freebsd-dev/sys/mips/sibyte/sb_zbpci.c
Neel Natu 3ca4a6cdd3 Remove redundant declaration of 'pcib_driver' class from sb_zbpci.c. This
causes a compilation error.

The declaration is provided by sys/dev/pci/pcib_private.h starting from r210864.
2010-08-06 07:03:22 +00:00

544 lines
14 KiB
C

/*-
* Copyright (c) 2009 Neelkanth Natu
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/param.h>
#include <sys/types.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <sys/pcpu.h>
#include <sys/smp.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_kern.h>
#include <vm/vm_extern.h>
#include <vm/pmap.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcib_private.h>
#include <machine/pmap.h>
#include <machine/resource.h>
#include <machine/bus.h>
#include "pcib_if.h"
#include "sb_bus_space.h"
#include "sb_scd.h"
__FBSDID("$FreeBSD$");
static struct {
vm_offset_t vaddr;
vm_paddr_t paddr;
} zbpci_config_space[MAXCPU];
static const vm_paddr_t CFG_PADDR_BASE = 0xFE000000;
static const u_long PCI_IOSPACE_ADDR = 0xFC000000;
static const u_long PCI_IOSPACE_SIZE = 0x02000000;
#define PCI_MATCH_BYTE_LANES_START 0x40000000
#define PCI_MATCH_BYTE_LANES_END 0x5FFFFFFF
#define PCI_MATCH_BYTE_LANES_SIZE 0x20000000
#define PCI_MATCH_BIT_LANES_MASK (1 << 29)
#define PCI_MATCH_BIT_LANES_START 0x60000000
#define PCI_MATCH_BIT_LANES_END 0x7FFFFFFF
#define PCI_MATCH_BIT_LANES_SIZE 0x20000000
static struct rman port_rman;
static int
zbpci_probe(device_t dev)
{
device_set_desc(dev, "Broadcom/Sibyte PCI I/O Bridge");
return (0);
}
static int
zbpci_attach(device_t dev)
{
int n, rid, size;
vm_offset_t va;
struct resource *res;
/*
* Reserve the physical memory window used to map PCI I/O space.
*/
rid = 0;
res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
PCI_IOSPACE_ADDR,
PCI_IOSPACE_ADDR + PCI_IOSPACE_SIZE - 1,
PCI_IOSPACE_SIZE, 0);
if (res == NULL)
panic("Cannot allocate resource for PCI I/O space mapping.");
port_rman.rm_start = 0;
port_rman.rm_end = PCI_IOSPACE_SIZE - 1;
port_rman.rm_type = RMAN_ARRAY;
port_rman.rm_descr = "PCI I/O ports";
if (rman_init(&port_rman) != 0 ||
rman_manage_region(&port_rman, 0, PCI_IOSPACE_SIZE - 1) != 0)
panic("%s: port_rman", __func__);
/*
* Reserve the the physical memory that is used to read/write to the
* pci config space but don't activate it. We are using a page worth
* of KVA as a window over this region.
*/
rid = 1;
size = (PCI_BUSMAX + 1) * (PCI_SLOTMAX + 1) * (PCI_FUNCMAX + 1) * 256;
res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid, CFG_PADDR_BASE,
CFG_PADDR_BASE + size - 1, size, 0);
if (res == NULL)
panic("Cannot allocate resource for config space accesses.");
/*
* Allocate the entire "match bit lanes" address space.
*/
#if _BYTE_ORDER == _BIG_ENDIAN
rid = 2;
res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
PCI_MATCH_BIT_LANES_START,
PCI_MATCH_BIT_LANES_END,
PCI_MATCH_BIT_LANES_SIZE, 0);
if (res == NULL)
panic("Cannot allocate resource for pci match bit lanes.");
#endif /* _BYTE_ORDER ==_BIG_ENDIAN */
/*
* Allocate KVA for accessing PCI config space.
*/
va = kmem_alloc_nofault(kernel_map, PAGE_SIZE * mp_ncpus);
if (va == 0) {
device_printf(dev, "Cannot allocate virtual addresses for "
"config space access.\n");
return (ENOMEM);
}
for (n = 0; n < mp_ncpus; ++n)
zbpci_config_space[n].vaddr = va + n * PAGE_SIZE;
/*
* Sibyte has the PCI bus hierarchy rooted at bus 0 and HT-PCI
* hierarchy rooted at bus 1.
*/
if (device_add_child(dev, "pci", 0) == NULL)
panic("zbpci_attach: could not add pci bus 0.\n");
if (device_add_child(dev, "pci", 1) == NULL)
panic("zbpci_attach: could not add pci bus 1.\n");
if (bootverbose)
device_printf(dev, "attached.\n");
return (bus_generic_attach(dev));
}
static struct resource *
zbpci_alloc_resource(device_t bus, device_t child, int type, int *rid,
u_long start, u_long end, u_long count, u_int flags)
{
struct resource *res;
/*
* Handle PCI I/O port resources here and pass everything else to nexus.
*/
if (type != SYS_RES_IOPORT) {
res = bus_generic_alloc_resource(bus, child, type, rid,
start, end, count, flags);
return (res);
}
res = rman_reserve_resource(&port_rman, start, end, count,
flags, child);
if (res == NULL)
return (NULL);
rman_set_rid(res, *rid);
/* Activate the resource is requested */
if (flags & RF_ACTIVE) {
if (bus_activate_resource(child, type, *rid, res) != 0) {
rman_release_resource(res);
return (NULL);
}
}
return (res);
}
static int
zbpci_activate_resource(device_t bus, device_t child, int type, int rid,
struct resource *res)
{
int error;
void *vaddr;
u_long orig_paddr, paddr, psize;
paddr = rman_get_start(res);
psize = rman_get_size(res);
orig_paddr = paddr;
#if _BYTE_ORDER == _BIG_ENDIAN
/*
* The CFE allocates PCI memory resources that map to the
* "match byte lanes" address space. This address space works
* best for DMA transfers because it does not do any automatic
* byte swaps when data crosses the pci-cpu interface.
*
* This also makes it sub-optimal for accesses to PCI device
* registers because it exposes the little-endian nature of
* the PCI bus to the big-endian CPU. The Sibyte has another
* address window called the "match bit lanes" window which
* automatically swaps bytes when data crosses the pci-cpu
* interface.
*
* We "assume" that any bus_space memory accesses done by the
* CPU to a PCI device are register/configuration accesses and
* are done through the "match bit lanes" window. Any DMA
* transfers will continue to be through the "match byte lanes"
* window because the PCI BAR registers will not be changed.
*/
if (type == SYS_RES_MEMORY) {
if (paddr >= PCI_MATCH_BYTE_LANES_START &&
paddr + psize - 1 <= PCI_MATCH_BYTE_LANES_END) {
paddr |= PCI_MATCH_BIT_LANES_MASK;
rman_set_start(res, paddr);
rman_set_end(res, paddr + psize - 1);
}
}
#endif
if (type != SYS_RES_IOPORT) {
error = bus_generic_activate_resource(bus, child, type,
rid, res);
#if _BYTE_ORDER == _BIG_ENDIAN
if (type == SYS_RES_MEMORY) {
rman_set_start(res, orig_paddr);
rman_set_end(res, orig_paddr + psize - 1);
}
#endif
return (error);
}
/*
* Map the I/O space resource through the memory window starting
* at PCI_IOSPACE_ADDR.
*/
vaddr = pmap_mapdev(paddr + PCI_IOSPACE_ADDR, psize);
rman_set_virtual(res, vaddr);
rman_set_bustag(res, mips_bus_space_generic);
rman_set_bushandle(res, (bus_space_handle_t)vaddr);
return (rman_activate_resource(res));
}
static int
zbpci_release_resource(device_t bus, device_t child, int type, int rid,
struct resource *r)
{
int error;
if (type != SYS_RES_IOPORT)
return (bus_generic_release_resource(bus, child, type, rid, r));
if (rman_get_flags(r) & RF_ACTIVE) {
error = bus_deactivate_resource(child, type, rid, r);
if (error)
return (error);
}
return (rman_release_resource(r));
}
static int
zbpci_deactivate_resource(device_t bus, device_t child, int type, int rid,
struct resource *r)
{
vm_offset_t va;
if (type != SYS_RES_IOPORT) {
return (bus_generic_deactivate_resource(bus, child, type,
rid, r));
}
va = (vm_offset_t)rman_get_virtual(r);
pmap_unmapdev(va, rman_get_size(r));
return (rman_deactivate_resource(r));
}
static int
zbpci_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
{
switch (which) {
case PCIB_IVAR_DOMAIN:
*result = 0; /* single PCI domain */
return (0);
case PCIB_IVAR_BUS:
*result = device_get_unit(child); /* PCI bus 0 or 1 */
return (0);
default:
return (ENOENT);
}
}
/*
* We rely on the CFE to have configured the intline correctly to point to
* one of PCI-A/PCI-B/PCI-C/PCI-D in the interupt mapper.
*/
static int
zbpci_route_interrupt(device_t pcib, device_t dev, int pin)
{
return (PCI_INVALID_IRQ);
}
/*
* This function is expected to be called in a critical section since it
* changes the per-cpu pci config space va-to-pa mappings.
*/
static vm_offset_t
zbpci_config_space_va(int bus, int slot, int func, int reg, int bytes)
{
int cpu;
vm_offset_t va_page;
vm_paddr_t pa, pa_page;
if (bus <= PCI_BUSMAX && slot <= PCI_SLOTMAX && func <= PCI_FUNCMAX &&
reg <= PCI_REGMAX && (bytes == 1 || bytes == 2 || bytes == 4) &&
((reg & (bytes - 1)) == 0)) {
cpu = PCPU_GET(cpuid);
va_page = zbpci_config_space[cpu].vaddr;
pa = CFG_PADDR_BASE |
(bus << 16) | (slot << 11) | (func << 8) | reg;
#if _BYTE_ORDER == _BIG_ENDIAN
pa = pa ^ (4 - bytes);
#endif
pa_page = pa & ~(PAGE_SIZE - 1);
if (zbpci_config_space[cpu].paddr != pa_page) {
pmap_kremove(va_page);
pmap_kenter(va_page, pa_page);
zbpci_config_space[cpu].paddr = pa_page;
}
return (va_page + (pa - pa_page));
} else {
return (0);
}
}
static uint32_t
zbpci_read_config(device_t dev, u_int b, u_int s, u_int f, u_int r, int w)
{
uint32_t data;
vm_offset_t va;
critical_enter();
va = zbpci_config_space_va(b, s, f, r, w);
if (va == 0) {
panic("zbpci_read_config: invalid %d/%d/%d[%d] %d\n",
b, s, f, r, w);
}
switch (w) {
case 4:
data = *(uint32_t *)va;
break;
case 2:
data = *(uint16_t *)va;
break;
case 1:
data = *(uint8_t *)va;
break;
default:
panic("zbpci_read_config: invalid width %d\n", w);
}
critical_exit();
return (data);
}
static void
zbpci_write_config(device_t d, u_int b, u_int s, u_int f, u_int r,
uint32_t data, int w)
{
vm_offset_t va;
critical_enter();
va = zbpci_config_space_va(b, s, f, r, w);
if (va == 0) {
panic("zbpci_write_config: invalid %d/%d/%d[%d] %d/%d\n",
b, s, f, r, data, w);
}
switch (w) {
case 4:
*(uint32_t *)va = data;
break;
case 2:
*(uint16_t *)va = data;
break;
case 1:
*(uint8_t *)va = data;
break;
default:
panic("zbpci_write_config: invalid width %d\n", w);
}
critical_exit();
}
static device_method_t zbpci_methods[] ={
/* Device interface */
DEVMETHOD(device_probe, zbpci_probe),
DEVMETHOD(device_attach, zbpci_attach),
DEVMETHOD(device_detach, bus_generic_detach),
DEVMETHOD(device_shutdown, bus_generic_shutdown),
DEVMETHOD(device_suspend, bus_generic_suspend),
DEVMETHOD(device_resume, bus_generic_resume),
/* Bus interface */
DEVMETHOD(bus_read_ivar, zbpci_read_ivar),
DEVMETHOD(bus_write_ivar, bus_generic_write_ivar),
DEVMETHOD(bus_alloc_resource, zbpci_alloc_resource),
DEVMETHOD(bus_activate_resource, zbpci_activate_resource),
DEVMETHOD(bus_deactivate_resource, zbpci_deactivate_resource),
DEVMETHOD(bus_release_resource, zbpci_release_resource),
DEVMETHOD(bus_setup_intr, bus_generic_setup_intr),
DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
DEVMETHOD(bus_add_child, bus_generic_add_child),
/* pcib interface */
DEVMETHOD(pcib_maxslots, pcib_maxslots),
DEVMETHOD(pcib_read_config, zbpci_read_config),
DEVMETHOD(pcib_write_config, zbpci_write_config),
DEVMETHOD(pcib_route_interrupt, zbpci_route_interrupt),
{ 0, 0 }
};
/*
* The "zbpci" class inherits from the "pcib" base class. Therefore in
* addition to drivers that belong to the "zbpci" class we will also
* consider drivers belonging to the "pcib" when probing children of
* "zbpci".
*/
DEFINE_CLASS_1(zbpci, zbpci_driver, zbpci_methods, 0, pcib_driver);
static devclass_t zbpci_devclass;
DRIVER_MODULE(zbpci, zbbus, zbpci_driver, zbpci_devclass, 0, 0);
/*
* Big endian bus space routines
*/
#if _BYTE_ORDER == _BIG_ENDIAN
/*
* The CPU correctly deals with the big-endian to little-endian swap if
* we are accessing 4 bytes at a time. However if we want to read 1 or 2
* bytes then we need to fudge the address generated by the CPU such that
* it generates the right byte enables on the PCI bus.
*/
static bus_addr_t
sb_match_bit_lane_addr(bus_addr_t addr, int bytes)
{
vm_offset_t pa;
pa = vtophys(addr);
if (pa >= PCI_MATCH_BIT_LANES_START && pa <= PCI_MATCH_BIT_LANES_END)
return (addr ^ (4 - bytes));
else
return (addr);
}
uint8_t
sb_big_endian_read8(bus_addr_t addr)
{
bus_addr_t addr2;
addr2 = sb_match_bit_lane_addr(addr, 1);
return (readb(addr2));
}
uint16_t
sb_big_endian_read16(bus_addr_t addr)
{
bus_addr_t addr2;
addr2 = sb_match_bit_lane_addr(addr, 2);
return (readw(addr2));
}
uint32_t
sb_big_endian_read32(bus_addr_t addr)
{
bus_addr_t addr2;
addr2 = sb_match_bit_lane_addr(addr, 4);
return (readl(addr2));
}
void
sb_big_endian_write8(bus_addr_t addr, uint8_t val)
{
bus_addr_t addr2;
addr2 = sb_match_bit_lane_addr(addr, 1);
writeb(addr2, val);
}
void
sb_big_endian_write16(bus_addr_t addr, uint16_t val)
{
bus_addr_t addr2;
addr2 = sb_match_bit_lane_addr(addr, 2);
writew(addr2, val);
}
void
sb_big_endian_write32(bus_addr_t addr, uint32_t val)
{
bus_addr_t addr2;
addr2 = sb_match_bit_lane_addr(addr, 4);
writel(addr2, val);
}
#endif /* _BIG_ENDIAN */