freebsd-dev/sys/x86/iommu/intel_utils.c
Kornel Duleba 06e6ca6dd3 dmar: Disable protected memory regions after initialization
Some BIOSes protect memory region they reside in by using DMAR to
prevent devices from doing any DMA transactions to that part of RAM.
AMI refers to this as "DMA Control Guarantee".
Disable the protection when address translation is enabled.
I stumbled upon this while investigation a failing coredump on a device
which has this feature enabled.

Sponsored by:		Stormshield
Obtained from:		Semihalf
Reviewed by:		kib
Differential revision:	https://reviews.freebsd.org/D32591
2021-10-29 10:08:25 +02:00

696 lines
17 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2013 The FreeBSD Foundation
*
* This software was developed by Konstantin Belousov <kib@FreeBSD.org>
* under sponsorship from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/memdesc.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/rman.h>
#include <sys/rwlock.h>
#include <sys/sched.h>
#include <sys/sf_buf.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/taskqueue.h>
#include <sys/time.h>
#include <sys/tree.h>
#include <sys/vmem.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_kern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_pageout.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <machine/intr_machdep.h>
#include <x86/include/apicvar.h>
#include <x86/include/busdma_impl.h>
#include <dev/iommu/busdma_iommu.h>
#include <x86/iommu/intel_reg.h>
#include <x86/iommu/intel_dmar.h>
u_int
dmar_nd2mask(u_int nd)
{
static const u_int masks[] = {
0x000f, /* nd == 0 */
0x002f, /* nd == 1 */
0x00ff, /* nd == 2 */
0x02ff, /* nd == 3 */
0x0fff, /* nd == 4 */
0x2fff, /* nd == 5 */
0xffff, /* nd == 6 */
0x0000, /* nd == 7 reserved */
};
KASSERT(nd <= 6, ("number of domains %d", nd));
return (masks[nd]);
}
static const struct sagaw_bits_tag {
int agaw;
int cap;
int awlvl;
int pglvl;
} sagaw_bits[] = {
{.agaw = 30, .cap = DMAR_CAP_SAGAW_2LVL, .awlvl = DMAR_CTX2_AW_2LVL,
.pglvl = 2},
{.agaw = 39, .cap = DMAR_CAP_SAGAW_3LVL, .awlvl = DMAR_CTX2_AW_3LVL,
.pglvl = 3},
{.agaw = 48, .cap = DMAR_CAP_SAGAW_4LVL, .awlvl = DMAR_CTX2_AW_4LVL,
.pglvl = 4},
{.agaw = 57, .cap = DMAR_CAP_SAGAW_5LVL, .awlvl = DMAR_CTX2_AW_5LVL,
.pglvl = 5},
{.agaw = 64, .cap = DMAR_CAP_SAGAW_6LVL, .awlvl = DMAR_CTX2_AW_6LVL,
.pglvl = 6}
};
bool
dmar_pglvl_supported(struct dmar_unit *unit, int pglvl)
{
int i;
for (i = 0; i < nitems(sagaw_bits); i++) {
if (sagaw_bits[i].pglvl != pglvl)
continue;
if ((DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) != 0)
return (true);
}
return (false);
}
int
domain_set_agaw(struct dmar_domain *domain, int mgaw)
{
int sagaw, i;
domain->mgaw = mgaw;
sagaw = DMAR_CAP_SAGAW(domain->dmar->hw_cap);
for (i = 0; i < nitems(sagaw_bits); i++) {
if (sagaw_bits[i].agaw >= mgaw) {
domain->agaw = sagaw_bits[i].agaw;
domain->pglvl = sagaw_bits[i].pglvl;
domain->awlvl = sagaw_bits[i].awlvl;
return (0);
}
}
device_printf(domain->dmar->dev,
"context request mgaw %d: no agaw found, sagaw %x\n",
mgaw, sagaw);
return (EINVAL);
}
/*
* Find a best fit mgaw for the given maxaddr:
* - if allow_less is false, must find sagaw which maps all requested
* addresses (used by identity mappings);
* - if allow_less is true, and no supported sagaw can map all requested
* address space, accept the biggest sagaw, whatever is it.
*/
int
dmar_maxaddr2mgaw(struct dmar_unit *unit, iommu_gaddr_t maxaddr, bool allow_less)
{
int i;
for (i = 0; i < nitems(sagaw_bits); i++) {
if ((1ULL << sagaw_bits[i].agaw) >= maxaddr &&
(DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) != 0)
break;
}
if (allow_less && i == nitems(sagaw_bits)) {
do {
i--;
} while ((DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap)
== 0);
}
if (i < nitems(sagaw_bits))
return (sagaw_bits[i].agaw);
KASSERT(0, ("no mgaw for maxaddr %jx allow_less %d",
(uintmax_t) maxaddr, allow_less));
return (-1);
}
/*
* Calculate the total amount of page table pages needed to map the
* whole bus address space on the context with the selected agaw.
*/
vm_pindex_t
pglvl_max_pages(int pglvl)
{
vm_pindex_t res;
int i;
for (res = 0, i = pglvl; i > 0; i--) {
res *= DMAR_NPTEPG;
res++;
}
return (res);
}
/*
* Return true if the page table level lvl supports the superpage for
* the context ctx.
*/
int
domain_is_sp_lvl(struct dmar_domain *domain, int lvl)
{
int alvl, cap_sps;
static const int sagaw_sp[] = {
DMAR_CAP_SPS_2M,
DMAR_CAP_SPS_1G,
DMAR_CAP_SPS_512G,
DMAR_CAP_SPS_1T
};
alvl = domain->pglvl - lvl - 1;
cap_sps = DMAR_CAP_SPS(domain->dmar->hw_cap);
return (alvl < nitems(sagaw_sp) && (sagaw_sp[alvl] & cap_sps) != 0);
}
iommu_gaddr_t
pglvl_page_size(int total_pglvl, int lvl)
{
int rlvl;
static const iommu_gaddr_t pg_sz[] = {
(iommu_gaddr_t)DMAR_PAGE_SIZE,
(iommu_gaddr_t)DMAR_PAGE_SIZE << DMAR_NPTEPGSHIFT,
(iommu_gaddr_t)DMAR_PAGE_SIZE << (2 * DMAR_NPTEPGSHIFT),
(iommu_gaddr_t)DMAR_PAGE_SIZE << (3 * DMAR_NPTEPGSHIFT),
(iommu_gaddr_t)DMAR_PAGE_SIZE << (4 * DMAR_NPTEPGSHIFT),
(iommu_gaddr_t)DMAR_PAGE_SIZE << (5 * DMAR_NPTEPGSHIFT)
};
KASSERT(lvl >= 0 && lvl < total_pglvl,
("total %d lvl %d", total_pglvl, lvl));
rlvl = total_pglvl - lvl - 1;
KASSERT(rlvl < nitems(pg_sz), ("sizeof pg_sz lvl %d", lvl));
return (pg_sz[rlvl]);
}
iommu_gaddr_t
domain_page_size(struct dmar_domain *domain, int lvl)
{
return (pglvl_page_size(domain->pglvl, lvl));
}
int
calc_am(struct dmar_unit *unit, iommu_gaddr_t base, iommu_gaddr_t size,
iommu_gaddr_t *isizep)
{
iommu_gaddr_t isize;
int am;
for (am = DMAR_CAP_MAMV(unit->hw_cap);; am--) {
isize = 1ULL << (am + DMAR_PAGE_SHIFT);
if ((base & (isize - 1)) == 0 && size >= isize)
break;
if (am == 0)
break;
}
*isizep = isize;
return (am);
}
iommu_haddr_t dmar_high;
int haw;
int dmar_tbl_pagecnt;
vm_page_t
dmar_pgalloc(vm_object_t obj, vm_pindex_t idx, int flags)
{
vm_page_t m;
int zeroed, aflags;
zeroed = (flags & IOMMU_PGF_ZERO) != 0 ? VM_ALLOC_ZERO : 0;
aflags = zeroed | VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM | VM_ALLOC_NODUMP |
((flags & IOMMU_PGF_WAITOK) != 0 ? VM_ALLOC_WAITFAIL :
VM_ALLOC_NOWAIT);
for (;;) {
if ((flags & IOMMU_PGF_OBJL) == 0)
VM_OBJECT_WLOCK(obj);
m = vm_page_lookup(obj, idx);
if ((flags & IOMMU_PGF_NOALLOC) != 0 || m != NULL) {
if ((flags & IOMMU_PGF_OBJL) == 0)
VM_OBJECT_WUNLOCK(obj);
break;
}
m = vm_page_alloc_contig(obj, idx, aflags, 1, 0,
dmar_high, PAGE_SIZE, 0, VM_MEMATTR_DEFAULT);
if ((flags & IOMMU_PGF_OBJL) == 0)
VM_OBJECT_WUNLOCK(obj);
if (m != NULL) {
if (zeroed && (m->flags & PG_ZERO) == 0)
pmap_zero_page(m);
atomic_add_int(&dmar_tbl_pagecnt, 1);
break;
}
if ((flags & IOMMU_PGF_WAITOK) == 0)
break;
}
return (m);
}
void
dmar_pgfree(vm_object_t obj, vm_pindex_t idx, int flags)
{
vm_page_t m;
if ((flags & IOMMU_PGF_OBJL) == 0)
VM_OBJECT_WLOCK(obj);
m = vm_page_grab(obj, idx, VM_ALLOC_NOCREAT);
if (m != NULL) {
vm_page_free(m);
atomic_subtract_int(&dmar_tbl_pagecnt, 1);
}
if ((flags & IOMMU_PGF_OBJL) == 0)
VM_OBJECT_WUNLOCK(obj);
}
void *
dmar_map_pgtbl(vm_object_t obj, vm_pindex_t idx, int flags,
struct sf_buf **sf)
{
vm_page_t m;
bool allocated;
if ((flags & IOMMU_PGF_OBJL) == 0)
VM_OBJECT_WLOCK(obj);
m = vm_page_lookup(obj, idx);
if (m == NULL && (flags & IOMMU_PGF_ALLOC) != 0) {
m = dmar_pgalloc(obj, idx, flags | IOMMU_PGF_OBJL);
allocated = true;
} else
allocated = false;
if (m == NULL) {
if ((flags & IOMMU_PGF_OBJL) == 0)
VM_OBJECT_WUNLOCK(obj);
return (NULL);
}
/* Sleepable allocations cannot fail. */
if ((flags & IOMMU_PGF_WAITOK) != 0)
VM_OBJECT_WUNLOCK(obj);
sched_pin();
*sf = sf_buf_alloc(m, SFB_CPUPRIVATE | ((flags & IOMMU_PGF_WAITOK)
== 0 ? SFB_NOWAIT : 0));
if (*sf == NULL) {
sched_unpin();
if (allocated) {
VM_OBJECT_ASSERT_WLOCKED(obj);
dmar_pgfree(obj, m->pindex, flags | IOMMU_PGF_OBJL);
}
if ((flags & IOMMU_PGF_OBJL) == 0)
VM_OBJECT_WUNLOCK(obj);
return (NULL);
}
if ((flags & (IOMMU_PGF_WAITOK | IOMMU_PGF_OBJL)) ==
(IOMMU_PGF_WAITOK | IOMMU_PGF_OBJL))
VM_OBJECT_WLOCK(obj);
else if ((flags & (IOMMU_PGF_WAITOK | IOMMU_PGF_OBJL)) == 0)
VM_OBJECT_WUNLOCK(obj);
return ((void *)sf_buf_kva(*sf));
}
void
dmar_unmap_pgtbl(struct sf_buf *sf)
{
sf_buf_free(sf);
sched_unpin();
}
static void
dmar_flush_transl_to_ram(struct dmar_unit *unit, void *dst, size_t sz)
{
if (DMAR_IS_COHERENT(unit))
return;
/*
* If DMAR does not snoop paging structures accesses, flush
* CPU cache to memory.
*/
pmap_force_invalidate_cache_range((uintptr_t)dst, (uintptr_t)dst + sz);
}
void
dmar_flush_pte_to_ram(struct dmar_unit *unit, dmar_pte_t *dst)
{
dmar_flush_transl_to_ram(unit, dst, sizeof(*dst));
}
void
dmar_flush_ctx_to_ram(struct dmar_unit *unit, dmar_ctx_entry_t *dst)
{
dmar_flush_transl_to_ram(unit, dst, sizeof(*dst));
}
void
dmar_flush_root_to_ram(struct dmar_unit *unit, dmar_root_entry_t *dst)
{
dmar_flush_transl_to_ram(unit, dst, sizeof(*dst));
}
/*
* Load the root entry pointer into the hardware, busily waiting for
* the completion.
*/
int
dmar_load_root_entry_ptr(struct dmar_unit *unit)
{
vm_page_t root_entry;
int error;
/*
* Access to the GCMD register must be serialized while the
* command is submitted.
*/
DMAR_ASSERT_LOCKED(unit);
VM_OBJECT_RLOCK(unit->ctx_obj);
root_entry = vm_page_lookup(unit->ctx_obj, 0);
VM_OBJECT_RUNLOCK(unit->ctx_obj);
dmar_write8(unit, DMAR_RTADDR_REG, VM_PAGE_TO_PHYS(root_entry));
dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_SRTP);
DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_RTPS)
!= 0));
return (error);
}
/*
* Globally invalidate the context entries cache, busily waiting for
* the completion.
*/
int
dmar_inv_ctx_glob(struct dmar_unit *unit)
{
int error;
/*
* Access to the CCMD register must be serialized while the
* command is submitted.
*/
DMAR_ASSERT_LOCKED(unit);
KASSERT(!unit->qi_enabled, ("QI enabled"));
/*
* The DMAR_CCMD_ICC bit in the upper dword should be written
* after the low dword write is completed. Amd64
* dmar_write8() does not have this issue, i386 dmar_write8()
* writes the upper dword last.
*/
dmar_write8(unit, DMAR_CCMD_REG, DMAR_CCMD_ICC | DMAR_CCMD_CIRG_GLOB);
DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_CCMD_REG + 4) & DMAR_CCMD_ICC32)
== 0));
return (error);
}
/*
* Globally invalidate the IOTLB, busily waiting for the completion.
*/
int
dmar_inv_iotlb_glob(struct dmar_unit *unit)
{
int error, reg;
DMAR_ASSERT_LOCKED(unit);
KASSERT(!unit->qi_enabled, ("QI enabled"));
reg = 16 * DMAR_ECAP_IRO(unit->hw_ecap);
/* See a comment about DMAR_CCMD_ICC in dmar_inv_ctx_glob. */
dmar_write8(unit, reg + DMAR_IOTLB_REG_OFF, DMAR_IOTLB_IVT |
DMAR_IOTLB_IIRG_GLB | DMAR_IOTLB_DR | DMAR_IOTLB_DW);
DMAR_WAIT_UNTIL(((dmar_read4(unit, reg + DMAR_IOTLB_REG_OFF + 4) &
DMAR_IOTLB_IVT32) == 0));
return (error);
}
/*
* Flush the chipset write buffers. See 11.1 "Write Buffer Flushing"
* in the architecture specification.
*/
int
dmar_flush_write_bufs(struct dmar_unit *unit)
{
int error;
DMAR_ASSERT_LOCKED(unit);
/*
* DMAR_GCMD_WBF is only valid when CAP_RWBF is reported.
*/
KASSERT((unit->hw_cap & DMAR_CAP_RWBF) != 0,
("dmar%d: no RWBF", unit->iommu.unit));
dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_WBF);
DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_WBFS)
!= 0));
return (error);
}
/*
* Some BIOSes protect memory region they reside in by using DMAR to
* prevent devices from doing any DMA transactions to that part of RAM.
* AMI refers to this as "DMA Control Guarantee".
* We need to disable this when address translation is enabled.
*/
int
dmar_disable_protected_regions(struct dmar_unit *unit)
{
uint32_t reg;
int error;
DMAR_ASSERT_LOCKED(unit);
/* Check if we support the feature. */
if ((unit->hw_cap & (DMAR_CAP_PLMR | DMAR_CAP_PHMR)) == 0)
return (0);
reg = dmar_read4(unit, DMAR_PMEN_REG);
reg &= ~DMAR_PMEN_EPM;
dmar_write4(unit, DMAR_PMEN_REG, reg);
DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_PMEN_REG) & DMAR_PMEN_PRS)
!= 0));
return (error);
}
int
dmar_enable_translation(struct dmar_unit *unit)
{
int error;
DMAR_ASSERT_LOCKED(unit);
unit->hw_gcmd |= DMAR_GCMD_TE;
dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES)
!= 0));
return (error);
}
int
dmar_disable_translation(struct dmar_unit *unit)
{
int error;
DMAR_ASSERT_LOCKED(unit);
unit->hw_gcmd &= ~DMAR_GCMD_TE;
dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES)
== 0));
return (error);
}
int
dmar_load_irt_ptr(struct dmar_unit *unit)
{
uint64_t irta, s;
int error;
DMAR_ASSERT_LOCKED(unit);
irta = unit->irt_phys;
if (DMAR_X2APIC(unit))
irta |= DMAR_IRTA_EIME;
s = fls(unit->irte_cnt) - 2;
KASSERT(unit->irte_cnt >= 2 && s <= DMAR_IRTA_S_MASK &&
powerof2(unit->irte_cnt),
("IRTA_REG_S overflow %x", unit->irte_cnt));
irta |= s;
dmar_write8(unit, DMAR_IRTA_REG, irta);
dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_SIRTP);
DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRTPS)
!= 0));
return (error);
}
int
dmar_enable_ir(struct dmar_unit *unit)
{
int error;
DMAR_ASSERT_LOCKED(unit);
unit->hw_gcmd |= DMAR_GCMD_IRE;
unit->hw_gcmd &= ~DMAR_GCMD_CFI;
dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRES)
!= 0));
return (error);
}
int
dmar_disable_ir(struct dmar_unit *unit)
{
int error;
DMAR_ASSERT_LOCKED(unit);
unit->hw_gcmd &= ~DMAR_GCMD_IRE;
dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRES)
== 0));
return (error);
}
#define BARRIER_F \
u_int f_done, f_inproc, f_wakeup; \
\
f_done = 1 << (barrier_id * 3); \
f_inproc = 1 << (barrier_id * 3 + 1); \
f_wakeup = 1 << (barrier_id * 3 + 2)
bool
dmar_barrier_enter(struct dmar_unit *dmar, u_int barrier_id)
{
BARRIER_F;
DMAR_LOCK(dmar);
if ((dmar->barrier_flags & f_done) != 0) {
DMAR_UNLOCK(dmar);
return (false);
}
if ((dmar->barrier_flags & f_inproc) != 0) {
while ((dmar->barrier_flags & f_inproc) != 0) {
dmar->barrier_flags |= f_wakeup;
msleep(&dmar->barrier_flags, &dmar->iommu.lock, 0,
"dmarb", 0);
}
KASSERT((dmar->barrier_flags & f_done) != 0,
("dmar%d barrier %d missing done", dmar->iommu.unit,
barrier_id));
DMAR_UNLOCK(dmar);
return (false);
}
dmar->barrier_flags |= f_inproc;
DMAR_UNLOCK(dmar);
return (true);
}
void
dmar_barrier_exit(struct dmar_unit *dmar, u_int barrier_id)
{
BARRIER_F;
DMAR_ASSERT_LOCKED(dmar);
KASSERT((dmar->barrier_flags & (f_done | f_inproc)) == f_inproc,
("dmar%d barrier %d missed entry", dmar->iommu.unit, barrier_id));
dmar->barrier_flags |= f_done;
if ((dmar->barrier_flags & f_wakeup) != 0)
wakeup(&dmar->barrier_flags);
dmar->barrier_flags &= ~(f_inproc | f_wakeup);
DMAR_UNLOCK(dmar);
}
int dmar_batch_coalesce = 100;
struct timespec dmar_hw_timeout = {
.tv_sec = 0,
.tv_nsec = 1000000
};
static const uint64_t d = 1000000000;
void
dmar_update_timeout(uint64_t newval)
{
/* XXXKIB not atomic */
dmar_hw_timeout.tv_sec = newval / d;
dmar_hw_timeout.tv_nsec = newval % d;
}
uint64_t
dmar_get_timeout(void)
{
return ((uint64_t)dmar_hw_timeout.tv_sec * d +
dmar_hw_timeout.tv_nsec);
}
static int
dmar_timeout_sysctl(SYSCTL_HANDLER_ARGS)
{
uint64_t val;
int error;
val = dmar_get_timeout();
error = sysctl_handle_long(oidp, &val, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
dmar_update_timeout(val);
return (error);
}
static SYSCTL_NODE(_hw_iommu, OID_AUTO, dmar, CTLFLAG_RD | CTLFLAG_MPSAFE,
NULL, "");
SYSCTL_INT(_hw_iommu_dmar, OID_AUTO, tbl_pagecnt, CTLFLAG_RD,
&dmar_tbl_pagecnt, 0,
"Count of pages used for DMAR pagetables");
SYSCTL_INT(_hw_iommu_dmar, OID_AUTO, batch_coalesce, CTLFLAG_RWTUN,
&dmar_batch_coalesce, 0,
"Number of qi batches between interrupt");
SYSCTL_PROC(_hw_iommu_dmar, OID_AUTO, timeout,
CTLTYPE_U64 | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
dmar_timeout_sysctl, "QU",
"Timeout for command wait, in nanoseconds");