freebsd-dev/sys/fs/ext2fs/ext2_alloc.c
Fedor Uporov ec81c9cc06 Add inode bitmap tail initialization.
Make ext2fs compatible with changes introduced in e2fsprogs v1.45.2.
Now the tail of inode bitmap is filled with 0xff pattern explicitly during
bitmap initialization phase to avoid e2fsck error like:
"Padding at end of inode bitmap is not set."
2020-05-17 14:00:54 +00:00

1570 lines
40 KiB
C

/*-
* modified for Lites 1.1
*
* Aug 1995, Godmar Back (gback@cs.utah.edu)
* University of Utah, Department of Computer Science
*/
/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 1982, 1986, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ffs_alloc.c 8.8 (Berkeley) 2/21/94
* $FreeBSD$
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/vnode.h>
#include <sys/sdt.h>
#include <sys/stat.h>
#include <sys/mount.h>
#include <sys/sysctl.h>
#include <sys/syslog.h>
#include <sys/buf.h>
#include <sys/endian.h>
#include <fs/ext2fs/fs.h>
#include <fs/ext2fs/inode.h>
#include <fs/ext2fs/ext2_mount.h>
#include <fs/ext2fs/ext2fs.h>
#include <fs/ext2fs/ext2_extern.h>
SDT_PROVIDER_DEFINE(ext2fs);
/*
* ext2fs trace probe:
* arg0: verbosity. Higher numbers give more verbose messages
* arg1: Textual message
*/
SDT_PROBE_DEFINE2(ext2fs, , alloc, trace, "int", "char*");
SDT_PROBE_DEFINE3(ext2fs, , alloc, ext2_reallocblks_realloc,
"ino_t", "e2fs_lbn_t", "e2fs_lbn_t");
SDT_PROBE_DEFINE1(ext2fs, , alloc, ext2_reallocblks_bap, "uint32_t");
SDT_PROBE_DEFINE1(ext2fs, , alloc, ext2_reallocblks_blkno, "e2fs_daddr_t");
SDT_PROBE_DEFINE2(ext2fs, , alloc, ext2_b_bitmap_validate_error, "char*", "int");
SDT_PROBE_DEFINE3(ext2fs, , alloc, ext2_nodealloccg_bmap_corrupted,
"int", "daddr_t", "char*");
SDT_PROBE_DEFINE2(ext2fs, , alloc, ext2_blkfree_bad_block, "ino_t", "e4fs_daddr_t");
SDT_PROBE_DEFINE2(ext2fs, , alloc, ext2_vfree_doublefree, "char*", "ino_t");
static daddr_t ext2_alloccg(struct inode *, int, daddr_t, int);
static daddr_t ext2_clusteralloc(struct inode *, int, daddr_t, int);
static u_long ext2_dirpref(struct inode *);
static e4fs_daddr_t ext2_hashalloc(struct inode *, int, long, int,
daddr_t (*)(struct inode *, int, daddr_t,
int));
static daddr_t ext2_nodealloccg(struct inode *, int, daddr_t, int);
static daddr_t ext2_mapsearch(struct m_ext2fs *, char *, daddr_t);
/*
* Allocate a block in the filesystem.
*
* A preference may be optionally specified. If a preference is given
* the following hierarchy is used to allocate a block:
* 1) allocate the requested block.
* 2) allocate a rotationally optimal block in the same cylinder.
* 3) allocate a block in the same cylinder group.
* 4) quadradically rehash into other cylinder groups, until an
* available block is located.
* If no block preference is given the following hierarchy is used
* to allocate a block:
* 1) allocate a block in the cylinder group that contains the
* inode for the file.
* 2) quadradically rehash into other cylinder groups, until an
* available block is located.
*/
int
ext2_alloc(struct inode *ip, daddr_t lbn, e4fs_daddr_t bpref, int size,
struct ucred *cred, e4fs_daddr_t *bnp)
{
struct m_ext2fs *fs;
struct ext2mount *ump;
e4fs_daddr_t bno;
int cg;
*bnp = 0;
fs = ip->i_e2fs;
ump = ip->i_ump;
mtx_assert(EXT2_MTX(ump), MA_OWNED);
#ifdef INVARIANTS
if ((u_int)size > fs->e2fs_bsize || blkoff(fs, size) != 0) {
vn_printf(ip->i_devvp, "bsize = %lu, size = %d, fs = %s\n",
(long unsigned int)fs->e2fs_bsize, size, fs->e2fs_fsmnt);
panic("ext2_alloc: bad size");
}
if (cred == NOCRED)
panic("ext2_alloc: missing credential");
#endif /* INVARIANTS */
if (size == fs->e2fs_bsize && fs->e2fs_fbcount == 0)
goto nospace;
if (cred->cr_uid != 0 &&
fs->e2fs_fbcount < fs->e2fs_rbcount)
goto nospace;
if (bpref >= fs->e2fs_bcount)
bpref = 0;
if (bpref == 0)
cg = ino_to_cg(fs, ip->i_number);
else
cg = dtog(fs, bpref);
bno = (daddr_t)ext2_hashalloc(ip, cg, bpref, fs->e2fs_bsize,
ext2_alloccg);
if (bno > 0) {
/* set next_alloc fields as done in block_getblk */
ip->i_next_alloc_block = lbn;
ip->i_next_alloc_goal = bno;
ip->i_blocks += btodb(fs->e2fs_bsize);
ip->i_flag |= IN_CHANGE | IN_UPDATE;
*bnp = bno;
return (0);
}
nospace:
EXT2_UNLOCK(ump);
SDT_PROBE2(ext2fs, , alloc, trace, 1, "cannot allocate data block");
return (ENOSPC);
}
/*
* Allocate EA's block for inode.
*/
e4fs_daddr_t
ext2_alloc_meta(struct inode *ip)
{
struct m_ext2fs *fs;
daddr_t blk;
fs = ip->i_e2fs;
EXT2_LOCK(ip->i_ump);
blk = ext2_hashalloc(ip, ino_to_cg(fs, ip->i_number), 0, fs->e2fs_bsize,
ext2_alloccg);
if (0 == blk) {
EXT2_UNLOCK(ip->i_ump);
SDT_PROBE2(ext2fs, , alloc, trace, 1, "cannot allocate meta block");
}
return (blk);
}
/*
* Reallocate a sequence of blocks into a contiguous sequence of blocks.
*
* The vnode and an array of buffer pointers for a range of sequential
* logical blocks to be made contiguous is given. The allocator attempts
* to find a range of sequential blocks starting as close as possible to
* an fs_rotdelay offset from the end of the allocation for the logical
* block immediately preceding the current range. If successful, the
* physical block numbers in the buffer pointers and in the inode are
* changed to reflect the new allocation. If unsuccessful, the allocation
* is left unchanged. The success in doing the reallocation is returned.
* Note that the error return is not reflected back to the user. Rather
* the previous block allocation will be used.
*/
static SYSCTL_NODE(_vfs, OID_AUTO, ext2fs, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
"EXT2FS filesystem");
static int doasyncfree = 1;
SYSCTL_INT(_vfs_ext2fs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0,
"Use asychronous writes to update block pointers when freeing blocks");
static int doreallocblks = 0;
SYSCTL_INT(_vfs_ext2fs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, "");
int
ext2_reallocblks(struct vop_reallocblks_args *ap)
{
struct m_ext2fs *fs;
struct inode *ip;
struct vnode *vp;
struct buf *sbp, *ebp;
uint32_t *bap, *sbap, *ebap;
struct ext2mount *ump;
struct cluster_save *buflist;
struct indir start_ap[EXT2_NIADDR + 1], end_ap[EXT2_NIADDR + 1], *idp;
e2fs_lbn_t start_lbn, end_lbn;
int soff;
e2fs_daddr_t newblk, blkno;
int i, len, start_lvl, end_lvl, pref, ssize;
if (doreallocblks == 0)
return (ENOSPC);
vp = ap->a_vp;
ip = VTOI(vp);
fs = ip->i_e2fs;
ump = ip->i_ump;
if (fs->e2fs_contigsumsize <= 0 || ip->i_flag & IN_E4EXTENTS)
return (ENOSPC);
buflist = ap->a_buflist;
len = buflist->bs_nchildren;
start_lbn = buflist->bs_children[0]->b_lblkno;
end_lbn = start_lbn + len - 1;
#ifdef INVARIANTS
for (i = 1; i < len; i++)
if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
panic("ext2_reallocblks: non-cluster");
#endif
/*
* If the cluster crosses the boundary for the first indirect
* block, leave space for the indirect block. Indirect blocks
* are initially laid out in a position after the last direct
* block. Block reallocation would usually destroy locality by
* moving the indirect block out of the way to make room for
* data blocks if we didn't compensate here. We should also do
* this for other indirect block boundaries, but it is only
* important for the first one.
*/
if (start_lbn < EXT2_NDADDR && end_lbn >= EXT2_NDADDR)
return (ENOSPC);
/*
* If the latest allocation is in a new cylinder group, assume that
* the filesystem has decided to move and do not force it back to
* the previous cylinder group.
*/
if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
return (ENOSPC);
if (ext2_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
ext2_getlbns(vp, end_lbn, end_ap, &end_lvl))
return (ENOSPC);
/*
* Get the starting offset and block map for the first block.
*/
if (start_lvl == 0) {
sbap = &ip->i_db[0];
soff = start_lbn;
} else {
idp = &start_ap[start_lvl - 1];
if (bread(vp, idp->in_lbn, (int)fs->e2fs_bsize, NOCRED, &sbp)) {
brelse(sbp);
return (ENOSPC);
}
sbap = (u_int *)sbp->b_data;
soff = idp->in_off;
}
/*
* If the block range spans two block maps, get the second map.
*/
ebap = NULL;
if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
ssize = len;
} else {
#ifdef INVARIANTS
if (start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
panic("ext2_reallocblks: start == end");
#endif
ssize = len - (idp->in_off + 1);
if (bread(vp, idp->in_lbn, (int)fs->e2fs_bsize, NOCRED, &ebp))
goto fail;
ebap = (u_int *)ebp->b_data;
}
/*
* Find the preferred location for the cluster.
*/
EXT2_LOCK(ump);
pref = ext2_blkpref(ip, start_lbn, soff, sbap, 0);
/*
* Search the block map looking for an allocation of the desired size.
*/
if ((newblk = (e2fs_daddr_t)ext2_hashalloc(ip, dtog(fs, pref), pref,
len, ext2_clusteralloc)) == 0) {
EXT2_UNLOCK(ump);
goto fail;
}
/*
* We have found a new contiguous block.
*
* First we have to replace the old block pointers with the new
* block pointers in the inode and indirect blocks associated
* with the file.
*/
SDT_PROBE3(ext2fs, , alloc, ext2_reallocblks_realloc,
ip->i_number, start_lbn, end_lbn);
blkno = newblk;
for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->e2fs_fpb) {
if (i == ssize) {
bap = ebap;
soff = -i;
}
#ifdef INVARIANTS
if (buflist->bs_children[i]->b_blkno != fsbtodb(fs, *bap))
panic("ext2_reallocblks: alloc mismatch");
#endif
SDT_PROBE1(ext2fs, , alloc, ext2_reallocblks_bap, *bap);
*bap++ = blkno;
}
/*
* Next we must write out the modified inode and indirect blocks.
* For strict correctness, the writes should be synchronous since
* the old block values may have been written to disk. In practise
* they are almost never written, but if we are concerned about
* strict correctness, the `doasyncfree' flag should be set to zero.
*
* The test on `doasyncfree' should be changed to test a flag
* that shows whether the associated buffers and inodes have
* been written. The flag should be set when the cluster is
* started and cleared whenever the buffer or inode is flushed.
* We can then check below to see if it is set, and do the
* synchronous write only when it has been cleared.
*/
if (sbap != &ip->i_db[0]) {
if (doasyncfree)
bdwrite(sbp);
else
bwrite(sbp);
} else {
ip->i_flag |= IN_CHANGE | IN_UPDATE;
if (!doasyncfree)
ext2_update(vp, 1);
}
if (ssize < len) {
if (doasyncfree)
bdwrite(ebp);
else
bwrite(ebp);
}
/*
* Last, free the old blocks and assign the new blocks to the buffers.
*/
for (blkno = newblk, i = 0; i < len; i++, blkno += fs->e2fs_fpb) {
ext2_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
fs->e2fs_bsize);
buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
SDT_PROBE1(ext2fs, , alloc, ext2_reallocblks_blkno, blkno);
}
return (0);
fail:
if (ssize < len)
brelse(ebp);
if (sbap != &ip->i_db[0])
brelse(sbp);
return (ENOSPC);
}
/*
* Allocate an inode in the filesystem.
*
*/
int
ext2_valloc(struct vnode *pvp, int mode, struct ucred *cred, struct vnode **vpp)
{
struct timespec ts;
struct m_ext2fs *fs;
struct ext2mount *ump;
struct inode *pip;
struct inode *ip;
struct vnode *vp;
struct thread *td;
ino_t ino, ipref;
int error, cg;
*vpp = NULL;
pip = VTOI(pvp);
fs = pip->i_e2fs;
ump = pip->i_ump;
EXT2_LOCK(ump);
if (fs->e2fs->e2fs_ficount == 0)
goto noinodes;
/*
* If it is a directory then obtain a cylinder group based on
* ext2_dirpref else obtain it using ino_to_cg. The preferred inode is
* always the next inode.
*/
if ((mode & IFMT) == IFDIR) {
cg = ext2_dirpref(pip);
if (fs->e2fs_contigdirs[cg] < 255)
fs->e2fs_contigdirs[cg]++;
} else {
cg = ino_to_cg(fs, pip->i_number);
if (fs->e2fs_contigdirs[cg] > 0)
fs->e2fs_contigdirs[cg]--;
}
ipref = cg * fs->e2fs->e2fs_ipg + 1;
ino = (ino_t)ext2_hashalloc(pip, cg, (long)ipref, mode, ext2_nodealloccg);
if (ino == 0)
goto noinodes;
td = curthread;
error = vfs_hash_get(ump->um_mountp, ino, LK_EXCLUSIVE, td, vpp, NULL, NULL);
if (error || *vpp != NULL) {
return (error);
}
ip = malloc(sizeof(struct inode), M_EXT2NODE, M_WAITOK | M_ZERO);
if (ip == NULL) {
return (ENOMEM);
}
/* Allocate a new vnode/inode. */
if ((error = getnewvnode("ext2fs", ump->um_mountp, &ext2_vnodeops, &vp)) != 0) {
free(ip, M_EXT2NODE);
return (error);
}
lockmgr(vp->v_vnlock, LK_EXCLUSIVE, NULL);
vp->v_data = ip;
ip->i_vnode = vp;
ip->i_e2fs = fs = ump->um_e2fs;
ip->i_ump = ump;
ip->i_number = ino;
ip->i_block_group = ino_to_cg(fs, ino);
ip->i_next_alloc_block = 0;
ip->i_next_alloc_goal = 0;
error = insmntque(vp, ump->um_mountp);
if (error) {
free(ip, M_EXT2NODE);
return (error);
}
error = vfs_hash_insert(vp, ino, LK_EXCLUSIVE, td, vpp, NULL, NULL);
if (error || *vpp != NULL) {
*vpp = NULL;
free(ip, M_EXT2NODE);
return (error);
}
if ((error = ext2_vinit(ump->um_mountp, &ext2_fifoops, &vp)) != 0) {
vput(vp);
*vpp = NULL;
free(ip, M_EXT2NODE);
return (error);
}
if (EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_EXTENTS)
&& (S_ISREG(mode) || S_ISDIR(mode)))
ext4_ext_tree_init(ip);
else
memset(ip->i_data, 0, sizeof(ip->i_data));
/*
* Set up a new generation number for this inode.
* Avoid zero values.
*/
do {
ip->i_gen = arc4random();
} while (ip->i_gen == 0);
vfs_timestamp(&ts);
ip->i_birthtime = ts.tv_sec;
ip->i_birthnsec = ts.tv_nsec;
*vpp = vp;
return (0);
noinodes:
EXT2_UNLOCK(ump);
SDT_PROBE2(ext2fs, , alloc, trace, 1, "out of inodes");
return (ENOSPC);
}
/*
* 64-bit compatible getters and setters for struct ext2_gd from ext2fs.h
*/
uint64_t
e2fs_gd_get_b_bitmap(struct ext2_gd *gd)
{
return (((uint64_t)(gd->ext4bgd_b_bitmap_hi) << 32) |
gd->ext2bgd_b_bitmap);
}
uint64_t
e2fs_gd_get_i_bitmap(struct ext2_gd *gd)
{
return (((uint64_t)(gd->ext4bgd_i_bitmap_hi) << 32) |
gd->ext2bgd_i_bitmap);
}
uint64_t
e2fs_gd_get_i_tables(struct ext2_gd *gd)
{
return (((uint64_t)(gd->ext4bgd_i_tables_hi) << 32) |
gd->ext2bgd_i_tables);
}
static uint32_t
e2fs_gd_get_nbfree(struct ext2_gd *gd)
{
return (((uint32_t)(gd->ext4bgd_nbfree_hi) << 16) |
gd->ext2bgd_nbfree);
}
static void
e2fs_gd_set_nbfree(struct ext2_gd *gd, uint32_t val)
{
gd->ext2bgd_nbfree = val & 0xffff;
gd->ext4bgd_nbfree_hi = val >> 16;
}
static uint32_t
e2fs_gd_get_nifree(struct ext2_gd *gd)
{
return (((uint32_t)(gd->ext4bgd_nifree_hi) << 16) |
gd->ext2bgd_nifree);
}
static void
e2fs_gd_set_nifree(struct ext2_gd *gd, uint32_t val)
{
gd->ext2bgd_nifree = val & 0xffff;
gd->ext4bgd_nifree_hi = val >> 16;
}
uint32_t
e2fs_gd_get_ndirs(struct ext2_gd *gd)
{
return (((uint32_t)(gd->ext4bgd_ndirs_hi) << 16) |
gd->ext2bgd_ndirs);
}
static void
e2fs_gd_set_ndirs(struct ext2_gd *gd, uint32_t val)
{
gd->ext2bgd_ndirs = val & 0xffff;
gd->ext4bgd_ndirs_hi = val >> 16;
}
static uint32_t
e2fs_gd_get_i_unused(struct ext2_gd *gd)
{
return (((uint32_t)(gd->ext4bgd_i_unused_hi) << 16) |
gd->ext4bgd_i_unused);
}
static void
e2fs_gd_set_i_unused(struct ext2_gd *gd, uint32_t val)
{
gd->ext4bgd_i_unused = val & 0xffff;
gd->ext4bgd_i_unused_hi = val >> 16;
}
/*
* Find a cylinder to place a directory.
*
* The policy implemented by this algorithm is to allocate a
* directory inode in the same cylinder group as its parent
* directory, but also to reserve space for its files inodes
* and data. Restrict the number of directories which may be
* allocated one after another in the same cylinder group
* without intervening allocation of files.
*
* If we allocate a first level directory then force allocation
* in another cylinder group.
*
*/
static u_long
ext2_dirpref(struct inode *pip)
{
struct m_ext2fs *fs;
int cg, prefcg, cgsize;
uint64_t avgbfree, minbfree;
u_int avgifree, avgndir, curdirsize;
u_int minifree, maxndir;
u_int mincg, minndir;
u_int dirsize, maxcontigdirs;
mtx_assert(EXT2_MTX(pip->i_ump), MA_OWNED);
fs = pip->i_e2fs;
avgifree = fs->e2fs->e2fs_ficount / fs->e2fs_gcount;
avgbfree = fs->e2fs_fbcount / fs->e2fs_gcount;
avgndir = fs->e2fs_total_dir / fs->e2fs_gcount;
/*
* Force allocation in another cg if creating a first level dir.
*/
ASSERT_VOP_LOCKED(ITOV(pip), "ext2fs_dirpref");
if (ITOV(pip)->v_vflag & VV_ROOT) {
prefcg = arc4random() % fs->e2fs_gcount;
mincg = prefcg;
minndir = fs->e2fs_ipg;
for (cg = prefcg; cg < fs->e2fs_gcount; cg++)
if (e2fs_gd_get_ndirs(&fs->e2fs_gd[cg]) < minndir &&
e2fs_gd_get_nifree(&fs->e2fs_gd[cg]) >= avgifree &&
e2fs_gd_get_nbfree(&fs->e2fs_gd[cg]) >= avgbfree) {
mincg = cg;
minndir = e2fs_gd_get_ndirs(&fs->e2fs_gd[cg]);
}
for (cg = 0; cg < prefcg; cg++)
if (e2fs_gd_get_ndirs(&fs->e2fs_gd[cg]) < minndir &&
e2fs_gd_get_nifree(&fs->e2fs_gd[cg]) >= avgifree &&
e2fs_gd_get_nbfree(&fs->e2fs_gd[cg]) >= avgbfree) {
mincg = cg;
minndir = e2fs_gd_get_ndirs(&fs->e2fs_gd[cg]);
}
return (mincg);
}
/*
* Count various limits which used for
* optimal allocation of a directory inode.
*/
maxndir = min(avgndir + fs->e2fs_ipg / 16, fs->e2fs_ipg);
minifree = avgifree - avgifree / 4;
if (minifree < 1)
minifree = 1;
minbfree = avgbfree - avgbfree / 4;
if (minbfree < 1)
minbfree = 1;
cgsize = fs->e2fs_fsize * fs->e2fs_fpg;
dirsize = AVGDIRSIZE;
curdirsize = avgndir ? (cgsize - avgbfree * fs->e2fs_bsize) / avgndir : 0;
if (dirsize < curdirsize)
dirsize = curdirsize;
maxcontigdirs = min((avgbfree * fs->e2fs_bsize) / dirsize, 255);
maxcontigdirs = min(maxcontigdirs, fs->e2fs_ipg / AFPDIR);
if (maxcontigdirs == 0)
maxcontigdirs = 1;
/*
* Limit number of dirs in one cg and reserve space for
* regular files, but only if we have no deficit in
* inodes or space.
*/
prefcg = ino_to_cg(fs, pip->i_number);
for (cg = prefcg; cg < fs->e2fs_gcount; cg++)
if (e2fs_gd_get_ndirs(&fs->e2fs_gd[cg]) < maxndir &&
e2fs_gd_get_nifree(&fs->e2fs_gd[cg]) >= minifree &&
e2fs_gd_get_nbfree(&fs->e2fs_gd[cg]) >= minbfree) {
if (fs->e2fs_contigdirs[cg] < maxcontigdirs)
return (cg);
}
for (cg = 0; cg < prefcg; cg++)
if (e2fs_gd_get_ndirs(&fs->e2fs_gd[cg]) < maxndir &&
e2fs_gd_get_nifree(&fs->e2fs_gd[cg]) >= minifree &&
e2fs_gd_get_nbfree(&fs->e2fs_gd[cg]) >= minbfree) {
if (fs->e2fs_contigdirs[cg] < maxcontigdirs)
return (cg);
}
/*
* This is a backstop when we have deficit in space.
*/
for (cg = prefcg; cg < fs->e2fs_gcount; cg++)
if (e2fs_gd_get_nifree(&fs->e2fs_gd[cg]) >= avgifree)
return (cg);
for (cg = 0; cg < prefcg; cg++)
if (e2fs_gd_get_nifree(&fs->e2fs_gd[cg]) >= avgifree)
break;
return (cg);
}
/*
* Select the desired position for the next block in a file.
*
* we try to mimic what Remy does in inode_getblk/block_getblk
*
* we note: blocknr == 0 means that we're about to allocate either
* a direct block or a pointer block at the first level of indirection
* (In other words, stuff that will go in i_db[] or i_ib[])
*
* blocknr != 0 means that we're allocating a block that is none
* of the above. Then, blocknr tells us the number of the block
* that will hold the pointer
*/
e4fs_daddr_t
ext2_blkpref(struct inode *ip, e2fs_lbn_t lbn, int indx, e2fs_daddr_t *bap,
e2fs_daddr_t blocknr)
{
struct m_ext2fs *fs;
int tmp;
fs = ip->i_e2fs;
mtx_assert(EXT2_MTX(ip->i_ump), MA_OWNED);
/*
* If the next block is actually what we thought it is, then set the
* goal to what we thought it should be.
*/
if (ip->i_next_alloc_block == lbn && ip->i_next_alloc_goal != 0)
return ip->i_next_alloc_goal;
/*
* Now check whether we were provided with an array that basically
* tells us previous blocks to which we want to stay close.
*/
if (bap)
for (tmp = indx - 1; tmp >= 0; tmp--)
if (bap[tmp])
return bap[tmp];
/*
* Else lets fall back to the blocknr or, if there is none, follow
* the rule that a block should be allocated near its inode.
*/
return (blocknr ? blocknr :
(e2fs_daddr_t)(ip->i_block_group *
EXT2_BLOCKS_PER_GROUP(fs)) + fs->e2fs->e2fs_first_dblock);
}
/*
* Implement the cylinder overflow algorithm.
*
* The policy implemented by this algorithm is:
* 1) allocate the block in its requested cylinder group.
* 2) quadradically rehash on the cylinder group number.
* 3) brute force search for a free block.
*/
static e4fs_daddr_t
ext2_hashalloc(struct inode *ip, int cg, long pref, int size,
daddr_t (*allocator) (struct inode *, int, daddr_t, int))
{
struct m_ext2fs *fs;
e4fs_daddr_t result;
int i, icg = cg;
mtx_assert(EXT2_MTX(ip->i_ump), MA_OWNED);
fs = ip->i_e2fs;
/*
* 1: preferred cylinder group
*/
result = (*allocator)(ip, cg, pref, size);
if (result)
return (result);
/*
* 2: quadratic rehash
*/
for (i = 1; i < fs->e2fs_gcount; i *= 2) {
cg += i;
if (cg >= fs->e2fs_gcount)
cg -= fs->e2fs_gcount;
result = (*allocator)(ip, cg, 0, size);
if (result)
return (result);
}
/*
* 3: brute force search
* Note that we start at i == 2, since 0 was checked initially,
* and 1 is always checked in the quadratic rehash.
*/
cg = (icg + 2) % fs->e2fs_gcount;
for (i = 2; i < fs->e2fs_gcount; i++) {
result = (*allocator)(ip, cg, 0, size);
if (result)
return (result);
cg++;
if (cg == fs->e2fs_gcount)
cg = 0;
}
return (0);
}
static uint64_t
ext2_cg_number_gdb_nometa(struct m_ext2fs *fs, int cg)
{
if (!ext2_cg_has_sb(fs, cg))
return (0);
if (EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_META_BG))
return (fs->e2fs->e3fs_first_meta_bg);
return ((fs->e2fs_gcount + EXT2_DESCS_PER_BLOCK(fs) - 1) /
EXT2_DESCS_PER_BLOCK(fs));
}
static uint64_t
ext2_cg_number_gdb_meta(struct m_ext2fs *fs, int cg)
{
unsigned long metagroup;
int first, last;
metagroup = cg / EXT2_DESCS_PER_BLOCK(fs);
first = metagroup * EXT2_DESCS_PER_BLOCK(fs);
last = first + EXT2_DESCS_PER_BLOCK(fs) - 1;
if (cg == first || cg == first + 1 || cg == last)
return (1);
return (0);
}
uint64_t
ext2_cg_number_gdb(struct m_ext2fs *fs, int cg)
{
unsigned long first_meta_bg, metagroup;
first_meta_bg = fs->e2fs->e3fs_first_meta_bg;
metagroup = cg / EXT2_DESCS_PER_BLOCK(fs);
if (!EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_META_BG) ||
metagroup < first_meta_bg)
return (ext2_cg_number_gdb_nometa(fs, cg));
return ext2_cg_number_gdb_meta(fs, cg);
}
static int
ext2_number_base_meta_blocks(struct m_ext2fs *fs, int cg)
{
int number;
number = ext2_cg_has_sb(fs, cg);
if (!EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_META_BG) ||
cg < fs->e2fs->e3fs_first_meta_bg * EXT2_DESCS_PER_BLOCK(fs)) {
if (number) {
number += ext2_cg_number_gdb(fs, cg);
number += fs->e2fs->e2fs_reserved_ngdb;
}
} else {
number += ext2_cg_number_gdb(fs, cg);
}
return (number);
}
static void
ext2_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
{
int i;
if (start_bit >= end_bit)
return;
for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
setbit(bitmap, i);
if (i < end_bit)
memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
}
static int
ext2_get_group_number(struct m_ext2fs *fs, e4fs_daddr_t block)
{
return ((block - fs->e2fs->e2fs_first_dblock) / fs->e2fs_bsize);
}
static int
ext2_block_in_group(struct m_ext2fs *fs, e4fs_daddr_t block, int cg)
{
return ((ext2_get_group_number(fs, block) == cg) ? 1 : 0);
}
static int
ext2_cg_block_bitmap_init(struct m_ext2fs *fs, int cg, struct buf *bp)
{
int bit, bit_max, inodes_per_block;
uint64_t start, tmp;
if (!(fs->e2fs_gd[cg].ext4bgd_flags & EXT2_BG_BLOCK_UNINIT))
return (0);
memset(bp->b_data, 0, fs->e2fs_bsize);
bit_max = ext2_number_base_meta_blocks(fs, cg);
if ((bit_max >> 3) >= fs->e2fs_bsize)
return (EINVAL);
for (bit = 0; bit < bit_max; bit++)
setbit(bp->b_data, bit);
start = (uint64_t)cg * fs->e2fs->e2fs_bpg + fs->e2fs->e2fs_first_dblock;
/* Set bits for block and inode bitmaps, and inode table. */
tmp = e2fs_gd_get_b_bitmap(&fs->e2fs_gd[cg]);
if (!EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_FLEX_BG) ||
ext2_block_in_group(fs, tmp, cg))
setbit(bp->b_data, tmp - start);
tmp = e2fs_gd_get_i_bitmap(&fs->e2fs_gd[cg]);
if (!EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_FLEX_BG) ||
ext2_block_in_group(fs, tmp, cg))
setbit(bp->b_data, tmp - start);
tmp = e2fs_gd_get_i_tables(&fs->e2fs_gd[cg]);
inodes_per_block = fs->e2fs_bsize/EXT2_INODE_SIZE(fs);
while( tmp < e2fs_gd_get_i_tables(&fs->e2fs_gd[cg]) +
fs->e2fs->e2fs_ipg / inodes_per_block ) {
if (!EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_FLEX_BG) ||
ext2_block_in_group(fs, tmp, cg))
setbit(bp->b_data, tmp - start);
tmp++;
}
/*
* Also if the number of blocks within the group is less than
* the blocksize * 8 ( which is the size of bitmap ), set rest
* of the block bitmap to 1
*/
ext2_mark_bitmap_end(fs->e2fs->e2fs_bpg, fs->e2fs_bsize * 8,
bp->b_data);
/* Clean the flag */
fs->e2fs_gd[cg].ext4bgd_flags &= ~EXT2_BG_BLOCK_UNINIT;
return (0);
}
static int
ext2_b_bitmap_validate(struct m_ext2fs *fs, struct buf *bp, int cg)
{
struct ext2_gd *gd;
uint64_t group_first_block;
unsigned int offset, max_bit;
if (EXT2_HAS_INCOMPAT_FEATURE(fs, EXT2F_INCOMPAT_FLEX_BG)) {
/*
* It is not possible to check block bitmap in case of this feature,
* because the inode and block bitmaps and inode table
* blocks may not be in the group at all.
* So, skip check in this case.
*/
return (0);
}
gd = &fs->e2fs_gd[cg];
max_bit = fs->e2fs_fpg;
group_first_block = ((uint64_t)cg) * fs->e2fs->e2fs_fpg +
fs->e2fs->e2fs_first_dblock;
/* Check block bitmap block number */
offset = e2fs_gd_get_b_bitmap(gd) - group_first_block;
if (offset >= max_bit || !isset(bp->b_data, offset)) {
SDT_PROBE2(ext2fs, , alloc, ext2_b_bitmap_validate_error,
"bad block bitmap, group", cg);
return (EINVAL);
}
/* Check inode bitmap block number */
offset = e2fs_gd_get_i_bitmap(gd) - group_first_block;
if (offset >= max_bit || !isset(bp->b_data, offset)) {
SDT_PROBE2(ext2fs, , alloc, ext2_b_bitmap_validate_error,
"bad inode bitmap", cg);
return (EINVAL);
}
/* Check inode table */
offset = e2fs_gd_get_i_tables(gd) - group_first_block;
if (offset >= max_bit || offset + fs->e2fs_itpg >= max_bit) {
SDT_PROBE2(ext2fs, , alloc, ext2_b_bitmap_validate_error,
"bad inode table, group", cg);
return (EINVAL);
}
return (0);
}
/*
* Determine whether a block can be allocated.
*
* Check to see if a block of the appropriate size is available,
* and if it is, allocate it.
*/
static daddr_t
ext2_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
{
struct m_ext2fs *fs;
struct buf *bp;
struct ext2mount *ump;
daddr_t bno, runstart, runlen;
int bit, loc, end, error, start;
char *bbp;
/* XXX ondisk32 */
fs = ip->i_e2fs;
ump = ip->i_ump;
if (e2fs_gd_get_nbfree(&fs->e2fs_gd[cg]) == 0)
return (0);
EXT2_UNLOCK(ump);
error = bread(ip->i_devvp, fsbtodb(fs,
e2fs_gd_get_b_bitmap(&fs->e2fs_gd[cg])),
(int)fs->e2fs_bsize, NOCRED, &bp);
if (error)
goto fail;
if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_GDT_CSUM) ||
EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_METADATA_CKSUM)) {
error = ext2_cg_block_bitmap_init(fs, cg, bp);
if (error)
goto fail;
ext2_gd_b_bitmap_csum_set(fs, cg, bp);
}
error = ext2_gd_b_bitmap_csum_verify(fs, cg, bp);
if (error)
goto fail;
error = ext2_b_bitmap_validate(fs,bp, cg);
if (error)
goto fail;
/*
* Check, that another thread did not not allocate the last block in this
* group while we were waiting for the buffer.
*/
if (e2fs_gd_get_nbfree(&fs->e2fs_gd[cg]) == 0)
goto fail;
bbp = (char *)bp->b_data;
if (dtog(fs, bpref) != cg)
bpref = 0;
if (bpref != 0) {
bpref = dtogd(fs, bpref);
/*
* if the requested block is available, use it
*/
if (isclr(bbp, bpref)) {
bno = bpref;
goto gotit;
}
}
/*
* no blocks in the requested cylinder, so take next
* available one in this cylinder group.
* first try to get 8 contigous blocks, then fall back to a single
* block.
*/
if (bpref)
start = dtogd(fs, bpref) / NBBY;
else
start = 0;
end = howmany(fs->e2fs->e2fs_fpg, NBBY) - start;
retry:
runlen = 0;
runstart = 0;
for (loc = start; loc < end; loc++) {
if (bbp[loc] == (char)0xff) {
runlen = 0;
continue;
}
/* Start of a run, find the number of high clear bits. */
if (runlen == 0) {
bit = fls(bbp[loc]);
runlen = NBBY - bit;
runstart = loc * NBBY + bit;
} else if (bbp[loc] == 0) {
/* Continue a run. */
runlen += NBBY;
} else {
/*
* Finish the current run. If it isn't long
* enough, start a new one.
*/
bit = ffs(bbp[loc]) - 1;
runlen += bit;
if (runlen >= 8) {
bno = runstart;
goto gotit;
}
/* Run was too short, start a new one. */
bit = fls(bbp[loc]);
runlen = NBBY - bit;
runstart = loc * NBBY + bit;
}
/* If the current run is long enough, use it. */
if (runlen >= 8) {
bno = runstart;
goto gotit;
}
}
if (start != 0) {
end = start;
start = 0;
goto retry;
}
bno = ext2_mapsearch(fs, bbp, bpref);
if (bno < 0)
goto fail;
gotit:
#ifdef INVARIANTS
if (isset(bbp, bno)) {
printf("ext2fs_alloccgblk: cg=%d bno=%jd fs=%s\n",
cg, (intmax_t)bno, fs->e2fs_fsmnt);
panic("ext2fs_alloccg: dup alloc");
}
#endif
setbit(bbp, bno);
EXT2_LOCK(ump);
ext2_clusteracct(fs, bbp, cg, bno, -1);
fs->e2fs_fbcount--;
e2fs_gd_set_nbfree(&fs->e2fs_gd[cg],
e2fs_gd_get_nbfree(&fs->e2fs_gd[cg]) - 1);
fs->e2fs_fmod = 1;
EXT2_UNLOCK(ump);
ext2_gd_b_bitmap_csum_set(fs, cg, bp);
bdwrite(bp);
return (((uint64_t)cg) * fs->e2fs->e2fs_fpg + fs->e2fs->e2fs_first_dblock + bno);
fail:
brelse(bp);
EXT2_LOCK(ump);
return (0);
}
/*
* Determine whether a cluster can be allocated.
*/
static daddr_t
ext2_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len)
{
struct m_ext2fs *fs;
struct ext2mount *ump;
struct buf *bp;
char *bbp;
int bit, error, got, i, loc, run;
int32_t *lp;
daddr_t bno;
fs = ip->i_e2fs;
ump = ip->i_ump;
if (fs->e2fs_maxcluster[cg] < len)
return (0);
EXT2_UNLOCK(ump);
error = bread(ip->i_devvp,
fsbtodb(fs, e2fs_gd_get_b_bitmap(&fs->e2fs_gd[cg])),
(int)fs->e2fs_bsize, NOCRED, &bp);
if (error)
goto fail_lock;
bbp = (char *)bp->b_data;
EXT2_LOCK(ump);
/*
* Check to see if a cluster of the needed size (or bigger) is
* available in this cylinder group.
*/
lp = &fs->e2fs_clustersum[cg].cs_sum[len];
for (i = len; i <= fs->e2fs_contigsumsize; i++)
if (*lp++ > 0)
break;
if (i > fs->e2fs_contigsumsize) {
/*
* Update the cluster summary information to reflect
* the true maximum-sized cluster so that future cluster
* allocation requests can avoid reading the bitmap only
* to find no cluster.
*/
lp = &fs->e2fs_clustersum[cg].cs_sum[len - 1];
for (i = len - 1; i > 0; i--)
if (*lp-- > 0)
break;
fs->e2fs_maxcluster[cg] = i;
goto fail;
}
EXT2_UNLOCK(ump);
/* Search the bitmap to find a big enough cluster like in FFS. */
if (dtog(fs, bpref) != cg)
bpref = 0;
if (bpref != 0)
bpref = dtogd(fs, bpref);
loc = bpref / NBBY;
bit = 1 << (bpref % NBBY);
for (run = 0, got = bpref; got < fs->e2fs->e2fs_fpg; got++) {
if ((bbp[loc] & bit) != 0)
run = 0;
else {
run++;
if (run == len)
break;
}
if ((got & (NBBY - 1)) != (NBBY - 1))
bit <<= 1;
else {
loc++;
bit = 1;
}
}
if (got >= fs->e2fs->e2fs_fpg)
goto fail_lock;
/* Allocate the cluster that we found. */
for (i = 1; i < len; i++)
if (!isclr(bbp, got - run + i))
panic("ext2_clusteralloc: map mismatch");
bno = got - run + 1;
if (bno >= fs->e2fs->e2fs_fpg)
panic("ext2_clusteralloc: allocated out of group");
EXT2_LOCK(ump);
for (i = 0; i < len; i += fs->e2fs_fpb) {
setbit(bbp, bno + i);
ext2_clusteracct(fs, bbp, cg, bno + i, -1);
fs->e2fs_fbcount--;
e2fs_gd_set_nbfree(&fs->e2fs_gd[cg],
e2fs_gd_get_nbfree(&fs->e2fs_gd[cg]) - 1);
}
fs->e2fs_fmod = 1;
EXT2_UNLOCK(ump);
bdwrite(bp);
return (cg * fs->e2fs->e2fs_fpg + fs->e2fs->e2fs_first_dblock + bno);
fail_lock:
EXT2_LOCK(ump);
fail:
brelse(bp);
return (0);
}
static int
ext2_zero_inode_table(struct inode *ip, int cg)
{
struct m_ext2fs *fs;
struct buf *bp;
int i, all_blks, used_blks;
fs = ip->i_e2fs;
if (fs->e2fs_gd[cg].ext4bgd_flags & EXT2_BG_INODE_ZEROED)
return (0);
all_blks = fs->e2fs->e2fs_inode_size * fs->e2fs->e2fs_ipg /
fs->e2fs_bsize;
used_blks = howmany(fs->e2fs->e2fs_ipg -
e2fs_gd_get_i_unused(&fs->e2fs_gd[cg]),
fs->e2fs_bsize / EXT2_INODE_SIZE(fs));
for (i = 0; i < all_blks - used_blks; i++) {
bp = getblk(ip->i_devvp, fsbtodb(fs,
e2fs_gd_get_i_tables(&fs->e2fs_gd[cg]) + used_blks + i),
fs->e2fs_bsize, 0, 0, 0);
if (!bp)
return (EIO);
vfs_bio_bzero_buf(bp, 0, fs->e2fs_bsize);
bawrite(bp);
}
fs->e2fs_gd[cg].ext4bgd_flags |= EXT2_BG_INODE_ZEROED;
return (0);
}
static void
ext2_fix_bitmap_tail(unsigned char *bitmap, int first, int last)
{
int i;
for (i = first; i <= last; i++)
bitmap[i] = 0xff;
}
/*
* Determine whether an inode can be allocated.
*
* Check to see if an inode is available, and if it is,
* allocate it using tode in the specified cylinder group.
*/
static daddr_t
ext2_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode)
{
struct m_ext2fs *fs;
struct buf *bp;
struct ext2mount *ump;
int error, start, len, ifree, ibytes;
char *ibp, *loc;
ipref--; /* to avoid a lot of (ipref -1) */
if (ipref == -1)
ipref = 0;
fs = ip->i_e2fs;
ump = ip->i_ump;
if (e2fs_gd_get_nifree(&fs->e2fs_gd[cg]) == 0)
return (0);
EXT2_UNLOCK(ump);
error = bread(ip->i_devvp, fsbtodb(fs,
e2fs_gd_get_i_bitmap(&fs->e2fs_gd[cg])),
(int)fs->e2fs_bsize, NOCRED, &bp);
if (error) {
EXT2_LOCK(ump);
return (0);
}
if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_GDT_CSUM) ||
EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_METADATA_CKSUM)) {
if (fs->e2fs_gd[cg].ext4bgd_flags & EXT2_BG_INODE_UNINIT) {
ibytes = fs->e2fs_ipg / 8;
memset(bp->b_data, 0, ibytes - 1);
ext2_fix_bitmap_tail(bp->b_data, ibytes,
fs->e2fs_bsize - 1);
fs->e2fs_gd[cg].ext4bgd_flags &= ~EXT2_BG_INODE_UNINIT;
}
ext2_gd_i_bitmap_csum_set(fs, cg, bp);
error = ext2_zero_inode_table(ip, cg);
if (error) {
brelse(bp);
EXT2_LOCK(ump);
return (0);
}
}
error = ext2_gd_i_bitmap_csum_verify(fs, cg, bp);
if (error) {
brelse(bp);
EXT2_LOCK(ump);
return (0);
}
if (e2fs_gd_get_nifree(&fs->e2fs_gd[cg]) == 0) {
/*
* Another thread allocated the last i-node in this
* group while we were waiting for the buffer.
*/
brelse(bp);
EXT2_LOCK(ump);
return (0);
}
ibp = (char *)bp->b_data;
if (ipref) {
ipref %= fs->e2fs->e2fs_ipg;
if (isclr(ibp, ipref))
goto gotit;
}
start = ipref / NBBY;
len = howmany(fs->e2fs->e2fs_ipg - ipref, NBBY);
loc = memcchr(&ibp[start], 0xff, len);
if (loc == NULL) {
len = start + 1;
start = 0;
loc = memcchr(&ibp[start], 0xff, len);
if (loc == NULL) {
SDT_PROBE3(ext2fs, , alloc, ext2_nodealloccg_bmap_corrupted,
cg, ipref, fs->e2fs_fsmnt);
brelse(bp);
EXT2_LOCK(ump);
return (0);
}
}
ipref = (loc - ibp) * NBBY + ffs(~*loc) - 1;
gotit:
setbit(ibp, ipref);
EXT2_LOCK(ump);
e2fs_gd_set_nifree(&fs->e2fs_gd[cg],
e2fs_gd_get_nifree(&fs->e2fs_gd[cg]) - 1);
if (EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_GDT_CSUM) ||
EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_METADATA_CKSUM)) {
ifree = fs->e2fs->e2fs_ipg - e2fs_gd_get_i_unused(&fs->e2fs_gd[cg]);
if (ipref + 1 > ifree)
e2fs_gd_set_i_unused(&fs->e2fs_gd[cg],
fs->e2fs->e2fs_ipg - (ipref + 1));
}
fs->e2fs->e2fs_ficount--;
fs->e2fs_fmod = 1;
if ((mode & IFMT) == IFDIR) {
e2fs_gd_set_ndirs(&fs->e2fs_gd[cg],
e2fs_gd_get_ndirs(&fs->e2fs_gd[cg]) + 1);
fs->e2fs_total_dir++;
}
EXT2_UNLOCK(ump);
ext2_gd_i_bitmap_csum_set(fs, cg, bp);
bdwrite(bp);
return ((uint64_t)cg * fs->e2fs_ipg + ipref + 1);
}
/*
* Free a block or fragment.
*
*/
void
ext2_blkfree(struct inode *ip, e4fs_daddr_t bno, long size)
{
struct m_ext2fs *fs;
struct buf *bp;
struct ext2mount *ump;
int cg, error;
char *bbp;
fs = ip->i_e2fs;
ump = ip->i_ump;
cg = dtog(fs, bno);
if (bno >= fs->e2fs_bcount) {
SDT_PROBE2(ext2fs, , alloc, ext2_blkfree_bad_block, ip->i_number, bno);
return;
}
error = bread(ip->i_devvp,
fsbtodb(fs, e2fs_gd_get_b_bitmap(&fs->e2fs_gd[cg])),
(int)fs->e2fs_bsize, NOCRED, &bp);
if (error) {
return;
}
bbp = (char *)bp->b_data;
bno = dtogd(fs, bno);
if (isclr(bbp, bno)) {
panic("ext2_blkfree: freeing free block %lld, fs=%s",
(long long)bno, fs->e2fs_fsmnt);
}
clrbit(bbp, bno);
EXT2_LOCK(ump);
ext2_clusteracct(fs, bbp, cg, bno, 1);
fs->e2fs_fbcount++;
e2fs_gd_set_nbfree(&fs->e2fs_gd[cg],
e2fs_gd_get_nbfree(&fs->e2fs_gd[cg]) + 1);
fs->e2fs_fmod = 1;
EXT2_UNLOCK(ump);
ext2_gd_b_bitmap_csum_set(fs, cg, bp);
bdwrite(bp);
}
/*
* Free an inode.
*
*/
int
ext2_vfree(struct vnode *pvp, ino_t ino, int mode)
{
struct m_ext2fs *fs;
struct inode *pip;
struct buf *bp;
struct ext2mount *ump;
int error, cg;
char *ibp;
pip = VTOI(pvp);
fs = pip->i_e2fs;
ump = pip->i_ump;
if ((u_int)ino > fs->e2fs_ipg * fs->e2fs_gcount)
panic("ext2_vfree: range: devvp = %p, ino = %ju, fs = %s",
pip->i_devvp, (uintmax_t)ino, fs->e2fs_fsmnt);
cg = ino_to_cg(fs, ino);
error = bread(pip->i_devvp,
fsbtodb(fs, e2fs_gd_get_i_bitmap(&fs->e2fs_gd[cg])),
(int)fs->e2fs_bsize, NOCRED, &bp);
if (error) {
return (0);
}
ibp = (char *)bp->b_data;
ino = (ino - 1) % fs->e2fs->e2fs_ipg;
if (isclr(ibp, ino)) {
SDT_PROBE2(ext2fs, , alloc, ext2_vfree_doublefree,
fs->e2fs_fsmnt, ino);
if (fs->e2fs_ronly == 0)
panic("ext2_vfree: freeing free inode");
}
clrbit(ibp, ino);
EXT2_LOCK(ump);
fs->e2fs->e2fs_ficount++;
e2fs_gd_set_nifree(&fs->e2fs_gd[cg],
e2fs_gd_get_nifree(&fs->e2fs_gd[cg]) + 1);
if ((mode & IFMT) == IFDIR) {
e2fs_gd_set_ndirs(&fs->e2fs_gd[cg],
e2fs_gd_get_ndirs(&fs->e2fs_gd[cg]) - 1);
fs->e2fs_total_dir--;
}
fs->e2fs_fmod = 1;
EXT2_UNLOCK(ump);
ext2_gd_i_bitmap_csum_set(fs, cg, bp);
bdwrite(bp);
return (0);
}
/*
* Find a block in the specified cylinder group.
*
* It is a panic if a request is made to find a block if none are
* available.
*/
static daddr_t
ext2_mapsearch(struct m_ext2fs *fs, char *bbp, daddr_t bpref)
{
char *loc;
int start, len;
/*
* find the fragment by searching through the free block
* map for an appropriate bit pattern
*/
if (bpref)
start = dtogd(fs, bpref) / NBBY;
else
start = 0;
len = howmany(fs->e2fs->e2fs_fpg, NBBY) - start;
loc = memcchr(&bbp[start], 0xff, len);
if (loc == NULL) {
len = start + 1;
start = 0;
loc = memcchr(&bbp[start], 0xff, len);
if (loc == NULL) {
panic("ext2_mapsearch: map corrupted: start=%d, len=%d, fs=%s",
start, len, fs->e2fs_fsmnt);
/* NOTREACHED */
}
}
return ((loc - bbp) * NBBY + ffs(~*loc) - 1);
}
int
ext2_cg_has_sb(struct m_ext2fs *fs, int cg)
{
int a3, a5, a7;
if (cg == 0)
return (1);
if (EXT2_HAS_COMPAT_FEATURE(fs, EXT2F_COMPAT_SPARSESUPER2)) {
if (cg == fs->e2fs->e4fs_backup_bgs[0] ||
cg == fs->e2fs->e4fs_backup_bgs[1])
return (1);
return (0);
}
if ((cg <= 1) ||
!EXT2_HAS_RO_COMPAT_FEATURE(fs, EXT2F_ROCOMPAT_SPARSESUPER))
return (1);
if (!(cg & 1))
return (0);
for (a3 = 3, a5 = 5, a7 = 7;
a3 <= cg || a5 <= cg || a7 <= cg;
a3 *= 3, a5 *= 5, a7 *= 7)
if (cg == a3 || cg == a5 || cg == a7)
return (1);
return (0);
}