freebsd-dev/sys/arm/freescale/imx/imx6_ccm.c
Ian Lepore a0fd233964 Add a SPI driver for imx5 and imx6.
It can be compiled into the kernel with "device imx_spi" or loaded as a
module, which is also named "imx_spi".
2018-02-26 02:28:32 +00:00

467 lines
11 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2013 Ian Lepore <ian@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Clocks and power control driver for Freescale i.MX6 family of SoCs.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <machine/bus.h>
#include <arm/freescale/imx/imx6_anatopreg.h>
#include <arm/freescale/imx/imx6_anatopvar.h>
#include <arm/freescale/imx/imx6_ccmreg.h>
#include <arm/freescale/imx/imx_machdep.h>
#include <arm/freescale/imx/imx_ccmvar.h>
#ifndef CCGR_CLK_MODE_ALWAYS
#define CCGR_CLK_MODE_OFF 0
#define CCGR_CLK_MODE_RUNMODE 1
#define CCGR_CLK_MODE_ALWAYS 3
#endif
struct ccm_softc {
device_t dev;
struct resource *mem_res;
};
static struct ccm_softc *ccm_sc;
static inline uint32_t
RD4(struct ccm_softc *sc, bus_size_t off)
{
return (bus_read_4(sc->mem_res, off));
}
static inline void
WR4(struct ccm_softc *sc, bus_size_t off, uint32_t val)
{
bus_write_4(sc->mem_res, off, val);
}
/*
* Until we have a fully functional ccm driver which implements the fdt_clock
* interface, use the age-old workaround of unconditionally enabling the clocks
* for devices we might need to use. The SoC defaults to most clocks enabled,
* but the rom boot code and u-boot disable a few of them. We turn on only
* what's needed to run the chip plus devices we have drivers for, and turn off
* devices we don't yet have drivers for. (Note that USB is not turned on here
* because that is one we do when the driver asks for it.)
*/
static void
ccm_init_gates(struct ccm_softc *sc)
{
uint32_t reg;
/* ahpbdma, aipstz 1 & 2 buses */
reg = CCGR0_AIPS_TZ1 | CCGR0_AIPS_TZ2 | CCGR0_ABPHDMA;
WR4(sc, CCM_CCGR0, reg);
/* enet, epit, gpt, spi */
reg = CCGR1_ENET | CCGR1_EPIT1 | CCGR1_GPT | CCGR1_ECSPI1 |
CCGR1_ECSPI2 | CCGR1_ECSPI3 | CCGR1_ECSPI4 | CCGR1_ECSPI5;
WR4(sc, CCM_CCGR1, reg);
/* ipmux & ipsync (bridges), iomux, i2c */
reg = CCGR2_I2C1 | CCGR2_I2C2 | CCGR2_I2C3 | CCGR2_IIM |
CCGR2_IOMUX_IPT | CCGR2_IPMUX1 | CCGR2_IPMUX2 | CCGR2_IPMUX3 |
CCGR2_IPSYNC_IP2APB_TZASC1 | CCGR2_IPSYNC_IP2APB_TZASC2 |
CCGR2_IPSYNC_VDOA;
WR4(sc, CCM_CCGR2, reg);
/* DDR memory controller */
reg = CCGR3_OCRAM | CCGR3_MMDC_CORE_IPG |
CCGR3_MMDC_CORE_ACLK_FAST | CCGR3_CG11 | CCGR3_CG13;
WR4(sc, CCM_CCGR3, reg);
/* pl301 bus crossbar */
reg = CCGR4_PL301_MX6QFAST1_S133 |
CCGR4_PL301_MX6QPER1_BCH | CCGR4_PL301_MX6QPER2_MAIN;
WR4(sc, CCM_CCGR4, reg);
/* uarts, ssi, sdma */
reg = CCGR5_SDMA | CCGR5_SSI1 | CCGR5_SSI2 | CCGR5_SSI3 |
CCGR5_UART | CCGR5_UART_SERIAL;
WR4(sc, CCM_CCGR5, reg);
/* usdhc 1-4, usboh3 */
reg = CCGR6_USBOH3 | CCGR6_USDHC1 | CCGR6_USDHC2 |
CCGR6_USDHC3 | CCGR6_USDHC4;
WR4(sc, CCM_CCGR6, reg);
}
static int
ccm_detach(device_t dev)
{
struct ccm_softc *sc;
sc = device_get_softc(dev);
if (sc->mem_res != NULL)
bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->mem_res);
return (0);
}
static int
ccm_attach(device_t dev)
{
struct ccm_softc *sc;
int err, rid;
uint32_t reg;
sc = device_get_softc(dev);
err = 0;
/* Allocate bus_space resources. */
rid = 0;
sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (sc->mem_res == NULL) {
device_printf(dev, "Cannot allocate memory resources\n");
err = ENXIO;
goto out;
}
ccm_sc = sc;
/*
* Configure the Low Power Mode setting to leave the ARM core power on
* when a WFI instruction is executed. This lets the MPCore timers and
* GIC continue to run, which is helpful when the only thing that can
* wake you up is an MPCore Private Timer interrupt delivered via GIC.
*
* XXX Based on the docs, setting CCM_CGPR_INT_MEM_CLK_LPM shouldn't be
* required when the LPM bits are set to LPM_RUN. But experimentally
* I've experienced a fairly rare lockup when not setting it. I was
* unable to prove conclusively that the lockup was related to power
* management or that this definitively fixes it. Revisit this.
*/
reg = RD4(sc, CCM_CGPR);
reg |= CCM_CGPR_INT_MEM_CLK_LPM;
WR4(sc, CCM_CGPR, reg);
reg = RD4(sc, CCM_CLPCR);
reg = (reg & ~CCM_CLPCR_LPM_MASK) | CCM_CLPCR_LPM_RUN;
WR4(sc, CCM_CLPCR, reg);
ccm_init_gates(sc);
err = 0;
out:
if (err != 0)
ccm_detach(dev);
return (err);
}
static int
ccm_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (ofw_bus_is_compatible(dev, "fsl,imx6q-ccm") == 0)
return (ENXIO);
device_set_desc(dev, "Freescale i.MX6 Clock Control Module");
return (BUS_PROBE_DEFAULT);
}
void
imx_ccm_ssi_configure(device_t _ssidev)
{
struct ccm_softc *sc;
uint32_t reg;
sc = ccm_sc;
/*
* Select PLL4 (Audio PLL) clock multiplexer as source.
* PLL output frequency = Fref * (DIV_SELECT + NUM/DENOM).
*/
reg = RD4(sc, CCM_CSCMR1);
reg &= ~(SSI_CLK_SEL_M << SSI1_CLK_SEL_S);
reg |= (SSI_CLK_SEL_PLL4 << SSI1_CLK_SEL_S);
reg &= ~(SSI_CLK_SEL_M << SSI2_CLK_SEL_S);
reg |= (SSI_CLK_SEL_PLL4 << SSI2_CLK_SEL_S);
reg &= ~(SSI_CLK_SEL_M << SSI3_CLK_SEL_S);
reg |= (SSI_CLK_SEL_PLL4 << SSI3_CLK_SEL_S);
WR4(sc, CCM_CSCMR1, reg);
/*
* Ensure we have set hardware-default values
* for pre and post dividers.
*/
/* SSI1 and SSI3 */
reg = RD4(sc, CCM_CS1CDR);
/* Divide by 2 */
reg &= ~(SSI_CLK_PODF_MASK << SSI1_CLK_PODF_SHIFT);
reg &= ~(SSI_CLK_PODF_MASK << SSI3_CLK_PODF_SHIFT);
reg |= (0x1 << SSI1_CLK_PODF_SHIFT);
reg |= (0x1 << SSI3_CLK_PODF_SHIFT);
/* Divide by 4 */
reg &= ~(SSI_CLK_PRED_MASK << SSI1_CLK_PRED_SHIFT);
reg &= ~(SSI_CLK_PRED_MASK << SSI3_CLK_PRED_SHIFT);
reg |= (0x3 << SSI1_CLK_PRED_SHIFT);
reg |= (0x3 << SSI3_CLK_PRED_SHIFT);
WR4(sc, CCM_CS1CDR, reg);
/* SSI2 */
reg = RD4(sc, CCM_CS2CDR);
/* Divide by 2 */
reg &= ~(SSI_CLK_PODF_MASK << SSI2_CLK_PODF_SHIFT);
reg |= (0x1 << SSI2_CLK_PODF_SHIFT);
/* Divide by 4 */
reg &= ~(SSI_CLK_PRED_MASK << SSI2_CLK_PRED_SHIFT);
reg |= (0x3 << SSI2_CLK_PRED_SHIFT);
WR4(sc, CCM_CS2CDR, reg);
}
void
imx_ccm_usb_enable(device_t _usbdev)
{
/*
* For imx6, the USBOH3 clock gate is bits 0-1 of CCGR6, so no need for
* shifting and masking here, just set the low-order two bits to ALWAYS.
*/
WR4(ccm_sc, CCM_CCGR6, RD4(ccm_sc, CCM_CCGR6) | CCGR_CLK_MODE_ALWAYS);
}
void
imx_ccm_usbphy_enable(device_t _phydev)
{
/*
* XXX Which unit?
* Right now it's not clear how to figure from fdt data which phy unit
* we're supposed to operate on. Until this is worked out, just enable
* both PHYs.
*/
#if 0
int phy_num, regoff;
phy_num = 0; /* XXX */
switch (phy_num) {
case 0:
regoff = 0;
break;
case 1:
regoff = 0x10;
break;
default:
device_printf(ccm_sc->dev, "Bad PHY number %u,\n",
phy_num);
return;
}
imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_USB1 + regoff,
IMX6_ANALOG_CCM_PLL_USB_ENABLE |
IMX6_ANALOG_CCM_PLL_USB_POWER |
IMX6_ANALOG_CCM_PLL_USB_EN_USB_CLKS);
#else
imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_USB1 + 0,
IMX6_ANALOG_CCM_PLL_USB_ENABLE |
IMX6_ANALOG_CCM_PLL_USB_POWER |
IMX6_ANALOG_CCM_PLL_USB_EN_USB_CLKS);
imx6_anatop_write_4(IMX6_ANALOG_CCM_PLL_USB1 + 0x10,
IMX6_ANALOG_CCM_PLL_USB_ENABLE |
IMX6_ANALOG_CCM_PLL_USB_POWER |
IMX6_ANALOG_CCM_PLL_USB_EN_USB_CLKS);
#endif
}
int
imx6_ccm_sata_enable(void)
{
uint32_t v;
int timeout;
/* Un-gate the sata controller. */
WR4(ccm_sc, CCM_CCGR5, RD4(ccm_sc, CCM_CCGR5) | CCGR5_SATA);
/* Power up the PLL that feeds ENET/SATA/PCI phys, wait for lock. */
v = RD4(ccm_sc, CCM_ANALOG_PLL_ENET);
v &= ~CCM_ANALOG_PLL_ENET_POWERDOWN;
WR4(ccm_sc, CCM_ANALOG_PLL_ENET, v);
for (timeout = 100000; timeout > 0; timeout--) {
if (RD4(ccm_sc, CCM_ANALOG_PLL_ENET) &
CCM_ANALOG_PLL_ENET_LOCK) {
break;
}
}
if (timeout <= 0) {
return ETIMEDOUT;
}
/* Enable the PLL, and enable its 100mhz output. */
v |= CCM_ANALOG_PLL_ENET_ENABLE;
v &= ~CCM_ANALOG_PLL_ENET_BYPASS;
WR4(ccm_sc, CCM_ANALOG_PLL_ENET, v);
v |= CCM_ANALOG_PLL_ENET_ENABLE_100M;
WR4(ccm_sc, CCM_ANALOG_PLL_ENET, v);
return 0;
}
uint32_t
imx_ccm_ecspi_hz(void)
{
return (60000000);
}
uint32_t
imx_ccm_ipg_hz(void)
{
return (66000000);
}
uint32_t
imx_ccm_perclk_hz(void)
{
return (66000000);
}
uint32_t
imx_ccm_sdhci_hz(void)
{
return (200000000);
}
uint32_t
imx_ccm_uart_hz(void)
{
return (80000000);
}
uint32_t
imx_ccm_ahb_hz(void)
{
return (132000000);
}
void
imx_ccm_ipu_enable(int ipu)
{
struct ccm_softc *sc;
uint32_t reg;
sc = ccm_sc;
reg = RD4(sc, CCM_CCGR3);
if (ipu == 1)
reg |= CCGR3_IPU1_IPU | CCGR3_IPU1_DI0;
else
reg |= CCGR3_IPU2_IPU | CCGR3_IPU2_DI0;
WR4(sc, CCM_CCGR3, reg);
}
void
imx_ccm_hdmi_enable(void)
{
struct ccm_softc *sc;
uint32_t reg;
sc = ccm_sc;
reg = RD4(sc, CCM_CCGR2);
reg |= CCGR2_HDMI_TX | CCGR2_HDMI_TX_ISFR;
WR4(sc, CCM_CCGR2, reg);
/* Set HDMI clock to 280MHz */
reg = RD4(sc, CCM_CHSCCDR);
reg &= ~(CHSCCDR_IPU1_DI0_PRE_CLK_SEL_MASK |
CHSCCDR_IPU1_DI0_PODF_MASK | CHSCCDR_IPU1_DI0_CLK_SEL_MASK);
reg |= (CHSCCDR_PODF_DIVIDE_BY_3 << CHSCCDR_IPU1_DI0_PODF_SHIFT);
reg |= (CHSCCDR_IPU_PRE_CLK_540M_PFD << CHSCCDR_IPU1_DI0_PRE_CLK_SEL_SHIFT);
WR4(sc, CCM_CHSCCDR, reg);
reg |= (CHSCCDR_CLK_SEL_LDB_DI0 << CHSCCDR_IPU1_DI0_CLK_SEL_SHIFT);
WR4(sc, CCM_CHSCCDR, reg);
}
uint32_t
imx_ccm_get_cacrr(void)
{
return (RD4(ccm_sc, CCM_CACCR));
}
void
imx_ccm_set_cacrr(uint32_t divisor)
{
WR4(ccm_sc, CCM_CACCR, divisor);
}
static device_method_t ccm_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, ccm_probe),
DEVMETHOD(device_attach, ccm_attach),
DEVMETHOD(device_detach, ccm_detach),
DEVMETHOD_END
};
static driver_t ccm_driver = {
"ccm",
ccm_methods,
sizeof(struct ccm_softc)
};
static devclass_t ccm_devclass;
EARLY_DRIVER_MODULE(ccm, simplebus, ccm_driver, ccm_devclass, 0, 0,
BUS_PASS_CPU + BUS_PASS_ORDER_EARLY);