851dbc07af
AMD BKDG for CPU families 10h and later requires that the memory mapped config is always read into or written from al/ax/eax register. Discussed with: kib, alc Reviewed by: kib (earlier version) MFC after: 25 days
370 lines
9.4 KiB
C
370 lines
9.4 KiB
C
/*-
|
|
* Copyright (c) 1997, Stefan Esser <se@freebsd.org>
|
|
* Copyright (c) 2000, Michael Smith <msmith@freebsd.org>
|
|
* Copyright (c) 2000, BSDi
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice unmodified, this list of conditions, and the following
|
|
* disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/sysctl.h>
|
|
#include <dev/pci/pcivar.h>
|
|
#include <dev/pci/pcireg.h>
|
|
#include <vm/vm.h>
|
|
#include <vm/pmap.h>
|
|
#include <machine/pci_cfgreg.h>
|
|
|
|
enum {
|
|
CFGMECH_NONE = 0,
|
|
CFGMECH_1,
|
|
CFGMECH_PCIE,
|
|
};
|
|
|
|
static uint32_t pci_docfgregread(int bus, int slot, int func, int reg,
|
|
int bytes);
|
|
static int pciereg_cfgread(int bus, unsigned slot, unsigned func,
|
|
unsigned reg, unsigned bytes);
|
|
static void pciereg_cfgwrite(int bus, unsigned slot, unsigned func,
|
|
unsigned reg, int data, unsigned bytes);
|
|
static int pcireg_cfgread(int bus, int slot, int func, int reg, int bytes);
|
|
static void pcireg_cfgwrite(int bus, int slot, int func, int reg, int data, int bytes);
|
|
|
|
SYSCTL_DECL(_hw_pci);
|
|
|
|
static int cfgmech;
|
|
static vm_offset_t pcie_base;
|
|
static int pcie_minbus, pcie_maxbus;
|
|
static uint32_t pcie_badslots;
|
|
static struct mtx pcicfg_mtx;
|
|
static int mcfg_enable = 1;
|
|
TUNABLE_INT("hw.pci.mcfg", &mcfg_enable);
|
|
SYSCTL_INT(_hw_pci, OID_AUTO, mcfg, CTLFLAG_RDTUN, &mcfg_enable, 0,
|
|
"Enable support for PCI-e memory mapped config access");
|
|
|
|
/*
|
|
* Initialise access to PCI configuration space
|
|
*/
|
|
int
|
|
pci_cfgregopen(void)
|
|
{
|
|
static int once = 0;
|
|
uint64_t pciebar;
|
|
uint16_t did, vid;
|
|
|
|
if (!once) {
|
|
mtx_init(&pcicfg_mtx, "pcicfg", NULL, MTX_SPIN);
|
|
once = 1;
|
|
}
|
|
|
|
if (cfgmech != CFGMECH_NONE)
|
|
return (1);
|
|
cfgmech = CFGMECH_1;
|
|
|
|
/*
|
|
* Grope around in the PCI config space to see if this is a
|
|
* chipset that is capable of doing memory-mapped config cycles.
|
|
* This also implies that it can do PCIe extended config cycles.
|
|
*/
|
|
|
|
/* Check for supported chipsets */
|
|
vid = pci_cfgregread(0, 0, 0, PCIR_VENDOR, 2);
|
|
did = pci_cfgregread(0, 0, 0, PCIR_DEVICE, 2);
|
|
switch (vid) {
|
|
case 0x8086:
|
|
switch (did) {
|
|
case 0x3590:
|
|
case 0x3592:
|
|
/* Intel 7520 or 7320 */
|
|
pciebar = pci_cfgregread(0, 0, 0, 0xce, 2) << 16;
|
|
pcie_cfgregopen(pciebar, 0, 255);
|
|
break;
|
|
case 0x2580:
|
|
case 0x2584:
|
|
case 0x2590:
|
|
/* Intel 915, 925, or 915GM */
|
|
pciebar = pci_cfgregread(0, 0, 0, 0x48, 4);
|
|
pcie_cfgregopen(pciebar, 0, 255);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
|
|
static uint32_t
|
|
pci_docfgregread(int bus, int slot, int func, int reg, int bytes)
|
|
{
|
|
|
|
if (cfgmech == CFGMECH_PCIE &&
|
|
(bus >= pcie_minbus && bus <= pcie_maxbus) &&
|
|
(bus != 0 || !(1 << slot & pcie_badslots)))
|
|
return (pciereg_cfgread(bus, slot, func, reg, bytes));
|
|
else
|
|
return (pcireg_cfgread(bus, slot, func, reg, bytes));
|
|
}
|
|
|
|
/*
|
|
* Read configuration space register
|
|
*/
|
|
u_int32_t
|
|
pci_cfgregread(int bus, int slot, int func, int reg, int bytes)
|
|
{
|
|
uint32_t line;
|
|
|
|
/*
|
|
* Some BIOS writers seem to want to ignore the spec and put
|
|
* 0 in the intline rather than 255 to indicate none. Some use
|
|
* numbers in the range 128-254 to indicate something strange and
|
|
* apparently undocumented anywhere. Assume these are completely bogus
|
|
* and map them to 255, which the rest of the PCI code recognizes as
|
|
* as an invalid IRQ.
|
|
*/
|
|
if (reg == PCIR_INTLINE && bytes == 1) {
|
|
line = pci_docfgregread(bus, slot, func, PCIR_INTLINE, 1);
|
|
if (line == 0 || line >= 128)
|
|
line = PCI_INVALID_IRQ;
|
|
return (line);
|
|
}
|
|
return (pci_docfgregread(bus, slot, func, reg, bytes));
|
|
}
|
|
|
|
/*
|
|
* Write configuration space register
|
|
*/
|
|
void
|
|
pci_cfgregwrite(int bus, int slot, int func, int reg, u_int32_t data, int bytes)
|
|
{
|
|
|
|
if (cfgmech == CFGMECH_PCIE &&
|
|
(bus >= pcie_minbus && bus <= pcie_maxbus) &&
|
|
(bus != 0 || !(1 << slot & pcie_badslots)))
|
|
pciereg_cfgwrite(bus, slot, func, reg, data, bytes);
|
|
else
|
|
pcireg_cfgwrite(bus, slot, func, reg, data, bytes);
|
|
}
|
|
|
|
/*
|
|
* Configuration space access using direct register operations
|
|
*/
|
|
|
|
/* enable configuration space accesses and return data port address */
|
|
static int
|
|
pci_cfgenable(unsigned bus, unsigned slot, unsigned func, int reg, int bytes)
|
|
{
|
|
int dataport = 0;
|
|
|
|
if (bus <= PCI_BUSMAX && slot <= PCI_SLOTMAX && func <= PCI_FUNCMAX &&
|
|
(unsigned)reg <= PCI_REGMAX && bytes != 3 &&
|
|
(unsigned)bytes <= 4 && (reg & (bytes - 1)) == 0) {
|
|
outl(CONF1_ADDR_PORT, (1 << 31) | (bus << 16) | (slot << 11)
|
|
| (func << 8) | (reg & ~0x03));
|
|
dataport = CONF1_DATA_PORT + (reg & 0x03);
|
|
}
|
|
return (dataport);
|
|
}
|
|
|
|
/* disable configuration space accesses */
|
|
static void
|
|
pci_cfgdisable(void)
|
|
{
|
|
|
|
/*
|
|
* Do nothing. Writing a 0 to the address port can apparently
|
|
* confuse some bridges and cause spurious access failures.
|
|
*/
|
|
}
|
|
|
|
static int
|
|
pcireg_cfgread(int bus, int slot, int func, int reg, int bytes)
|
|
{
|
|
int data = -1;
|
|
int port;
|
|
|
|
mtx_lock_spin(&pcicfg_mtx);
|
|
port = pci_cfgenable(bus, slot, func, reg, bytes);
|
|
if (port != 0) {
|
|
switch (bytes) {
|
|
case 1:
|
|
data = inb(port);
|
|
break;
|
|
case 2:
|
|
data = inw(port);
|
|
break;
|
|
case 4:
|
|
data = inl(port);
|
|
break;
|
|
}
|
|
pci_cfgdisable();
|
|
}
|
|
mtx_unlock_spin(&pcicfg_mtx);
|
|
return (data);
|
|
}
|
|
|
|
static void
|
|
pcireg_cfgwrite(int bus, int slot, int func, int reg, int data, int bytes)
|
|
{
|
|
int port;
|
|
|
|
mtx_lock_spin(&pcicfg_mtx);
|
|
port = pci_cfgenable(bus, slot, func, reg, bytes);
|
|
if (port != 0) {
|
|
switch (bytes) {
|
|
case 1:
|
|
outb(port, data);
|
|
break;
|
|
case 2:
|
|
outw(port, data);
|
|
break;
|
|
case 4:
|
|
outl(port, data);
|
|
break;
|
|
}
|
|
pci_cfgdisable();
|
|
}
|
|
mtx_unlock_spin(&pcicfg_mtx);
|
|
}
|
|
|
|
int
|
|
pcie_cfgregopen(uint64_t base, uint8_t minbus, uint8_t maxbus)
|
|
{
|
|
uint32_t val1, val2;
|
|
int slot;
|
|
|
|
if (!mcfg_enable)
|
|
return (0);
|
|
|
|
if (minbus != 0)
|
|
return (0);
|
|
|
|
if (bootverbose)
|
|
printf("PCIe: Memory Mapped configuration base @ 0x%lx\n",
|
|
base);
|
|
|
|
/* XXX: We should make sure this really fits into the direct map. */
|
|
pcie_base = (vm_offset_t)pmap_mapdev(base, (maxbus + 1) << 20);
|
|
pcie_minbus = minbus;
|
|
pcie_maxbus = maxbus;
|
|
cfgmech = CFGMECH_PCIE;
|
|
|
|
/*
|
|
* On some AMD systems, some of the devices on bus 0 are
|
|
* inaccessible using memory-mapped PCI config access. Walk
|
|
* bus 0 looking for such devices. For these devices, we will
|
|
* fall back to using type 1 config access instead.
|
|
*/
|
|
if (pci_cfgregopen() != 0) {
|
|
for (slot = 0; slot <= PCI_SLOTMAX; slot++) {
|
|
val1 = pcireg_cfgread(0, slot, 0, 0, 4);
|
|
if (val1 == 0xffffffff)
|
|
continue;
|
|
|
|
val2 = pciereg_cfgread(0, slot, 0, 0, 4);
|
|
if (val2 != val1)
|
|
pcie_badslots |= (1 << slot);
|
|
}
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* AMD BIOS And Kernel Developer's Guides for CPU families starting with 10h
|
|
* have a requirement that all accesses to the memory mapped PCI configuration
|
|
* space are done using AX class of registers.
|
|
* Since other vendors do not currently have any contradicting requirements
|
|
* the AMD access pattern is applied universally.
|
|
*/
|
|
#define PCIE_VADDR(base, reg, bus, slot, func) \
|
|
((base) + \
|
|
((((bus) & 0xff) << 20) | \
|
|
(((slot) & 0x1f) << 15) | \
|
|
(((func) & 0x7) << 12) | \
|
|
((reg) & 0xfff)))
|
|
|
|
static int
|
|
pciereg_cfgread(int bus, unsigned slot, unsigned func, unsigned reg,
|
|
unsigned bytes)
|
|
{
|
|
volatile vm_offset_t va;
|
|
int data = -1;
|
|
|
|
if (bus < pcie_minbus || bus > pcie_maxbus || slot > PCI_SLOTMAX ||
|
|
func > PCI_FUNCMAX || reg > PCIE_REGMAX)
|
|
return (-1);
|
|
|
|
va = PCIE_VADDR(pcie_base, reg, bus, slot, func);
|
|
|
|
switch (bytes) {
|
|
case 4:
|
|
__asm __volatile("mov %1, %%eax" : "=a" (data)
|
|
: "m" (*(uint32_t *)va));
|
|
break;
|
|
case 2:
|
|
__asm __volatile("movzwl %1, %%eax" : "=a" (data)
|
|
: "m" (*(uint16_t *)va));
|
|
break;
|
|
case 1:
|
|
__asm __volatile("movzbl %1, %%eax" : "=a" (data)
|
|
: "m" (*(uint8_t *)va));
|
|
break;
|
|
}
|
|
|
|
return (data);
|
|
}
|
|
|
|
static void
|
|
pciereg_cfgwrite(int bus, unsigned slot, unsigned func, unsigned reg, int data,
|
|
unsigned bytes)
|
|
{
|
|
volatile vm_offset_t va;
|
|
|
|
if (bus < pcie_minbus || bus > pcie_maxbus || slot > PCI_SLOTMAX ||
|
|
func > PCI_FUNCMAX || reg > PCIE_REGMAX)
|
|
return;
|
|
|
|
va = PCIE_VADDR(pcie_base, reg, bus, slot, func);
|
|
|
|
switch (bytes) {
|
|
case 4:
|
|
__asm __volatile("mov %%eax, %0" : "=m" (*(uint32_t *)va)
|
|
: "a" (data));
|
|
break;
|
|
case 2:
|
|
__asm __volatile("mov %%ax, %0" : "=m" (*(uint16_t *)va)
|
|
: "a" (data));
|
|
break;
|
|
case 1:
|
|
__asm __volatile("mov %%al, %0" : "=m" (*(uint8_t *)va)
|
|
: "a" (data));
|
|
break;
|
|
}
|
|
}
|