freebsd-dev/sys/arm/allwinner/clk/aw_pll.c
Andrew Turner 87e1355ba5 Define the Allwinner PLL FDT constants in the file that uses them rather
than including a file from under sys/gnu.

Sponsored by:	DARPA, AFRL
2016-10-26 14:09:30 +00:00

1231 lines
30 KiB
C

/*-
* Copyright (c) 2016 Jared McNeill <jmcneill@invisible.ca>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* Allwinner PLL clock
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <machine/bus.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/ofw/ofw_subr.h>
#include <dev/extres/clk/clk.h>
#include <arm/allwinner/aw_machdep.h>
#include "clkdev_if.h"
#define SUN4I_A10_PLL2_1X 0
#define SUN4I_A10_PLL2_2X 1
#define SUN4I_A10_PLL2_4X 2
#define SUN4I_A10_PLL2_8X 3
#define AW_PLL_ENABLE (1 << 31)
#define A10_PLL1_OUT_EXT_DIVP (0x3 << 16)
#define A10_PLL1_OUT_EXT_DIVP_SHIFT 16
#define A10_PLL1_FACTOR_N (0x1f << 8)
#define A10_PLL1_FACTOR_N_SHIFT 8
#define A10_PLL1_FACTOR_K (0x3 << 4)
#define A10_PLL1_FACTOR_K_SHIFT 4
#define A10_PLL1_FACTOR_M (0x3 << 0)
#define A10_PLL1_FACTOR_M_SHIFT 0
#define A10_PLL2_POST_DIV (0xf << 26)
#define A10_PLL2_POST_DIV_SHIFT 26
#define A10_PLL2_FACTOR_N (0x7f << 8)
#define A10_PLL2_FACTOR_N_SHIFT 8
#define A10_PLL2_PRE_DIV (0x1f << 0)
#define A10_PLL2_PRE_DIV_SHIFT 0
#define A10_PLL3_MODE_SEL (0x1 << 15)
#define A10_PLL3_MODE_SEL_FRACT (0 << 15)
#define A10_PLL3_MODE_SEL_INT (1 << 15)
#define A10_PLL3_FUNC_SET (0x1 << 14)
#define A10_PLL3_FUNC_SET_270MHZ (0 << 14)
#define A10_PLL3_FUNC_SET_297MHZ (1 << 14)
#define A10_PLL3_FACTOR_M (0x7f << 0)
#define A10_PLL3_FACTOR_M_SHIFT 0
#define A10_PLL3_REF_FREQ 3000000
#define A10_PLL5_OUT_EXT_DIVP (0x3 << 16)
#define A10_PLL5_OUT_EXT_DIVP_SHIFT 16
#define A10_PLL5_FACTOR_N (0x1f << 8)
#define A10_PLL5_FACTOR_N_SHIFT 8
#define A10_PLL5_FACTOR_K (0x3 << 4)
#define A10_PLL5_FACTOR_K_SHIFT 4
#define A10_PLL5_FACTOR_M1 (0x3 << 2)
#define A10_PLL5_FACTOR_M1_SHIFT 2
#define A10_PLL5_FACTOR_M (0x3 << 0)
#define A10_PLL5_FACTOR_M_SHIFT 0
#define A10_PLL6_BYPASS_EN (1 << 30)
#define A10_PLL6_SATA_CLK_EN (1 << 14)
#define A10_PLL6_FACTOR_N (0x1f << 8)
#define A10_PLL6_FACTOR_N_SHIFT 8
#define A10_PLL6_FACTOR_K (0x3 << 4)
#define A10_PLL6_FACTOR_K_SHIFT 4
#define A10_PLL6_FACTOR_M (0x3 << 0)
#define A10_PLL6_FACTOR_M_SHIFT 0
#define A10_PLL2_POST_DIV (0xf << 26)
#define A13_PLL2_POST_DIV (0xf << 26)
#define A13_PLL2_POST_DIV_SHIFT 26
#define A13_PLL2_FACTOR_N (0x7f << 8)
#define A13_PLL2_FACTOR_N_SHIFT 8
#define A13_PLL2_PRE_DIV (0x1f << 0)
#define A13_PLL2_PRE_DIV_SHIFT 0
#define A23_PLL1_FACTOR_P (0x3 << 16)
#define A23_PLL1_FACTOR_P_SHIFT 16
#define A23_PLL1_FACTOR_N (0x1f << 8)
#define A23_PLL1_FACTOR_N_SHIFT 8
#define A23_PLL1_FACTOR_K (0x3 << 4)
#define A23_PLL1_FACTOR_K_SHIFT 4
#define A23_PLL1_FACTOR_M (0x3 << 0)
#define A23_PLL1_FACTOR_M_SHIFT 0
#define A31_PLL1_LOCK (1 << 28)
#define A31_PLL1_CPU_SIGMA_DELTA_EN (1 << 24)
#define A31_PLL1_FACTOR_N (0x1f << 8)
#define A31_PLL1_FACTOR_N_SHIFT 8
#define A31_PLL1_FACTOR_K (0x3 << 4)
#define A31_PLL1_FACTOR_K_SHIFT 4
#define A31_PLL1_FACTOR_M (0x3 << 0)
#define A31_PLL1_FACTOR_M_SHIFT 0
#define A31_PLL6_LOCK (1 << 28)
#define A31_PLL6_BYPASS_EN (1 << 25)
#define A31_PLL6_CLK_OUT_EN (1 << 24)
#define A31_PLL6_24M_OUT_EN (1 << 18)
#define A31_PLL6_24M_POST_DIV (0x3 << 16)
#define A31_PLL6_24M_POST_DIV_SHIFT 16
#define A31_PLL6_FACTOR_N (0x1f << 8)
#define A31_PLL6_FACTOR_N_SHIFT 8
#define A31_PLL6_FACTOR_K (0x3 << 4)
#define A31_PLL6_FACTOR_K_SHIFT 4
#define A31_PLL6_DEFAULT_N 0x18
#define A31_PLL6_DEFAULT_K 0x1
#define A31_PLL6_TIMEOUT 10
#define A64_PLLHSIC_LOCK (1 << 28)
#define A64_PLLHSIC_FRAC_CLK_OUT (1 << 25)
#define A64_PLLHSIC_PLL_MODE_SEL (1 << 24)
#define A64_PLLHSIC_PLL_SDM_EN (1 << 20)
#define A64_PLLHSIC_FACTOR_N (0x7f << 8)
#define A64_PLLHSIC_FACTOR_N_SHIFT 8
#define A64_PLLHSIC_PRE_DIV_M (0xf << 0)
#define A64_PLLHSIC_PRE_DIV_M_SHIFT 0
#define A80_PLL4_CLK_OUT_EN (1 << 20)
#define A80_PLL4_PLL_DIV2 (1 << 18)
#define A80_PLL4_PLL_DIV1 (1 << 16)
#define A80_PLL4_FACTOR_N (0xff << 8)
#define A80_PLL4_FACTOR_N_SHIFT 8
#define A83T_PLLCPUX_LOCK_TIME (0x7 << 24)
#define A83T_PLLCPUX_LOCK_TIME_SHIFT 24
#define A83T_PLLCPUX_CLOCK_OUTPUT_DIS (1 << 20)
#define A83T_PLLCPUX_OUT_EXT_DIVP (1 << 16)
#define A83T_PLLCPUX_FACTOR_N (0xff << 8)
#define A83T_PLLCPUX_FACTOR_N_SHIFT 8
#define A83T_PLLCPUX_FACTOR_N_MIN 12
#define A83T_PLLCPUX_FACTOR_N_MAX 125
#define A83T_PLLCPUX_POSTDIV_M (0x3 << 0)
#define A83T_PLLCPUX_POSTDIV_M_SHIFT 0
#define CLKID_A10_PLL3_1X 0
#define CLKID_A10_PLL3_2X 1
#define CLKID_A10_PLL5_DDR 0
#define CLKID_A10_PLL5_OTHER 1
#define CLKID_A10_PLL6_SATA 0
#define CLKID_A10_PLL6_OTHER 1
#define CLKID_A10_PLL6 2
#define CLKID_A10_PLL6_DIV_4 3
#define CLKID_A31_PLL6 0
#define CLKID_A31_PLL6_X2 1
struct aw_pll_factor {
unsigned int n;
unsigned int k;
unsigned int m;
unsigned int p;
uint64_t freq;
};
#define PLLFACTOR(_n, _k, _m, _p, _freq) \
{ .n = (_n), .k = (_k), .m = (_m), .p = (_p), .freq = (_freq) }
static struct aw_pll_factor aw_a10_pll1_factors[] = {
PLLFACTOR(6, 0, 0, 0, 144000000),
PLLFACTOR(12, 0, 0, 0, 312000000),
PLLFACTOR(21, 0, 0, 0, 528000000),
PLLFACTOR(29, 0, 0, 0, 720000000),
PLLFACTOR(18, 1, 0, 0, 864000000),
PLLFACTOR(19, 1, 0, 0, 912000000),
PLLFACTOR(20, 1, 0, 0, 960000000),
};
static struct aw_pll_factor aw_a23_pll1_factors[] = {
PLLFACTOR(9, 0, 0, 2, 60000000),
PLLFACTOR(10, 0, 0, 2, 66000000),
PLLFACTOR(11, 0, 0, 2, 72000000),
PLLFACTOR(12, 0, 0, 2, 78000000),
PLLFACTOR(13, 0, 0, 2, 84000000),
PLLFACTOR(14, 0, 0, 2, 90000000),
PLLFACTOR(15, 0, 0, 2, 96000000),
PLLFACTOR(16, 0, 0, 2, 102000000),
PLLFACTOR(17, 0, 0, 2, 108000000),
PLLFACTOR(18, 0, 0, 2, 114000000),
PLLFACTOR(9, 0, 0, 1, 120000000),
PLLFACTOR(10, 0, 0, 1, 132000000),
PLLFACTOR(11, 0, 0, 1, 144000000),
PLLFACTOR(12, 0, 0, 1, 156000000),
PLLFACTOR(13, 0, 0, 1, 168000000),
PLLFACTOR(14, 0, 0, 1, 180000000),
PLLFACTOR(15, 0, 0, 1, 192000000),
PLLFACTOR(16, 0, 0, 1, 204000000),
PLLFACTOR(17, 0, 0, 1, 216000000),
PLLFACTOR(18, 0, 0, 1, 228000000),
PLLFACTOR(9, 0, 0, 0, 240000000),
PLLFACTOR(10, 0, 0, 0, 264000000),
PLLFACTOR(11, 0, 0, 0, 288000000),
PLLFACTOR(12, 0, 0, 0, 312000000),
PLLFACTOR(13, 0, 0, 0, 336000000),
PLLFACTOR(14, 0, 0, 0, 360000000),
PLLFACTOR(15, 0, 0, 0, 384000000),
PLLFACTOR(16, 0, 0, 0, 408000000),
PLLFACTOR(17, 0, 0, 0, 432000000),
PLLFACTOR(18, 0, 0, 0, 456000000),
PLLFACTOR(19, 0, 0, 0, 480000000),
PLLFACTOR(20, 0, 0, 0, 504000000),
PLLFACTOR(21, 0, 0, 0, 528000000),
PLLFACTOR(22, 0, 0, 0, 552000000),
PLLFACTOR(23, 0, 0, 0, 576000000),
PLLFACTOR(24, 0, 0, 0, 600000000),
PLLFACTOR(25, 0, 0, 0, 624000000),
PLLFACTOR(26, 0, 0, 0, 648000000),
PLLFACTOR(27, 0, 0, 0, 672000000),
PLLFACTOR(28, 0, 0, 0, 696000000),
PLLFACTOR(29, 0, 0, 0, 720000000),
PLLFACTOR(15, 1, 0, 0, 768000000),
PLLFACTOR(10, 2, 0, 0, 792000000),
PLLFACTOR(16, 1, 0, 0, 816000000),
PLLFACTOR(17, 1, 0, 0, 864000000),
PLLFACTOR(18, 1, 0, 0, 912000000),
PLLFACTOR(12, 2, 0, 0, 936000000),
PLLFACTOR(19, 1, 0, 0, 960000000),
PLLFACTOR(20, 1, 0, 0, 1008000000),
PLLFACTOR(21, 1, 0, 0, 1056000000),
PLLFACTOR(14, 2, 0, 0, 1080000000),
PLLFACTOR(22, 1, 0, 0, 1104000000),
PLLFACTOR(23, 1, 0, 0, 1152000000),
PLLFACTOR(24, 1, 0, 0, 1200000000),
PLLFACTOR(16, 2, 0, 0, 1224000000),
PLLFACTOR(25, 1, 0, 0, 1248000000),
PLLFACTOR(26, 1, 0, 0, 1296000000),
PLLFACTOR(27, 1, 0, 0, 1344000000),
PLLFACTOR(18, 2, 0, 0, 1368000000),
PLLFACTOR(28, 1, 0, 0, 1392000000),
PLLFACTOR(29, 1, 0, 0, 1440000000),
PLLFACTOR(20, 2, 0, 0, 1512000000),
PLLFACTOR(15, 3, 0, 0, 1536000000),
PLLFACTOR(21, 2, 0, 0, 1584000000),
PLLFACTOR(16, 3, 0, 0, 1632000000),
PLLFACTOR(22, 2, 0, 0, 1656000000),
PLLFACTOR(23, 2, 0, 0, 1728000000),
PLLFACTOR(24, 2, 0, 0, 1800000000),
PLLFACTOR(18, 3, 0, 0, 1824000000),
PLLFACTOR(25, 2, 0, 0, 1872000000),
};
enum aw_pll_type {
AWPLL_A10_PLL1 = 1,
AWPLL_A10_PLL2,
AWPLL_A10_PLL3,
AWPLL_A10_PLL5,
AWPLL_A10_PLL6,
AWPLL_A13_PLL2,
AWPLL_A23_PLL1,
AWPLL_A31_PLL1,
AWPLL_A31_PLL6,
AWPLL_A64_PLLHSIC,
AWPLL_A80_PLL4,
AWPLL_A83T_PLLCPUX,
AWPLL_H3_PLL1,
};
struct aw_pll_sc {
enum aw_pll_type type;
device_t clkdev;
bus_addr_t reg;
int id;
};
struct aw_pll_funcs {
int (*recalc)(struct aw_pll_sc *, uint64_t *);
int (*set_freq)(struct aw_pll_sc *, uint64_t, uint64_t *, int);
int (*init)(device_t, bus_addr_t, struct clknode_init_def *);
};
#define PLL_READ(sc, val) CLKDEV_READ_4((sc)->clkdev, (sc)->reg, (val))
#define PLL_WRITE(sc, val) CLKDEV_WRITE_4((sc)->clkdev, (sc)->reg, (val))
#define DEVICE_LOCK(sc) CLKDEV_DEVICE_LOCK((sc)->clkdev)
#define DEVICE_UNLOCK(sc) CLKDEV_DEVICE_UNLOCK((sc)->clkdev)
static int
a10_pll1_set_freq(struct aw_pll_sc *sc, uint64_t fin, uint64_t *fout,
int flags)
{
struct aw_pll_factor *f;
uint32_t val;
int n;
f = NULL;
for (n = 0; n < nitems(aw_a10_pll1_factors); n++) {
if (aw_a10_pll1_factors[n].freq == *fout) {
f = &aw_a10_pll1_factors[n];
break;
}
}
if (f == NULL)
return (EINVAL);
DEVICE_LOCK(sc);
PLL_READ(sc, &val);
val &= ~(A10_PLL1_FACTOR_N|A10_PLL1_FACTOR_K|A10_PLL1_FACTOR_M|
A10_PLL1_OUT_EXT_DIVP);
val |= (f->p << A10_PLL1_OUT_EXT_DIVP_SHIFT);
val |= (f->n << A10_PLL1_FACTOR_N_SHIFT);
val |= (f->k << A10_PLL1_FACTOR_K_SHIFT);
val |= (f->m << A10_PLL1_FACTOR_M_SHIFT);
PLL_WRITE(sc, val);
DEVICE_UNLOCK(sc);
return (0);
}
static int
a10_pll1_recalc(struct aw_pll_sc *sc, uint64_t *freq)
{
uint32_t val, m, n, k, p;
DEVICE_LOCK(sc);
PLL_READ(sc, &val);
DEVICE_UNLOCK(sc);
p = 1 << ((val & A10_PLL1_OUT_EXT_DIVP) >> A10_PLL1_OUT_EXT_DIVP_SHIFT);
m = ((val & A10_PLL1_FACTOR_M) >> A10_PLL1_FACTOR_M_SHIFT) + 1;
k = ((val & A10_PLL1_FACTOR_K) >> A10_PLL1_FACTOR_K_SHIFT) + 1;
n = (val & A10_PLL1_FACTOR_N) >> A10_PLL1_FACTOR_N_SHIFT;
if (n == 0)
n = 1;
*freq = (*freq * n * k) / (m * p);
return (0);
}
static int
a10_pll2_recalc(struct aw_pll_sc *sc, uint64_t *freq)
{
uint32_t val, post_div, n, pre_div;
DEVICE_LOCK(sc);
PLL_READ(sc, &val);
DEVICE_UNLOCK(sc);
post_div = (val & A10_PLL2_POST_DIV) >> A10_PLL2_POST_DIV_SHIFT;
if (post_div == 0)
post_div = 1;
n = (val & A10_PLL2_FACTOR_N) >> A10_PLL2_FACTOR_N_SHIFT;
if (n == 0)
n = 1;
pre_div = (val & A10_PLL2_PRE_DIV) >> A10_PLL2_PRE_DIV_SHIFT;
if (pre_div == 0)
pre_div = 1;
switch (sc->id) {
case SUN4I_A10_PLL2_1X:
*freq = (*freq * 2 * n) / pre_div / post_div / 2;
break;
case SUN4I_A10_PLL2_2X:
*freq = (*freq * 2 * n) / pre_div / 4;
break;
case SUN4I_A10_PLL2_4X:
*freq = (*freq * 2 * n) / pre_div / 2;
break;
case SUN4I_A10_PLL2_8X:
*freq = (*freq * 2 * n) / pre_div;
break;
default:
return (EINVAL);
}
return (0);
}
static int
a10_pll2_set_freq(struct aw_pll_sc *sc, uint64_t fin, uint64_t *fout,
int flags)
{
uint32_t val, post_div, n, pre_div;
if (sc->id != SUN4I_A10_PLL2_1X)
return (ENXIO);
/*
* Audio Codec needs PLL2-1X to be either 24576000 or 22579200.
*
* PLL2-1X output frequency is (48MHz * n) / pre_div / post_div / 2.
* To get as close as possible to the desired rate, we use a
* pre-divider of 21 and a post-divider of 4. With these values,
* a multiplier of 86 or 79 gets us close to the target rates.
*/
if (*fout != 24576000 && *fout != 22579200)
return (EINVAL);
pre_div = 21;
post_div = 4;
n = (*fout * pre_div * post_div * 2) / (2 * fin);
DEVICE_LOCK(sc);
PLL_READ(sc, &val);
val &= ~(A10_PLL2_POST_DIV | A10_PLL2_FACTOR_N | A10_PLL2_PRE_DIV);
val |= (post_div << A10_PLL2_POST_DIV_SHIFT);
val |= (n << A10_PLL2_FACTOR_N_SHIFT);
val |= (pre_div << A10_PLL2_PRE_DIV_SHIFT);
PLL_WRITE(sc, val);
DEVICE_UNLOCK(sc);
return (0);
}
static int
a10_pll3_recalc(struct aw_pll_sc *sc, uint64_t *freq)
{
uint32_t val, m;
DEVICE_LOCK(sc);
PLL_READ(sc, &val);
DEVICE_UNLOCK(sc);
if ((val & A10_PLL3_MODE_SEL) == A10_PLL3_MODE_SEL_INT) {
/* In integer mode, output is 3MHz * m */
m = (val & A10_PLL3_FACTOR_M) >> A10_PLL3_FACTOR_M_SHIFT;
*freq = A10_PLL3_REF_FREQ * m;
} else {
/* In fractional mode, output is either 270MHz or 297MHz */
if ((val & A10_PLL3_FUNC_SET) == A10_PLL3_FUNC_SET_270MHZ)
*freq = 270000000;
else
*freq = 297000000;
}
if (sc->id == CLKID_A10_PLL3_2X)
*freq *= 2;
return (0);
}
static int
a10_pll3_set_freq(struct aw_pll_sc *sc, uint64_t fin, uint64_t *fout,
int flags)
{
uint32_t val, m, mode, func;
m = *fout / A10_PLL3_REF_FREQ;
if (sc->id == CLKID_A10_PLL3_2X)
m /= 2;
mode = A10_PLL3_MODE_SEL_INT;
func = 0;
*fout = m * A10_PLL3_REF_FREQ;
if (sc->id == CLKID_A10_PLL3_2X)
*fout *= 2;
DEVICE_LOCK(sc);
PLL_READ(sc, &val);
val &= ~(A10_PLL3_MODE_SEL | A10_PLL3_FUNC_SET | A10_PLL3_FACTOR_M);
val |= mode;
val |= func;
val |= (m << A10_PLL3_FACTOR_M_SHIFT);
PLL_WRITE(sc, val);
DEVICE_UNLOCK(sc);
return (0);
}
static int
a10_pll3_init(device_t dev, bus_addr_t reg, struct clknode_init_def *def)
{
uint32_t val;
/* Allow changing PLL frequency while enabled */
def->flags = CLK_NODE_GLITCH_FREE;
/* Set PLL to 297MHz */
CLKDEV_DEVICE_LOCK(dev);
CLKDEV_READ_4(dev, reg, &val);
val &= ~(A10_PLL3_MODE_SEL | A10_PLL3_FUNC_SET | A10_PLL3_FACTOR_M);
val |= A10_PLL3_MODE_SEL_FRACT;
val |= A10_PLL3_FUNC_SET_297MHZ;
CLKDEV_WRITE_4(dev, reg, val);
CLKDEV_DEVICE_UNLOCK(dev);
return (0);
}
static int
a10_pll5_recalc(struct aw_pll_sc *sc, uint64_t *freq)
{
uint32_t val, m, n, k, p;
DEVICE_LOCK(sc);
PLL_READ(sc, &val);
DEVICE_UNLOCK(sc);
p = 1 << ((val & A10_PLL5_OUT_EXT_DIVP) >> A10_PLL5_OUT_EXT_DIVP_SHIFT);
m = ((val & A10_PLL5_FACTOR_M) >> A10_PLL5_FACTOR_M_SHIFT) + 1;
k = ((val & A10_PLL5_FACTOR_K) >> A10_PLL5_FACTOR_K_SHIFT) + 1;
n = (val & A10_PLL5_FACTOR_N) >> A10_PLL5_FACTOR_N_SHIFT;
if (n == 0)
return (ENXIO);
switch (sc->id) {
case CLKID_A10_PLL5_DDR:
*freq = (*freq * n * k) / m;
break;
case CLKID_A10_PLL5_OTHER:
*freq = (*freq * n * k) / p;
break;
default:
return (ENXIO);
}
return (0);
}
static int
a10_pll6_init(device_t dev, bus_addr_t reg, struct clknode_init_def *def)
{
uint32_t val, m, n, k;
/*
* SATA needs PLL6 to be a 100MHz clock.
*
* The SATA output frequency is (24MHz * n * k) / m / 6.
* To get to 100MHz, k & m must be equal and n must be 25.
*/
m = k = 0;
n = 25;
CLKDEV_DEVICE_LOCK(dev);
CLKDEV_READ_4(dev, reg, &val);
val &= ~(A10_PLL6_FACTOR_N | A10_PLL6_FACTOR_K | A10_PLL6_FACTOR_M);
val &= ~A10_PLL6_BYPASS_EN;
val |= A10_PLL6_SATA_CLK_EN;
val |= (n << A10_PLL6_FACTOR_N_SHIFT);
val |= (k << A10_PLL6_FACTOR_K_SHIFT);
val |= (m << A10_PLL6_FACTOR_M_SHIFT);
CLKDEV_WRITE_4(dev, reg, val);
CLKDEV_DEVICE_UNLOCK(dev);
return (0);
}
static int
a10_pll6_recalc(struct aw_pll_sc *sc, uint64_t *freq)
{
uint32_t val, m, k, n;
DEVICE_LOCK(sc);
PLL_READ(sc, &val);
DEVICE_UNLOCK(sc);
m = ((val & A10_PLL6_FACTOR_M) >> A10_PLL6_FACTOR_M_SHIFT) + 1;
k = ((val & A10_PLL6_FACTOR_K) >> A10_PLL6_FACTOR_K_SHIFT) + 1;
n = (val & A10_PLL6_FACTOR_N) >> A10_PLL6_FACTOR_N_SHIFT;
if (n == 0)
return (ENXIO);
switch (sc->id) {
case CLKID_A10_PLL6_SATA:
*freq = (*freq * n * k) / m / 6;
break;
case CLKID_A10_PLL6_OTHER:
*freq = (*freq * n * k) / 2;
break;
case CLKID_A10_PLL6:
*freq = (*freq * n * k);
break;
case CLKID_A10_PLL6_DIV_4:
*freq = (*freq * n * k) / 4;
break;
default:
return (ENXIO);
}
return (0);
}
static int
a10_pll6_set_freq(struct aw_pll_sc *sc, uint64_t fin, uint64_t *fout,
int flags)
{
if (sc->id != CLKID_A10_PLL6_SATA)
return (ENXIO);
/* PLL6 SATA output has been set to 100MHz in a10_pll6_init */
if (*fout != 100000000)
return (ERANGE);
return (0);
}
static int
a13_pll2_recalc(struct aw_pll_sc *sc, uint64_t *freq)
{
uint32_t val, post_div, n, pre_div;
DEVICE_LOCK(sc);
PLL_READ(sc, &val);
DEVICE_UNLOCK(sc);
post_div = ((val & A13_PLL2_POST_DIV) >> A13_PLL2_POST_DIV_SHIFT) + 1;
if (post_div == 0)
post_div = 1;
n = (val & A13_PLL2_FACTOR_N) >> A13_PLL2_FACTOR_N_SHIFT;
if (n == 0)
n = 1;
pre_div = ((val & A13_PLL2_PRE_DIV) >> A13_PLL2_PRE_DIV_SHIFT) + 1;
if (pre_div == 0)
pre_div = 1;
switch (sc->id) {
case SUN4I_A10_PLL2_1X:
*freq = (*freq * 2 * n) / pre_div / post_div / 2;
break;
case SUN4I_A10_PLL2_2X:
*freq = (*freq * 2 * n) / pre_div / 4;
break;
case SUN4I_A10_PLL2_4X:
*freq = (*freq * 2 * n) / pre_div / 2;
break;
case SUN4I_A10_PLL2_8X:
*freq = (*freq * 2 * n) / pre_div;
break;
default:
return (EINVAL);
}
return (0);
}
static int
a13_pll2_set_freq(struct aw_pll_sc *sc, uint64_t fin, uint64_t *fout,
int flags)
{
uint32_t val, post_div, n, pre_div;
if (sc->id != SUN4I_A10_PLL2_1X)
return (ENXIO);
/*
* Audio Codec needs PLL2-1X to be either 24576000 or 22579200.
*
* PLL2-1X output frequency is (48MHz * n) / pre_div / post_div / 2.
* To get as close as possible to the desired rate, we use a
* pre-divider of 21 and a post-divider of 4. With these values,
* a multiplier of 86 or 79 gets us close to the target rates.
*/
if (*fout != 24576000 && *fout != 22579200)
return (EINVAL);
pre_div = 21;
post_div = 4;
n = (*fout * pre_div * post_div * 2) / (2 * fin);
DEVICE_LOCK(sc);
PLL_READ(sc, &val);
val &= ~(A13_PLL2_POST_DIV | A13_PLL2_FACTOR_N | A13_PLL2_PRE_DIV);
val |= ((post_div - 1) << A13_PLL2_POST_DIV_SHIFT);
val |= (n << A13_PLL2_FACTOR_N_SHIFT);
val |= ((pre_div - 1) << A13_PLL2_PRE_DIV_SHIFT);
PLL_WRITE(sc, val);
DEVICE_UNLOCK(sc);
return (0);
}
static int
a23_pll1_set_freq(struct aw_pll_sc *sc, uint64_t fin, uint64_t *fout,
int flags)
{
struct aw_pll_factor *f;
uint32_t val;
int n;
f = NULL;
for (n = 0; n < nitems(aw_a23_pll1_factors); n++) {
if (aw_a23_pll1_factors[n].freq == *fout) {
f = &aw_a23_pll1_factors[n];
break;
}
}
if (f == NULL)
return (EINVAL);
DEVICE_LOCK(sc);
PLL_READ(sc, &val);
val &= ~(A23_PLL1_FACTOR_N|A23_PLL1_FACTOR_K|A23_PLL1_FACTOR_M|
A23_PLL1_FACTOR_P);
val |= (f->n << A23_PLL1_FACTOR_N_SHIFT);
val |= (f->k << A23_PLL1_FACTOR_K_SHIFT);
val |= (f->m << A23_PLL1_FACTOR_M_SHIFT);
val |= (f->p << A23_PLL1_FACTOR_P_SHIFT);
PLL_WRITE(sc, val);
DEVICE_UNLOCK(sc);
return (0);
}
static int
a23_pll1_recalc(struct aw_pll_sc *sc, uint64_t *freq)
{
uint32_t val, m, n, k, p;
DEVICE_LOCK(sc);
PLL_READ(sc, &val);
DEVICE_UNLOCK(sc);
m = ((val & A23_PLL1_FACTOR_M) >> A23_PLL1_FACTOR_M_SHIFT) + 1;
k = ((val & A23_PLL1_FACTOR_K) >> A23_PLL1_FACTOR_K_SHIFT) + 1;
n = ((val & A23_PLL1_FACTOR_N) >> A23_PLL1_FACTOR_N_SHIFT) + 1;
p = ((val & A23_PLL1_FACTOR_P) >> A23_PLL1_FACTOR_P_SHIFT) + 1;
*freq = (*freq * n * k) / (m * p);
return (0);
}
static int
h3_pll1_set_freq(struct aw_pll_sc *sc, uint64_t fin, uint64_t *fout,
int flags)
{
struct aw_pll_factor *f;
uint32_t val, n, k, m, p;
int i;
f = NULL;
for (i = 0; i < nitems(aw_a23_pll1_factors); i++) {
if (aw_a23_pll1_factors[i].freq == *fout) {
f = &aw_a23_pll1_factors[i];
break;
}
}
if (f == NULL)
return (EINVAL);
DEVICE_LOCK(sc);
PLL_READ(sc, &val);
n = (val & A23_PLL1_FACTOR_N) >> A23_PLL1_FACTOR_N_SHIFT;
k = (val & A23_PLL1_FACTOR_K) >> A23_PLL1_FACTOR_K_SHIFT;
m = (val & A23_PLL1_FACTOR_M) >> A23_PLL1_FACTOR_M_SHIFT;
p = (val & A23_PLL1_FACTOR_P) >> A23_PLL1_FACTOR_P_SHIFT;
if (p < f->p) {
val &= ~A23_PLL1_FACTOR_P;
val |= (f->p << A23_PLL1_FACTOR_P_SHIFT);
PLL_WRITE(sc, val);
DELAY(2000);
}
if (m < f->m) {
val &= ~A23_PLL1_FACTOR_M;
val |= (f->m << A23_PLL1_FACTOR_M_SHIFT);
PLL_WRITE(sc, val);
DELAY(2000);
}
val &= ~(A23_PLL1_FACTOR_N|A23_PLL1_FACTOR_K);
val |= (f->n << A23_PLL1_FACTOR_N_SHIFT);
val |= (f->k << A23_PLL1_FACTOR_K_SHIFT);
PLL_WRITE(sc, val);
DELAY(2000);
if (m > f->m) {
val &= ~A23_PLL1_FACTOR_M;
val |= (f->m << A23_PLL1_FACTOR_M_SHIFT);
PLL_WRITE(sc, val);
DELAY(2000);
}
if (p > f->p) {
val &= ~A23_PLL1_FACTOR_P;
val |= (f->p << A23_PLL1_FACTOR_P_SHIFT);
PLL_WRITE(sc, val);
DELAY(2000);
}
DEVICE_UNLOCK(sc);
return (0);
}
static int
a31_pll1_recalc(struct aw_pll_sc *sc, uint64_t *freq)
{
uint32_t val, m, n, k;
DEVICE_LOCK(sc);
PLL_READ(sc, &val);
DEVICE_UNLOCK(sc);
m = ((val & A31_PLL1_FACTOR_M) >> A31_PLL1_FACTOR_M_SHIFT) + 1;
k = ((val & A31_PLL1_FACTOR_K) >> A31_PLL1_FACTOR_K_SHIFT) + 1;
n = ((val & A31_PLL1_FACTOR_N) >> A31_PLL1_FACTOR_N_SHIFT) + 1;
*freq = (*freq * n * k) / m;
return (0);
}
static int
a31_pll6_init(device_t dev, bus_addr_t reg, struct clknode_init_def *def)
{
uint32_t val;
int retry;
if (def->id != CLKID_A31_PLL6)
return (0);
/*
* The datasheet recommends that PLL6 output should be fixed to
* 600MHz.
*/
CLKDEV_DEVICE_LOCK(dev);
CLKDEV_READ_4(dev, reg, &val);
val &= ~(A31_PLL6_FACTOR_N | A31_PLL6_FACTOR_K | A31_PLL6_BYPASS_EN);
val |= (A31_PLL6_DEFAULT_N << A31_PLL6_FACTOR_N_SHIFT);
val |= (A31_PLL6_DEFAULT_K << A31_PLL6_FACTOR_K_SHIFT);
val |= AW_PLL_ENABLE;
CLKDEV_WRITE_4(dev, reg, val);
/* Wait for PLL to become stable */
for (retry = A31_PLL6_TIMEOUT; retry > 0; retry--) {
CLKDEV_READ_4(dev, reg, &val);
if ((val & A31_PLL6_LOCK) == A31_PLL6_LOCK)
break;
DELAY(1);
}
CLKDEV_DEVICE_UNLOCK(dev);
return (0);
}
static int
a31_pll6_recalc(struct aw_pll_sc *sc, uint64_t *freq)
{
uint32_t val, k, n;
DEVICE_LOCK(sc);
PLL_READ(sc, &val);
DEVICE_UNLOCK(sc);
k = ((val & A10_PLL6_FACTOR_K) >> A10_PLL6_FACTOR_K_SHIFT) + 1;
n = ((val & A10_PLL6_FACTOR_N) >> A10_PLL6_FACTOR_N_SHIFT) + 1;
switch (sc->id) {
case CLKID_A31_PLL6:
*freq = (*freq * n * k) / 2;
break;
case CLKID_A31_PLL6_X2:
*freq = *freq * n * k;
break;
default:
return (ENXIO);
}
return (0);
}
static int
a80_pll4_recalc(struct aw_pll_sc *sc, uint64_t *freq)
{
uint32_t val, n, div1, div2;
DEVICE_LOCK(sc);
PLL_READ(sc, &val);
DEVICE_UNLOCK(sc);
n = (val & A80_PLL4_FACTOR_N) >> A80_PLL4_FACTOR_N_SHIFT;
div1 = (val & A80_PLL4_PLL_DIV1) == 0 ? 1 : 2;
div2 = (val & A80_PLL4_PLL_DIV2) == 0 ? 1 : 2;
*freq = (*freq * n) / div1 / div2;
return (0);
}
static int
a64_pllhsic_recalc(struct aw_pll_sc *sc, uint64_t *freq)
{
uint32_t val, n, m;
DEVICE_LOCK(sc);
PLL_READ(sc, &val);
DEVICE_UNLOCK(sc);
n = ((val & A64_PLLHSIC_FACTOR_N) >> A64_PLLHSIC_FACTOR_N_SHIFT) + 1;
m = ((val & A64_PLLHSIC_PRE_DIV_M) >> A64_PLLHSIC_PRE_DIV_M_SHIFT) + 1;
*freq = (*freq * n) / m;
return (0);
}
static int
a64_pllhsic_init(device_t dev, bus_addr_t reg, struct clknode_init_def *def)
{
uint32_t val;
/*
* PLL_HSIC default is 480MHz, just enable it.
*/
CLKDEV_DEVICE_LOCK(dev);
CLKDEV_READ_4(dev, reg, &val);
val |= AW_PLL_ENABLE;
CLKDEV_WRITE_4(dev, reg, val);
CLKDEV_DEVICE_UNLOCK(dev);
return (0);
}
static int
a83t_pllcpux_recalc(struct aw_pll_sc *sc, uint64_t *freq)
{
uint32_t val, n, p;
DEVICE_LOCK(sc);
PLL_READ(sc, &val);
DEVICE_UNLOCK(sc);
n = (val & A83T_PLLCPUX_FACTOR_N) >> A83T_PLLCPUX_FACTOR_N_SHIFT;
p = (val & A83T_PLLCPUX_OUT_EXT_DIVP) ? 4 : 1;
*freq = (*freq * n) / p;
return (0);
}
static int
a83t_pllcpux_set_freq(struct aw_pll_sc *sc, uint64_t fin, uint64_t *fout,
int flags)
{
uint32_t val;
u_int n;
n = *fout / fin;
if (n < A83T_PLLCPUX_FACTOR_N_MIN || n > A83T_PLLCPUX_FACTOR_N_MAX)
return (EINVAL);
DEVICE_LOCK(sc);
PLL_READ(sc, &val);
val &= ~A83T_PLLCPUX_FACTOR_N;
val |= (n << A83T_PLLCPUX_FACTOR_N_SHIFT);
val &= ~A83T_PLLCPUX_CLOCK_OUTPUT_DIS;
PLL_WRITE(sc, val);
DEVICE_UNLOCK(sc);
return (0);
}
#define PLL(_type, _recalc, _set_freq, _init) \
[(_type)] = { \
.recalc = (_recalc), \
.set_freq = (_set_freq), \
.init = (_init) \
}
static struct aw_pll_funcs aw_pll_func[] = {
PLL(AWPLL_A10_PLL1, a10_pll1_recalc, a10_pll1_set_freq, NULL),
PLL(AWPLL_A10_PLL2, a10_pll2_recalc, a10_pll2_set_freq, NULL),
PLL(AWPLL_A10_PLL3, a10_pll3_recalc, a10_pll3_set_freq, a10_pll3_init),
PLL(AWPLL_A10_PLL5, a10_pll5_recalc, NULL, NULL),
PLL(AWPLL_A10_PLL6, a10_pll6_recalc, a10_pll6_set_freq, a10_pll6_init),
PLL(AWPLL_A13_PLL2, a13_pll2_recalc, a13_pll2_set_freq, NULL),
PLL(AWPLL_A23_PLL1, a23_pll1_recalc, a23_pll1_set_freq, NULL),
PLL(AWPLL_A31_PLL1, a31_pll1_recalc, NULL, NULL),
PLL(AWPLL_A31_PLL6, a31_pll6_recalc, NULL, a31_pll6_init),
PLL(AWPLL_A80_PLL4, a80_pll4_recalc, NULL, NULL),
PLL(AWPLL_A83T_PLLCPUX, a83t_pllcpux_recalc, a83t_pllcpux_set_freq, NULL),
PLL(AWPLL_A64_PLLHSIC, a64_pllhsic_recalc, NULL, a64_pllhsic_init),
PLL(AWPLL_H3_PLL1, a23_pll1_recalc, h3_pll1_set_freq, NULL),
};
static struct ofw_compat_data compat_data[] = {
{ "allwinner,sun4i-a10-pll1-clk", AWPLL_A10_PLL1 },
{ "allwinner,sun4i-a10-pll2-clk", AWPLL_A10_PLL2 },
{ "allwinner,sun4i-a10-pll3-clk", AWPLL_A10_PLL3 },
{ "allwinner,sun4i-a10-pll5-clk", AWPLL_A10_PLL5 },
{ "allwinner,sun4i-a10-pll6-clk", AWPLL_A10_PLL6 },
{ "allwinner,sun5i-a13-pll2-clk", AWPLL_A13_PLL2 },
{ "allwinner,sun6i-a31-pll1-clk", AWPLL_A31_PLL1 },
{ "allwinner,sun6i-a31-pll6-clk", AWPLL_A31_PLL6 },
{ "allwinner,sun8i-a23-pll1-clk", AWPLL_A23_PLL1 },
{ "allwinner,sun8i-a83t-pllcpux-clk", AWPLL_A83T_PLLCPUX },
{ "allwinner,sun8i-h3-pll1-clk", AWPLL_H3_PLL1 },
{ "allwinner,sun9i-a80-pll4-clk", AWPLL_A80_PLL4 },
{ "allwinner,sun50i-a64-pllhsic-clk", AWPLL_A64_PLLHSIC },
{ NULL, 0 }
};
static int
aw_pll_init(struct clknode *clk, device_t dev)
{
clknode_init_parent_idx(clk, 0);
return (0);
}
static int
aw_pll_set_gate(struct clknode *clk, bool enable)
{
struct aw_pll_sc *sc;
uint32_t val;
sc = clknode_get_softc(clk);
DEVICE_LOCK(sc);
PLL_READ(sc, &val);
if (enable)
val |= AW_PLL_ENABLE;
else
val &= ~AW_PLL_ENABLE;
PLL_WRITE(sc, val);
DEVICE_UNLOCK(sc);
return (0);
}
static int
aw_pll_recalc(struct clknode *clk, uint64_t *freq)
{
struct aw_pll_sc *sc;
sc = clknode_get_softc(clk);
if (aw_pll_func[sc->type].recalc == NULL)
return (ENXIO);
return (aw_pll_func[sc->type].recalc(sc, freq));
}
static int
aw_pll_set_freq(struct clknode *clk, uint64_t fin, uint64_t *fout,
int flags, int *stop)
{
struct aw_pll_sc *sc;
sc = clknode_get_softc(clk);
*stop = 1;
if (aw_pll_func[sc->type].set_freq == NULL)
return (ENXIO);
return (aw_pll_func[sc->type].set_freq(sc, fin, fout, flags));
}
static clknode_method_t aw_pll_clknode_methods[] = {
/* Device interface */
CLKNODEMETHOD(clknode_init, aw_pll_init),
CLKNODEMETHOD(clknode_set_gate, aw_pll_set_gate),
CLKNODEMETHOD(clknode_recalc_freq, aw_pll_recalc),
CLKNODEMETHOD(clknode_set_freq, aw_pll_set_freq),
CLKNODEMETHOD_END
};
DEFINE_CLASS_1(aw_pll_clknode, aw_pll_clknode_class, aw_pll_clknode_methods,
sizeof(struct aw_pll_sc), clknode_class);
static int
aw_pll_create(device_t dev, bus_addr_t paddr, struct clkdom *clkdom,
const char *pclkname, const char *clkname, int index)
{
enum aw_pll_type type;
struct clknode_init_def clkdef;
struct aw_pll_sc *sc;
struct clknode *clk;
int error;
type = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
memset(&clkdef, 0, sizeof(clkdef));
clkdef.id = index;
clkdef.name = clkname;
if (pclkname != NULL) {
clkdef.parent_names = malloc(sizeof(char *), M_OFWPROP,
M_WAITOK);
clkdef.parent_names[0] = pclkname;
clkdef.parent_cnt = 1;
} else
clkdef.parent_cnt = 0;
if (aw_pll_func[type].init != NULL) {
error = aw_pll_func[type].init(device_get_parent(dev),
paddr, &clkdef);
if (error != 0) {
device_printf(dev, "clock %s init failed\n", clkname);
return (error);
}
}
clk = clknode_create(clkdom, &aw_pll_clknode_class, &clkdef);
if (clk == NULL) {
device_printf(dev, "cannot create clock node\n");
return (ENXIO);
}
sc = clknode_get_softc(clk);
sc->clkdev = device_get_parent(dev);
sc->reg = paddr;
sc->type = type;
sc->id = clkdef.id;
clknode_register(clkdom, clk);
OF_prop_free(__DECONST(char *, clkdef.parent_names));
return (0);
}
static int
aw_pll_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0)
return (ENXIO);
device_set_desc(dev, "Allwinner PLL Clock");
return (BUS_PROBE_DEFAULT);
}
static int
aw_pll_attach(device_t dev)
{
struct clkdom *clkdom;
const char **names;
int index, nout, error;
clk_t clk_parent;
uint32_t *indices;
bus_addr_t paddr;
bus_size_t psize;
phandle_t node;
node = ofw_bus_get_node(dev);
if (ofw_reg_to_paddr(node, 0, &paddr, &psize, NULL) != 0) {
device_printf(dev, "couldn't parse 'reg' property\n");
return (ENXIO);
}
clkdom = clkdom_create(dev);
nout = clk_parse_ofw_out_names(dev, node, &names, &indices);
if (nout == 0) {
device_printf(dev, "no clock outputs found\n");
error = ENOENT;
goto fail;
}
if (clk_get_by_ofw_index(dev, 0, 0, &clk_parent) != 0)
clk_parent = NULL;
for (index = 0; index < nout; index++) {
error = aw_pll_create(dev, paddr, clkdom,
clk_parent ? clk_get_name(clk_parent) : NULL,
names[index], nout == 1 ? 1 : index);
if (error)
goto fail;
}
if (clkdom_finit(clkdom) != 0) {
device_printf(dev, "cannot finalize clkdom initialization\n");
error = ENXIO;
goto fail;
}
if (bootverbose)
clkdom_dump(clkdom);
return (0);
fail:
return (error);
}
static device_method_t aw_pll_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, aw_pll_probe),
DEVMETHOD(device_attach, aw_pll_attach),
DEVMETHOD_END
};
static driver_t aw_pll_driver = {
"aw_pll",
aw_pll_methods,
0,
};
static devclass_t aw_pll_devclass;
EARLY_DRIVER_MODULE(aw_pll, simplebus, aw_pll_driver,
aw_pll_devclass, 0, 0, BUS_PASS_BUS + BUS_PASS_ORDER_MIDDLE);