);
/*
* This works because errno is findable through the
* register set. If we ever support an emulation where this
* is not the case, this code will need to be revisited.
*/
STOPEVENT(p, S_SCX, code);
#ifdef WITNESS
if (witness_list(p)) {
panic("system call %s returning with mutex(s) held\n",
syscallnames[code]);
}
#endif
mtx_assert(&sched_lock, MA_NOTOWNED);
mtx_assert(&Giant, MA_NOTOWNED);
}
void
ast(framep)
struct trapframe *framep;
{
struct proc *p = CURPROC;
u_quad_t sticks;
KASSERT(TRAPF_USERMODE(framep), ("ast in kernel mode"));
/*
* We check for a pending AST here rather than in the assembly as
* acquiring and releasing mutexes in assembly is not fun.
*/
mtx_lock_spin(&sched_lock);
if (!(astpending(p) || resched_wanted())) {
mtx_unlock_spin(&sched_lock);
return;
}
sticks = p->p_sticks;
p->p_md.md_regs = framep;
astoff(p);
cnt.v_soft++;
mtx_intr_enable(&sched_lock);
if (p->p_sflag & PS_OWEUPC) {
p->p_sflag &= ~PS_OWEUPC;
mtx_unlock_spin(&sched_lock);
mtx_lock(&Giant);
mtx_lock_spin(&sched_lock);
addupc_task(p, p->p_stats->p_prof.pr_addr,
p->p_stats->p_prof.pr_ticks);
}
if (p->p_sflag & PS_ALRMPEND) {
p->p_sflag &= ~PS_ALRMPEND;
mtx_unlock_spin(&sched_lock);
PROC_LOCK(p);
psignal(p, SIGVTALRM);
PROC_UNLOCK(p);
mtx_lock_spin(&sched_lock);
}
if (p->p_sflag & PS_PROFPEND) {
p->p_sflag &= ~PS_PROFPEND;
mtx_unlock_spin(&sched_lock);
PROC_LOCK(p);
psignal(p, SIGPROF);
PROC_UNLOCK(p);
} else
mtx_unlock_spin(&sched_lock);
userret(p, framep, sticks);
if (mtx_owned(&Giant))
mtx_unlock(&Giant);
}