7225 lines
175 KiB
C
7225 lines
175 KiB
C
/* Copyright (C) 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
|
||
|
||
This file is part of the librx library.
|
||
|
||
Librx is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU Library General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
Librx is distributed in the hope that it will be useful, but WITHOUT
|
||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU Library General Public
|
||
License along with this software; see the file COPYING.LIB. If not,
|
||
write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA
|
||
02139, USA. */
|
||
|
||
/* NOTE!!! AIX is so losing it requires this to be the first thing in the
|
||
* file.
|
||
* Do not put ANYTHING before it!
|
||
*/
|
||
#if !defined (__GNUC__) && defined (_AIX)
|
||
#pragma alloca
|
||
#endif
|
||
|
||
/* To make linux happy? */
|
||
#ifndef _GNU_SOURCE
|
||
#define _GNU_SOURCE
|
||
#endif
|
||
|
||
|
||
char rx_version_string[] = "GNU Rx version 0.07.2";
|
||
|
||
/* ``Too hard!''
|
||
* -- anon.
|
||
*/
|
||
|
||
|
||
#include <stdio.h>
|
||
#include <ctype.h>
|
||
#ifndef isgraph
|
||
#define isgraph(c) (isprint (c) && !isspace (c))
|
||
#endif
|
||
#ifndef isblank
|
||
#define isblank(c) ((c) == ' ' || (c) == '\t')
|
||
#endif
|
||
|
||
#include <sys/types.h>
|
||
|
||
#undef MAX
|
||
#undef MIN
|
||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
||
|
||
typedef char boolean;
|
||
#define false 0
|
||
#define true 1
|
||
|
||
#ifndef __GCC__
|
||
#undef __inline__
|
||
#define __inline__
|
||
#endif
|
||
|
||
/* Emacs already defines alloca, sometimes. */
|
||
#ifndef alloca
|
||
|
||
/* Make alloca work the best possible way. */
|
||
#ifdef __GNUC__
|
||
#define alloca __builtin_alloca
|
||
#else /* not __GNUC__ */
|
||
#if HAVE_ALLOCA_H
|
||
#include <alloca.h>
|
||
#else /* not __GNUC__ or HAVE_ALLOCA_H */
|
||
#ifndef _AIX /* Already did AIX, up at the top. */
|
||
char *alloca ();
|
||
#endif /* not _AIX */
|
||
#endif /* not HAVE_ALLOCA_H */
|
||
#endif /* not __GNUC__ */
|
||
|
||
#endif /* not alloca */
|
||
|
||
/* Memory management and stuff for emacs. */
|
||
|
||
#define CHARBITS 8
|
||
#define remalloc(M, S) (M ? realloc (M, S) : malloc (S))
|
||
|
||
|
||
/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
|
||
* use `alloca' instead of `malloc' for the backtracking stack.
|
||
*
|
||
* Emacs will die miserably if we don't do this.
|
||
*/
|
||
|
||
#ifdef REGEX_MALLOC
|
||
#define REGEX_ALLOCATE malloc
|
||
#else /* not REGEX_MALLOC */
|
||
#define REGEX_ALLOCATE alloca
|
||
#endif /* not REGEX_MALLOC */
|
||
|
||
|
||
#ifdef RX_WANT_RX_DEFS
|
||
#define RX_DECL extern
|
||
#define RX_DEF_QUAL
|
||
#else
|
||
#define RX_WANT_RX_DEFS
|
||
#define RX_DECL static
|
||
#define RX_DEF_QUAL static
|
||
#endif
|
||
#include "rx.h"
|
||
#undef RX_DECL
|
||
#define RX_DECL RX_DEF_QUAL
|
||
|
||
|
||
#ifndef emacs
|
||
|
||
#ifdef SYNTAX_TABLE
|
||
extern char *re_syntax_table;
|
||
#else /* not SYNTAX_TABLE */
|
||
|
||
#ifndef RX_WANT_RX_DEFS
|
||
RX_DECL char re_syntax_table[CHAR_SET_SIZE];
|
||
#endif
|
||
|
||
#ifdef __STDC__
|
||
static void
|
||
init_syntax_once (void)
|
||
#else
|
||
static void
|
||
init_syntax_once ()
|
||
#endif
|
||
{
|
||
register int c;
|
||
static int done = 0;
|
||
|
||
if (done)
|
||
return;
|
||
|
||
bzero (re_syntax_table, sizeof re_syntax_table);
|
||
|
||
for (c = 'a'; c <= 'z'; c++)
|
||
re_syntax_table[c] = Sword;
|
||
|
||
for (c = 'A'; c <= 'Z'; c++)
|
||
re_syntax_table[c] = Sword;
|
||
|
||
for (c = '0'; c <= '9'; c++)
|
||
re_syntax_table[c] = Sword;
|
||
|
||
re_syntax_table['_'] = Sword;
|
||
|
||
done = 1;
|
||
}
|
||
#endif /* not SYNTAX_TABLE */
|
||
#endif /* not emacs */
|
||
|
||
/* Compile with `-DRX_DEBUG' and use the following flags.
|
||
*
|
||
* Debugging flags:
|
||
* rx_debug - print information as a regexp is compiled
|
||
* rx_debug_trace - print information as a regexp is executed
|
||
*/
|
||
|
||
#ifdef RX_DEBUG
|
||
|
||
int rx_debug_compile = 0;
|
||
int rx_debug_trace = 0;
|
||
static struct re_pattern_buffer * dbug_rxb = 0;
|
||
|
||
#ifdef __STDC__
|
||
typedef void (*side_effect_printer) (struct rx *, void *, FILE *);
|
||
#else
|
||
typedef void (*side_effect_printer) ();
|
||
#endif
|
||
|
||
#ifdef __STDC__
|
||
static void print_cset (struct rx *rx, rx_Bitset cset, FILE * fp);
|
||
#else
|
||
static void print_cset ();
|
||
#endif
|
||
|
||
#ifdef __STDC__
|
||
static void
|
||
print_rexp (struct rx *rx,
|
||
struct rexp_node *node, int depth,
|
||
side_effect_printer seprint, FILE * fp)
|
||
#else
|
||
static void
|
||
print_rexp (rx, node, depth, seprint, fp)
|
||
struct rx *rx;
|
||
struct rexp_node *node;
|
||
int depth;
|
||
side_effect_printer seprint;
|
||
FILE * fp;
|
||
#endif
|
||
{
|
||
if (!node)
|
||
return;
|
||
else
|
||
{
|
||
switch (node->type)
|
||
{
|
||
case r_cset:
|
||
{
|
||
fprintf (fp, "%*s", depth, "");
|
||
print_cset (rx, node->params.cset, fp);
|
||
fputc ('\n', fp);
|
||
break;
|
||
}
|
||
|
||
case r_opt:
|
||
case r_star:
|
||
fprintf (fp, "%*s%s\n", depth, "",
|
||
node->type == r_opt ? "opt" : "star");
|
||
print_rexp (rx, node->params.pair.left, depth + 3, seprint, fp);
|
||
break;
|
||
|
||
case r_2phase_star:
|
||
fprintf (fp, "%*s2phase star\n", depth, "");
|
||
print_rexp (rx, node->params.pair.right, depth + 3, seprint, fp);
|
||
print_rexp (rx, node->params.pair.left, depth + 3, seprint, fp);
|
||
break;
|
||
|
||
|
||
case r_alternate:
|
||
case r_concat:
|
||
fprintf (fp, "%*s%s\n", depth, "",
|
||
node->type == r_alternate ? "alt" : "concat");
|
||
print_rexp (rx, node->params.pair.left, depth + 3, seprint, fp);
|
||
print_rexp (rx, node->params.pair.right, depth + 3, seprint, fp);
|
||
break;
|
||
case r_side_effect:
|
||
fprintf (fp, "%*sSide effect: ", depth, "");
|
||
seprint (rx, node->params.side_effect, fp);
|
||
fputc ('\n', fp);
|
||
}
|
||
}
|
||
}
|
||
|
||
#ifdef __STDC__
|
||
static void
|
||
print_nfa (struct rx * rx,
|
||
struct rx_nfa_state * n,
|
||
side_effect_printer seprint, FILE * fp)
|
||
#else
|
||
static void
|
||
print_nfa (rx, n, seprint, fp)
|
||
struct rx * rx;
|
||
struct rx_nfa_state * n;
|
||
side_effect_printer seprint;
|
||
FILE * fp;
|
||
#endif
|
||
{
|
||
while (n)
|
||
{
|
||
struct rx_nfa_edge *e = n->edges;
|
||
struct rx_possible_future *ec = n->futures;
|
||
fprintf (fp, "node %d %s\n", n->id,
|
||
n->is_final ? "final" : (n->is_start ? "start" : ""));
|
||
while (e)
|
||
{
|
||
fprintf (fp, " edge to %d, ", e->dest->id);
|
||
switch (e->type)
|
||
{
|
||
case ne_epsilon:
|
||
fprintf (fp, "epsilon\n");
|
||
break;
|
||
case ne_side_effect:
|
||
fprintf (fp, "side effect ");
|
||
seprint (rx, e->params.side_effect, fp);
|
||
fputc ('\n', fp);
|
||
break;
|
||
case ne_cset:
|
||
fprintf (fp, "cset ");
|
||
print_cset (rx, e->params.cset, fp);
|
||
fputc ('\n', fp);
|
||
break;
|
||
}
|
||
e = e->next;
|
||
}
|
||
|
||
while (ec)
|
||
{
|
||
int x;
|
||
struct rx_nfa_state_set * s;
|
||
struct rx_se_list * l;
|
||
fprintf (fp, " eclosure to {");
|
||
for (s = ec->destset; s; s = s->cdr)
|
||
fprintf (fp, "%d ", s->car->id);
|
||
fprintf (fp, "} (");
|
||
for (l = ec->effects; l; l = l->cdr)
|
||
{
|
||
seprint (rx, l->car, fp);
|
||
fputc (' ', fp);
|
||
}
|
||
fprintf (fp, ")\n");
|
||
ec = ec->next;
|
||
}
|
||
n = n->next;
|
||
}
|
||
}
|
||
|
||
static char * efnames [] =
|
||
{
|
||
"bogon",
|
||
"re_se_try",
|
||
"re_se_pushback",
|
||
"re_se_push0",
|
||
"re_se_pushpos",
|
||
"re_se_chkpos",
|
||
"re_se_poppos",
|
||
"re_se_at_dot",
|
||
"re_se_syntax",
|
||
"re_se_not_syntax",
|
||
"re_se_begbuf",
|
||
"re_se_hat",
|
||
"re_se_wordbeg",
|
||
"re_se_wordbound",
|
||
"re_se_notwordbound",
|
||
"re_se_wordend",
|
||
"re_se_endbuf",
|
||
"re_se_dollar",
|
||
"re_se_fail",
|
||
};
|
||
|
||
static char * efnames2[] =
|
||
{
|
||
"re_se_win",
|
||
"re_se_lparen",
|
||
"re_se_rparen",
|
||
"re_se_backref",
|
||
"re_se_iter",
|
||
"re_se_end_iter",
|
||
"re_se_tv"
|
||
};
|
||
|
||
static char * inx_names[] =
|
||
{
|
||
"rx_backtrack_point",
|
||
"rx_do_side_effects",
|
||
"rx_cache_miss",
|
||
"rx_next_char",
|
||
"rx_backtrack",
|
||
"rx_error_inx",
|
||
"rx_num_instructions"
|
||
};
|
||
|
||
|
||
#ifdef __STDC__
|
||
static void
|
||
re_seprint (struct rx * rx, void * effect, FILE * fp)
|
||
#else
|
||
static void
|
||
re_seprint (rx, effect, fp)
|
||
struct rx * rx;
|
||
void * effect;
|
||
FILE * fp;
|
||
#endif
|
||
{
|
||
if ((int)effect < 0)
|
||
fputs (efnames[-(int)effect], fp);
|
||
else if (dbug_rxb)
|
||
{
|
||
struct re_se_params * p = &dbug_rxb->se_params[(int)effect];
|
||
fprintf (fp, "%s(%d,%d)", efnames2[p->se], p->op1, p->op2);
|
||
}
|
||
else
|
||
fprintf (fp, "[complex op # %d]", (int)effect);
|
||
}
|
||
|
||
|
||
/* These are so the regex.c regression tests will compile. */
|
||
void
|
||
print_compiled_pattern (rxb)
|
||
struct re_pattern_buffer * rxb;
|
||
{
|
||
}
|
||
|
||
void
|
||
print_fastmap (fm)
|
||
char * fm;
|
||
{
|
||
}
|
||
|
||
#endif /* RX_DEBUG */
|
||
|
||
|
||
|
||
/* This page: Bitsets. Completely unintersting. */
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL int
|
||
rx_bitset_is_equal (int size, rx_Bitset a, rx_Bitset b)
|
||
#else
|
||
RX_DECL int
|
||
rx_bitset_is_equal (size, a, b)
|
||
int size;
|
||
rx_Bitset a;
|
||
rx_Bitset b;
|
||
#endif
|
||
{
|
||
int x;
|
||
RX_subset s = b[0];
|
||
b[0] = ~a[0];
|
||
|
||
for (x = rx_bitset_numb_subsets(size) - 1; a[x] == b[x]; --x)
|
||
;
|
||
|
||
b[0] = s;
|
||
return !x && s == a[0];
|
||
}
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL int
|
||
rx_bitset_is_subset (int size, rx_Bitset a, rx_Bitset b)
|
||
#else
|
||
RX_DECL int
|
||
rx_bitset_is_subset (size, a, b)
|
||
int size;
|
||
rx_Bitset a;
|
||
rx_Bitset b;
|
||
#endif
|
||
{
|
||
int x = rx_bitset_numb_subsets(size) - 1;
|
||
while (x-- && (a[x] & b[x]) == a[x]);
|
||
return x == -1;
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL int
|
||
rx_bitset_empty (int size, rx_Bitset set)
|
||
#else
|
||
RX_DECL int
|
||
rx_bitset_empty (size, set)
|
||
int size;
|
||
rx_Bitset set;
|
||
#endif
|
||
{
|
||
int x;
|
||
RX_subset s = set[0];
|
||
set[0] = 1;
|
||
for (x = rx_bitset_numb_subsets(size) - 1; !set[x]; --x)
|
||
;
|
||
set[0] = s;
|
||
return !s;
|
||
}
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL void
|
||
rx_bitset_null (int size, rx_Bitset b)
|
||
#else
|
||
RX_DECL void
|
||
rx_bitset_null (size, b)
|
||
int size;
|
||
rx_Bitset b;
|
||
#endif
|
||
{
|
||
bzero (b, rx_sizeof_bitset(size));
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL void
|
||
rx_bitset_universe (int size, rx_Bitset b)
|
||
#else
|
||
RX_DECL void
|
||
rx_bitset_universe (size, b)
|
||
int size;
|
||
rx_Bitset b;
|
||
#endif
|
||
{
|
||
int x = rx_bitset_numb_subsets (size);
|
||
while (x--)
|
||
*b++ = ~(RX_subset)0;
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL void
|
||
rx_bitset_complement (int size, rx_Bitset b)
|
||
#else
|
||
RX_DECL void
|
||
rx_bitset_complement (size, b)
|
||
int size;
|
||
rx_Bitset b;
|
||
#endif
|
||
{
|
||
int x = rx_bitset_numb_subsets (size);
|
||
while (x--)
|
||
{
|
||
*b = ~*b;
|
||
++b;
|
||
}
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL void
|
||
rx_bitset_assign (int size, rx_Bitset a, rx_Bitset b)
|
||
#else
|
||
RX_DECL void
|
||
rx_bitset_assign (size, a, b)
|
||
int size;
|
||
rx_Bitset a;
|
||
rx_Bitset b;
|
||
#endif
|
||
{
|
||
int x;
|
||
for (x = rx_bitset_numb_subsets(size) - 1; x >=0; --x)
|
||
a[x] = b[x];
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL void
|
||
rx_bitset_union (int size, rx_Bitset a, rx_Bitset b)
|
||
#else
|
||
RX_DECL void
|
||
rx_bitset_union (size, a, b)
|
||
int size;
|
||
rx_Bitset a;
|
||
rx_Bitset b;
|
||
#endif
|
||
{
|
||
int x;
|
||
for (x = rx_bitset_numb_subsets(size) - 1; x >=0; --x)
|
||
a[x] |= b[x];
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL void
|
||
rx_bitset_intersection (int size,
|
||
rx_Bitset a, rx_Bitset b)
|
||
#else
|
||
RX_DECL void
|
||
rx_bitset_intersection (size, a, b)
|
||
int size;
|
||
rx_Bitset a;
|
||
rx_Bitset b;
|
||
#endif
|
||
{
|
||
int x;
|
||
for (x = rx_bitset_numb_subsets(size) - 1; x >=0; --x)
|
||
a[x] &= b[x];
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL void
|
||
rx_bitset_difference (int size, rx_Bitset a, rx_Bitset b)
|
||
#else
|
||
RX_DECL void
|
||
rx_bitset_difference (size, a, b)
|
||
int size;
|
||
rx_Bitset a;
|
||
rx_Bitset b;
|
||
#endif
|
||
{
|
||
int x;
|
||
for (x = rx_bitset_numb_subsets(size) - 1; x >=0; --x)
|
||
a[x] &= ~ b[x];
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL void
|
||
rx_bitset_revdifference (int size,
|
||
rx_Bitset a, rx_Bitset b)
|
||
#else
|
||
RX_DECL void
|
||
rx_bitset_revdifference (size, a, b)
|
||
int size;
|
||
rx_Bitset a;
|
||
rx_Bitset b;
|
||
#endif
|
||
{
|
||
int x;
|
||
for (x = rx_bitset_numb_subsets(size) - 1; x >=0; --x)
|
||
a[x] = ~a[x] & b[x];
|
||
}
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL void
|
||
rx_bitset_xor (int size, rx_Bitset a, rx_Bitset b)
|
||
#else
|
||
RX_DECL void
|
||
rx_bitset_xor (size, a, b)
|
||
int size;
|
||
rx_Bitset a;
|
||
rx_Bitset b;
|
||
#endif
|
||
{
|
||
int x;
|
||
for (x = rx_bitset_numb_subsets(size) - 1; x >=0; --x)
|
||
a[x] ^= b[x];
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL unsigned long
|
||
rx_bitset_hash (int size, rx_Bitset b)
|
||
#else
|
||
RX_DECL unsigned long
|
||
rx_bitset_hash (size, b)
|
||
int size;
|
||
rx_Bitset b;
|
||
#endif
|
||
{
|
||
int x;
|
||
unsigned long hash = (unsigned long)rx_bitset_hash;
|
||
|
||
for (x = rx_bitset_numb_subsets(size) - 1; x >= 0; --x)
|
||
hash ^= rx_bitset_subset_val(b, x);
|
||
|
||
return hash;
|
||
}
|
||
|
||
|
||
RX_DECL RX_subset rx_subset_singletons [RX_subset_bits] =
|
||
{
|
||
0x1,
|
||
0x2,
|
||
0x4,
|
||
0x8,
|
||
0x10,
|
||
0x20,
|
||
0x40,
|
||
0x80,
|
||
0x100,
|
||
0x200,
|
||
0x400,
|
||
0x800,
|
||
0x1000,
|
||
0x2000,
|
||
0x4000,
|
||
0x8000,
|
||
0x10000,
|
||
0x20000,
|
||
0x40000,
|
||
0x80000,
|
||
0x100000,
|
||
0x200000,
|
||
0x400000,
|
||
0x800000,
|
||
0x1000000,
|
||
0x2000000,
|
||
0x4000000,
|
||
0x8000000,
|
||
0x10000000,
|
||
0x20000000,
|
||
0x40000000,
|
||
0x80000000
|
||
};
|
||
|
||
#ifdef RX_DEBUG
|
||
|
||
#ifdef __STDC__
|
||
static void
|
||
print_cset (struct rx *rx, rx_Bitset cset, FILE * fp)
|
||
#else
|
||
static void
|
||
print_cset (rx, cset, fp)
|
||
struct rx *rx;
|
||
rx_Bitset cset;
|
||
FILE * fp;
|
||
#endif
|
||
{
|
||
int x;
|
||
fputc ('[', fp);
|
||
for (x = 0; x < rx->local_cset_size; ++x)
|
||
if (RX_bitset_member (cset, x))
|
||
{
|
||
if (isprint(x))
|
||
fputc (x, fp);
|
||
else
|
||
fprintf (fp, "\\0%o ", x);
|
||
}
|
||
fputc (']', fp);
|
||
}
|
||
|
||
#endif /* RX_DEBUG */
|
||
|
||
|
||
|
||
static unsigned long rx_hash_masks[4] =
|
||
{
|
||
0x12488421,
|
||
0x96699669,
|
||
0xbe7dd7eb,
|
||
0xffffffff
|
||
};
|
||
|
||
|
||
/* Hash tables */
|
||
#ifdef __STDC__
|
||
RX_DECL struct rx_hash_item *
|
||
rx_hash_find (struct rx_hash * table,
|
||
unsigned long hash,
|
||
void * value,
|
||
struct rx_hash_rules * rules)
|
||
#else
|
||
RX_DECL struct rx_hash_item *
|
||
rx_hash_find (table, hash, value, rules)
|
||
struct rx_hash * table;
|
||
unsigned long hash;
|
||
void * value;
|
||
struct rx_hash_rules * rules;
|
||
#endif
|
||
{
|
||
rx_hash_eq eq = rules->eq;
|
||
int maskc = 0;
|
||
long mask = rx_hash_masks [0];
|
||
int bucket = (hash & mask) % 13;
|
||
|
||
while (table->children [bucket])
|
||
{
|
||
table = table->children [bucket];
|
||
++maskc;
|
||
mask = rx_hash_masks[maskc];
|
||
bucket = (hash & mask) % 13;
|
||
}
|
||
|
||
{
|
||
struct rx_hash_item * it = table->buckets[bucket];
|
||
while (it)
|
||
if (eq (it->data, value))
|
||
return it;
|
||
else
|
||
it = it->next_same_hash;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL struct rx_hash_item *
|
||
rx_hash_store (struct rx_hash * table,
|
||
unsigned long hash,
|
||
void * value,
|
||
struct rx_hash_rules * rules)
|
||
#else
|
||
RX_DECL struct rx_hash_item *
|
||
rx_hash_store (table, hash, value, rules)
|
||
struct rx_hash * table;
|
||
unsigned long hash;
|
||
void * value;
|
||
struct rx_hash_rules * rules;
|
||
#endif
|
||
{
|
||
rx_hash_eq eq = rules->eq;
|
||
int maskc = 0;
|
||
long mask = rx_hash_masks[0];
|
||
int bucket = (hash & mask) % 13;
|
||
int depth = 0;
|
||
|
||
while (table->children [bucket])
|
||
{
|
||
table = table->children [bucket];
|
||
++maskc;
|
||
mask = rx_hash_masks[maskc];
|
||
bucket = (hash & mask) % 13;
|
||
++depth;
|
||
}
|
||
|
||
{
|
||
struct rx_hash_item * it = table->buckets[bucket];
|
||
while (it)
|
||
if (eq (it->data, value))
|
||
return it;
|
||
else
|
||
it = it->next_same_hash;
|
||
}
|
||
|
||
{
|
||
if ( (depth < 3)
|
||
&& (table->bucket_size [bucket] >= 4))
|
||
{
|
||
struct rx_hash * newtab = ((struct rx_hash *)
|
||
rules->hash_alloc (rules));
|
||
if (!newtab)
|
||
goto add_to_bucket;
|
||
bzero (newtab, sizeof (*newtab));
|
||
newtab->parent = table;
|
||
{
|
||
struct rx_hash_item * them = table->buckets[bucket];
|
||
unsigned long newmask = rx_hash_masks[maskc + 1];
|
||
while (them)
|
||
{
|
||
struct rx_hash_item * save = them->next_same_hash;
|
||
int new_buck = (them->hash & newmask) % 13;
|
||
them->next_same_hash = newtab->buckets[new_buck];
|
||
newtab->buckets[new_buck] = them;
|
||
them->table = newtab;
|
||
them = save;
|
||
++newtab->bucket_size[new_buck];
|
||
++newtab->refs;
|
||
}
|
||
table->refs = (table->refs - table->bucket_size[bucket] + 1);
|
||
table->bucket_size[bucket] = 0;
|
||
table->buckets[bucket] = 0;
|
||
table->children[bucket] = newtab;
|
||
table = newtab;
|
||
bucket = (hash & newmask) % 13;
|
||
}
|
||
}
|
||
}
|
||
add_to_bucket:
|
||
{
|
||
struct rx_hash_item * it = ((struct rx_hash_item *)
|
||
rules->hash_item_alloc (rules, value));
|
||
if (!it)
|
||
return 0;
|
||
it->hash = hash;
|
||
it->table = table;
|
||
/* DATA and BINDING are to be set in hash_item_alloc */
|
||
it->next_same_hash = table->buckets [bucket];
|
||
table->buckets[bucket] = it;
|
||
++table->bucket_size [bucket];
|
||
++table->refs;
|
||
return it;
|
||
}
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL void
|
||
rx_hash_free (struct rx_hash_item * it, struct rx_hash_rules * rules)
|
||
#else
|
||
RX_DECL void
|
||
rx_hash_free (it, rules)
|
||
struct rx_hash_item * it;
|
||
struct rx_hash_rules * rules;
|
||
#endif
|
||
{
|
||
if (it)
|
||
{
|
||
struct rx_hash * table = it->table;
|
||
unsigned long hash = it->hash;
|
||
int depth = (table->parent
|
||
? (table->parent->parent
|
||
? (table->parent->parent->parent
|
||
? 3
|
||
: 2)
|
||
: 1)
|
||
: 0);
|
||
int bucket = (hash & rx_hash_masks [depth]) % 13;
|
||
struct rx_hash_item ** pos = &table->buckets [bucket];
|
||
|
||
while (*pos != it)
|
||
pos = &(*pos)->next_same_hash;
|
||
*pos = it->next_same_hash;
|
||
rules->free_hash_item (it, rules);
|
||
--table->bucket_size[bucket];
|
||
--table->refs;
|
||
while (!table->refs && depth)
|
||
{
|
||
struct rx_hash * save = table;
|
||
table = table->parent;
|
||
--depth;
|
||
bucket = (hash & rx_hash_masks [depth]) % 13;
|
||
--table->refs;
|
||
table->children[bucket] = 0;
|
||
rules->free_hash (save, rules);
|
||
}
|
||
}
|
||
}
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL void
|
||
rx_free_hash_table (struct rx_hash * tab, rx_hash_freefn freefn,
|
||
struct rx_hash_rules * rules)
|
||
#else
|
||
RX_DECL void
|
||
rx_free_hash_table (tab, freefn, rules)
|
||
struct rx_hash * tab;
|
||
rx_hash_freefn freefn;
|
||
struct rx_hash_rules * rules;
|
||
#endif
|
||
{
|
||
int x;
|
||
|
||
for (x = 0; x < 13; ++x)
|
||
if (tab->children[x])
|
||
{
|
||
rx_free_hash_table (tab->children[x], freefn, rules);
|
||
rules->free_hash (tab->children[x], rules);
|
||
}
|
||
else
|
||
{
|
||
struct rx_hash_item * them = tab->buckets[x];
|
||
while (them)
|
||
{
|
||
struct rx_hash_item * that = them;
|
||
them = that->next_same_hash;
|
||
freefn (that);
|
||
rules->free_hash_item (that, rules);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* Utilities for manipulating bitset represntations of characters sets. */
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL rx_Bitset
|
||
rx_cset (struct rx *rx)
|
||
#else
|
||
RX_DECL rx_Bitset
|
||
rx_cset (rx)
|
||
struct rx *rx;
|
||
#endif
|
||
{
|
||
rx_Bitset b = (rx_Bitset) malloc (rx_sizeof_bitset (rx->local_cset_size));
|
||
if (b)
|
||
rx_bitset_null (rx->local_cset_size, b);
|
||
return b;
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL rx_Bitset
|
||
rx_copy_cset (struct rx *rx, rx_Bitset a)
|
||
#else
|
||
RX_DECL rx_Bitset
|
||
rx_copy_cset (rx, a)
|
||
struct rx *rx;
|
||
rx_Bitset a;
|
||
#endif
|
||
{
|
||
rx_Bitset cs = rx_cset (rx);
|
||
|
||
if (cs)
|
||
rx_bitset_union (rx->local_cset_size, cs, a);
|
||
|
||
return cs;
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL void
|
||
rx_free_cset (struct rx * rx, rx_Bitset c)
|
||
#else
|
||
RX_DECL void
|
||
rx_free_cset (rx, c)
|
||
struct rx * rx;
|
||
rx_Bitset c;
|
||
#endif
|
||
{
|
||
if (c)
|
||
free ((char *)c);
|
||
}
|
||
|
||
|
||
/* Hash table memory allocation policy for the regexp compiler */
|
||
|
||
#ifdef __STDC__
|
||
static struct rx_hash *
|
||
compiler_hash_alloc (struct rx_hash_rules * rules)
|
||
#else
|
||
static struct rx_hash *
|
||
compiler_hash_alloc (rules)
|
||
struct rx_hash_rules * rules;
|
||
#endif
|
||
{
|
||
return (struct rx_hash *)malloc (sizeof (struct rx_hash));
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
static struct rx_hash_item *
|
||
compiler_hash_item_alloc (struct rx_hash_rules * rules, void * value)
|
||
#else
|
||
static struct rx_hash_item *
|
||
compiler_hash_item_alloc (rules, value)
|
||
struct rx_hash_rules * rules;
|
||
void * value;
|
||
#endif
|
||
{
|
||
struct rx_hash_item * it;
|
||
it = (struct rx_hash_item *)malloc (sizeof (*it));
|
||
if (it)
|
||
{
|
||
it->data = value;
|
||
it->binding = 0;
|
||
}
|
||
return it;
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
static void
|
||
compiler_free_hash (struct rx_hash * tab,
|
||
struct rx_hash_rules * rules)
|
||
#else
|
||
static void
|
||
compiler_free_hash (tab, rules)
|
||
struct rx_hash * tab;
|
||
struct rx_hash_rules * rules;
|
||
#endif
|
||
{
|
||
free ((char *)tab);
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
static void
|
||
compiler_free_hash_item (struct rx_hash_item * item,
|
||
struct rx_hash_rules * rules)
|
||
#else
|
||
static void
|
||
compiler_free_hash_item (item, rules)
|
||
struct rx_hash_item * item;
|
||
struct rx_hash_rules * rules;
|
||
#endif
|
||
{
|
||
free ((char *)item);
|
||
}
|
||
|
||
|
||
/* This page: REXP_NODE (expression tree) structures. */
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL struct rexp_node *
|
||
rexp_node (struct rx *rx,
|
||
enum rexp_node_type type)
|
||
#else
|
||
RX_DECL struct rexp_node *
|
||
rexp_node (rx, type)
|
||
struct rx *rx;
|
||
enum rexp_node_type type;
|
||
#endif
|
||
{
|
||
struct rexp_node *n;
|
||
|
||
n = (struct rexp_node *)malloc (sizeof (*n));
|
||
bzero (n, sizeof (*n));
|
||
if (n)
|
||
n->type = type;
|
||
return n;
|
||
}
|
||
|
||
|
||
/* free_rexp_node assumes that the bitset passed to rx_mk_r_cset
|
||
* can be freed using rx_free_cset.
|
||
*/
|
||
#ifdef __STDC__
|
||
RX_DECL struct rexp_node *
|
||
rx_mk_r_cset (struct rx * rx,
|
||
rx_Bitset b)
|
||
#else
|
||
RX_DECL struct rexp_node *
|
||
rx_mk_r_cset (rx, b)
|
||
struct rx * rx;
|
||
rx_Bitset b;
|
||
#endif
|
||
{
|
||
struct rexp_node * n = rexp_node (rx, r_cset);
|
||
if (n)
|
||
n->params.cset = b;
|
||
return n;
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL struct rexp_node *
|
||
rx_mk_r_concat (struct rx * rx,
|
||
struct rexp_node * a,
|
||
struct rexp_node * b)
|
||
#else
|
||
RX_DECL struct rexp_node *
|
||
rx_mk_r_concat (rx, a, b)
|
||
struct rx * rx;
|
||
struct rexp_node * a;
|
||
struct rexp_node * b;
|
||
#endif
|
||
{
|
||
struct rexp_node * n = rexp_node (rx, r_concat);
|
||
if (n)
|
||
{
|
||
n->params.pair.left = a;
|
||
n->params.pair.right = b;
|
||
}
|
||
return n;
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL struct rexp_node *
|
||
rx_mk_r_alternate (struct rx * rx,
|
||
struct rexp_node * a,
|
||
struct rexp_node * b)
|
||
#else
|
||
RX_DECL struct rexp_node *
|
||
rx_mk_r_alternate (rx, a, b)
|
||
struct rx * rx;
|
||
struct rexp_node * a;
|
||
struct rexp_node * b;
|
||
#endif
|
||
{
|
||
struct rexp_node * n = rexp_node (rx, r_alternate);
|
||
if (n)
|
||
{
|
||
n->params.pair.left = a;
|
||
n->params.pair.right = b;
|
||
}
|
||
return n;
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL struct rexp_node *
|
||
rx_mk_r_opt (struct rx * rx,
|
||
struct rexp_node * a)
|
||
#else
|
||
RX_DECL struct rexp_node *
|
||
rx_mk_r_opt (rx, a)
|
||
struct rx * rx;
|
||
struct rexp_node * a;
|
||
#endif
|
||
{
|
||
struct rexp_node * n = rexp_node (rx, r_opt);
|
||
if (n)
|
||
{
|
||
n->params.pair.left = a;
|
||
n->params.pair.right = 0;
|
||
}
|
||
return n;
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL struct rexp_node *
|
||
rx_mk_r_star (struct rx * rx,
|
||
struct rexp_node * a)
|
||
#else
|
||
RX_DECL struct rexp_node *
|
||
rx_mk_r_star (rx, a)
|
||
struct rx * rx;
|
||
struct rexp_node * a;
|
||
#endif
|
||
{
|
||
struct rexp_node * n = rexp_node (rx, r_star);
|
||
if (n)
|
||
{
|
||
n->params.pair.left = a;
|
||
n->params.pair.right = 0;
|
||
}
|
||
return n;
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL struct rexp_node *
|
||
rx_mk_r_2phase_star (struct rx * rx,
|
||
struct rexp_node * a,
|
||
struct rexp_node * b)
|
||
#else
|
||
RX_DECL struct rexp_node *
|
||
rx_mk_r_2phase_star (rx, a, b)
|
||
struct rx * rx;
|
||
struct rexp_node * a;
|
||
struct rexp_node * b;
|
||
#endif
|
||
{
|
||
struct rexp_node * n = rexp_node (rx, r_2phase_star);
|
||
if (n)
|
||
{
|
||
n->params.pair.left = a;
|
||
n->params.pair.right = b;
|
||
}
|
||
return n;
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL struct rexp_node *
|
||
rx_mk_r_side_effect (struct rx * rx,
|
||
rx_side_effect a)
|
||
#else
|
||
RX_DECL struct rexp_node *
|
||
rx_mk_r_side_effect (rx, a)
|
||
struct rx * rx;
|
||
rx_side_effect a;
|
||
#endif
|
||
{
|
||
struct rexp_node * n = rexp_node (rx, r_side_effect);
|
||
if (n)
|
||
{
|
||
n->params.side_effect = a;
|
||
n->params.pair.right = 0;
|
||
}
|
||
return n;
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL struct rexp_node *
|
||
rx_mk_r_data (struct rx * rx,
|
||
void * a)
|
||
#else
|
||
RX_DECL struct rexp_node *
|
||
rx_mk_r_data (rx, a)
|
||
struct rx * rx;
|
||
void * a;
|
||
#endif
|
||
{
|
||
struct rexp_node * n = rexp_node (rx, r_data);
|
||
if (n)
|
||
{
|
||
n->params.pair.left = a;
|
||
n->params.pair.right = 0;
|
||
}
|
||
return n;
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL void
|
||
rx_free_rexp (struct rx * rx, struct rexp_node * node)
|
||
#else
|
||
RX_DECL void
|
||
rx_free_rexp (rx, node)
|
||
struct rx * rx;
|
||
struct rexp_node * node;
|
||
#endif
|
||
{
|
||
if (node)
|
||
{
|
||
switch (node->type)
|
||
{
|
||
case r_cset:
|
||
if (node->params.cset)
|
||
rx_free_cset (rx, node->params.cset);
|
||
|
||
case r_side_effect:
|
||
break;
|
||
|
||
case r_concat:
|
||
case r_alternate:
|
||
case r_2phase_star:
|
||
case r_opt:
|
||
case r_star:
|
||
rx_free_rexp (rx, node->params.pair.left);
|
||
rx_free_rexp (rx, node->params.pair.right);
|
||
break;
|
||
|
||
case r_data:
|
||
/* This shouldn't occur. */
|
||
break;
|
||
}
|
||
free ((char *)node);
|
||
}
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL struct rexp_node *
|
||
rx_copy_rexp (struct rx *rx,
|
||
struct rexp_node *node)
|
||
#else
|
||
RX_DECL struct rexp_node *
|
||
rx_copy_rexp (rx, node)
|
||
struct rx *rx;
|
||
struct rexp_node *node;
|
||
#endif
|
||
{
|
||
if (!node)
|
||
return 0;
|
||
else
|
||
{
|
||
struct rexp_node *n = rexp_node (rx, node->type);
|
||
if (!n)
|
||
return 0;
|
||
switch (node->type)
|
||
{
|
||
case r_cset:
|
||
n->params.cset = rx_copy_cset (rx, node->params.cset);
|
||
if (!n->params.cset)
|
||
{
|
||
rx_free_rexp (rx, n);
|
||
return 0;
|
||
}
|
||
break;
|
||
|
||
case r_side_effect:
|
||
n->params.side_effect = node->params.side_effect;
|
||
break;
|
||
|
||
case r_concat:
|
||
case r_alternate:
|
||
case r_opt:
|
||
case r_2phase_star:
|
||
case r_star:
|
||
n->params.pair.left =
|
||
rx_copy_rexp (rx, node->params.pair.left);
|
||
n->params.pair.right =
|
||
rx_copy_rexp (rx, node->params.pair.right);
|
||
if ( (node->params.pair.left && !n->params.pair.left)
|
||
|| (node->params.pair.right && !n->params.pair.right))
|
||
{
|
||
rx_free_rexp (rx, n);
|
||
return 0;
|
||
}
|
||
break;
|
||
case r_data:
|
||
/* shouldn't happen */
|
||
break;
|
||
}
|
||
return n;
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* This page: functions to build and destroy graphs that describe nfa's */
|
||
|
||
/* Constructs a new nfa node. */
|
||
#ifdef __STDC__
|
||
RX_DECL struct rx_nfa_state *
|
||
rx_nfa_state (struct rx *rx)
|
||
#else
|
||
RX_DECL struct rx_nfa_state *
|
||
rx_nfa_state (rx)
|
||
struct rx *rx;
|
||
#endif
|
||
{
|
||
struct rx_nfa_state * n = (struct rx_nfa_state *)malloc (sizeof (*n));
|
||
if (!n)
|
||
return 0;
|
||
bzero (n, sizeof (*n));
|
||
n->next = rx->nfa_states;
|
||
rx->nfa_states = n;
|
||
return n;
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL void
|
||
rx_free_nfa_state (struct rx_nfa_state * n)
|
||
#else
|
||
RX_DECL void
|
||
rx_free_nfa_state (n)
|
||
struct rx_nfa_state * n;
|
||
#endif
|
||
{
|
||
free ((char *)n);
|
||
}
|
||
|
||
|
||
/* This looks up an nfa node, given a numeric id. Numeric id's are
|
||
* assigned after the nfa has been built.
|
||
*/
|
||
#ifdef __STDC__
|
||
RX_DECL struct rx_nfa_state *
|
||
rx_id_to_nfa_state (struct rx * rx,
|
||
int id)
|
||
#else
|
||
RX_DECL struct rx_nfa_state *
|
||
rx_id_to_nfa_state (rx, id)
|
||
struct rx * rx;
|
||
int id;
|
||
#endif
|
||
{
|
||
struct rx_nfa_state * n;
|
||
for (n = rx->nfa_states; n; n = n->next)
|
||
if (n->id == id)
|
||
return n;
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* This adds an edge between two nodes, but doesn't initialize the
|
||
* edge label.
|
||
*/
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL struct rx_nfa_edge *
|
||
rx_nfa_edge (struct rx *rx,
|
||
enum rx_nfa_etype type,
|
||
struct rx_nfa_state *start,
|
||
struct rx_nfa_state *dest)
|
||
#else
|
||
RX_DECL struct rx_nfa_edge *
|
||
rx_nfa_edge (rx, type, start, dest)
|
||
struct rx *rx;
|
||
enum rx_nfa_etype type;
|
||
struct rx_nfa_state *start;
|
||
struct rx_nfa_state *dest;
|
||
#endif
|
||
{
|
||
struct rx_nfa_edge *e;
|
||
e = (struct rx_nfa_edge *)malloc (sizeof (*e));
|
||
if (!e)
|
||
return 0;
|
||
e->next = start->edges;
|
||
start->edges = e;
|
||
e->type = type;
|
||
e->dest = dest;
|
||
return e;
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL void
|
||
rx_free_nfa_edge (struct rx_nfa_edge * e)
|
||
#else
|
||
RX_DECL void
|
||
rx_free_nfa_edge (e)
|
||
struct rx_nfa_edge * e;
|
||
#endif
|
||
{
|
||
free ((char *)e);
|
||
}
|
||
|
||
|
||
/* This constructs a POSSIBLE_FUTURE, which is a kind epsilon-closure
|
||
* of an NFA. These are added to an nfa automaticly by eclose_nfa.
|
||
*/
|
||
|
||
#ifdef __STDC__
|
||
static struct rx_possible_future *
|
||
rx_possible_future (struct rx * rx,
|
||
struct rx_se_list * effects)
|
||
#else
|
||
static struct rx_possible_future *
|
||
rx_possible_future (rx, effects)
|
||
struct rx * rx;
|
||
struct rx_se_list * effects;
|
||
#endif
|
||
{
|
||
struct rx_possible_future *ec;
|
||
ec = (struct rx_possible_future *) malloc (sizeof (*ec));
|
||
if (!ec)
|
||
return 0;
|
||
ec->destset = 0;
|
||
ec->next = 0;
|
||
ec->effects = effects;
|
||
return ec;
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
static void
|
||
rx_free_possible_future (struct rx_possible_future * pf)
|
||
#else
|
||
static void
|
||
rx_free_possible_future (pf)
|
||
struct rx_possible_future * pf;
|
||
#endif
|
||
{
|
||
free ((char *)pf);
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL void
|
||
rx_free_nfa (struct rx *rx)
|
||
#else
|
||
RX_DECL void
|
||
rx_free_nfa (rx)
|
||
struct rx *rx;
|
||
#endif
|
||
{
|
||
while (rx->nfa_states)
|
||
{
|
||
while (rx->nfa_states->edges)
|
||
{
|
||
switch (rx->nfa_states->edges->type)
|
||
{
|
||
case ne_cset:
|
||
rx_free_cset (rx, rx->nfa_states->edges->params.cset);
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
{
|
||
struct rx_nfa_edge * e;
|
||
e = rx->nfa_states->edges;
|
||
rx->nfa_states->edges = rx->nfa_states->edges->next;
|
||
rx_free_nfa_edge (e);
|
||
}
|
||
} /* while (rx->nfa_states->edges) */
|
||
{
|
||
/* Iterate over the partial epsilon closures of rx->nfa_states */
|
||
struct rx_possible_future * pf = rx->nfa_states->futures;
|
||
while (pf)
|
||
{
|
||
struct rx_possible_future * pft = pf;
|
||
pf = pf->next;
|
||
rx_free_possible_future (pft);
|
||
}
|
||
}
|
||
{
|
||
struct rx_nfa_state *n;
|
||
n = rx->nfa_states;
|
||
rx->nfa_states = rx->nfa_states->next;
|
||
rx_free_nfa_state (n);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* This page: translating a pattern expression into an nfa and doing the
|
||
* static part of the nfa->super-nfa translation.
|
||
*/
|
||
|
||
/* This is the thompson regexp->nfa algorithm.
|
||
* It is modified to allow for `side-effect epsilons.' Those are
|
||
* edges that are taken whenever a similar epsilon edge would be,
|
||
* but which imply that some side effect occurs when the edge
|
||
* is taken.
|
||
*
|
||
* Side effects are used to model parts of the pattern langauge
|
||
* that are not regular (in the formal sense).
|
||
*/
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL int
|
||
rx_build_nfa (struct rx *rx,
|
||
struct rexp_node *rexp,
|
||
struct rx_nfa_state **start,
|
||
struct rx_nfa_state **end)
|
||
#else
|
||
RX_DECL int
|
||
rx_build_nfa (rx, rexp, start, end)
|
||
struct rx *rx;
|
||
struct rexp_node *rexp;
|
||
struct rx_nfa_state **start;
|
||
struct rx_nfa_state **end;
|
||
#endif
|
||
{
|
||
struct rx_nfa_edge *edge;
|
||
|
||
/* Start & end nodes may have been allocated by the caller. */
|
||
*start = *start ? *start : rx_nfa_state (rx);
|
||
|
||
if (!*start)
|
||
return 0;
|
||
|
||
if (!rexp)
|
||
{
|
||
*end = *start;
|
||
return 1;
|
||
}
|
||
|
||
*end = *end ? *end : rx_nfa_state (rx);
|
||
|
||
if (!*end)
|
||
{
|
||
rx_free_nfa_state (*start);
|
||
return 0;
|
||
}
|
||
|
||
switch (rexp->type)
|
||
{
|
||
case r_data:
|
||
return 0;
|
||
|
||
case r_cset:
|
||
edge = rx_nfa_edge (rx, ne_cset, *start, *end);
|
||
if (!edge)
|
||
return 0;
|
||
edge->params.cset = rx_copy_cset (rx, rexp->params.cset);
|
||
if (!edge->params.cset)
|
||
{
|
||
rx_free_nfa_edge (edge);
|
||
return 0;
|
||
}
|
||
return 1;
|
||
|
||
case r_opt:
|
||
return (rx_build_nfa (rx, rexp->params.pair.left, start, end)
|
||
&& rx_nfa_edge (rx, ne_epsilon, *start, *end));
|
||
|
||
case r_star:
|
||
{
|
||
struct rx_nfa_state * star_start = 0;
|
||
struct rx_nfa_state * star_end = 0;
|
||
return (rx_build_nfa (rx, rexp->params.pair.left,
|
||
&star_start, &star_end)
|
||
&& star_start
|
||
&& star_end
|
||
&& rx_nfa_edge (rx, ne_epsilon, star_start, star_end)
|
||
&& rx_nfa_edge (rx, ne_epsilon, *start, star_start)
|
||
&& rx_nfa_edge (rx, ne_epsilon, star_end, *end)
|
||
|
||
&& rx_nfa_edge (rx, ne_epsilon, star_end, star_start));
|
||
}
|
||
|
||
case r_2phase_star:
|
||
{
|
||
struct rx_nfa_state * star_start = 0;
|
||
struct rx_nfa_state * star_end = 0;
|
||
struct rx_nfa_state * loop_exp_start = 0;
|
||
struct rx_nfa_state * loop_exp_end = 0;
|
||
|
||
return (rx_build_nfa (rx, rexp->params.pair.left,
|
||
&star_start, &star_end)
|
||
&& rx_build_nfa (rx, rexp->params.pair.right,
|
||
&loop_exp_start, &loop_exp_end)
|
||
&& star_start
|
||
&& star_end
|
||
&& loop_exp_end
|
||
&& loop_exp_start
|
||
&& rx_nfa_edge (rx, ne_epsilon, star_start, *end)
|
||
&& rx_nfa_edge (rx, ne_epsilon, *start, star_start)
|
||
&& rx_nfa_edge (rx, ne_epsilon, star_end, *end)
|
||
|
||
&& rx_nfa_edge (rx, ne_epsilon, star_end, loop_exp_start)
|
||
&& rx_nfa_edge (rx, ne_epsilon, loop_exp_end, star_start));
|
||
}
|
||
|
||
|
||
case r_concat:
|
||
{
|
||
struct rx_nfa_state *shared = 0;
|
||
return
|
||
(rx_build_nfa (rx, rexp->params.pair.left, start, &shared)
|
||
&& rx_build_nfa (rx, rexp->params.pair.right, &shared, end));
|
||
}
|
||
|
||
case r_alternate:
|
||
{
|
||
struct rx_nfa_state *ls = 0;
|
||
struct rx_nfa_state *le = 0;
|
||
struct rx_nfa_state *rs = 0;
|
||
struct rx_nfa_state *re = 0;
|
||
return (rx_build_nfa (rx, rexp->params.pair.left, &ls, &le)
|
||
&& rx_build_nfa (rx, rexp->params.pair.right, &rs, &re)
|
||
&& rx_nfa_edge (rx, ne_epsilon, *start, ls)
|
||
&& rx_nfa_edge (rx, ne_epsilon, *start, rs)
|
||
&& rx_nfa_edge (rx, ne_epsilon, le, *end)
|
||
&& rx_nfa_edge (rx, ne_epsilon, re, *end));
|
||
}
|
||
|
||
case r_side_effect:
|
||
edge = rx_nfa_edge (rx, ne_side_effect, *start, *end);
|
||
if (!edge)
|
||
return 0;
|
||
edge->params.side_effect = rexp->params.side_effect;
|
||
return 1;
|
||
}
|
||
|
||
/* this should never happen */
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* RX_NAME_NFA_STATES identifies all nodes with outgoing non-epsilon
|
||
* transitions. Only these nodes can occur in super-states.
|
||
* All nodes are given an integer id.
|
||
* The id is non-negative if the node has non-epsilon out-transitions, negative
|
||
* otherwise (this is because we want the non-negative ids to be used as
|
||
* array indexes in a few places).
|
||
*/
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL void
|
||
rx_name_nfa_states (struct rx *rx)
|
||
#else
|
||
RX_DECL void
|
||
rx_name_nfa_states (rx)
|
||
struct rx *rx;
|
||
#endif
|
||
{
|
||
struct rx_nfa_state *n = rx->nfa_states;
|
||
|
||
rx->nodec = 0;
|
||
rx->epsnodec = -1;
|
||
|
||
while (n)
|
||
{
|
||
struct rx_nfa_edge *e = n->edges;
|
||
|
||
if (n->is_start)
|
||
n->eclosure_needed = 1;
|
||
|
||
while (e)
|
||
{
|
||
switch (e->type)
|
||
{
|
||
case ne_epsilon:
|
||
case ne_side_effect:
|
||
break;
|
||
|
||
case ne_cset:
|
||
n->id = rx->nodec++;
|
||
{
|
||
struct rx_nfa_edge *from_n = n->edges;
|
||
while (from_n)
|
||
{
|
||
from_n->dest->eclosure_needed = 1;
|
||
from_n = from_n->next;
|
||
}
|
||
}
|
||
goto cont;
|
||
}
|
||
e = e->next;
|
||
}
|
||
n->id = rx->epsnodec--;
|
||
cont:
|
||
n = n->next;
|
||
}
|
||
rx->epsnodec = -rx->epsnodec;
|
||
}
|
||
|
||
|
||
/* This page: data structures for the static part of the nfa->supernfa
|
||
* translation.
|
||
*
|
||
* There are side effect lists -- lists of side effects occuring
|
||
* along an uninterrupted, acyclic path of side-effect epsilon edges.
|
||
* Such paths are collapsed to single edges in the course of computing
|
||
* epsilon closures. Such single edges are labled with a list of all
|
||
* the side effects entailed in crossing them. Like lists of side
|
||
* effects are made == by the constructors below.
|
||
*
|
||
* There are also nfa state sets. These are used to hold a list of all
|
||
* states reachable from a starting state for a given type of transition
|
||
* and side effect list. These are also hash-consed.
|
||
*/
|
||
|
||
/* The next several functions compare, construct, etc. lists of side
|
||
* effects. See ECLOSE_NFA (below) for details.
|
||
*/
|
||
|
||
/* Ordering of rx_se_list
|
||
* (-1, 0, 1 return value convention).
|
||
*/
|
||
|
||
#ifdef __STDC__
|
||
static int
|
||
se_list_cmp (void * va, void * vb)
|
||
#else
|
||
static int
|
||
se_list_cmp (va, vb)
|
||
void * va;
|
||
void * vb;
|
||
#endif
|
||
{
|
||
struct rx_se_list * a = (struct rx_se_list *)va;
|
||
struct rx_se_list * b = (struct rx_se_list *)vb;
|
||
|
||
return ((va == vb)
|
||
? 0
|
||
: (!va
|
||
? -1
|
||
: (!vb
|
||
? 1
|
||
: ((long)a->car < (long)b->car
|
||
? 1
|
||
: ((long)a->car > (long)b->car
|
||
? -1
|
||
: se_list_cmp ((void *)a->cdr, (void *)b->cdr))))));
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
static int
|
||
se_list_equal (void * va, void * vb)
|
||
#else
|
||
static int
|
||
se_list_equal (va, vb)
|
||
void * va;
|
||
void * vb;
|
||
#endif
|
||
{
|
||
return !(se_list_cmp (va, vb));
|
||
}
|
||
|
||
static struct rx_hash_rules se_list_hash_rules =
|
||
{
|
||
se_list_equal,
|
||
compiler_hash_alloc,
|
||
compiler_free_hash,
|
||
compiler_hash_item_alloc,
|
||
compiler_free_hash_item
|
||
};
|
||
|
||
|
||
#ifdef __STDC__
|
||
static struct rx_se_list *
|
||
side_effect_cons (struct rx * rx,
|
||
void * se, struct rx_se_list * list)
|
||
#else
|
||
static struct rx_se_list *
|
||
side_effect_cons (rx, se, list)
|
||
struct rx * rx;
|
||
void * se;
|
||
struct rx_se_list * list;
|
||
#endif
|
||
{
|
||
struct rx_se_list * l;
|
||
l = ((struct rx_se_list *) malloc (sizeof (*l)));
|
||
if (!l)
|
||
return 0;
|
||
l->car = se;
|
||
l->cdr = list;
|
||
return l;
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
static struct rx_se_list *
|
||
hash_cons_se_prog (struct rx * rx,
|
||
struct rx_hash * memo,
|
||
void * car, struct rx_se_list * cdr)
|
||
#else
|
||
static struct rx_se_list *
|
||
hash_cons_se_prog (rx, memo, car, cdr)
|
||
struct rx * rx;
|
||
struct rx_hash * memo;
|
||
void * car;
|
||
struct rx_se_list * cdr;
|
||
#endif
|
||
{
|
||
long hash = (long)car ^ (long)cdr;
|
||
struct rx_se_list template;
|
||
|
||
template.car = car;
|
||
template.cdr = cdr;
|
||
{
|
||
struct rx_hash_item * it = rx_hash_store (memo, hash,
|
||
(void *)&template,
|
||
&se_list_hash_rules);
|
||
if (!it)
|
||
return 0;
|
||
if (it->data == (void *)&template)
|
||
{
|
||
struct rx_se_list * consed;
|
||
consed = (struct rx_se_list *) malloc (sizeof (*consed));
|
||
*consed = template;
|
||
it->data = (void *)consed;
|
||
}
|
||
return (struct rx_se_list *)it->data;
|
||
}
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
static struct rx_se_list *
|
||
hash_se_prog (struct rx * rx, struct rx_hash * memo, struct rx_se_list * prog)
|
||
#else
|
||
static struct rx_se_list *
|
||
hash_se_prog (rx, memo, prog)
|
||
struct rx * rx;
|
||
struct rx_hash * memo;
|
||
struct rx_se_list * prog;
|
||
#endif
|
||
{
|
||
struct rx_se_list * answer = 0;
|
||
while (prog)
|
||
{
|
||
answer = hash_cons_se_prog (rx, memo, prog->car, answer);
|
||
if (!answer)
|
||
return 0;
|
||
prog = prog->cdr;
|
||
}
|
||
return answer;
|
||
}
|
||
|
||
#ifdef __STDC__
|
||
static int
|
||
nfa_set_cmp (void * va, void * vb)
|
||
#else
|
||
static int
|
||
nfa_set_cmp (va, vb)
|
||
void * va;
|
||
void * vb;
|
||
#endif
|
||
{
|
||
struct rx_nfa_state_set * a = (struct rx_nfa_state_set *)va;
|
||
struct rx_nfa_state_set * b = (struct rx_nfa_state_set *)vb;
|
||
|
||
return ((va == vb)
|
||
? 0
|
||
: (!va
|
||
? -1
|
||
: (!vb
|
||
? 1
|
||
: (a->car->id < b->car->id
|
||
? 1
|
||
: (a->car->id > b->car->id
|
||
? -1
|
||
: nfa_set_cmp ((void *)a->cdr, (void *)b->cdr))))));
|
||
}
|
||
|
||
#ifdef __STDC__
|
||
static int
|
||
nfa_set_equal (void * va, void * vb)
|
||
#else
|
||
static int
|
||
nfa_set_equal (va, vb)
|
||
void * va;
|
||
void * vb;
|
||
#endif
|
||
{
|
||
return !nfa_set_cmp (va, vb);
|
||
}
|
||
|
||
static struct rx_hash_rules nfa_set_hash_rules =
|
||
{
|
||
nfa_set_equal,
|
||
compiler_hash_alloc,
|
||
compiler_free_hash,
|
||
compiler_hash_item_alloc,
|
||
compiler_free_hash_item
|
||
};
|
||
|
||
|
||
#ifdef __STDC__
|
||
static struct rx_nfa_state_set *
|
||
nfa_set_cons (struct rx * rx,
|
||
struct rx_hash * memo, struct rx_nfa_state * state,
|
||
struct rx_nfa_state_set * set)
|
||
#else
|
||
static struct rx_nfa_state_set *
|
||
nfa_set_cons (rx, memo, state, set)
|
||
struct rx * rx;
|
||
struct rx_hash * memo;
|
||
struct rx_nfa_state * state;
|
||
struct rx_nfa_state_set * set;
|
||
#endif
|
||
{
|
||
struct rx_nfa_state_set template;
|
||
struct rx_hash_item * node;
|
||
template.car = state;
|
||
template.cdr = set;
|
||
node = rx_hash_store (memo,
|
||
(((long)state) >> 8) ^ (long)set,
|
||
&template, &nfa_set_hash_rules);
|
||
if (!node)
|
||
return 0;
|
||
if (node->data == &template)
|
||
{
|
||
struct rx_nfa_state_set * l;
|
||
l = (struct rx_nfa_state_set *) malloc (sizeof (*l));
|
||
node->data = (void *) l;
|
||
if (!l)
|
||
return 0;
|
||
*l = template;
|
||
}
|
||
return (struct rx_nfa_state_set *)node->data;
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
static struct rx_nfa_state_set *
|
||
nfa_set_enjoin (struct rx * rx,
|
||
struct rx_hash * memo, struct rx_nfa_state * state,
|
||
struct rx_nfa_state_set * set)
|
||
#else
|
||
static struct rx_nfa_state_set *
|
||
nfa_set_enjoin (rx, memo, state, set)
|
||
struct rx * rx;
|
||
struct rx_hash * memo;
|
||
struct rx_nfa_state * state;
|
||
struct rx_nfa_state_set * set;
|
||
#endif
|
||
{
|
||
if (!set || state->id < set->car->id)
|
||
return nfa_set_cons (rx, memo, state, set);
|
||
if (state->id == set->car->id)
|
||
return set;
|
||
else
|
||
{
|
||
struct rx_nfa_state_set * newcdr
|
||
= nfa_set_enjoin (rx, memo, state, set->cdr);
|
||
if (newcdr != set->cdr)
|
||
set = nfa_set_cons (rx, memo, set->car, newcdr);
|
||
return set;
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* This page: computing epsilon closures. The closures aren't total.
|
||
* Each node's closures are partitioned according to the side effects entailed
|
||
* along the epsilon edges. Return true on success.
|
||
*/
|
||
|
||
struct eclose_frame
|
||
{
|
||
struct rx_se_list *prog_backwards;
|
||
};
|
||
|
||
|
||
#ifdef __STDC__
|
||
static int
|
||
eclose_node (struct rx *rx, struct rx_nfa_state *outnode,
|
||
struct rx_nfa_state *node, struct eclose_frame *frame)
|
||
#else
|
||
static int
|
||
eclose_node (rx, outnode, node, frame)
|
||
struct rx *rx;
|
||
struct rx_nfa_state *outnode;
|
||
struct rx_nfa_state *node;
|
||
struct eclose_frame *frame;
|
||
#endif
|
||
{
|
||
struct rx_nfa_edge *e = node->edges;
|
||
|
||
/* For each node, we follow all epsilon paths to build the closure.
|
||
* The closure omits nodes that have only epsilon edges.
|
||
* The closure is split into partial closures -- all the states in
|
||
* a partial closure are reached by crossing the same list of
|
||
* of side effects (though not necessarily the same path).
|
||
*/
|
||
if (node->mark)
|
||
return 1;
|
||
node->mark = 1;
|
||
|
||
if (node->id >= 0 || node->is_final)
|
||
{
|
||
struct rx_possible_future **ec;
|
||
struct rx_se_list * prog_in_order
|
||
= ((struct rx_se_list *)hash_se_prog (rx,
|
||
&rx->se_list_memo,
|
||
frame->prog_backwards));
|
||
int cmp;
|
||
|
||
ec = &outnode->futures;
|
||
|
||
while (*ec)
|
||
{
|
||
cmp = se_list_cmp ((void *)(*ec)->effects, (void *)prog_in_order);
|
||
if (cmp <= 0)
|
||
break;
|
||
ec = &(*ec)->next;
|
||
}
|
||
if (!*ec || (cmp < 0))
|
||
{
|
||
struct rx_possible_future * saved = *ec;
|
||
*ec = rx_possible_future (rx, prog_in_order);
|
||
(*ec)->next = saved;
|
||
if (!*ec)
|
||
return 0;
|
||
}
|
||
if (node->id >= 0)
|
||
{
|
||
(*ec)->destset = nfa_set_enjoin (rx, &rx->set_list_memo,
|
||
node, (*ec)->destset);
|
||
if (!(*ec)->destset)
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
while (e)
|
||
{
|
||
switch (e->type)
|
||
{
|
||
case ne_epsilon:
|
||
if (!eclose_node (rx, outnode, e->dest, frame))
|
||
return 0;
|
||
break;
|
||
case ne_side_effect:
|
||
{
|
||
frame->prog_backwards = side_effect_cons (rx,
|
||
e->params.side_effect,
|
||
frame->prog_backwards);
|
||
if (!frame->prog_backwards)
|
||
return 0;
|
||
if (!eclose_node (rx, outnode, e->dest, frame))
|
||
return 0;
|
||
{
|
||
struct rx_se_list * dying = frame->prog_backwards;
|
||
frame->prog_backwards = frame->prog_backwards->cdr;
|
||
free ((char *)dying);
|
||
}
|
||
break;
|
||
}
|
||
default:
|
||
break;
|
||
}
|
||
e = e->next;
|
||
}
|
||
node->mark = 0;
|
||
return 1;
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL int
|
||
rx_eclose_nfa (struct rx *rx)
|
||
#else
|
||
RX_DECL int
|
||
rx_eclose_nfa (rx)
|
||
struct rx *rx;
|
||
#endif
|
||
{
|
||
struct rx_nfa_state *n = rx->nfa_states;
|
||
struct eclose_frame frame;
|
||
static int rx_id = 0;
|
||
|
||
frame.prog_backwards = 0;
|
||
rx->rx_id = rx_id++;
|
||
bzero (&rx->se_list_memo, sizeof (rx->se_list_memo));
|
||
bzero (&rx->set_list_memo, sizeof (rx->set_list_memo));
|
||
while (n)
|
||
{
|
||
n->futures = 0;
|
||
if (n->eclosure_needed && !eclose_node (rx, n, n, &frame))
|
||
return 0;
|
||
/* clear_marks (rx); */
|
||
n = n->next;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
|
||
/* This deletes epsilon edges from an NFA. After running eclose_node,
|
||
* we have no more need for these edges. They are removed to simplify
|
||
* further operations on the NFA.
|
||
*/
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL void
|
||
rx_delete_epsilon_transitions (struct rx *rx)
|
||
#else
|
||
RX_DECL void
|
||
rx_delete_epsilon_transitions (rx)
|
||
struct rx *rx;
|
||
#endif
|
||
{
|
||
struct rx_nfa_state *n = rx->nfa_states;
|
||
struct rx_nfa_edge **e;
|
||
|
||
while (n)
|
||
{
|
||
e = &n->edges;
|
||
while (*e)
|
||
{
|
||
struct rx_nfa_edge *t;
|
||
switch ((*e)->type)
|
||
{
|
||
case ne_epsilon:
|
||
case ne_side_effect:
|
||
t = *e;
|
||
*e = t->next;
|
||
rx_free_nfa_edge (t);
|
||
break;
|
||
|
||
default:
|
||
e = &(*e)->next;
|
||
break;
|
||
}
|
||
}
|
||
n = n->next;
|
||
}
|
||
}
|
||
|
||
|
||
/* This page: storing the nfa in a contiguous region of memory for
|
||
* subsequent conversion to a super-nfa.
|
||
*/
|
||
|
||
/* This is for qsort on an array of nfa_states. The order
|
||
* is based on state ids and goes
|
||
* [0...MAX][MIN..-1] where (MAX>=0) and (MIN<0)
|
||
* This way, positive ids double as array indices.
|
||
*/
|
||
|
||
#ifdef __STDC__
|
||
static int
|
||
nfacmp (void * va, void * vb)
|
||
#else
|
||
static int
|
||
nfacmp (va, vb)
|
||
void * va;
|
||
void * vb;
|
||
#endif
|
||
{
|
||
struct rx_nfa_state **a = (struct rx_nfa_state **)va;
|
||
struct rx_nfa_state **b = (struct rx_nfa_state **)vb;
|
||
return (*a == *b /* &&&& 3.18 */
|
||
? 0
|
||
: (((*a)->id < 0) == ((*b)->id < 0)
|
||
? (((*a)->id < (*b)->id) ? -1 : 1)
|
||
: (((*a)->id < 0)
|
||
? 1 : -1)));
|
||
}
|
||
|
||
#ifdef __STDC__
|
||
static int
|
||
count_hash_nodes (struct rx_hash * st)
|
||
#else
|
||
static int
|
||
count_hash_nodes (st)
|
||
struct rx_hash * st;
|
||
#endif
|
||
{
|
||
int x;
|
||
int count = 0;
|
||
for (x = 0; x < 13; ++x)
|
||
count += ((st->children[x])
|
||
? count_hash_nodes (st->children[x])
|
||
: st->bucket_size[x]);
|
||
|
||
return count;
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
static void
|
||
se_memo_freer (struct rx_hash_item * node)
|
||
#else
|
||
static void
|
||
se_memo_freer (node)
|
||
struct rx_hash_item * node;
|
||
#endif
|
||
{
|
||
free ((char *)node->data);
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
static void
|
||
nfa_set_freer (struct rx_hash_item * node)
|
||
#else
|
||
static void
|
||
nfa_set_freer (node)
|
||
struct rx_hash_item * node;
|
||
#endif
|
||
{
|
||
free ((char *)node->data);
|
||
}
|
||
|
||
|
||
/* This copies an entire NFA into a single malloced block of memory.
|
||
* Mostly this is for compatability with regex.c, though it is convenient
|
||
* to have the nfa nodes in an array.
|
||
*/
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL int
|
||
rx_compactify_nfa (struct rx *rx,
|
||
void **mem, unsigned long *size)
|
||
#else
|
||
RX_DECL int
|
||
rx_compactify_nfa (rx, mem, size)
|
||
struct rx *rx;
|
||
void **mem;
|
||
unsigned long *size;
|
||
#endif
|
||
{
|
||
int total_nodec;
|
||
struct rx_nfa_state *n;
|
||
int edgec = 0;
|
||
int eclosec = 0;
|
||
int se_list_consc = count_hash_nodes (&rx->se_list_memo);
|
||
int nfa_setc = count_hash_nodes (&rx->set_list_memo);
|
||
unsigned long total_size;
|
||
|
||
/* This takes place in two stages. First, the total size of the
|
||
* nfa is computed, then structures are copied.
|
||
*/
|
||
n = rx->nfa_states;
|
||
total_nodec = 0;
|
||
while (n)
|
||
{
|
||
struct rx_nfa_edge *e = n->edges;
|
||
struct rx_possible_future *ec = n->futures;
|
||
++total_nodec;
|
||
while (e)
|
||
{
|
||
++edgec;
|
||
e = e->next;
|
||
}
|
||
while (ec)
|
||
{
|
||
++eclosec;
|
||
ec = ec->next;
|
||
}
|
||
n = n->next;
|
||
}
|
||
|
||
total_size = (total_nodec * sizeof (struct rx_nfa_state)
|
||
+ edgec * rx_sizeof_bitset (rx->local_cset_size)
|
||
+ edgec * sizeof (struct rx_nfa_edge)
|
||
+ nfa_setc * sizeof (struct rx_nfa_state_set)
|
||
+ eclosec * sizeof (struct rx_possible_future)
|
||
+ se_list_consc * sizeof (struct rx_se_list)
|
||
+ rx->reserved);
|
||
|
||
if (total_size > *size)
|
||
{
|
||
*mem = remalloc (*mem, total_size);
|
||
if (*mem)
|
||
*size = total_size;
|
||
else
|
||
return 0;
|
||
}
|
||
/* Now we've allocated the memory; this copies the NFA. */
|
||
{
|
||
static struct rx_nfa_state **scratch = 0;
|
||
static int scratch_alloc = 0;
|
||
struct rx_nfa_state *state_base = (struct rx_nfa_state *) * mem;
|
||
struct rx_nfa_state *new_state = state_base;
|
||
struct rx_nfa_edge *new_edge =
|
||
(struct rx_nfa_edge *)
|
||
((char *) state_base + total_nodec * sizeof (struct rx_nfa_state));
|
||
struct rx_se_list * new_se_list =
|
||
(struct rx_se_list *)
|
||
((char *)new_edge + edgec * sizeof (struct rx_nfa_edge));
|
||
struct rx_possible_future *new_close =
|
||
((struct rx_possible_future *)
|
||
((char *) new_se_list
|
||
+ se_list_consc * sizeof (struct rx_se_list)));
|
||
struct rx_nfa_state_set * new_nfa_set =
|
||
((struct rx_nfa_state_set *)
|
||
((char *)new_close + eclosec * sizeof (struct rx_possible_future)));
|
||
char *new_bitset =
|
||
((char *) new_nfa_set + nfa_setc * sizeof (struct rx_nfa_state_set));
|
||
int x;
|
||
struct rx_nfa_state *n;
|
||
|
||
if (scratch_alloc < total_nodec)
|
||
{
|
||
scratch = ((struct rx_nfa_state **)
|
||
remalloc (scratch, total_nodec * sizeof (*scratch)));
|
||
if (scratch)
|
||
scratch_alloc = total_nodec;
|
||
else
|
||
{
|
||
scratch_alloc = 0;
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
for (x = 0, n = rx->nfa_states; n; n = n->next)
|
||
scratch[x++] = n;
|
||
|
||
qsort (scratch, total_nodec,
|
||
sizeof (struct rx_nfa_state *), (int (*)())nfacmp);
|
||
|
||
for (x = 0; x < total_nodec; ++x)
|
||
{
|
||
struct rx_possible_future *eclose = scratch[x]->futures;
|
||
struct rx_nfa_edge *edge = scratch[x]->edges;
|
||
struct rx_nfa_state *cn = new_state++;
|
||
cn->futures = 0;
|
||
cn->edges = 0;
|
||
cn->next = (x == total_nodec - 1) ? 0 : (cn + 1);
|
||
cn->id = scratch[x]->id;
|
||
cn->is_final = scratch[x]->is_final;
|
||
cn->is_start = scratch[x]->is_start;
|
||
cn->mark = 0;
|
||
while (edge)
|
||
{
|
||
int indx = (edge->dest->id < 0
|
||
? (total_nodec + edge->dest->id)
|
||
: edge->dest->id);
|
||
struct rx_nfa_edge *e = new_edge++;
|
||
rx_Bitset cset = (rx_Bitset) new_bitset;
|
||
new_bitset += rx_sizeof_bitset (rx->local_cset_size);
|
||
rx_bitset_null (rx->local_cset_size, cset);
|
||
rx_bitset_union (rx->local_cset_size, cset, edge->params.cset);
|
||
e->next = cn->edges;
|
||
cn->edges = e;
|
||
e->type = edge->type;
|
||
e->dest = state_base + indx;
|
||
e->params.cset = cset;
|
||
edge = edge->next;
|
||
}
|
||
while (eclose)
|
||
{
|
||
struct rx_possible_future *ec = new_close++;
|
||
struct rx_hash_item * sp;
|
||
struct rx_se_list ** sepos;
|
||
struct rx_se_list * sesrc;
|
||
struct rx_nfa_state_set * destlst;
|
||
struct rx_nfa_state_set ** destpos;
|
||
ec->next = cn->futures;
|
||
cn->futures = ec;
|
||
for (sepos = &ec->effects, sesrc = eclose->effects;
|
||
sesrc;
|
||
sesrc = sesrc->cdr, sepos = &(*sepos)->cdr)
|
||
{
|
||
sp = rx_hash_find (&rx->se_list_memo,
|
||
(long)sesrc->car ^ (long)sesrc->cdr,
|
||
sesrc, &se_list_hash_rules);
|
||
if (sp->binding)
|
||
{
|
||
sesrc = (struct rx_se_list *)sp->binding;
|
||
break;
|
||
}
|
||
*new_se_list = *sesrc;
|
||
sp->binding = (void *)new_se_list;
|
||
*sepos = new_se_list;
|
||
++new_se_list;
|
||
}
|
||
*sepos = sesrc;
|
||
for (destpos = &ec->destset, destlst = eclose->destset;
|
||
destlst;
|
||
destpos = &(*destpos)->cdr, destlst = destlst->cdr)
|
||
{
|
||
sp = rx_hash_find (&rx->set_list_memo,
|
||
((((long)destlst->car) >> 8)
|
||
^ (long)destlst->cdr),
|
||
destlst, &nfa_set_hash_rules);
|
||
if (sp->binding)
|
||
{
|
||
destlst = (struct rx_nfa_state_set *)sp->binding;
|
||
break;
|
||
}
|
||
*new_nfa_set = *destlst;
|
||
new_nfa_set->car = state_base + destlst->car->id;
|
||
sp->binding = (void *)new_nfa_set;
|
||
*destpos = new_nfa_set;
|
||
++new_nfa_set;
|
||
}
|
||
*destpos = destlst;
|
||
eclose = eclose->next;
|
||
}
|
||
}
|
||
}
|
||
rx_free_hash_table (&rx->se_list_memo, se_memo_freer, &se_list_hash_rules);
|
||
bzero (&rx->se_list_memo, sizeof (rx->se_list_memo));
|
||
rx_free_hash_table (&rx->set_list_memo, nfa_set_freer, &nfa_set_hash_rules);
|
||
bzero (&rx->set_list_memo, sizeof (rx->set_list_memo));
|
||
|
||
rx_free_nfa (rx);
|
||
rx->nfa_states = (struct rx_nfa_state *)*mem;
|
||
return 1;
|
||
}
|
||
|
||
|
||
/* The functions in the next several pages define the lazy-NFA-conversion used
|
||
* by matchers. The input to this construction is an NFA such as
|
||
* is built by compactify_nfa (rx.c). The output is the superNFA.
|
||
*/
|
||
|
||
/* Match engines can use arbitrary values for opcodes. So, the parse tree
|
||
* is built using instructions names (enum rx_opcode), but the superstate
|
||
* nfa is populated with mystery opcodes (void *).
|
||
*
|
||
* For convenience, here is an id table. The opcodes are == to their inxs
|
||
*
|
||
* The lables in re_search_2 would make good values for instructions.
|
||
*/
|
||
|
||
void * rx_id_instruction_table[rx_num_instructions] =
|
||
{
|
||
(void *) rx_backtrack_point,
|
||
(void *) rx_do_side_effects,
|
||
(void *) rx_cache_miss,
|
||
(void *) rx_next_char,
|
||
(void *) rx_backtrack,
|
||
(void *) rx_error_inx
|
||
};
|
||
|
||
|
||
|
||
/* Memory mgt. for superstate graphs. */
|
||
|
||
#ifdef __STDC__
|
||
static char *
|
||
rx_cache_malloc (struct rx_cache * cache, int bytes)
|
||
#else
|
||
static char *
|
||
rx_cache_malloc (cache, bytes)
|
||
struct rx_cache * cache;
|
||
int bytes;
|
||
#endif
|
||
{
|
||
while (cache->bytes_left < bytes)
|
||
{
|
||
if (cache->memory_pos)
|
||
cache->memory_pos = cache->memory_pos->next;
|
||
if (!cache->memory_pos)
|
||
{
|
||
cache->morecore (cache);
|
||
if (!cache->memory_pos)
|
||
return 0;
|
||
}
|
||
cache->bytes_left = cache->memory_pos->bytes;
|
||
cache->memory_addr = ((char *)cache->memory_pos
|
||
+ sizeof (struct rx_blocklist));
|
||
}
|
||
cache->bytes_left -= bytes;
|
||
{
|
||
char * addr = cache->memory_addr;
|
||
cache->memory_addr += bytes;
|
||
return addr;
|
||
}
|
||
}
|
||
|
||
#ifdef __STDC__
|
||
static void
|
||
rx_cache_free (struct rx_cache * cache,
|
||
struct rx_freelist ** freelist, char * mem)
|
||
#else
|
||
static void
|
||
rx_cache_free (cache, freelist, mem)
|
||
struct rx_cache * cache;
|
||
struct rx_freelist ** freelist;
|
||
char * mem;
|
||
#endif
|
||
{
|
||
struct rx_freelist * it = (struct rx_freelist *)mem;
|
||
it->next = *freelist;
|
||
*freelist = it;
|
||
}
|
||
|
||
|
||
/* The partially instantiated superstate graph has a transition
|
||
* table at every node. There is one entry for every character.
|
||
* This fills in the transition for a set.
|
||
*/
|
||
#ifdef __STDC__
|
||
static void
|
||
install_transition (struct rx_superstate *super,
|
||
struct rx_inx *answer, rx_Bitset trcset)
|
||
#else
|
||
static void
|
||
install_transition (super, answer, trcset)
|
||
struct rx_superstate *super;
|
||
struct rx_inx *answer;
|
||
rx_Bitset trcset;
|
||
#endif
|
||
{
|
||
struct rx_inx * transitions = super->transitions;
|
||
int chr;
|
||
for (chr = 0; chr < 256; )
|
||
if (!*trcset)
|
||
{
|
||
++trcset;
|
||
chr += 32;
|
||
}
|
||
else
|
||
{
|
||
RX_subset sub = *trcset;
|
||
RX_subset mask = 1;
|
||
int bound = chr + 32;
|
||
while (chr < bound)
|
||
{
|
||
if (sub & mask)
|
||
transitions [chr] = *answer;
|
||
++chr;
|
||
mask <<= 1;
|
||
}
|
||
++trcset;
|
||
}
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
static int
|
||
qlen (struct rx_superstate * q)
|
||
#else
|
||
static int
|
||
qlen (q)
|
||
struct rx_superstate * q;
|
||
#endif
|
||
{
|
||
int count = 1;
|
||
struct rx_superstate * it;
|
||
if (!q)
|
||
return 0;
|
||
for (it = q->next_recyclable; it != q; it = it->next_recyclable)
|
||
++count;
|
||
return count;
|
||
}
|
||
|
||
#ifdef __STDC__
|
||
static void
|
||
check_cache (struct rx_cache * cache)
|
||
#else
|
||
static void
|
||
check_cache (cache)
|
||
struct rx_cache * cache;
|
||
#endif
|
||
{
|
||
struct rx_cache * you_fucked_up = 0;
|
||
int total = cache->superstates;
|
||
int semi = cache->semifree_superstates;
|
||
if (semi != qlen (cache->semifree_superstate))
|
||
check_cache (you_fucked_up);
|
||
if ((total - semi) != qlen (cache->lru_superstate))
|
||
check_cache (you_fucked_up);
|
||
}
|
||
|
||
/* When a superstate is old and neglected, it can enter a
|
||
* semi-free state. A semi-free state is slated to die.
|
||
* Incoming transitions to a semi-free state are re-written
|
||
* to cause an (interpreted) fault when they are taken.
|
||
* The fault handler revives the semi-free state, patches
|
||
* incoming transitions back to normal, and continues.
|
||
*
|
||
* The idea is basicly to free in two stages, aborting
|
||
* between the two if the state turns out to be useful again.
|
||
* When a free is aborted, the rescued superstate is placed
|
||
* in the most-favored slot to maximize the time until it
|
||
* is next semi-freed.
|
||
*/
|
||
|
||
#ifdef __STDC__
|
||
static void
|
||
semifree_superstate (struct rx_cache * cache)
|
||
#else
|
||
static void
|
||
semifree_superstate (cache)
|
||
struct rx_cache * cache;
|
||
#endif
|
||
{
|
||
int disqualified = cache->semifree_superstates;
|
||
if (disqualified == cache->superstates)
|
||
return;
|
||
while (cache->lru_superstate->locks)
|
||
{
|
||
cache->lru_superstate = cache->lru_superstate->next_recyclable;
|
||
++disqualified;
|
||
if (disqualified == cache->superstates)
|
||
return;
|
||
}
|
||
{
|
||
struct rx_superstate * it = cache->lru_superstate;
|
||
it->next_recyclable->prev_recyclable = it->prev_recyclable;
|
||
it->prev_recyclable->next_recyclable = it->next_recyclable;
|
||
cache->lru_superstate = (it == it->next_recyclable
|
||
? 0
|
||
: it->next_recyclable);
|
||
if (!cache->semifree_superstate)
|
||
{
|
||
cache->semifree_superstate = it;
|
||
it->next_recyclable = it;
|
||
it->prev_recyclable = it;
|
||
}
|
||
else
|
||
{
|
||
it->prev_recyclable = cache->semifree_superstate->prev_recyclable;
|
||
it->next_recyclable = cache->semifree_superstate;
|
||
it->prev_recyclable->next_recyclable = it;
|
||
it->next_recyclable->prev_recyclable = it;
|
||
}
|
||
{
|
||
struct rx_distinct_future *df;
|
||
it->is_semifree = 1;
|
||
++cache->semifree_superstates;
|
||
df = it->transition_refs;
|
||
if (df)
|
||
{
|
||
df->prev_same_dest->next_same_dest = 0;
|
||
for (df = it->transition_refs; df; df = df->next_same_dest)
|
||
{
|
||
df->future_frame.inx = cache->instruction_table[rx_cache_miss];
|
||
df->future_frame.data = 0;
|
||
df->future_frame.data_2 = (void *) df;
|
||
/* If there are any NEXT-CHAR instruction frames that
|
||
* refer to this state, we convert them to CACHE-MISS frames.
|
||
*/
|
||
if (!df->effects
|
||
&& (df->edge->options->next_same_super_edge[0]
|
||
== df->edge->options))
|
||
install_transition (df->present, &df->future_frame,
|
||
df->edge->cset);
|
||
}
|
||
df = it->transition_refs;
|
||
df->prev_same_dest->next_same_dest = df;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
static void
|
||
refresh_semifree_superstate (struct rx_cache * cache,
|
||
struct rx_superstate * super)
|
||
#else
|
||
static void
|
||
refresh_semifree_superstate (cache, super)
|
||
struct rx_cache * cache;
|
||
struct rx_superstate * super;
|
||
#endif
|
||
{
|
||
struct rx_distinct_future *df;
|
||
|
||
if (super->transition_refs)
|
||
{
|
||
super->transition_refs->prev_same_dest->next_same_dest = 0;
|
||
for (df = super->transition_refs; df; df = df->next_same_dest)
|
||
{
|
||
df->future_frame.inx = cache->instruction_table[rx_next_char];
|
||
df->future_frame.data = (void *) super->transitions;
|
||
/* CACHE-MISS instruction frames that refer to this state,
|
||
* must be converted to NEXT-CHAR frames.
|
||
*/
|
||
if (!df->effects
|
||
&& (df->edge->options->next_same_super_edge[0]
|
||
== df->edge->options))
|
||
install_transition (df->present, &df->future_frame,
|
||
df->edge->cset);
|
||
}
|
||
super->transition_refs->prev_same_dest->next_same_dest
|
||
= super->transition_refs;
|
||
}
|
||
if (cache->semifree_superstate == super)
|
||
cache->semifree_superstate = (super->prev_recyclable == super
|
||
? 0
|
||
: super->prev_recyclable);
|
||
super->next_recyclable->prev_recyclable = super->prev_recyclable;
|
||
super->prev_recyclable->next_recyclable = super->next_recyclable;
|
||
|
||
if (!cache->lru_superstate)
|
||
(cache->lru_superstate
|
||
= super->next_recyclable
|
||
= super->prev_recyclable
|
||
= super);
|
||
else
|
||
{
|
||
super->next_recyclable = cache->lru_superstate;
|
||
super->prev_recyclable = cache->lru_superstate->prev_recyclable;
|
||
super->next_recyclable->prev_recyclable = super;
|
||
super->prev_recyclable->next_recyclable = super;
|
||
}
|
||
super->is_semifree = 0;
|
||
--cache->semifree_superstates;
|
||
}
|
||
|
||
#ifdef __STDC__
|
||
static void
|
||
rx_refresh_this_superstate (struct rx_cache * cache, struct rx_superstate * superstate)
|
||
#else
|
||
static void
|
||
rx_refresh_this_superstate (cache, superstate)
|
||
struct rx_cache * cache;
|
||
struct rx_superstate * superstate;
|
||
#endif
|
||
{
|
||
if (superstate->is_semifree)
|
||
refresh_semifree_superstate (cache, superstate);
|
||
else if (cache->lru_superstate == superstate)
|
||
cache->lru_superstate = superstate->next_recyclable;
|
||
else if (superstate != cache->lru_superstate->prev_recyclable)
|
||
{
|
||
superstate->next_recyclable->prev_recyclable
|
||
= superstate->prev_recyclable;
|
||
superstate->prev_recyclable->next_recyclable
|
||
= superstate->next_recyclable;
|
||
superstate->next_recyclable = cache->lru_superstate;
|
||
superstate->prev_recyclable = cache->lru_superstate->prev_recyclable;
|
||
superstate->next_recyclable->prev_recyclable = superstate;
|
||
superstate->prev_recyclable->next_recyclable = superstate;
|
||
}
|
||
}
|
||
|
||
#ifdef __STDC__
|
||
static void
|
||
release_superset_low (struct rx_cache * cache,
|
||
struct rx_superset *set)
|
||
#else
|
||
static void
|
||
release_superset_low (cache, set)
|
||
struct rx_cache * cache;
|
||
struct rx_superset *set;
|
||
#endif
|
||
{
|
||
if (!--set->refs)
|
||
{
|
||
if (set->cdr)
|
||
release_superset_low (cache, set->cdr);
|
||
|
||
set->starts_for = 0;
|
||
|
||
rx_hash_free
|
||
(rx_hash_find
|
||
(&cache->superset_table,
|
||
(unsigned long)set->car ^ set->id ^ (unsigned long)set->cdr,
|
||
(void *)set,
|
||
&cache->superset_hash_rules),
|
||
&cache->superset_hash_rules);
|
||
rx_cache_free (cache, &cache->free_supersets, (char *)set);
|
||
}
|
||
}
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL void
|
||
rx_release_superset (struct rx *rx,
|
||
struct rx_superset *set)
|
||
#else
|
||
RX_DECL void
|
||
rx_release_superset (rx, set)
|
||
struct rx *rx;
|
||
struct rx_superset *set;
|
||
#endif
|
||
{
|
||
release_superset_low (rx->cache, set);
|
||
}
|
||
|
||
/* This tries to add a new superstate to the superstate freelist.
|
||
* It might, as a result, free some edge pieces or hash tables.
|
||
* If nothing can be freed because too many locks are being held, fail.
|
||
*/
|
||
|
||
#ifdef __STDC__
|
||
static int
|
||
rx_really_free_superstate (struct rx_cache * cache)
|
||
#else
|
||
static int
|
||
rx_really_free_superstate (cache)
|
||
struct rx_cache * cache;
|
||
#endif
|
||
{
|
||
int locked_superstates = 0;
|
||
struct rx_superstate * it;
|
||
|
||
if (!cache->superstates)
|
||
return 0;
|
||
|
||
{
|
||
/* This is a total guess. The idea is that we should expect as
|
||
* many misses as we've recently experienced. I.e., cache->misses
|
||
* should be the same as cache->semifree_superstates.
|
||
*/
|
||
while ((cache->hits + cache->misses) > cache->superstates_allowed)
|
||
{
|
||
cache->hits >>= 1;
|
||
cache->misses >>= 1;
|
||
}
|
||
if ( ((cache->hits + cache->misses) * cache->semifree_superstates)
|
||
< (cache->superstates * cache->misses))
|
||
{
|
||
semifree_superstate (cache);
|
||
semifree_superstate (cache);
|
||
}
|
||
}
|
||
|
||
while (cache->semifree_superstate && cache->semifree_superstate->locks)
|
||
{
|
||
refresh_semifree_superstate (cache, cache->semifree_superstate);
|
||
++locked_superstates;
|
||
if (locked_superstates == cache->superstates)
|
||
return 0;
|
||
}
|
||
|
||
if (cache->semifree_superstate)
|
||
{
|
||
it = cache->semifree_superstate;
|
||
it->next_recyclable->prev_recyclable = it->prev_recyclable;
|
||
it->prev_recyclable->next_recyclable = it->next_recyclable;
|
||
cache->semifree_superstate = ((it == it->next_recyclable)
|
||
? 0
|
||
: it->next_recyclable);
|
||
--cache->semifree_superstates;
|
||
}
|
||
else
|
||
{
|
||
while (cache->lru_superstate->locks)
|
||
{
|
||
cache->lru_superstate = cache->lru_superstate->next_recyclable;
|
||
++locked_superstates;
|
||
if (locked_superstates == cache->superstates)
|
||
return 0;
|
||
}
|
||
it = cache->lru_superstate;
|
||
it->next_recyclable->prev_recyclable = it->prev_recyclable;
|
||
it->prev_recyclable->next_recyclable = it->next_recyclable;
|
||
cache->lru_superstate = ((it == it->next_recyclable)
|
||
? 0
|
||
: it->next_recyclable);
|
||
}
|
||
|
||
if (it->transition_refs)
|
||
{
|
||
struct rx_distinct_future *df;
|
||
for (df = it->transition_refs,
|
||
df->prev_same_dest->next_same_dest = 0;
|
||
df;
|
||
df = df->next_same_dest)
|
||
{
|
||
df->future_frame.inx = cache->instruction_table[rx_cache_miss];
|
||
df->future_frame.data = 0;
|
||
df->future_frame.data_2 = (void *) df;
|
||
df->future = 0;
|
||
}
|
||
it->transition_refs->prev_same_dest->next_same_dest =
|
||
it->transition_refs;
|
||
}
|
||
{
|
||
struct rx_super_edge *tc = it->edges;
|
||
while (tc)
|
||
{
|
||
struct rx_distinct_future * df;
|
||
struct rx_super_edge *tct = tc->next;
|
||
df = tc->options;
|
||
df->next_same_super_edge[1]->next_same_super_edge[0] = 0;
|
||
while (df)
|
||
{
|
||
struct rx_distinct_future *dft = df;
|
||
df = df->next_same_super_edge[0];
|
||
|
||
|
||
if (dft->future && dft->future->transition_refs == dft)
|
||
{
|
||
dft->future->transition_refs = dft->next_same_dest;
|
||
if (dft->future->transition_refs == dft)
|
||
dft->future->transition_refs = 0;
|
||
}
|
||
dft->next_same_dest->prev_same_dest = dft->prev_same_dest;
|
||
dft->prev_same_dest->next_same_dest = dft->next_same_dest;
|
||
rx_cache_free (cache, &cache->free_discernable_futures,
|
||
(char *)dft);
|
||
}
|
||
rx_cache_free (cache, &cache->free_transition_classes, (char *)tc);
|
||
tc = tct;
|
||
}
|
||
}
|
||
|
||
if (it->contents->superstate == it)
|
||
it->contents->superstate = 0;
|
||
release_superset_low (cache, it->contents);
|
||
rx_cache_free (cache, &cache->free_superstates, (char *)it);
|
||
--cache->superstates;
|
||
return 1;
|
||
}
|
||
|
||
#ifdef __STDC__
|
||
static char *
|
||
rx_cache_get (struct rx_cache * cache,
|
||
struct rx_freelist ** freelist)
|
||
#else
|
||
static char *
|
||
rx_cache_get (cache, freelist)
|
||
struct rx_cache * cache;
|
||
struct rx_freelist ** freelist;
|
||
#endif
|
||
{
|
||
while (!*freelist && rx_really_free_superstate (cache))
|
||
;
|
||
if (!*freelist)
|
||
return 0;
|
||
{
|
||
struct rx_freelist * it = *freelist;
|
||
*freelist = it->next;
|
||
return (char *)it;
|
||
}
|
||
}
|
||
|
||
#ifdef __STDC__
|
||
static char *
|
||
rx_cache_malloc_or_get (struct rx_cache * cache,
|
||
struct rx_freelist ** freelist, int bytes)
|
||
#else
|
||
static char *
|
||
rx_cache_malloc_or_get (cache, freelist, bytes)
|
||
struct rx_cache * cache;
|
||
struct rx_freelist ** freelist;
|
||
int bytes;
|
||
#endif
|
||
{
|
||
if (!*freelist)
|
||
{
|
||
char * answer = rx_cache_malloc (cache, bytes);
|
||
if (answer)
|
||
return answer;
|
||
}
|
||
|
||
return rx_cache_get (cache, freelist);
|
||
}
|
||
|
||
#ifdef __STDC__
|
||
static char *
|
||
rx_cache_get_superstate (struct rx_cache * cache)
|
||
#else
|
||
static char *
|
||
rx_cache_get_superstate (cache)
|
||
struct rx_cache * cache;
|
||
#endif
|
||
{
|
||
char * answer;
|
||
int bytes = ( sizeof (struct rx_superstate)
|
||
+ cache->local_cset_size * sizeof (struct rx_inx));
|
||
if (!cache->free_superstates
|
||
&& (cache->superstates < cache->superstates_allowed))
|
||
{
|
||
answer = rx_cache_malloc (cache, bytes);
|
||
if (answer)
|
||
{
|
||
++cache->superstates;
|
||
return answer;
|
||
}
|
||
}
|
||
answer = rx_cache_get (cache, &cache->free_superstates);
|
||
if (!answer)
|
||
{
|
||
answer = rx_cache_malloc (cache, bytes);
|
||
if (answer)
|
||
++cache->superstates_allowed;
|
||
}
|
||
++cache->superstates;
|
||
return answer;
|
||
}
|
||
|
||
|
||
|
||
#ifdef __STDC__
|
||
static int
|
||
supersetcmp (void * va, void * vb)
|
||
#else
|
||
static int
|
||
supersetcmp (va, vb)
|
||
void * va;
|
||
void * vb;
|
||
#endif
|
||
{
|
||
struct rx_superset * a = (struct rx_superset *)va;
|
||
struct rx_superset * b = (struct rx_superset *)vb;
|
||
return ( (a == b)
|
||
|| (a && b && (a->car == b->car) && (a->cdr == b->cdr)));
|
||
}
|
||
|
||
#ifdef __STDC__
|
||
static struct rx_hash_item *
|
||
superset_allocator (struct rx_hash_rules * rules, void * val)
|
||
#else
|
||
static struct rx_hash_item *
|
||
superset_allocator (rules, val)
|
||
struct rx_hash_rules * rules;
|
||
void * val;
|
||
#endif
|
||
{
|
||
struct rx_cache * cache
|
||
= ((struct rx_cache *)
|
||
((char *)rules
|
||
- (unsigned long)(&((struct rx_cache *)0)->superset_hash_rules)));
|
||
struct rx_superset * template = (struct rx_superset *)val;
|
||
struct rx_superset * newset
|
||
= ((struct rx_superset *)
|
||
rx_cache_malloc_or_get (cache,
|
||
&cache->free_supersets,
|
||
sizeof (*template)));
|
||
if (!newset)
|
||
return 0;
|
||
newset->refs = 0;
|
||
newset->car = template->car;
|
||
newset->id = template->car->id;
|
||
newset->cdr = template->cdr;
|
||
newset->superstate = 0;
|
||
rx_protect_superset (rx, template->cdr);
|
||
newset->hash_item.data = (void *)newset;
|
||
newset->hash_item.binding = 0;
|
||
return &newset->hash_item;
|
||
}
|
||
|
||
#ifdef __STDC__
|
||
static struct rx_hash *
|
||
super_hash_allocator (struct rx_hash_rules * rules)
|
||
#else
|
||
static struct rx_hash *
|
||
super_hash_allocator (rules)
|
||
struct rx_hash_rules * rules;
|
||
#endif
|
||
{
|
||
struct rx_cache * cache
|
||
= ((struct rx_cache *)
|
||
((char *)rules
|
||
- (unsigned long)(&((struct rx_cache *)0)->superset_hash_rules)));
|
||
return ((struct rx_hash *)
|
||
rx_cache_malloc_or_get (cache,
|
||
&cache->free_hash, sizeof (struct rx_hash)));
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
static void
|
||
super_hash_liberator (struct rx_hash * hash, struct rx_hash_rules * rules)
|
||
#else
|
||
static void
|
||
super_hash_liberator (hash, rules)
|
||
struct rx_hash * hash;
|
||
struct rx_hash_rules * rules;
|
||
#endif
|
||
{
|
||
struct rx_cache * cache
|
||
= ((struct rx_cache *)
|
||
(char *)rules - (long)(&((struct rx_cache *)0)->superset_hash_rules));
|
||
rx_cache_free (cache, &cache->free_hash, (char *)hash);
|
||
}
|
||
|
||
#ifdef __STDC__
|
||
static void
|
||
superset_hash_item_liberator (struct rx_hash_item * it,
|
||
struct rx_hash_rules * rules)
|
||
#else
|
||
static void
|
||
superset_hash_item_liberator (it, rules) /* Well, it does ya know. */
|
||
struct rx_hash_item * it;
|
||
struct rx_hash_rules * rules;
|
||
#endif
|
||
{
|
||
}
|
||
|
||
int rx_cache_bound = 128;
|
||
static int rx_default_cache_got = 0;
|
||
|
||
#ifdef __STDC__
|
||
static int
|
||
bytes_for_cache_size (int supers, int cset_size)
|
||
#else
|
||
static int
|
||
bytes_for_cache_size (supers, cset_size)
|
||
int supers;
|
||
int cset_size;
|
||
#endif
|
||
{
|
||
/* What the hell is this? !!!*/
|
||
return (int)
|
||
((float)supers *
|
||
( (1.03 * (float) ( rx_sizeof_bitset (cset_size)
|
||
+ sizeof (struct rx_super_edge)))
|
||
+ (1.80 * (float) sizeof (struct rx_possible_future))
|
||
+ (float) ( sizeof (struct rx_superstate)
|
||
+ cset_size * sizeof (struct rx_inx))));
|
||
}
|
||
|
||
#ifdef __STDC__
|
||
static void
|
||
rx_morecore (struct rx_cache * cache)
|
||
#else
|
||
static void
|
||
rx_morecore (cache)
|
||
struct rx_cache * cache;
|
||
#endif
|
||
{
|
||
if (rx_default_cache_got >= rx_cache_bound)
|
||
return;
|
||
|
||
rx_default_cache_got += 16;
|
||
cache->superstates_allowed = rx_cache_bound;
|
||
{
|
||
struct rx_blocklist ** pos = &cache->memory;
|
||
int size = bytes_for_cache_size (16, cache->local_cset_size);
|
||
while (*pos)
|
||
pos = &(*pos)->next;
|
||
*pos = ((struct rx_blocklist *)
|
||
malloc (size + sizeof (struct rx_blocklist)));
|
||
if (!*pos)
|
||
return;
|
||
|
||
(*pos)->next = 0;
|
||
(*pos)->bytes = size;
|
||
cache->memory_pos = *pos;
|
||
cache->memory_addr = (char *)*pos + sizeof (**pos);
|
||
cache->bytes_left = size;
|
||
}
|
||
}
|
||
|
||
static struct rx_cache default_cache =
|
||
{
|
||
{
|
||
supersetcmp,
|
||
super_hash_allocator,
|
||
super_hash_liberator,
|
||
superset_allocator,
|
||
superset_hash_item_liberator,
|
||
},
|
||
0,
|
||
0,
|
||
0,
|
||
0,
|
||
rx_morecore,
|
||
|
||
0,
|
||
0,
|
||
0,
|
||
0,
|
||
0,
|
||
|
||
0,
|
||
0,
|
||
|
||
0,
|
||
|
||
0,
|
||
0,
|
||
0,
|
||
0,
|
||
128,
|
||
|
||
256,
|
||
rx_id_instruction_table,
|
||
|
||
{
|
||
0,
|
||
0,
|
||
{0},
|
||
{0},
|
||
{0}
|
||
}
|
||
};
|
||
|
||
/* This adds an element to a superstate set. These sets are lists, such
|
||
* that lists with == elements are ==. The empty set is returned by
|
||
* superset_cons (rx, 0, 0) and is NOT equivelent to
|
||
* (struct rx_superset)0.
|
||
*/
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL struct rx_superset *
|
||
rx_superset_cons (struct rx * rx,
|
||
struct rx_nfa_state *car, struct rx_superset *cdr)
|
||
#else
|
||
RX_DECL struct rx_superset *
|
||
rx_superset_cons (rx, car, cdr)
|
||
struct rx * rx;
|
||
struct rx_nfa_state *car;
|
||
struct rx_superset *cdr;
|
||
#endif
|
||
{
|
||
struct rx_cache * cache = rx->cache;
|
||
if (!car && !cdr)
|
||
{
|
||
if (!cache->empty_superset)
|
||
{
|
||
cache->empty_superset
|
||
= ((struct rx_superset *)
|
||
rx_cache_malloc_or_get (cache, &cache->free_supersets,
|
||
sizeof (struct rx_superset)));
|
||
if (!cache->empty_superset)
|
||
return 0;
|
||
bzero (cache->empty_superset, sizeof (struct rx_superset));
|
||
cache->empty_superset->refs = 1000;
|
||
}
|
||
return cache->empty_superset;
|
||
}
|
||
{
|
||
struct rx_superset template;
|
||
struct rx_hash_item * hit;
|
||
template.car = car;
|
||
template.cdr = cdr;
|
||
template.id = car->id;
|
||
hit = rx_hash_store (&cache->superset_table,
|
||
(unsigned long)car ^ car->id ^ (unsigned long)cdr,
|
||
(void *)&template,
|
||
&cache->superset_hash_rules);
|
||
return (hit
|
||
? (struct rx_superset *)hit->data
|
||
: 0);
|
||
}
|
||
}
|
||
|
||
/* This computes a union of two NFA state sets. The sets do not have the
|
||
* same representation though. One is a RX_SUPERSET structure (part
|
||
* of the superstate NFA) and the other is an NFA_STATE_SET (part of the NFA).
|
||
*/
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL struct rx_superset *
|
||
rx_superstate_eclosure_union
|
||
(struct rx * rx, struct rx_superset *set, struct rx_nfa_state_set *ecl)
|
||
#else
|
||
RX_DECL struct rx_superset *
|
||
rx_superstate_eclosure_union (rx, set, ecl)
|
||
struct rx * rx;
|
||
struct rx_superset *set;
|
||
struct rx_nfa_state_set *ecl;
|
||
#endif
|
||
{
|
||
if (!ecl)
|
||
return set;
|
||
|
||
if (!set->car)
|
||
return rx_superset_cons (rx, ecl->car,
|
||
rx_superstate_eclosure_union (rx, set, ecl->cdr));
|
||
if (set->car == ecl->car)
|
||
return rx_superstate_eclosure_union (rx, set, ecl->cdr);
|
||
|
||
{
|
||
struct rx_superset * tail;
|
||
struct rx_nfa_state * first;
|
||
|
||
if (set->car > ecl->car)
|
||
{
|
||
tail = rx_superstate_eclosure_union (rx, set->cdr, ecl);
|
||
first = set->car;
|
||
}
|
||
else
|
||
{
|
||
tail = rx_superstate_eclosure_union (rx, set, ecl->cdr);
|
||
first = ecl->car;
|
||
}
|
||
if (!tail)
|
||
return 0;
|
||
else
|
||
{
|
||
struct rx_superset * answer;
|
||
answer = rx_superset_cons (rx, first, tail);
|
||
if (!answer)
|
||
{
|
||
rx_protect_superset (rx, tail);
|
||
rx_release_superset (rx, tail);
|
||
return 0;
|
||
}
|
||
else
|
||
return answer;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
|
||
|
||
/*
|
||
* This makes sure that a list of rx_distinct_futures contains
|
||
* a future for each possible set of side effects in the eclosure
|
||
* of a given state. This is some of the work of filling in a
|
||
* superstate transition.
|
||
*/
|
||
|
||
#ifdef __STDC__
|
||
static struct rx_distinct_future *
|
||
include_futures (struct rx *rx,
|
||
struct rx_distinct_future *df, struct rx_nfa_state
|
||
*state, struct rx_superstate *superstate)
|
||
#else
|
||
static struct rx_distinct_future *
|
||
include_futures (rx, df, state, superstate)
|
||
struct rx *rx;
|
||
struct rx_distinct_future *df;
|
||
struct rx_nfa_state *state;
|
||
struct rx_superstate *superstate;
|
||
#endif
|
||
{
|
||
struct rx_possible_future *future;
|
||
struct rx_cache * cache = rx->cache;
|
||
for (future = state->futures; future; future = future->next)
|
||
{
|
||
struct rx_distinct_future *dfp;
|
||
struct rx_distinct_future *insert_before = 0;
|
||
if (df)
|
||
df->next_same_super_edge[1]->next_same_super_edge[0] = 0;
|
||
for (dfp = df; dfp; dfp = dfp->next_same_super_edge[0])
|
||
if (dfp->effects == future->effects)
|
||
break;
|
||
else
|
||
{
|
||
int order = rx->se_list_cmp (rx, dfp->effects, future->effects);
|
||
if (order > 0)
|
||
{
|
||
insert_before = dfp;
|
||
dfp = 0;
|
||
break;
|
||
}
|
||
}
|
||
if (df)
|
||
df->next_same_super_edge[1]->next_same_super_edge[0] = df;
|
||
if (!dfp)
|
||
{
|
||
dfp
|
||
= ((struct rx_distinct_future *)
|
||
rx_cache_malloc_or_get (cache, &cache->free_discernable_futures,
|
||
sizeof (struct rx_distinct_future)));
|
||
if (!dfp)
|
||
return 0;
|
||
if (!df)
|
||
{
|
||
df = insert_before = dfp;
|
||
df->next_same_super_edge[0] = df->next_same_super_edge[1] = df;
|
||
}
|
||
else if (!insert_before)
|
||
insert_before = df;
|
||
else if (insert_before == df)
|
||
df = dfp;
|
||
|
||
dfp->next_same_super_edge[0] = insert_before;
|
||
dfp->next_same_super_edge[1]
|
||
= insert_before->next_same_super_edge[1];
|
||
dfp->next_same_super_edge[1]->next_same_super_edge[0] = dfp;
|
||
dfp->next_same_super_edge[0]->next_same_super_edge[1] = dfp;
|
||
dfp->next_same_dest = dfp->prev_same_dest = dfp;
|
||
dfp->future = 0;
|
||
dfp->present = superstate;
|
||
dfp->future_frame.inx = rx->instruction_table[rx_cache_miss];
|
||
dfp->future_frame.data = 0;
|
||
dfp->future_frame.data_2 = (void *) dfp;
|
||
dfp->side_effects_frame.inx
|
||
= rx->instruction_table[rx_do_side_effects];
|
||
dfp->side_effects_frame.data = 0;
|
||
dfp->side_effects_frame.data_2 = (void *) dfp;
|
||
dfp->effects = future->effects;
|
||
}
|
||
}
|
||
return df;
|
||
}
|
||
|
||
|
||
|
||
/* This constructs a new superstate from its state set. The only
|
||
* complexity here is memory management.
|
||
*/
|
||
#ifdef __STDC__
|
||
RX_DECL struct rx_superstate *
|
||
rx_superstate (struct rx *rx,
|
||
struct rx_superset *set)
|
||
#else
|
||
RX_DECL struct rx_superstate *
|
||
rx_superstate (rx, set)
|
||
struct rx *rx;
|
||
struct rx_superset *set;
|
||
#endif
|
||
{
|
||
struct rx_cache * cache = rx->cache;
|
||
struct rx_superstate * superstate = 0;
|
||
|
||
/* Does the superstate already exist in the cache? */
|
||
if (set->superstate)
|
||
{
|
||
if (set->superstate->rx_id != rx->rx_id)
|
||
{
|
||
/* Aha. It is in the cache, but belongs to a superstate
|
||
* that refers to an NFA that no longer exists.
|
||
* (We know it no longer exists because it was evidently
|
||
* stored in the same region of memory as the current nfa
|
||
* yet it has a different id.)
|
||
*/
|
||
superstate = set->superstate;
|
||
if (!superstate->is_semifree)
|
||
{
|
||
if (cache->lru_superstate == superstate)
|
||
{
|
||
cache->lru_superstate = superstate->next_recyclable;
|
||
if (cache->lru_superstate == superstate)
|
||
cache->lru_superstate = 0;
|
||
}
|
||
{
|
||
superstate->next_recyclable->prev_recyclable
|
||
= superstate->prev_recyclable;
|
||
superstate->prev_recyclable->next_recyclable
|
||
= superstate->next_recyclable;
|
||
if (!cache->semifree_superstate)
|
||
{
|
||
(cache->semifree_superstate
|
||
= superstate->next_recyclable
|
||
= superstate->prev_recyclable
|
||
= superstate);
|
||
}
|
||
else
|
||
{
|
||
superstate->next_recyclable = cache->semifree_superstate;
|
||
superstate->prev_recyclable
|
||
= cache->semifree_superstate->prev_recyclable;
|
||
superstate->next_recyclable->prev_recyclable
|
||
= superstate;
|
||
superstate->prev_recyclable->next_recyclable
|
||
= superstate;
|
||
cache->semifree_superstate = superstate;
|
||
}
|
||
++cache->semifree_superstates;
|
||
}
|
||
}
|
||
set->superstate = 0;
|
||
goto handle_cache_miss;
|
||
}
|
||
++cache->hits;
|
||
superstate = set->superstate;
|
||
|
||
rx_refresh_this_superstate (cache, superstate);
|
||
return superstate;
|
||
}
|
||
|
||
handle_cache_miss:
|
||
|
||
/* This point reached only for cache misses. */
|
||
++cache->misses;
|
||
#if RX_DEBUG
|
||
if (rx_debug_trace > 1)
|
||
{
|
||
struct rx_superset * setp = set;
|
||
fprintf (stderr, "Building a superstet %d(%d): ", rx->rx_id, set);
|
||
while (setp)
|
||
{
|
||
fprintf (stderr, "%d ", setp->id);
|
||
setp = setp->cdr;
|
||
}
|
||
fprintf (stderr, "(%d)\n", set);
|
||
}
|
||
#endif
|
||
superstate = (struct rx_superstate *)rx_cache_get_superstate (cache);
|
||
if (!superstate)
|
||
return 0;
|
||
|
||
if (!cache->lru_superstate)
|
||
(cache->lru_superstate
|
||
= superstate->next_recyclable
|
||
= superstate->prev_recyclable
|
||
= superstate);
|
||
else
|
||
{
|
||
superstate->next_recyclable = cache->lru_superstate;
|
||
superstate->prev_recyclable = cache->lru_superstate->prev_recyclable;
|
||
( superstate->prev_recyclable->next_recyclable
|
||
= superstate->next_recyclable->prev_recyclable
|
||
= superstate);
|
||
}
|
||
superstate->rx_id = rx->rx_id;
|
||
superstate->transition_refs = 0;
|
||
superstate->locks = 0;
|
||
superstate->is_semifree = 0;
|
||
set->superstate = superstate;
|
||
superstate->contents = set;
|
||
rx_protect_superset (rx, set);
|
||
superstate->edges = 0;
|
||
{
|
||
int x;
|
||
/* None of the transitions from this superstate are known yet. */
|
||
for (x = 0; x < rx->local_cset_size; ++x) /* &&&&& 3.8 % */
|
||
{
|
||
struct rx_inx * ifr = &superstate->transitions[x];
|
||
ifr->inx = rx->instruction_table [rx_cache_miss];
|
||
ifr->data = ifr->data_2 = 0;
|
||
}
|
||
}
|
||
return superstate;
|
||
}
|
||
|
||
|
||
/* This computes the destination set of one edge of the superstate NFA.
|
||
* Note that a RX_DISTINCT_FUTURE is a superstate edge.
|
||
* Returns 0 on an allocation failure.
|
||
*/
|
||
|
||
#ifdef __STDC__
|
||
static int
|
||
solve_destination (struct rx *rx, struct rx_distinct_future *df)
|
||
#else
|
||
static int
|
||
solve_destination (rx, df)
|
||
struct rx *rx;
|
||
struct rx_distinct_future *df;
|
||
#endif
|
||
{
|
||
struct rx_super_edge *tc = df->edge;
|
||
struct rx_superset *nfa_state;
|
||
struct rx_superset *nil_set = rx_superset_cons (rx, 0, 0);
|
||
struct rx_superset *solution = nil_set;
|
||
struct rx_superstate *dest;
|
||
|
||
rx_protect_superset (rx, solution);
|
||
/* Iterate over all NFA states in the state set of this superstate. */
|
||
for (nfa_state = df->present->contents;
|
||
nfa_state->car;
|
||
nfa_state = nfa_state->cdr)
|
||
{
|
||
struct rx_nfa_edge *e;
|
||
/* Iterate over all edges of each NFA state. */
|
||
for (e = nfa_state->car->edges; e; e = e->next)
|
||
/* If we find an edge that is labeled with
|
||
* the characters we are solving for.....
|
||
*/
|
||
if (rx_bitset_is_subset (rx->local_cset_size,
|
||
tc->cset, e->params.cset))
|
||
{
|
||
struct rx_nfa_state *n = e->dest;
|
||
struct rx_possible_future *pf;
|
||
/* ....search the partial epsilon closures of the destination
|
||
* of that edge for a path that involves the same set of
|
||
* side effects we are solving for.
|
||
* If we find such a RX_POSSIBLE_FUTURE, we add members to the
|
||
* stateset we are computing.
|
||
*/
|
||
for (pf = n->futures; pf; pf = pf->next)
|
||
if (pf->effects == df->effects)
|
||
{
|
||
struct rx_superset * old_sol;
|
||
old_sol = solution;
|
||
solution = rx_superstate_eclosure_union (rx, solution,
|
||
pf->destset);
|
||
if (!solution)
|
||
return 0;
|
||
rx_protect_superset (rx, solution);
|
||
rx_release_superset (rx, old_sol);
|
||
}
|
||
}
|
||
}
|
||
/* It is possible that the RX_DISTINCT_FUTURE we are working on has
|
||
* the empty set of NFA states as its definition. In that case, this
|
||
* is a failure point.
|
||
*/
|
||
if (solution == nil_set)
|
||
{
|
||
df->future_frame.inx = (void *) rx_backtrack;
|
||
df->future_frame.data = 0;
|
||
df->future_frame.data_2 = 0;
|
||
return 1;
|
||
}
|
||
dest = rx_superstate (rx, solution);
|
||
rx_release_superset (rx, solution);
|
||
if (!dest)
|
||
return 0;
|
||
|
||
{
|
||
struct rx_distinct_future *dft;
|
||
dft = df;
|
||
df->prev_same_dest->next_same_dest = 0;
|
||
while (dft)
|
||
{
|
||
dft->future = dest;
|
||
dft->future_frame.inx = rx->instruction_table[rx_next_char];
|
||
dft->future_frame.data = (void *) dest->transitions;
|
||
dft = dft->next_same_dest;
|
||
}
|
||
df->prev_same_dest->next_same_dest = df;
|
||
}
|
||
if (!dest->transition_refs)
|
||
dest->transition_refs = df;
|
||
else
|
||
{
|
||
struct rx_distinct_future *dft = dest->transition_refs->next_same_dest;
|
||
dest->transition_refs->next_same_dest = df->next_same_dest;
|
||
df->next_same_dest->prev_same_dest = dest->transition_refs;
|
||
df->next_same_dest = dft;
|
||
dft->prev_same_dest = df;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
|
||
/* This takes a superstate and a character, and computes some edges
|
||
* from the superstate NFA. In particular, this computes all edges
|
||
* that lead from SUPERSTATE given CHR. This function also
|
||
* computes the set of characters that share this edge set.
|
||
* This returns 0 on allocation error.
|
||
* The character set and list of edges are returned through
|
||
* the paramters CSETOUT and DFOUT.
|
||
} */
|
||
|
||
#ifdef __STDC__
|
||
static int
|
||
compute_super_edge (struct rx *rx, struct rx_distinct_future **dfout,
|
||
rx_Bitset csetout, struct rx_superstate *superstate,
|
||
unsigned char chr)
|
||
#else
|
||
static int
|
||
compute_super_edge (rx, dfout, csetout, superstate, chr)
|
||
struct rx *rx;
|
||
struct rx_distinct_future **dfout;
|
||
rx_Bitset csetout;
|
||
struct rx_superstate *superstate;
|
||
unsigned char chr;
|
||
#endif
|
||
{
|
||
struct rx_superset *stateset = superstate->contents;
|
||
|
||
/* To compute the set of characters that share edges with CHR,
|
||
* we start with the full character set, and subtract.
|
||
*/
|
||
rx_bitset_universe (rx->local_cset_size, csetout);
|
||
*dfout = 0;
|
||
|
||
/* Iterate over the NFA states in the superstate state-set. */
|
||
while (stateset->car)
|
||
{
|
||
struct rx_nfa_edge *e;
|
||
for (e = stateset->car->edges; e; e = e->next)
|
||
if (RX_bitset_member (e->params.cset, chr))
|
||
{
|
||
/* If we find an NFA edge that applies, we make sure there
|
||
* are corresponding edges in the superstate NFA.
|
||
*/
|
||
{
|
||
struct rx_distinct_future * saved;
|
||
saved = *dfout;
|
||
*dfout = include_futures (rx, *dfout, e->dest, superstate);
|
||
if (!*dfout)
|
||
{
|
||
struct rx_distinct_future * df;
|
||
df = saved;
|
||
if (df)
|
||
df->next_same_super_edge[1]->next_same_super_edge[0] = 0;
|
||
while (df)
|
||
{
|
||
struct rx_distinct_future *dft;
|
||
dft = df;
|
||
df = df->next_same_super_edge[0];
|
||
|
||
if (dft->future && dft->future->transition_refs == dft)
|
||
{
|
||
dft->future->transition_refs = dft->next_same_dest;
|
||
if (dft->future->transition_refs == dft)
|
||
dft->future->transition_refs = 0;
|
||
}
|
||
dft->next_same_dest->prev_same_dest = dft->prev_same_dest;
|
||
dft->prev_same_dest->next_same_dest = dft->next_same_dest;
|
||
rx_cache_free (rx->cache,
|
||
&rx->cache->free_discernable_futures,
|
||
(char *)dft);
|
||
}
|
||
return 0;
|
||
}
|
||
}
|
||
/* We also trim the character set a bit. */
|
||
rx_bitset_intersection (rx->local_cset_size,
|
||
csetout, e->params.cset);
|
||
}
|
||
else
|
||
/* An edge that doesn't apply at least tells us some characters
|
||
* that don't share the same edge set as CHR.
|
||
*/
|
||
rx_bitset_difference (rx->local_cset_size, csetout, e->params.cset);
|
||
stateset = stateset->cdr;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
|
||
/* This is a constructor for RX_SUPER_EDGE structures. These are
|
||
* wrappers for lists of superstate NFA edges that share character sets labels.
|
||
* If a transition class contains more than one rx_distinct_future (superstate
|
||
* edge), then it represents a non-determinism in the superstate NFA.
|
||
*/
|
||
|
||
#ifdef __STDC__
|
||
static struct rx_super_edge *
|
||
rx_super_edge (struct rx *rx,
|
||
struct rx_superstate *super, rx_Bitset cset,
|
||
struct rx_distinct_future *df)
|
||
#else
|
||
static struct rx_super_edge *
|
||
rx_super_edge (rx, super, cset, df)
|
||
struct rx *rx;
|
||
struct rx_superstate *super;
|
||
rx_Bitset cset;
|
||
struct rx_distinct_future *df;
|
||
#endif
|
||
{
|
||
struct rx_super_edge *tc =
|
||
(struct rx_super_edge *)rx_cache_malloc_or_get
|
||
(rx->cache, &rx->cache->free_transition_classes,
|
||
sizeof (struct rx_super_edge) + rx_sizeof_bitset (rx->local_cset_size));
|
||
|
||
if (!tc)
|
||
return 0;
|
||
tc->next = super->edges;
|
||
super->edges = tc;
|
||
tc->rx_backtrack_frame.inx = rx->instruction_table[rx_backtrack_point];
|
||
tc->rx_backtrack_frame.data = 0;
|
||
tc->rx_backtrack_frame.data_2 = (void *) tc;
|
||
tc->options = df;
|
||
tc->cset = (rx_Bitset) ((char *) tc + sizeof (*tc));
|
||
rx_bitset_assign (rx->local_cset_size, tc->cset, cset);
|
||
if (df)
|
||
{
|
||
struct rx_distinct_future * dfp = df;
|
||
df->next_same_super_edge[1]->next_same_super_edge[0] = 0;
|
||
while (dfp)
|
||
{
|
||
dfp->edge = tc;
|
||
dfp = dfp->next_same_super_edge[0];
|
||
}
|
||
df->next_same_super_edge[1]->next_same_super_edge[0] = df;
|
||
}
|
||
return tc;
|
||
}
|
||
|
||
|
||
/* There are three kinds of cache miss. The first occurs when a
|
||
* transition is taken that has never been computed during the
|
||
* lifetime of the source superstate. That cache miss is handled by
|
||
* calling COMPUTE_SUPER_EDGE. The second kind of cache miss
|
||
* occurs when the destination superstate of a transition doesn't
|
||
* exist. SOLVE_DESTINATION is used to construct the destination superstate.
|
||
* Finally, the third kind of cache miss occurs when the destination
|
||
* superstate of a transition is in a `semi-free state'. That case is
|
||
* handled by UNFREE_SUPERSTATE.
|
||
*
|
||
* The function of HANDLE_CACHE_MISS is to figure out which of these
|
||
* cases applies.
|
||
*/
|
||
|
||
#ifdef __STDC__
|
||
static void
|
||
install_partial_transition (struct rx_superstate *super,
|
||
struct rx_inx *answer,
|
||
RX_subset set, int offset)
|
||
#else
|
||
static void
|
||
install_partial_transition (super, answer, set, offset)
|
||
struct rx_superstate *super;
|
||
struct rx_inx *answer;
|
||
RX_subset set;
|
||
int offset;
|
||
#endif
|
||
{
|
||
int start = offset;
|
||
int end = start + 32;
|
||
RX_subset pos = 1;
|
||
struct rx_inx * transitions = super->transitions;
|
||
|
||
while (start < end)
|
||
{
|
||
if (set & pos)
|
||
transitions[start] = *answer;
|
||
pos <<= 1;
|
||
++start;
|
||
}
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL struct rx_inx *
|
||
rx_handle_cache_miss
|
||
(struct rx *rx, struct rx_superstate *super, unsigned char chr, void *data)
|
||
#else
|
||
RX_DECL struct rx_inx *
|
||
rx_handle_cache_miss (rx, super, chr, data)
|
||
struct rx *rx;
|
||
struct rx_superstate *super;
|
||
unsigned char chr;
|
||
void *data;
|
||
#endif
|
||
{
|
||
int offset = chr / RX_subset_bits;
|
||
struct rx_distinct_future *df = data;
|
||
|
||
if (!df) /* must be the shared_cache_miss_frame */
|
||
{
|
||
/* Perhaps this is just a transition waiting to be filled. */
|
||
struct rx_super_edge *tc;
|
||
RX_subset mask = rx_subset_singletons [chr % RX_subset_bits];
|
||
|
||
for (tc = super->edges; tc; tc = tc->next)
|
||
if (tc->cset[offset] & mask)
|
||
{
|
||
struct rx_inx * answer;
|
||
df = tc->options;
|
||
answer = ((tc->options->next_same_super_edge[0] != tc->options)
|
||
? &tc->rx_backtrack_frame
|
||
: (df->effects
|
||
? &df->side_effects_frame
|
||
: &df->future_frame));
|
||
install_partial_transition (super, answer,
|
||
tc->cset [offset], offset * 32);
|
||
return answer;
|
||
}
|
||
/* Otherwise, it's a flushed or newly encountered edge. */
|
||
{
|
||
char cset_space[1024]; /* this limit is far from unreasonable */
|
||
rx_Bitset trcset;
|
||
struct rx_inx *answer;
|
||
|
||
if (rx_sizeof_bitset (rx->local_cset_size) > sizeof (cset_space))
|
||
return 0; /* If the arbitrary limit is hit, always fail */
|
||
/* cleanly. */
|
||
trcset = (rx_Bitset)cset_space;
|
||
rx_lock_superstate (rx, super);
|
||
if (!compute_super_edge (rx, &df, trcset, super, chr))
|
||
{
|
||
rx_unlock_superstate (rx, super);
|
||
return 0;
|
||
}
|
||
if (!df) /* We just computed the fail transition. */
|
||
{
|
||
static struct rx_inx
|
||
shared_fail_frame = { 0, 0, (void *)rx_backtrack, 0 };
|
||
answer = &shared_fail_frame;
|
||
}
|
||
else
|
||
{
|
||
tc = rx_super_edge (rx, super, trcset, df);
|
||
if (!tc)
|
||
{
|
||
rx_unlock_superstate (rx, super);
|
||
return 0;
|
||
}
|
||
answer = ((tc->options->next_same_super_edge[0] != tc->options)
|
||
? &tc->rx_backtrack_frame
|
||
: (df->effects
|
||
? &df->side_effects_frame
|
||
: &df->future_frame));
|
||
}
|
||
install_partial_transition (super, answer,
|
||
trcset[offset], offset * 32);
|
||
rx_unlock_superstate (rx, super);
|
||
return answer;
|
||
}
|
||
}
|
||
else if (df->future) /* A cache miss on an edge with a future? Must be
|
||
* a semi-free destination. */
|
||
{
|
||
if (df->future->is_semifree)
|
||
refresh_semifree_superstate (rx->cache, df->future);
|
||
return &df->future_frame;
|
||
}
|
||
else
|
||
/* no future superstate on an existing edge */
|
||
{
|
||
rx_lock_superstate (rx, super);
|
||
if (!solve_destination (rx, df))
|
||
{
|
||
rx_unlock_superstate (rx, super);
|
||
return 0;
|
||
}
|
||
if (!df->effects
|
||
&& (df->edge->options->next_same_super_edge[0] == df->edge->options))
|
||
install_partial_transition (super, &df->future_frame,
|
||
df->edge->cset[offset], offset * 32);
|
||
rx_unlock_superstate (rx, super);
|
||
return &df->future_frame;
|
||
}
|
||
}
|
||
|
||
|
||
|
||
|
||
/* The rest of the code provides a regex.c compatable interface. */
|
||
|
||
|
||
__const__ char *re_error_msg[] =
|
||
{
|
||
0, /* REG_NOUT */
|
||
"No match", /* REG_NOMATCH */
|
||
"Invalid regular expression", /* REG_BADPAT */
|
||
"Invalid collation character", /* REG_ECOLLATE */
|
||
"Invalid character class name", /* REG_ECTYPE */
|
||
"Trailing backslash", /* REG_EESCAPE */
|
||
"Invalid back reference", /* REG_ESUBREG */
|
||
"Unmatched [ or [^", /* REG_EBRACK */
|
||
"Unmatched ( or \\(", /* REG_EPAREN */
|
||
"Unmatched \\{", /* REG_EBRACE */
|
||
"Invalid content of \\{\\}", /* REG_BADBR */
|
||
"Invalid range end", /* REG_ERANGE */
|
||
"Memory exhausted", /* REG_ESPACE */
|
||
"Invalid preceding regular expression", /* REG_BADRPT */
|
||
"Premature end of regular expression", /* REG_EEND */
|
||
"Regular expression too big", /* REG_ESIZE */
|
||
"Unmatched ) or \\)", /* REG_ERPAREN */
|
||
};
|
||
|
||
|
||
|
||
/*
|
||
* Macros used while compiling patterns.
|
||
*
|
||
* By convention, PEND points just past the end of the uncompiled pattern,
|
||
* P points to the read position in the pattern. `translate' is the name
|
||
* of the translation table (`TRANSLATE' is the name of a macro that looks
|
||
* things up in `translate').
|
||
*/
|
||
|
||
|
||
/*
|
||
* Fetch the next character in the uncompiled pattern---translating it
|
||
* if necessary. *Also cast from a signed character in the constant
|
||
* string passed to us by the user to an unsigned char that we can use
|
||
* as an array index (in, e.g., `translate').
|
||
*/
|
||
#define PATFETCH(c) \
|
||
do {if (p == pend) return REG_EEND; \
|
||
c = (unsigned char) *p++; \
|
||
c = translate[c]; \
|
||
} while (0)
|
||
|
||
/*
|
||
* Fetch the next character in the uncompiled pattern, with no
|
||
* translation.
|
||
*/
|
||
#define PATFETCH_RAW(c) \
|
||
do {if (p == pend) return REG_EEND; \
|
||
c = (unsigned char) *p++; \
|
||
} while (0)
|
||
|
||
/* Go backwards one character in the pattern. */
|
||
#define PATUNFETCH p--
|
||
|
||
|
||
#define TRANSLATE(d) translate[(unsigned char) (d)]
|
||
|
||
typedef unsigned regnum_t;
|
||
|
||
/* Since offsets can go either forwards or backwards, this type needs to
|
||
* be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.
|
||
*/
|
||
typedef int pattern_offset_t;
|
||
|
||
typedef struct
|
||
{
|
||
struct rexp_node ** top_expression; /* was begalt */
|
||
struct rexp_node ** last_expression; /* was laststart */
|
||
pattern_offset_t inner_group_offset;
|
||
regnum_t regnum;
|
||
} compile_stack_elt_t;
|
||
|
||
typedef struct
|
||
{
|
||
compile_stack_elt_t *stack;
|
||
unsigned size;
|
||
unsigned avail; /* Offset of next open position. */
|
||
} compile_stack_type;
|
||
|
||
|
||
#define INIT_COMPILE_STACK_SIZE 32
|
||
|
||
#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
|
||
#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
|
||
|
||
/* The next available element. */
|
||
#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
|
||
|
||
|
||
/* Set the bit for character C in a list. */
|
||
#define SET_LIST_BIT(c) \
|
||
(b[((unsigned char) (c)) / CHARBITS] \
|
||
|= 1 << (((unsigned char) c) % CHARBITS))
|
||
|
||
/* Get the next unsigned number in the uncompiled pattern. */
|
||
#define GET_UNSIGNED_NUMBER(num) \
|
||
{ if (p != pend) \
|
||
{ \
|
||
PATFETCH (c); \
|
||
while (isdigit (c)) \
|
||
{ \
|
||
if (num < 0) \
|
||
num = 0; \
|
||
num = num * 10 + c - '0'; \
|
||
if (p == pend) \
|
||
break; \
|
||
PATFETCH (c); \
|
||
} \
|
||
} \
|
||
}
|
||
|
||
#define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
|
||
|
||
#define IS_CHAR_CLASS(string) \
|
||
(!strcmp (string, "alpha") || !strcmp (string, "upper") \
|
||
|| !strcmp (string, "lower") || !strcmp (string, "digit") \
|
||
|| !strcmp (string, "alnum") || !strcmp (string, "xdigit") \
|
||
|| !strcmp (string, "space") || !strcmp (string, "print") \
|
||
|| !strcmp (string, "punct") || !strcmp (string, "graph") \
|
||
|| !strcmp (string, "cntrl") || !strcmp (string, "blank"))
|
||
|
||
|
||
/* These predicates are used in regex_compile. */
|
||
|
||
/* P points to just after a ^ in PATTERN. Return true if that ^ comes
|
||
* after an alternative or a begin-subexpression. We assume there is at
|
||
* least one character before the ^.
|
||
*/
|
||
|
||
#ifdef __STDC__
|
||
static boolean
|
||
at_begline_loc_p (__const__ char *pattern, __const__ char * p, reg_syntax_t syntax)
|
||
#else
|
||
static boolean
|
||
at_begline_loc_p (pattern, p, syntax)
|
||
__const__ char *pattern;
|
||
__const__ char * p;
|
||
reg_syntax_t syntax;
|
||
#endif
|
||
{
|
||
__const__ char *prev = p - 2;
|
||
boolean prev_prev_backslash = ((prev > pattern) && (prev[-1] == '\\'));
|
||
|
||
return
|
||
|
||
(/* After a subexpression? */
|
||
((*prev == '(') && ((syntax & RE_NO_BK_PARENS) || prev_prev_backslash))
|
||
||
|
||
/* After an alternative? */
|
||
((*prev == '|') && ((syntax & RE_NO_BK_VBAR) || prev_prev_backslash))
|
||
);
|
||
}
|
||
|
||
/* The dual of at_begline_loc_p. This one is for $. We assume there is
|
||
* at least one character after the $, i.e., `P < PEND'.
|
||
*/
|
||
|
||
#ifdef __STDC__
|
||
static boolean
|
||
at_endline_loc_p (__const__ char *p, __const__ char *pend, int syntax)
|
||
#else
|
||
static boolean
|
||
at_endline_loc_p (p, pend, syntax)
|
||
__const__ char *p;
|
||
__const__ char *pend;
|
||
int syntax;
|
||
#endif
|
||
{
|
||
__const__ char *next = p;
|
||
boolean next_backslash = (*next == '\\');
|
||
__const__ char *next_next = (p + 1 < pend) ? (p + 1) : 0;
|
||
|
||
return
|
||
(
|
||
/* Before a subexpression? */
|
||
((syntax & RE_NO_BK_PARENS)
|
||
? (*next == ')')
|
||
: (next_backslash && next_next && (*next_next == ')')))
|
||
||
|
||
/* Before an alternative? */
|
||
((syntax & RE_NO_BK_VBAR)
|
||
? (*next == '|')
|
||
: (next_backslash && next_next && (*next_next == '|')))
|
||
);
|
||
}
|
||
|
||
|
||
unsigned char rx_id_translation[256] =
|
||
{
|
||
0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
|
||
10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
|
||
20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
|
||
30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
|
||
40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
|
||
50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
|
||
60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
|
||
70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
|
||
80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
|
||
90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
|
||
|
||
100, 101, 102, 103, 104, 105, 106, 107, 108, 109,
|
||
110, 111, 112, 113, 114, 115, 116, 117, 118, 119,
|
||
120, 121, 122, 123, 124, 125, 126, 127, 128, 129,
|
||
130, 131, 132, 133, 134, 135, 136, 137, 138, 139,
|
||
140, 141, 142, 143, 144, 145, 146, 147, 148, 149,
|
||
150, 151, 152, 153, 154, 155, 156, 157, 158, 159,
|
||
160, 161, 162, 163, 164, 165, 166, 167, 168, 169,
|
||
170, 171, 172, 173, 174, 175, 176, 177, 178, 179,
|
||
180, 181, 182, 183, 184, 185, 186, 187, 188, 189,
|
||
190, 191, 192, 193, 194, 195, 196, 197, 198, 199,
|
||
|
||
200, 201, 202, 203, 204, 205, 206, 207, 208, 209,
|
||
210, 211, 212, 213, 214, 215, 216, 217, 218, 219,
|
||
220, 221, 222, 223, 224, 225, 226, 227, 228, 229,
|
||
230, 231, 232, 233, 234, 235, 236, 237, 238, 239,
|
||
240, 241, 242, 243, 244, 245, 246, 247, 248, 249,
|
||
250, 251, 252, 253, 254, 255
|
||
};
|
||
|
||
/* The compiler keeps an inverted translation table.
|
||
* This looks up/inititalize elements.
|
||
* VALID is an array of booleans that validate CACHE.
|
||
*/
|
||
|
||
#ifdef __STDC__
|
||
static rx_Bitset
|
||
inverse_translation (struct re_pattern_buffer * rxb,
|
||
char * valid, rx_Bitset cache,
|
||
unsigned char * translate, int c)
|
||
#else
|
||
static rx_Bitset
|
||
inverse_translation (rxb, valid, cache, translate, c)
|
||
struct re_pattern_buffer * rxb;
|
||
char * valid;
|
||
rx_Bitset cache;
|
||
unsigned char * translate;
|
||
int c;
|
||
#endif
|
||
{
|
||
rx_Bitset cs
|
||
= cache + c * rx_bitset_numb_subsets (rxb->rx.local_cset_size);
|
||
|
||
if (!valid[c])
|
||
{
|
||
int x;
|
||
int c_tr = TRANSLATE(c);
|
||
rx_bitset_null (rxb->rx.local_cset_size, cs);
|
||
for (x = 0; x < 256; ++x) /* &&&& 13.37 */
|
||
if (TRANSLATE(x) == c_tr)
|
||
RX_bitset_enjoin (cs, x);
|
||
valid[c] = 1;
|
||
}
|
||
return cs;
|
||
}
|
||
|
||
|
||
|
||
|
||
/* More subroutine declarations and macros for regex_compile. */
|
||
|
||
/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
|
||
false if it's not. */
|
||
|
||
#ifdef __STDC__
|
||
static boolean
|
||
group_in_compile_stack (compile_stack_type compile_stack, regnum_t regnum)
|
||
#else
|
||
static boolean
|
||
group_in_compile_stack (compile_stack, regnum)
|
||
compile_stack_type compile_stack;
|
||
regnum_t regnum;
|
||
#endif
|
||
{
|
||
int this_element;
|
||
|
||
for (this_element = compile_stack.avail - 1;
|
||
this_element >= 0;
|
||
this_element--)
|
||
if (compile_stack.stack[this_element].regnum == regnum)
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
#ifdef __FreeBSD__
|
||
static int collate_range_cmp (a, b)
|
||
int a, b;
|
||
{
|
||
int r;
|
||
static char s[2][2];
|
||
|
||
if ((unsigned char)a == (unsigned char)b)
|
||
return 0;
|
||
s[0][0] = a;
|
||
s[1][0] = b;
|
||
if ((r = strcoll(s[0], s[1])) == 0)
|
||
r = (unsigned char)a - (unsigned char)b;
|
||
return r;
|
||
}
|
||
#endif
|
||
|
||
/*
|
||
* Read the ending character of a range (in a bracket expression) from the
|
||
* uncompiled pattern *P_PTR (which ends at PEND). We assume the
|
||
* starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
|
||
* Then we set the translation of all bits between the starting and
|
||
* ending characters (inclusive) in the compiled pattern B.
|
||
*
|
||
* Return an error code.
|
||
*
|
||
* We use these short variable names so we can use the same macros as
|
||
* `regex_compile' itself.
|
||
*/
|
||
|
||
#ifdef __STDC__
|
||
static reg_errcode_t
|
||
compile_range (struct re_pattern_buffer * rxb, rx_Bitset cs,
|
||
__const__ char ** p_ptr, __const__ char * pend,
|
||
unsigned char * translate, reg_syntax_t syntax,
|
||
rx_Bitset inv_tr, char * valid_inv_tr)
|
||
#else
|
||
static reg_errcode_t
|
||
compile_range (rxb, cs, p_ptr, pend, translate, syntax, inv_tr, valid_inv_tr)
|
||
struct re_pattern_buffer * rxb;
|
||
rx_Bitset cs;
|
||
__const__ char ** p_ptr;
|
||
__const__ char * pend;
|
||
unsigned char * translate;
|
||
reg_syntax_t syntax;
|
||
rx_Bitset inv_tr;
|
||
char * valid_inv_tr;
|
||
#endif
|
||
{
|
||
unsigned this_char;
|
||
|
||
__const__ char *p = *p_ptr;
|
||
|
||
unsigned char range_end;
|
||
unsigned char range_start = TRANSLATE(p[-2]);
|
||
|
||
if (p == pend)
|
||
return REG_ERANGE;
|
||
|
||
PATFETCH (range_end);
|
||
|
||
(*p_ptr)++;
|
||
|
||
#ifdef __FreeBSD__
|
||
if (collate_range_cmp (range_start, range_end) > 0)
|
||
#else
|
||
if (range_start > range_end)
|
||
#endif
|
||
return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
|
||
|
||
#ifdef __FreeBSD__
|
||
for (this_char = 0; this_char < CHAR_SET_SIZE; this_char++)
|
||
if ( collate_range_cmp (range_start, this_char) <= 0
|
||
&& collate_range_cmp (this_char, range_end) <= 0
|
||
) {
|
||
rx_Bitset it =
|
||
inverse_translation (rxb, valid_inv_tr, inv_tr, translate, this_char);
|
||
rx_bitset_union (rxb->rx.local_cset_size, cs, it);
|
||
}
|
||
#else
|
||
for (this_char = range_start; this_char <= range_end; this_char++)
|
||
{
|
||
rx_Bitset it =
|
||
inverse_translation (rxb, valid_inv_tr, inv_tr, translate, this_char);
|
||
rx_bitset_union (rxb->rx.local_cset_size, cs, it);
|
||
}
|
||
#endif
|
||
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
|
||
/* This searches a regexp for backreference side effects.
|
||
* It fills in the array OUT with 1 at the index of every register pair
|
||
* referenced by a backreference.
|
||
*
|
||
* This is used to help optimize patterns for searching. The information is
|
||
* useful because, if the caller doesn't want register values, backreferenced
|
||
* registers are the only registers for which we need rx_backtrack.
|
||
*/
|
||
|
||
#ifdef __STDC__
|
||
static void
|
||
find_backrefs (char * out, struct rexp_node * rexp,
|
||
struct re_se_params * params)
|
||
#else
|
||
static void
|
||
find_backrefs (out, rexp, params)
|
||
char * out;
|
||
struct rexp_node * rexp;
|
||
struct re_se_params * params;
|
||
#endif
|
||
{
|
||
if (rexp)
|
||
switch (rexp->type)
|
||
{
|
||
case r_cset:
|
||
case r_data:
|
||
return;
|
||
case r_alternate:
|
||
case r_concat:
|
||
case r_opt:
|
||
case r_star:
|
||
case r_2phase_star:
|
||
find_backrefs (out, rexp->params.pair.left, params);
|
||
find_backrefs (out, rexp->params.pair.right, params);
|
||
return;
|
||
case r_side_effect:
|
||
if ( ((long)rexp->params.side_effect >= 0)
|
||
&& (params [(long)rexp->params.side_effect].se == re_se_backref))
|
||
out[ params [(long)rexp->params.side_effect].op1] = 1;
|
||
return;
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* Returns 0 unless the pattern can match the empty string. */
|
||
|
||
#ifdef __STDC__
|
||
static int
|
||
compute_fastset (struct re_pattern_buffer * rxb, struct rexp_node * rexp)
|
||
#else
|
||
static int
|
||
compute_fastset (rxb, rexp)
|
||
struct re_pattern_buffer * rxb;
|
||
struct rexp_node * rexp;
|
||
#endif
|
||
{
|
||
if (!rexp)
|
||
return 1;
|
||
switch (rexp->type)
|
||
{
|
||
case r_data:
|
||
return 1;
|
||
case r_cset:
|
||
{
|
||
rx_bitset_union (rxb->rx.local_cset_size,
|
||
rxb->fastset, rexp->params.cset);
|
||
}
|
||
return 0;
|
||
case r_concat:
|
||
return (compute_fastset (rxb, rexp->params.pair.left)
|
||
&& compute_fastset (rxb, rexp->params.pair.right));
|
||
case r_2phase_star:
|
||
compute_fastset (rxb, rexp->params.pair.left);
|
||
/* compute_fastset (rxb, rexp->params.pair.right); nope... */
|
||
return 1;
|
||
case r_alternate:
|
||
return !!(compute_fastset (rxb, rexp->params.pair.left)
|
||
+ compute_fastset (rxb, rexp->params.pair.right));
|
||
case r_opt:
|
||
case r_star:
|
||
compute_fastset (rxb, rexp->params.pair.left);
|
||
return 1;
|
||
case r_side_effect:
|
||
return 1;
|
||
}
|
||
|
||
/* this should never happen */
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* returns
|
||
* 1 -- yes, definately anchored by the given side effect.
|
||
* 2 -- maybe anchored, maybe the empty string.
|
||
* 0 -- definately not anchored
|
||
* There is simply no other possibility.
|
||
*/
|
||
|
||
#ifdef __STDC__
|
||
static int
|
||
is_anchored (struct rexp_node * rexp, rx_side_effect se)
|
||
#else
|
||
static int
|
||
is_anchored (rexp, se)
|
||
struct rexp_node * rexp;
|
||
rx_side_effect se;
|
||
#endif
|
||
{
|
||
if (!rexp)
|
||
return 2;
|
||
switch (rexp->type)
|
||
{
|
||
case r_cset:
|
||
case r_data:
|
||
return 0;
|
||
case r_concat:
|
||
case r_2phase_star:
|
||
{
|
||
int l = is_anchored (rexp->params.pair.left, se);
|
||
return (l == 2 ? is_anchored (rexp->params.pair.right, se) : l);
|
||
}
|
||
case r_alternate:
|
||
{
|
||
int l = is_anchored (rexp->params.pair.left, se);
|
||
int r = l ? is_anchored (rexp->params.pair.right, se) : 0;
|
||
|
||
if (l == r)
|
||
return l;
|
||
else if ((l == 0) || (r == 0))
|
||
return 0;
|
||
else
|
||
return 2;
|
||
}
|
||
case r_opt:
|
||
case r_star:
|
||
return is_anchored (rexp->params.pair.left, se) ? 2 : 0;
|
||
|
||
case r_side_effect:
|
||
return ((rexp->params.side_effect == se)
|
||
? 1 : 2);
|
||
}
|
||
|
||
/* this should never happen */
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* This removes register assignments that aren't required by backreferencing.
|
||
* This can speed up explore_future, especially if it eliminates
|
||
* non-determinism in the superstate NFA.
|
||
*
|
||
* NEEDED is an array of characters, presumably filled in by FIND_BACKREFS.
|
||
* The non-zero elements of the array indicate which register assignments
|
||
* can NOT be removed from the expression.
|
||
*/
|
||
|
||
#ifdef __STDC__
|
||
static struct rexp_node *
|
||
remove_unecessary_side_effects (struct rx * rx, char * needed,
|
||
struct rexp_node * rexp,
|
||
struct re_se_params * params)
|
||
#else
|
||
static struct rexp_node *
|
||
remove_unecessary_side_effects (rx, needed, rexp, params)
|
||
struct rx * rx;
|
||
char * needed;
|
||
struct rexp_node * rexp;
|
||
struct re_se_params * params;
|
||
#endif
|
||
{
|
||
struct rexp_node * l;
|
||
struct rexp_node * r;
|
||
if (!rexp)
|
||
return 0;
|
||
else
|
||
switch (rexp->type)
|
||
{
|
||
case r_cset:
|
||
case r_data:
|
||
return rexp;
|
||
case r_alternate:
|
||
case r_concat:
|
||
case r_2phase_star:
|
||
l = remove_unecessary_side_effects (rx, needed,
|
||
rexp->params.pair.left, params);
|
||
r = remove_unecessary_side_effects (rx, needed,
|
||
rexp->params.pair.right, params);
|
||
if ((l && r) || (rexp->type != r_concat))
|
||
{
|
||
rexp->params.pair.left = l;
|
||
rexp->params.pair.right = r;
|
||
return rexp;
|
||
}
|
||
else
|
||
{
|
||
rexp->params.pair.left = rexp->params.pair.right = 0;
|
||
rx_free_rexp (rx, rexp);
|
||
return l ? l : r;
|
||
}
|
||
case r_opt:
|
||
case r_star:
|
||
l = remove_unecessary_side_effects (rx, needed,
|
||
rexp->params.pair.left, params);
|
||
if (l)
|
||
{
|
||
rexp->params.pair.left = l;
|
||
return rexp;
|
||
}
|
||
else
|
||
{
|
||
rexp->params.pair.left = 0;
|
||
rx_free_rexp (rx, rexp);
|
||
return 0;
|
||
}
|
||
case r_side_effect:
|
||
{
|
||
int se = (long)rexp->params.side_effect;
|
||
if ( (se >= 0)
|
||
&& ( ((enum re_side_effects)params[se].se == re_se_lparen)
|
||
|| ((enum re_side_effects)params[se].se == re_se_rparen))
|
||
&& (params [se].op1 > 0)
|
||
&& (!needed [params [se].op1]))
|
||
{
|
||
rx_free_rexp (rx, rexp);
|
||
return 0;
|
||
}
|
||
else
|
||
return rexp;
|
||
}
|
||
}
|
||
|
||
/* this should never happen */
|
||
return 0;
|
||
}
|
||
|
||
|
||
|
||
#ifdef __STDC__
|
||
static int
|
||
pointless_if_repeated (struct rexp_node * node, struct re_se_params * params)
|
||
#else
|
||
static int
|
||
pointless_if_repeated (node, params)
|
||
struct rexp_node * node;
|
||
struct re_se_params * params;
|
||
#endif
|
||
{
|
||
if (!node)
|
||
return 1;
|
||
switch (node->type)
|
||
{
|
||
case r_cset:
|
||
return 0;
|
||
case r_alternate:
|
||
case r_concat:
|
||
case r_2phase_star:
|
||
return (pointless_if_repeated (node->params.pair.left, params)
|
||
&& pointless_if_repeated (node->params.pair.right, params));
|
||
case r_opt:
|
||
case r_star:
|
||
return pointless_if_repeated (node->params.pair.left, params);
|
||
case r_side_effect:
|
||
switch (((long)node->params.side_effect < 0)
|
||
? (enum re_side_effects)node->params.side_effect
|
||
: (enum re_side_effects)params[(long)node->params.side_effect].se)
|
||
{
|
||
case re_se_try:
|
||
case re_se_at_dot:
|
||
case re_se_begbuf:
|
||
case re_se_hat:
|
||
case re_se_wordbeg:
|
||
case re_se_wordbound:
|
||
case re_se_notwordbound:
|
||
case re_se_wordend:
|
||
case re_se_endbuf:
|
||
case re_se_dollar:
|
||
case re_se_fail:
|
||
case re_se_win:
|
||
return 1;
|
||
case re_se_lparen:
|
||
case re_se_rparen:
|
||
case re_se_iter:
|
||
case re_se_end_iter:
|
||
case re_se_syntax:
|
||
case re_se_not_syntax:
|
||
case re_se_backref:
|
||
return 0;
|
||
}
|
||
case r_data:
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
|
||
|
||
#ifdef __STDC__
|
||
static int
|
||
registers_on_stack (struct re_pattern_buffer * rxb,
|
||
struct rexp_node * rexp, int in_danger,
|
||
struct re_se_params * params)
|
||
#else
|
||
static int
|
||
registers_on_stack (rxb, rexp, in_danger, params)
|
||
struct re_pattern_buffer * rxb;
|
||
struct rexp_node * rexp;
|
||
int in_danger;
|
||
struct re_se_params * params;
|
||
#endif
|
||
{
|
||
if (!rexp)
|
||
return 0;
|
||
else
|
||
switch (rexp->type)
|
||
{
|
||
case r_cset:
|
||
case r_data:
|
||
return 0;
|
||
case r_alternate:
|
||
case r_concat:
|
||
return ( registers_on_stack (rxb, rexp->params.pair.left,
|
||
in_danger, params)
|
||
|| (registers_on_stack
|
||
(rxb, rexp->params.pair.right,
|
||
in_danger, params)));
|
||
case r_opt:
|
||
return registers_on_stack (rxb, rexp->params.pair.left, 0, params);
|
||
case r_star:
|
||
return registers_on_stack (rxb, rexp->params.pair.left, 1, params);
|
||
case r_2phase_star:
|
||
return
|
||
( registers_on_stack (rxb, rexp->params.pair.left, 1, params)
|
||
|| registers_on_stack (rxb, rexp->params.pair.right, 1, params));
|
||
case r_side_effect:
|
||
{
|
||
int se = (long)rexp->params.side_effect;
|
||
if ( in_danger
|
||
&& (se >= 0)
|
||
&& (params [se].op1 > 0)
|
||
&& ( ((enum re_side_effects)params[se].se == re_se_lparen)
|
||
|| ((enum re_side_effects)params[se].se == re_se_rparen)))
|
||
return 1;
|
||
else
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* this should never happen */
|
||
return 0;
|
||
}
|
||
|
||
|
||
|
||
static char idempotent_complex_se[] =
|
||
{
|
||
#define RX_WANT_SE_DEFS 1
|
||
#undef RX_DEF_SE
|
||
#undef RX_DEF_CPLX_SE
|
||
#define RX_DEF_SE(IDEM, NAME, VALUE)
|
||
#define RX_DEF_CPLX_SE(IDEM, NAME, VALUE) IDEM,
|
||
#include "rx.h"
|
||
#undef RX_DEF_SE
|
||
#undef RX_DEF_CPLX_SE
|
||
#undef RX_WANT_SE_DEFS
|
||
23
|
||
};
|
||
|
||
static char idempotent_se[] =
|
||
{
|
||
13,
|
||
#define RX_WANT_SE_DEFS 1
|
||
#undef RX_DEF_SE
|
||
#undef RX_DEF_CPLX_SE
|
||
#define RX_DEF_SE(IDEM, NAME, VALUE) IDEM,
|
||
#define RX_DEF_CPLX_SE(IDEM, NAME, VALUE)
|
||
#include "rx.h"
|
||
#undef RX_DEF_SE
|
||
#undef RX_DEF_CPLX_SE
|
||
#undef RX_WANT_SE_DEFS
|
||
42
|
||
};
|
||
|
||
|
||
|
||
|
||
#ifdef __STDC__
|
||
static int
|
||
has_any_se (struct rx * rx,
|
||
struct rexp_node * rexp)
|
||
#else
|
||
static int
|
||
has_any_se (rx, rexp)
|
||
struct rx * rx;
|
||
struct rexp_node * rexp;
|
||
#endif
|
||
{
|
||
if (!rexp)
|
||
return 0;
|
||
|
||
switch (rexp->type)
|
||
{
|
||
case r_cset:
|
||
case r_data:
|
||
return 0;
|
||
|
||
case r_side_effect:
|
||
return 1;
|
||
|
||
case r_2phase_star:
|
||
case r_concat:
|
||
case r_alternate:
|
||
return
|
||
( has_any_se (rx, rexp->params.pair.left)
|
||
|| has_any_se (rx, rexp->params.pair.right));
|
||
|
||
case r_opt:
|
||
case r_star:
|
||
return has_any_se (rx, rexp->params.pair.left);
|
||
}
|
||
|
||
/* this should never happen */
|
||
return 0;
|
||
}
|
||
|
||
|
||
|
||
/* This must be called AFTER `convert_hard_loops' for a given REXP. */
|
||
#ifdef __STDC__
|
||
static int
|
||
has_non_idempotent_epsilon_path (struct rx * rx,
|
||
struct rexp_node * rexp,
|
||
struct re_se_params * params)
|
||
#else
|
||
static int
|
||
has_non_idempotent_epsilon_path (rx, rexp, params)
|
||
struct rx * rx;
|
||
struct rexp_node * rexp;
|
||
struct re_se_params * params;
|
||
#endif
|
||
{
|
||
if (!rexp)
|
||
return 0;
|
||
|
||
switch (rexp->type)
|
||
{
|
||
case r_cset:
|
||
case r_data:
|
||
case r_star:
|
||
return 0;
|
||
|
||
case r_side_effect:
|
||
return
|
||
!((long)rexp->params.side_effect > 0
|
||
? idempotent_complex_se [ params [(long)rexp->params.side_effect].se ]
|
||
: idempotent_se [-(long)rexp->params.side_effect]);
|
||
|
||
case r_alternate:
|
||
return
|
||
( has_non_idempotent_epsilon_path (rx,
|
||
rexp->params.pair.left, params)
|
||
|| has_non_idempotent_epsilon_path (rx,
|
||
rexp->params.pair.right, params));
|
||
|
||
case r_2phase_star:
|
||
case r_concat:
|
||
return
|
||
( has_non_idempotent_epsilon_path (rx,
|
||
rexp->params.pair.left, params)
|
||
&& has_non_idempotent_epsilon_path (rx,
|
||
rexp->params.pair.right, params));
|
||
|
||
case r_opt:
|
||
return has_non_idempotent_epsilon_path (rx,
|
||
rexp->params.pair.left, params);
|
||
}
|
||
|
||
/* this should never happen */
|
||
return 0;
|
||
}
|
||
|
||
|
||
|
||
/* This computes rougly what it's name suggests. It can (and does) go wrong
|
||
* in the direction of returning spurious 0 without causing disasters.
|
||
*/
|
||
#ifdef __STDC__
|
||
static int
|
||
begins_with_complex_se (struct rx * rx, struct rexp_node * rexp)
|
||
#else
|
||
static int
|
||
begins_with_complex_se (rx, rexp)
|
||
struct rx * rx;
|
||
struct rexp_node * rexp;
|
||
#endif
|
||
{
|
||
if (!rexp)
|
||
return 0;
|
||
|
||
switch (rexp->type)
|
||
{
|
||
case r_cset:
|
||
case r_data:
|
||
return 0;
|
||
|
||
case r_side_effect:
|
||
return ((long)rexp->params.side_effect >= 0);
|
||
|
||
case r_alternate:
|
||
return
|
||
( begins_with_complex_se (rx, rexp->params.pair.left)
|
||
&& begins_with_complex_se (rx, rexp->params.pair.right));
|
||
|
||
|
||
case r_concat:
|
||
return has_any_se (rx, rexp->params.pair.left);
|
||
case r_opt:
|
||
case r_star:
|
||
case r_2phase_star:
|
||
return 0;
|
||
}
|
||
|
||
/* this should never happen */
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* This destructively removes some of the re_se_tv side effects from
|
||
* a rexp tree. In particular, during parsing re_se_tv was inserted on the
|
||
* right half of every | to guarantee that posix path preference could be
|
||
* honored. This function removes some which it can be determined aren't
|
||
* needed.
|
||
*/
|
||
|
||
#ifdef __STDC__
|
||
static void
|
||
speed_up_alt (struct rx * rx,
|
||
struct rexp_node * rexp,
|
||
int unposix)
|
||
#else
|
||
static void
|
||
speed_up_alt (rx, rexp, unposix)
|
||
struct rx * rx;
|
||
struct rexp_node * rexp;
|
||
int unposix;
|
||
#endif
|
||
{
|
||
if (!rexp)
|
||
return;
|
||
|
||
switch (rexp->type)
|
||
{
|
||
case r_cset:
|
||
case r_data:
|
||
case r_side_effect:
|
||
return;
|
||
|
||
case r_opt:
|
||
case r_star:
|
||
speed_up_alt (rx, rexp->params.pair.left, unposix);
|
||
return;
|
||
|
||
case r_2phase_star:
|
||
case r_concat:
|
||
speed_up_alt (rx, rexp->params.pair.left, unposix);
|
||
speed_up_alt (rx, rexp->params.pair.right, unposix);
|
||
return;
|
||
|
||
case r_alternate:
|
||
/* the right child is guaranteed to be (concat re_se_tv <subexp>) */
|
||
|
||
speed_up_alt (rx, rexp->params.pair.left, unposix);
|
||
speed_up_alt (rx, rexp->params.pair.right->params.pair.right, unposix);
|
||
|
||
if ( unposix
|
||
|| (begins_with_complex_se
|
||
(rx, rexp->params.pair.right->params.pair.right))
|
||
|| !( has_any_se (rx, rexp->params.pair.right->params.pair.right)
|
||
|| has_any_se (rx, rexp->params.pair.left)))
|
||
{
|
||
struct rexp_node * conc = rexp->params.pair.right;
|
||
rexp->params.pair.right = conc->params.pair.right;
|
||
conc->params.pair.right = 0;
|
||
rx_free_rexp (rx, conc);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
|
||
|
||
|
||
/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
|
||
Returns one of error codes defined in `regex.h', or zero for success.
|
||
|
||
Assumes the `allocated' (and perhaps `buffer') and `translate'
|
||
fields are set in BUFP on entry.
|
||
|
||
If it succeeds, results are put in BUFP (if it returns an error, the
|
||
contents of BUFP are undefined):
|
||
`buffer' is the compiled pattern;
|
||
`syntax' is set to SYNTAX;
|
||
`used' is set to the length of the compiled pattern;
|
||
`fastmap_accurate' is set to zero;
|
||
`re_nsub' is set to the number of groups in PATTERN;
|
||
`not_bol' and `not_eol' are set to zero.
|
||
|
||
The `fastmap' and `newline_anchor' fields are neither
|
||
examined nor set. */
|
||
|
||
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL reg_errcode_t
|
||
rx_compile (__const__ char *pattern, int size,
|
||
reg_syntax_t syntax,
|
||
struct re_pattern_buffer * rxb)
|
||
#else
|
||
RX_DECL reg_errcode_t
|
||
rx_compile (pattern, size, syntax, rxb)
|
||
__const__ char *pattern;
|
||
int size;
|
||
reg_syntax_t syntax;
|
||
struct re_pattern_buffer * rxb;
|
||
#endif
|
||
{
|
||
RX_subset
|
||
inverse_translate [CHAR_SET_SIZE * rx_bitset_numb_subsets(CHAR_SET_SIZE)];
|
||
char
|
||
validate_inv_tr [CHAR_SET_SIZE * rx_bitset_numb_subsets(CHAR_SET_SIZE)];
|
||
|
||
/* We fetch characters from PATTERN here. Even though PATTERN is
|
||
`char *' (i.e., signed), we declare these variables as unsigned, so
|
||
they can be reliably used as array indices. */
|
||
register unsigned char c, c1;
|
||
|
||
/* A random tempory spot in PATTERN. */
|
||
__const__ char *p1;
|
||
|
||
/* Keeps track of unclosed groups. */
|
||
compile_stack_type compile_stack;
|
||
|
||
/* Points to the current (ending) position in the pattern. */
|
||
__const__ char *p = pattern;
|
||
__const__ char *pend = pattern + size;
|
||
|
||
/* How to translate the characters in the pattern. */
|
||
unsigned char *translate = (rxb->translate
|
||
? rxb->translate
|
||
: rx_id_translation);
|
||
|
||
/* When parsing is done, this will hold the expression tree. */
|
||
struct rexp_node * rexp = 0;
|
||
|
||
/* In the midst of compilation, this holds onto the regexp
|
||
* first parst while rexp goes on to aquire additional constructs.
|
||
*/
|
||
struct rexp_node * orig_rexp = 0;
|
||
struct rexp_node * fewer_side_effects = 0;
|
||
|
||
/* This and top_expression are saved on the compile stack. */
|
||
struct rexp_node ** top_expression = &rexp;
|
||
struct rexp_node ** last_expression = top_expression;
|
||
|
||
/* Parameter to `goto append_node' */
|
||
struct rexp_node * append;
|
||
|
||
/* Counts open-groups as they are encountered. This is the index of the
|
||
* innermost group being compiled.
|
||
*/
|
||
regnum_t regnum = 0;
|
||
|
||
/* Place in the uncompiled pattern (i.e., the {) to
|
||
* which to go back if the interval is invalid.
|
||
*/
|
||
__const__ char *beg_interval;
|
||
|
||
struct re_se_params * params = 0;
|
||
int paramc = 0; /* How many complex side effects so far? */
|
||
|
||
rx_side_effect side; /* param to `goto add_side_effect' */
|
||
|
||
bzero (validate_inv_tr, sizeof (validate_inv_tr));
|
||
|
||
rxb->rx.instruction_table = rx_id_instruction_table;
|
||
|
||
|
||
/* Initialize the compile stack. */
|
||
compile_stack.stack = (( compile_stack_elt_t *) malloc ((INIT_COMPILE_STACK_SIZE) * sizeof ( compile_stack_elt_t)));
|
||
if (compile_stack.stack == 0)
|
||
return REG_ESPACE;
|
||
|
||
compile_stack.size = INIT_COMPILE_STACK_SIZE;
|
||
compile_stack.avail = 0;
|
||
|
||
/* Initialize the pattern buffer. */
|
||
rxb->rx.cache = &default_cache;
|
||
rxb->syntax = syntax;
|
||
rxb->fastmap_accurate = 0;
|
||
rxb->not_bol = rxb->not_eol = 0;
|
||
rxb->least_subs = 0;
|
||
|
||
/* Always count groups, whether or not rxb->no_sub is set.
|
||
* The whole pattern is implicitly group 0, so counting begins
|
||
* with 1.
|
||
*/
|
||
rxb->re_nsub = 0;
|
||
|
||
#if !defined (emacs) && !defined (SYNTAX_TABLE)
|
||
/* Initialize the syntax table. */
|
||
init_syntax_once ();
|
||
#endif
|
||
|
||
/* Loop through the uncompiled pattern until we're at the end. */
|
||
while (p != pend)
|
||
{
|
||
PATFETCH (c);
|
||
|
||
switch (c)
|
||
{
|
||
case '^':
|
||
{
|
||
if ( /* If at start of pattern, it's an operator. */
|
||
p == pattern + 1
|
||
/* If context independent, it's an operator. */
|
||
|| syntax & RE_CONTEXT_INDEP_ANCHORS
|
||
/* Otherwise, depends on what's come before. */
|
||
|| at_begline_loc_p (pattern, p, syntax))
|
||
{
|
||
struct rexp_node * n
|
||
= rx_mk_r_side_effect (&rxb->rx, (rx_side_effect)re_se_hat);
|
||
if (!n)
|
||
return REG_ESPACE;
|
||
append = n;
|
||
goto append_node;
|
||
}
|
||
else
|
||
goto normal_char;
|
||
}
|
||
break;
|
||
|
||
|
||
case '$':
|
||
{
|
||
if ( /* If at end of pattern, it's an operator. */
|
||
p == pend
|
||
/* If context independent, it's an operator. */
|
||
|| syntax & RE_CONTEXT_INDEP_ANCHORS
|
||
/* Otherwise, depends on what's next. */
|
||
|| at_endline_loc_p (p, pend, syntax))
|
||
{
|
||
struct rexp_node * n
|
||
= rx_mk_r_side_effect (&rxb->rx, (rx_side_effect)re_se_dollar);
|
||
if (!n)
|
||
return REG_ESPACE;
|
||
append = n;
|
||
goto append_node;
|
||
}
|
||
else
|
||
goto normal_char;
|
||
}
|
||
break;
|
||
|
||
|
||
case '+':
|
||
case '?':
|
||
if ((syntax & RE_BK_PLUS_QM)
|
||
|| (syntax & RE_LIMITED_OPS))
|
||
goto normal_char;
|
||
|
||
handle_plus:
|
||
case '*':
|
||
/* If there is no previous pattern... */
|
||
if (pointless_if_repeated (*last_expression, params))
|
||
{
|
||
if (syntax & RE_CONTEXT_INVALID_OPS)
|
||
return REG_BADRPT;
|
||
else if (!(syntax & RE_CONTEXT_INDEP_OPS))
|
||
goto normal_char;
|
||
}
|
||
|
||
{
|
||
/* 1 means zero (many) matches is allowed. */
|
||
char zero_times_ok = 0, many_times_ok = 0;
|
||
|
||
/* If there is a sequence of repetition chars, collapse it
|
||
down to just one (the right one). We can't combine
|
||
interval operators with these because of, e.g., `a{2}*',
|
||
which should only match an even number of `a's. */
|
||
|
||
for (;;)
|
||
{
|
||
zero_times_ok |= c != '+';
|
||
many_times_ok |= c != '?';
|
||
|
||
if (p == pend)
|
||
break;
|
||
|
||
PATFETCH (c);
|
||
|
||
if (c == '*'
|
||
|| (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
|
||
;
|
||
|
||
else if (syntax & RE_BK_PLUS_QM && c == '\\')
|
||
{
|
||
if (p == pend) return REG_EESCAPE;
|
||
|
||
PATFETCH (c1);
|
||
if (!(c1 == '+' || c1 == '?'))
|
||
{
|
||
PATUNFETCH;
|
||
PATUNFETCH;
|
||
break;
|
||
}
|
||
|
||
c = c1;
|
||
}
|
||
else
|
||
{
|
||
PATUNFETCH;
|
||
break;
|
||
}
|
||
|
||
/* If we get here, we found another repeat character. */
|
||
}
|
||
|
||
/* Star, etc. applied to an empty pattern is equivalent
|
||
to an empty pattern. */
|
||
if (!last_expression)
|
||
break;
|
||
|
||
/* Now we know whether or not zero matches is allowed
|
||
* and also whether or not two or more matches is allowed.
|
||
*/
|
||
|
||
{
|
||
struct rexp_node * inner_exp = *last_expression;
|
||
int need_sync = 0;
|
||
|
||
if (many_times_ok
|
||
&& has_non_idempotent_epsilon_path (&rxb->rx,
|
||
inner_exp, params))
|
||
{
|
||
struct rexp_node * pusher
|
||
= rx_mk_r_side_effect (&rxb->rx,
|
||
(rx_side_effect)re_se_pushpos);
|
||
struct rexp_node * checker
|
||
= rx_mk_r_side_effect (&rxb->rx,
|
||
(rx_side_effect)re_se_chkpos);
|
||
struct rexp_node * pushback
|
||
= rx_mk_r_side_effect (&rxb->rx,
|
||
(rx_side_effect)re_se_pushback);
|
||
rx_Bitset cs = rx_cset (&rxb->rx);
|
||
struct rexp_node * lit_t = rx_mk_r_cset (&rxb->rx, cs);
|
||
struct rexp_node * fake_state
|
||
= rx_mk_r_concat (&rxb->rx, pushback, lit_t);
|
||
struct rexp_node * phase2
|
||
= rx_mk_r_concat (&rxb->rx, checker, fake_state);
|
||
struct rexp_node * popper
|
||
= rx_mk_r_side_effect (&rxb->rx,
|
||
(rx_side_effect)re_se_poppos);
|
||
struct rexp_node * star
|
||
= rx_mk_r_2phase_star (&rxb->rx, inner_exp, phase2);
|
||
struct rexp_node * a
|
||
= rx_mk_r_concat (&rxb->rx, pusher, star);
|
||
struct rexp_node * whole_thing
|
||
= rx_mk_r_concat (&rxb->rx, a, popper);
|
||
if (!(pusher && star && pushback && lit_t && fake_state
|
||
&& lit_t && phase2 && checker && popper
|
||
&& a && whole_thing))
|
||
return REG_ESPACE;
|
||
RX_bitset_enjoin (cs, 't');
|
||
*last_expression = whole_thing;
|
||
}
|
||
else
|
||
{
|
||
struct rexp_node * star =
|
||
(many_times_ok ? rx_mk_r_star : rx_mk_r_opt)
|
||
(&rxb->rx, *last_expression);
|
||
if (!star)
|
||
return REG_ESPACE;
|
||
*last_expression = star;
|
||
need_sync = has_any_se (&rxb->rx, *last_expression);
|
||
}
|
||
if (!zero_times_ok)
|
||
{
|
||
struct rexp_node * concat
|
||
= rx_mk_r_concat (&rxb->rx,
|
||
rx_copy_rexp (&rxb->rx,
|
||
inner_exp),
|
||
*last_expression);
|
||
if (!concat)
|
||
return REG_ESPACE;
|
||
*last_expression = concat;
|
||
}
|
||
if (need_sync)
|
||
{
|
||
int sync_se = paramc;
|
||
params = (params
|
||
? ((struct re_se_params *)
|
||
realloc (params,
|
||
sizeof (*params) * (1 + paramc)))
|
||
: ((struct re_se_params *)
|
||
malloc (sizeof (*params))));
|
||
if (!params)
|
||
return REG_ESPACE;
|
||
++paramc;
|
||
params [sync_se].se = re_se_tv;
|
||
side = (rx_side_effect)sync_se;
|
||
goto add_side_effect;
|
||
}
|
||
}
|
||
/* The old regex.c used to optimize `.*\n'.
|
||
* Maybe rx should too?
|
||
*/
|
||
}
|
||
break;
|
||
|
||
|
||
case '.':
|
||
{
|
||
rx_Bitset cs = rx_cset (&rxb->rx);
|
||
struct rexp_node * n = rx_mk_r_cset (&rxb->rx, cs);
|
||
if (!(cs && n))
|
||
return REG_ESPACE;
|
||
|
||
rx_bitset_universe (rxb->rx.local_cset_size, cs);
|
||
if (!(rxb->syntax & RE_DOT_NEWLINE))
|
||
RX_bitset_remove (cs, '\n');
|
||
if (!(rxb->syntax & RE_DOT_NOT_NULL))
|
||
RX_bitset_remove (cs, 0);
|
||
|
||
append = n;
|
||
goto append_node;
|
||
break;
|
||
}
|
||
|
||
|
||
case '[':
|
||
if (p == pend) return REG_EBRACK;
|
||
{
|
||
boolean had_char_class = false;
|
||
rx_Bitset cs = rx_cset (&rxb->rx);
|
||
struct rexp_node * node = rx_mk_r_cset (&rxb->rx, cs);
|
||
int is_inverted = *p == '^';
|
||
|
||
if (!(node && cs))
|
||
return REG_ESPACE;
|
||
|
||
/* This branch of the switch is normally exited with
|
||
*`goto append_node'
|
||
*/
|
||
append = node;
|
||
|
||
if (is_inverted)
|
||
p++;
|
||
|
||
/* Remember the first position in the bracket expression. */
|
||
p1 = p;
|
||
|
||
/* Read in characters and ranges, setting map bits. */
|
||
for (;;)
|
||
{
|
||
if (p == pend) return REG_EBRACK;
|
||
|
||
PATFETCH (c);
|
||
|
||
/* \ might escape characters inside [...] and [^...]. */
|
||
if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
|
||
{
|
||
if (p == pend) return REG_EESCAPE;
|
||
|
||
PATFETCH (c1);
|
||
{
|
||
rx_Bitset it = inverse_translation (rxb,
|
||
validate_inv_tr,
|
||
inverse_translate,
|
||
translate,
|
||
c1);
|
||
rx_bitset_union (rxb->rx.local_cset_size, cs, it);
|
||
}
|
||
continue;
|
||
}
|
||
|
||
/* Could be the end of the bracket expression. If it's
|
||
not (i.e., when the bracket expression is `[]' so
|
||
far), the ']' character bit gets set way below. */
|
||
if (c == ']' && p != p1 + 1)
|
||
goto finalize_class_and_append;
|
||
|
||
/* Look ahead to see if it's a range when the last thing
|
||
was a character class. */
|
||
if (had_char_class && c == '-' && *p != ']')
|
||
return REG_ERANGE;
|
||
|
||
/* Look ahead to see if it's a range when the last thing
|
||
was a character: if this is a hyphen not at the
|
||
beginning or the end of a list, then it's the range
|
||
operator. */
|
||
if (c == '-'
|
||
&& !(p - 2 >= pattern && p[-2] == '[')
|
||
&& !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
|
||
&& *p != ']')
|
||
{
|
||
reg_errcode_t ret
|
||
= compile_range (rxb, cs, &p, pend, translate, syntax,
|
||
inverse_translate, validate_inv_tr);
|
||
if (ret != REG_NOERROR) return ret;
|
||
}
|
||
|
||
else if (p[0] == '-' && p[1] != ']')
|
||
{ /* This handles ranges made up of characters only. */
|
||
reg_errcode_t ret;
|
||
|
||
/* Move past the `-'. */
|
||
PATFETCH (c1);
|
||
|
||
ret = compile_range (rxb, cs, &p, pend, translate, syntax,
|
||
inverse_translate, validate_inv_tr);
|
||
if (ret != REG_NOERROR) return ret;
|
||
}
|
||
|
||
/* See if we're at the beginning of a possible character
|
||
class. */
|
||
|
||
else if ((syntax & RE_CHAR_CLASSES)
|
||
&& (c == '[') && (*p == ':'))
|
||
{
|
||
char str[CHAR_CLASS_MAX_LENGTH + 1];
|
||
|
||
PATFETCH (c);
|
||
c1 = 0;
|
||
|
||
/* If pattern is `[[:'. */
|
||
if (p == pend) return REG_EBRACK;
|
||
|
||
for (;;)
|
||
{
|
||
PATFETCH (c);
|
||
if (c == ':' || c == ']' || p == pend
|
||
|| c1 == CHAR_CLASS_MAX_LENGTH)
|
||
break;
|
||
str[c1++] = c;
|
||
}
|
||
str[c1] = '\0';
|
||
|
||
/* If isn't a word bracketed by `[:' and:`]':
|
||
undo the ending character, the letters, and leave
|
||
the leading `:' and `[' (but set bits for them). */
|
||
if (c == ':' && *p == ']')
|
||
{
|
||
int ch;
|
||
boolean is_alnum = !strcmp (str, "alnum");
|
||
boolean is_alpha = !strcmp (str, "alpha");
|
||
boolean is_blank = !strcmp (str, "blank");
|
||
boolean is_cntrl = !strcmp (str, "cntrl");
|
||
boolean is_digit = !strcmp (str, "digit");
|
||
boolean is_graph = !strcmp (str, "graph");
|
||
boolean is_lower = !strcmp (str, "lower");
|
||
boolean is_print = !strcmp (str, "print");
|
||
boolean is_punct = !strcmp (str, "punct");
|
||
boolean is_space = !strcmp (str, "space");
|
||
boolean is_upper = !strcmp (str, "upper");
|
||
boolean is_xdigit = !strcmp (str, "xdigit");
|
||
|
||
if (!IS_CHAR_CLASS (str)) return REG_ECTYPE;
|
||
|
||
/* Throw away the ] at the end of the character
|
||
class. */
|
||
PATFETCH (c);
|
||
|
||
if (p == pend) return REG_EBRACK;
|
||
|
||
for (ch = 0; ch < 1 << CHARBITS; ch++)
|
||
{
|
||
if ( (is_alnum && isalnum (ch))
|
||
|| (is_alpha && isalpha (ch))
|
||
|| (is_blank && isblank (ch))
|
||
|| (is_cntrl && iscntrl (ch))
|
||
|| (is_digit && isdigit (ch))
|
||
|| (is_graph && isgraph (ch))
|
||
|| (is_lower && islower (ch))
|
||
|| (is_print && isprint (ch))
|
||
|| (is_punct && ispunct (ch))
|
||
|| (is_space && isspace (ch))
|
||
|| (is_upper && isupper (ch))
|
||
|| (is_xdigit && isxdigit (ch)))
|
||
{
|
||
rx_Bitset it =
|
||
inverse_translation (rxb,
|
||
validate_inv_tr,
|
||
inverse_translate,
|
||
translate,
|
||
ch);
|
||
rx_bitset_union (rxb->rx.local_cset_size,
|
||
cs, it);
|
||
}
|
||
}
|
||
had_char_class = true;
|
||
}
|
||
else
|
||
{
|
||
c1++;
|
||
while (c1--)
|
||
PATUNFETCH;
|
||
{
|
||
rx_Bitset it =
|
||
inverse_translation (rxb,
|
||
validate_inv_tr,
|
||
inverse_translate,
|
||
translate,
|
||
'[');
|
||
rx_bitset_union (rxb->rx.local_cset_size,
|
||
cs, it);
|
||
}
|
||
{
|
||
rx_Bitset it =
|
||
inverse_translation (rxb,
|
||
validate_inv_tr,
|
||
inverse_translate,
|
||
translate,
|
||
':');
|
||
rx_bitset_union (rxb->rx.local_cset_size,
|
||
cs, it);
|
||
}
|
||
had_char_class = false;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
had_char_class = false;
|
||
{
|
||
rx_Bitset it = inverse_translation (rxb,
|
||
validate_inv_tr,
|
||
inverse_translate,
|
||
translate,
|
||
c);
|
||
rx_bitset_union (rxb->rx.local_cset_size, cs, it);
|
||
}
|
||
}
|
||
}
|
||
|
||
finalize_class_and_append:
|
||
if (is_inverted)
|
||
{
|
||
rx_bitset_complement (rxb->rx.local_cset_size, cs);
|
||
if (syntax & RE_HAT_LISTS_NOT_NEWLINE)
|
||
RX_bitset_remove (cs, '\n');
|
||
}
|
||
goto append_node;
|
||
}
|
||
break;
|
||
|
||
|
||
case '(':
|
||
if (syntax & RE_NO_BK_PARENS)
|
||
goto handle_open;
|
||
else
|
||
goto normal_char;
|
||
|
||
|
||
case ')':
|
||
if (syntax & RE_NO_BK_PARENS)
|
||
goto handle_close;
|
||
else
|
||
goto normal_char;
|
||
|
||
|
||
case '\n':
|
||
if (syntax & RE_NEWLINE_ALT)
|
||
goto handle_alt;
|
||
else
|
||
goto normal_char;
|
||
|
||
|
||
case '|':
|
||
if (syntax & RE_NO_BK_VBAR)
|
||
goto handle_alt;
|
||
else
|
||
goto normal_char;
|
||
|
||
|
||
case '{':
|
||
if ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
|
||
goto handle_interval;
|
||
else
|
||
goto normal_char;
|
||
|
||
|
||
case '\\':
|
||
if (p == pend) return REG_EESCAPE;
|
||
|
||
/* Do not translate the character after the \, so that we can
|
||
distinguish, e.g., \B from \b, even if we normally would
|
||
translate, e.g., B to b. */
|
||
PATFETCH_RAW (c);
|
||
|
||
switch (c)
|
||
{
|
||
case '(':
|
||
if (syntax & RE_NO_BK_PARENS)
|
||
goto normal_backslash;
|
||
|
||
handle_open:
|
||
rxb->re_nsub++;
|
||
regnum++;
|
||
if (COMPILE_STACK_FULL)
|
||
{
|
||
((compile_stack.stack) =
|
||
(compile_stack_elt_t *) realloc (compile_stack.stack, ( compile_stack.size << 1) * sizeof (
|
||
compile_stack_elt_t)));
|
||
if (compile_stack.stack == 0) return REG_ESPACE;
|
||
|
||
compile_stack.size <<= 1;
|
||
}
|
||
|
||
if (*last_expression)
|
||
{
|
||
struct rexp_node * concat
|
||
= rx_mk_r_concat (&rxb->rx, *last_expression, 0);
|
||
if (!concat)
|
||
return REG_ESPACE;
|
||
*last_expression = concat;
|
||
last_expression = &concat->params.pair.right;
|
||
}
|
||
|
||
/*
|
||
* These are the values to restore when we hit end of this
|
||
* group.
|
||
*/
|
||
COMPILE_STACK_TOP.top_expression = top_expression;
|
||
COMPILE_STACK_TOP.last_expression = last_expression;
|
||
COMPILE_STACK_TOP.regnum = regnum;
|
||
|
||
compile_stack.avail++;
|
||
|
||
top_expression = last_expression;
|
||
break;
|
||
|
||
|
||
case ')':
|
||
if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
|
||
|
||
handle_close:
|
||
/* See similar code for backslashed left paren above. */
|
||
if (COMPILE_STACK_EMPTY)
|
||
if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
|
||
goto normal_char;
|
||
else
|
||
return REG_ERPAREN;
|
||
|
||
/* Since we just checked for an empty stack above, this
|
||
``can't happen''. */
|
||
|
||
{
|
||
/* We don't just want to restore into `regnum', because
|
||
later groups should continue to be numbered higher,
|
||
as in `(ab)c(de)' -- the second group is #2. */
|
||
regnum_t this_group_regnum;
|
||
struct rexp_node ** inner = top_expression;
|
||
|
||
compile_stack.avail--;
|
||
top_expression = COMPILE_STACK_TOP.top_expression;
|
||
last_expression = COMPILE_STACK_TOP.last_expression;
|
||
this_group_regnum = COMPILE_STACK_TOP.regnum;
|
||
{
|
||
int left_se = paramc;
|
||
int right_se = paramc + 1;
|
||
|
||
params = (params
|
||
? ((struct re_se_params *)
|
||
realloc (params,
|
||
(paramc + 2) * sizeof (params[0])))
|
||
: ((struct re_se_params *)
|
||
malloc (2 * sizeof (params[0]))));
|
||
if (!params)
|
||
return REG_ESPACE;
|
||
paramc += 2;
|
||
|
||
params[left_se].se = re_se_lparen;
|
||
params[left_se].op1 = this_group_regnum;
|
||
params[right_se].se = re_se_rparen;
|
||
params[right_se].op1 = this_group_regnum;
|
||
{
|
||
struct rexp_node * left
|
||
= rx_mk_r_side_effect (&rxb->rx,
|
||
(rx_side_effect)left_se);
|
||
struct rexp_node * right
|
||
= rx_mk_r_side_effect (&rxb->rx,
|
||
(rx_side_effect)right_se);
|
||
struct rexp_node * c1
|
||
= (*inner
|
||
? rx_mk_r_concat (&rxb->rx, left, *inner) : left);
|
||
struct rexp_node * c2
|
||
= rx_mk_r_concat (&rxb->rx, c1, right);
|
||
if (!(left && right && c1 && c2))
|
||
return REG_ESPACE;
|
||
*inner = c2;
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
|
||
case '|': /* `\|'. */
|
||
if ((syntax & RE_LIMITED_OPS) || (syntax & RE_NO_BK_VBAR))
|
||
goto normal_backslash;
|
||
handle_alt:
|
||
if (syntax & RE_LIMITED_OPS)
|
||
goto normal_char;
|
||
|
||
{
|
||
struct rexp_node * alt
|
||
= rx_mk_r_alternate (&rxb->rx, *top_expression, 0);
|
||
if (!alt)
|
||
return REG_ESPACE;
|
||
*top_expression = alt;
|
||
last_expression = &alt->params.pair.right;
|
||
{
|
||
int sync_se = paramc;
|
||
|
||
params = (params
|
||
? ((struct re_se_params *)
|
||
realloc (params,
|
||
(paramc + 1) * sizeof (params[0])))
|
||
: ((struct re_se_params *)
|
||
malloc (sizeof (params[0]))));
|
||
if (!params)
|
||
return REG_ESPACE;
|
||
++paramc;
|
||
|
||
params[sync_se].se = re_se_tv;
|
||
{
|
||
struct rexp_node * sync
|
||
= rx_mk_r_side_effect (&rxb->rx,
|
||
(rx_side_effect)sync_se);
|
||
struct rexp_node * conc
|
||
= rx_mk_r_concat (&rxb->rx, sync, 0);
|
||
|
||
if (!sync || !conc)
|
||
return REG_ESPACE;
|
||
|
||
*last_expression = conc;
|
||
last_expression = &conc->params.pair.right;
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
|
||
|
||
case '{':
|
||
/* If \{ is a literal. */
|
||
if (!(syntax & RE_INTERVALS)
|
||
/* If we're at `\{' and it's not the open-interval
|
||
operator. */
|
||
|| ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
|
||
|| (p - 2 == pattern && p == pend))
|
||
goto normal_backslash;
|
||
|
||
handle_interval:
|
||
{
|
||
/* If got here, then the syntax allows intervals. */
|
||
|
||
/* At least (most) this many matches must be made. */
|
||
int lower_bound = -1, upper_bound = -1;
|
||
|
||
beg_interval = p - 1;
|
||
|
||
if (p == pend)
|
||
{
|
||
if (syntax & RE_NO_BK_BRACES)
|
||
goto unfetch_interval;
|
||
else
|
||
return REG_EBRACE;
|
||
}
|
||
|
||
GET_UNSIGNED_NUMBER (lower_bound);
|
||
|
||
if (c == ',')
|
||
{
|
||
GET_UNSIGNED_NUMBER (upper_bound);
|
||
if (upper_bound < 0) upper_bound = RE_DUP_MAX;
|
||
}
|
||
else
|
||
/* Interval such as `{1}' => match exactly once. */
|
||
upper_bound = lower_bound;
|
||
|
||
if (lower_bound < 0 || upper_bound > RE_DUP_MAX
|
||
|| lower_bound > upper_bound)
|
||
{
|
||
if (syntax & RE_NO_BK_BRACES)
|
||
goto unfetch_interval;
|
||
else
|
||
return REG_BADBR;
|
||
}
|
||
|
||
if (!(syntax & RE_NO_BK_BRACES))
|
||
{
|
||
if (c != '\\') return REG_EBRACE;
|
||
PATFETCH (c);
|
||
}
|
||
|
||
if (c != '}')
|
||
{
|
||
if (syntax & RE_NO_BK_BRACES)
|
||
goto unfetch_interval;
|
||
else
|
||
return REG_BADBR;
|
||
}
|
||
|
||
/* We just parsed a valid interval. */
|
||
|
||
/* If it's invalid to have no preceding re. */
|
||
if (pointless_if_repeated (*last_expression, params))
|
||
{
|
||
if (syntax & RE_CONTEXT_INVALID_OPS)
|
||
return REG_BADRPT;
|
||
else if (!(syntax & RE_CONTEXT_INDEP_OPS))
|
||
goto unfetch_interval;
|
||
/* was: else laststart = b; */
|
||
}
|
||
|
||
/* If the upper bound is zero, don't want to iterate
|
||
* at all.
|
||
*/
|
||
if (upper_bound == 0)
|
||
{
|
||
if (*last_expression)
|
||
{
|
||
rx_free_rexp (&rxb->rx, *last_expression);
|
||
*last_expression = 0;
|
||
}
|
||
}
|
||
else
|
||
/* Otherwise, we have a nontrivial interval. */
|
||
{
|
||
int iter_se = paramc;
|
||
int end_se = paramc + 1;
|
||
params = (params
|
||
? ((struct re_se_params *)
|
||
realloc (params,
|
||
sizeof (*params) * (2 + paramc)))
|
||
: ((struct re_se_params *)
|
||
malloc (2 * sizeof (*params))));
|
||
if (!params)
|
||
return REG_ESPACE;
|
||
paramc += 2;
|
||
params [iter_se].se = re_se_iter;
|
||
params [iter_se].op1 = lower_bound;
|
||
params[iter_se].op2 = upper_bound;
|
||
|
||
params[end_se].se = re_se_end_iter;
|
||
params[end_se].op1 = lower_bound;
|
||
params[end_se].op2 = upper_bound;
|
||
{
|
||
struct rexp_node * push0
|
||
= rx_mk_r_side_effect (&rxb->rx,
|
||
(rx_side_effect)re_se_push0);
|
||
struct rexp_node * start_one_iter
|
||
= rx_mk_r_side_effect (&rxb->rx,
|
||
(rx_side_effect)iter_se);
|
||
struct rexp_node * phase1
|
||
= rx_mk_r_concat (&rxb->rx, start_one_iter,
|
||
*last_expression);
|
||
struct rexp_node * pushback
|
||
= rx_mk_r_side_effect (&rxb->rx,
|
||
(rx_side_effect)re_se_pushback);
|
||
rx_Bitset cs = rx_cset (&rxb->rx);
|
||
struct rexp_node * lit_t
|
||
= rx_mk_r_cset (&rxb->rx, cs);
|
||
struct rexp_node * phase2
|
||
= rx_mk_r_concat (&rxb->rx, pushback, lit_t);
|
||
struct rexp_node * loop
|
||
= rx_mk_r_2phase_star (&rxb->rx, phase1, phase2);
|
||
struct rexp_node * push_n_loop
|
||
= rx_mk_r_concat (&rxb->rx, push0, loop);
|
||
struct rexp_node * final_test
|
||
= rx_mk_r_side_effect (&rxb->rx,
|
||
(rx_side_effect)end_se);
|
||
struct rexp_node * full_exp
|
||
= rx_mk_r_concat (&rxb->rx, push_n_loop, final_test);
|
||
|
||
if (!(push0 && start_one_iter && phase1
|
||
&& pushback && lit_t && phase2
|
||
&& loop && push_n_loop && final_test && full_exp))
|
||
return REG_ESPACE;
|
||
|
||
RX_bitset_enjoin(cs, 't');
|
||
|
||
*last_expression = full_exp;
|
||
}
|
||
}
|
||
beg_interval = 0;
|
||
}
|
||
break;
|
||
|
||
unfetch_interval:
|
||
/* If an invalid interval, match the characters as literals. */
|
||
p = beg_interval;
|
||
beg_interval = 0;
|
||
|
||
/* normal_char and normal_backslash need `c'. */
|
||
PATFETCH (c);
|
||
|
||
if (!(syntax & RE_NO_BK_BRACES))
|
||
{
|
||
if (p > pattern && p[-1] == '\\')
|
||
goto normal_backslash;
|
||
}
|
||
goto normal_char;
|
||
|
||
#ifdef emacs
|
||
/* There is no way to specify the before_dot and after_dot
|
||
operators. rms says this is ok. --karl */
|
||
case '=':
|
||
side = (rx_side_effect)rx_se_at_dot;
|
||
goto add_side_effect;
|
||
break;
|
||
|
||
case 's':
|
||
case 'S':
|
||
{
|
||
rx_Bitset cs = rx_cset (&rxb->rx);
|
||
struct rexp_node * set = rx_mk_r_cset (&rxb->rx, cs);
|
||
if (!(cs && set))
|
||
return REG_ESPACE;
|
||
if (c == 'S')
|
||
rx_bitset_universe (rxb->rx.local_cset_size, cs);
|
||
|
||
PATFETCH (c);
|
||
{
|
||
int x;
|
||
enum syntaxcode code = syntax_spec_code [c];
|
||
for (x = 0; x < 256; ++x)
|
||
{
|
||
|
||
if (SYNTAX (x) == code)
|
||
{
|
||
rx_Bitset it =
|
||
inverse_translation (rxb, validate_inv_tr,
|
||
inverse_translate,
|
||
translate, x);
|
||
rx_bitset_xor (rxb->rx.local_cset_size, cs, it);
|
||
}
|
||
}
|
||
}
|
||
append = set;
|
||
goto append_node;
|
||
}
|
||
break;
|
||
#endif /* emacs */
|
||
|
||
|
||
case 'w':
|
||
case 'W':
|
||
{
|
||
rx_Bitset cs = rx_cset (&rxb->rx);
|
||
struct rexp_node * n = (cs ? rx_mk_r_cset (&rxb->rx, cs) : 0);
|
||
if (!(cs && n))
|
||
return REG_ESPACE;
|
||
if (c == 'W')
|
||
rx_bitset_universe (rxb->rx.local_cset_size ,cs);
|
||
{
|
||
int x;
|
||
for (x = rxb->rx.local_cset_size - 1; x > 0; --x)
|
||
if (SYNTAX(x) & Sword)
|
||
RX_bitset_toggle (cs, x);
|
||
}
|
||
append = n;
|
||
goto append_node;
|
||
}
|
||
break;
|
||
|
||
/* With a little extra work, some of these side effects could be optimized
|
||
* away (basicly by looking at what we already know about the surrounding
|
||
* chars).
|
||
*/
|
||
case '<':
|
||
side = (rx_side_effect)re_se_wordbeg;
|
||
goto add_side_effect;
|
||
break;
|
||
|
||
case '>':
|
||
side = (rx_side_effect)re_se_wordend;
|
||
goto add_side_effect;
|
||
break;
|
||
|
||
case 'b':
|
||
side = (rx_side_effect)re_se_wordbound;
|
||
goto add_side_effect;
|
||
break;
|
||
|
||
case 'B':
|
||
side = (rx_side_effect)re_se_notwordbound;
|
||
goto add_side_effect;
|
||
break;
|
||
|
||
case '`':
|
||
side = (rx_side_effect)re_se_begbuf;
|
||
goto add_side_effect;
|
||
break;
|
||
|
||
case '\'':
|
||
side = (rx_side_effect)re_se_endbuf;
|
||
goto add_side_effect;
|
||
break;
|
||
|
||
add_side_effect:
|
||
{
|
||
struct rexp_node * se
|
||
= rx_mk_r_side_effect (&rxb->rx, side);
|
||
if (!se)
|
||
return REG_ESPACE;
|
||
append = se;
|
||
goto append_node;
|
||
}
|
||
break;
|
||
|
||
case '1': case '2': case '3': case '4': case '5':
|
||
case '6': case '7': case '8': case '9':
|
||
if (syntax & RE_NO_BK_REFS)
|
||
goto normal_char;
|
||
|
||
c1 = c - '0';
|
||
|
||
if (c1 > regnum)
|
||
return REG_ESUBREG;
|
||
|
||
/* Can't back reference to a subexpression if inside of it. */
|
||
if (group_in_compile_stack (compile_stack, c1))
|
||
return REG_ESUBREG;
|
||
|
||
{
|
||
int backref_se = paramc;
|
||
params = (params
|
||
? ((struct re_se_params *)
|
||
realloc (params,
|
||
sizeof (*params) * (1 + paramc)))
|
||
: ((struct re_se_params *)
|
||
malloc (sizeof (*params))));
|
||
if (!params)
|
||
return REG_ESPACE;
|
||
++paramc;
|
||
params[backref_se].se = re_se_backref;
|
||
params[backref_se].op1 = c1;
|
||
side = (rx_side_effect)backref_se;
|
||
goto add_side_effect;
|
||
}
|
||
break;
|
||
|
||
case '+':
|
||
case '?':
|
||
if (syntax & RE_BK_PLUS_QM)
|
||
goto handle_plus;
|
||
else
|
||
goto normal_backslash;
|
||
|
||
default:
|
||
normal_backslash:
|
||
/* You might think it would be useful for \ to mean
|
||
not to translate; but if we don't translate it
|
||
it will never match anything. */
|
||
c = TRANSLATE (c);
|
||
goto normal_char;
|
||
}
|
||
break;
|
||
|
||
|
||
default:
|
||
/* Expects the character in `c'. */
|
||
normal_char:
|
||
{
|
||
rx_Bitset cs = rx_cset(&rxb->rx);
|
||
struct rexp_node * match = rx_mk_r_cset (&rxb->rx, cs);
|
||
rx_Bitset it;
|
||
if (!(cs && match))
|
||
return REG_ESPACE;
|
||
it = inverse_translation (rxb, validate_inv_tr,
|
||
inverse_translate, translate, c);
|
||
rx_bitset_union (CHAR_SET_SIZE, cs, it);
|
||
append = match;
|
||
|
||
append_node:
|
||
/* This genericly appends the rexp APPEND to *LAST_EXPRESSION
|
||
* and then parses the next character normally.
|
||
*/
|
||
if (*last_expression)
|
||
{
|
||
struct rexp_node * concat
|
||
= rx_mk_r_concat (&rxb->rx, *last_expression, append);
|
||
if (!concat)
|
||
return REG_ESPACE;
|
||
*last_expression = concat;
|
||
last_expression = &concat->params.pair.right;
|
||
}
|
||
else
|
||
*last_expression = append;
|
||
}
|
||
} /* switch (c) */
|
||
} /* while p != pend */
|
||
|
||
|
||
{
|
||
int win_se = paramc;
|
||
params = (params
|
||
? ((struct re_se_params *)
|
||
realloc (params,
|
||
sizeof (*params) * (1 + paramc)))
|
||
: ((struct re_se_params *)
|
||
malloc (sizeof (*params))));
|
||
if (!params)
|
||
return REG_ESPACE;
|
||
++paramc;
|
||
params[win_se].se = re_se_win;
|
||
{
|
||
struct rexp_node * se
|
||
= rx_mk_r_side_effect (&rxb->rx, (rx_side_effect)win_se);
|
||
struct rexp_node * concat
|
||
= rx_mk_r_concat (&rxb->rx, rexp, se);
|
||
if (!(se && concat))
|
||
return REG_ESPACE;
|
||
rexp = concat;
|
||
}
|
||
}
|
||
|
||
|
||
/* Through the pattern now. */
|
||
|
||
if (!COMPILE_STACK_EMPTY)
|
||
return REG_EPAREN;
|
||
|
||
free (compile_stack.stack);
|
||
|
||
orig_rexp = rexp;
|
||
#ifdef RX_DEBUG
|
||
if (rx_debug_compile)
|
||
{
|
||
dbug_rxb = rxb;
|
||
fputs ("\n\nCompiling ", stdout);
|
||
fwrite (pattern, 1, size, stdout);
|
||
fputs (":\n", stdout);
|
||
rxb->se_params = params;
|
||
print_rexp (&rxb->rx, orig_rexp, 2, re_seprint, stdout);
|
||
}
|
||
#endif
|
||
{
|
||
rx_Bitset cs = rx_cset(&rxb->rx);
|
||
rx_Bitset cs2 = rx_cset(&rxb->rx);
|
||
char * se_map = (char *) alloca (paramc);
|
||
struct rexp_node * new_rexp = 0;
|
||
|
||
|
||
bzero (se_map, paramc);
|
||
find_backrefs (se_map, rexp, params);
|
||
fewer_side_effects =
|
||
remove_unecessary_side_effects (&rxb->rx, se_map,
|
||
rx_copy_rexp (&rxb->rx, rexp), params);
|
||
|
||
speed_up_alt (&rxb->rx, rexp, 0);
|
||
speed_up_alt (&rxb->rx, fewer_side_effects, 1);
|
||
|
||
{
|
||
char * syntax_parens = rxb->syntax_parens;
|
||
if (syntax_parens == (char *)0x1)
|
||
rexp = remove_unecessary_side_effects
|
||
(&rxb->rx, se_map, rexp, params);
|
||
else if (syntax_parens)
|
||
{
|
||
int x;
|
||
for (x = 0; x < paramc; ++x)
|
||
if (( (params[x].se == re_se_lparen)
|
||
|| (params[x].se == re_se_rparen))
|
||
&& (!syntax_parens [params[x].op1]))
|
||
se_map [x] = 1;
|
||
rexp = remove_unecessary_side_effects
|
||
(&rxb->rx, se_map, rexp, params);
|
||
}
|
||
}
|
||
|
||
/* At least one more optimization would be nice to have here but i ran out
|
||
* of time. The idea would be to delay side effects.
|
||
* For examle, `(abc)' is the same thing as `abc()' except that the
|
||
* left paren is offset by 3 (which we know at compile time).
|
||
* (In this comment, write that second pattern `abc(:3:)'
|
||
* where `(:3:' is a syntactic unit.)
|
||
*
|
||
* Trickier: `(abc|defg)' is the same as `(abc(:3:|defg(:4:))'
|
||
* (The paren nesting may be hard to follow -- that's an alternation
|
||
* of `abc(:3:' and `defg(:4:' inside (purely syntactic) parens
|
||
* followed by the closing paren from the original expression.)
|
||
*
|
||
* Neither the expression tree representation nor the the nfa make
|
||
* this very easy to write. :(
|
||
*/
|
||
|
||
/* What we compile is different than what the parser returns.
|
||
* Suppose the parser returns expression R.
|
||
* Let R' be R with unnecessary register assignments removed
|
||
* (see REMOVE_UNECESSARY_SIDE_EFFECTS, above).
|
||
*
|
||
* What we will compile is the expression:
|
||
*
|
||
* m{try}R{win}\|s{try}R'{win}
|
||
*
|
||
* {try} and {win} denote side effect epsilons (see EXPLORE_FUTURE).
|
||
*
|
||
* When trying a match, we insert an `m' at the beginning of the
|
||
* string if the user wants registers to be filled, `s' if not.
|
||
*/
|
||
new_rexp =
|
||
rx_mk_r_alternate
|
||
(&rxb->rx,
|
||
rx_mk_r_concat (&rxb->rx, rx_mk_r_cset (&rxb->rx, cs2), rexp),
|
||
rx_mk_r_concat (&rxb->rx,
|
||
rx_mk_r_cset (&rxb->rx, cs), fewer_side_effects));
|
||
|
||
if (!(new_rexp && cs && cs2))
|
||
return REG_ESPACE;
|
||
RX_bitset_enjoin (cs2, '\0'); /* prefixed to the rexp used for matching. */
|
||
RX_bitset_enjoin (cs, '\1'); /* prefixed to the rexp used for searching. */
|
||
rexp = new_rexp;
|
||
}
|
||
|
||
#ifdef RX_DEBUG
|
||
if (rx_debug_compile)
|
||
{
|
||
fputs ("\n...which is compiled as:\n", stdout);
|
||
print_rexp (&rxb->rx, rexp, 2, re_seprint, stdout);
|
||
}
|
||
#endif
|
||
{
|
||
struct rx_nfa_state *start = 0;
|
||
struct rx_nfa_state *end = 0;
|
||
|
||
if (!rx_build_nfa (&rxb->rx, rexp, &start, &end))
|
||
return REG_ESPACE; /* */
|
||
else
|
||
{
|
||
void * mem = (void *)rxb->buffer;
|
||
unsigned long size = rxb->allocated;
|
||
int start_id;
|
||
char * perm_mem;
|
||
int iterator_size = paramc * sizeof (params[0]);
|
||
|
||
end->is_final = 1;
|
||
start->is_start = 1;
|
||
rx_name_nfa_states (&rxb->rx);
|
||
start_id = start->id;
|
||
#ifdef RX_DEBUG
|
||
if (rx_debug_compile)
|
||
{
|
||
fputs ("...giving the NFA: \n", stdout);
|
||
dbug_rxb = rxb;
|
||
print_nfa (&rxb->rx, rxb->rx.nfa_states, re_seprint, stdout);
|
||
}
|
||
#endif
|
||
if (!rx_eclose_nfa (&rxb->rx))
|
||
return REG_ESPACE;
|
||
else
|
||
{
|
||
rx_delete_epsilon_transitions (&rxb->rx);
|
||
|
||
/* For compatability reasons, we need to shove the
|
||
* compiled nfa into one chunk of malloced memory.
|
||
*/
|
||
rxb->rx.reserved = ( sizeof (params[0]) * paramc
|
||
+ rx_sizeof_bitset (rxb->rx.local_cset_size));
|
||
#ifdef RX_DEBUG
|
||
if (rx_debug_compile)
|
||
{
|
||
dbug_rxb = rxb;
|
||
fputs ("...which cooks down (uncompactified) to: \n", stdout);
|
||
print_nfa (&rxb->rx, rxb->rx.nfa_states, re_seprint, stdout);
|
||
}
|
||
#endif
|
||
if (!rx_compactify_nfa (&rxb->rx, &mem, &size))
|
||
return REG_ESPACE;
|
||
rxb->buffer = mem;
|
||
rxb->allocated = size;
|
||
rxb->rx.buffer = mem;
|
||
rxb->rx.allocated = size;
|
||
perm_mem = ((char *)rxb->rx.buffer
|
||
+ rxb->rx.allocated - rxb->rx.reserved);
|
||
rxb->se_params = ((struct re_se_params *)perm_mem);
|
||
bcopy (params, rxb->se_params, iterator_size);
|
||
perm_mem += iterator_size;
|
||
rxb->fastset = (rx_Bitset) perm_mem;
|
||
rxb->start = rx_id_to_nfa_state (&rxb->rx, start_id);
|
||
}
|
||
rx_bitset_null (rxb->rx.local_cset_size, rxb->fastset);
|
||
rxb->can_match_empty = compute_fastset (rxb, orig_rexp);
|
||
rxb->match_regs_on_stack =
|
||
registers_on_stack (rxb, orig_rexp, 0, params);
|
||
rxb->search_regs_on_stack =
|
||
registers_on_stack (rxb, fewer_side_effects, 0, params);
|
||
if (rxb->can_match_empty)
|
||
rx_bitset_universe (rxb->rx.local_cset_size, rxb->fastset);
|
||
rxb->is_anchored = is_anchored (orig_rexp, (rx_side_effect) re_se_hat);
|
||
rxb->begbuf_only = is_anchored (orig_rexp,
|
||
(rx_side_effect) re_se_begbuf);
|
||
}
|
||
rx_free_rexp (&rxb->rx, rexp);
|
||
if (params)
|
||
free (params);
|
||
#ifdef RX_DEBUG
|
||
if (rx_debug_compile)
|
||
{
|
||
dbug_rxb = rxb;
|
||
fputs ("...which cooks down to: \n", stdout);
|
||
print_nfa (&rxb->rx, rxb->rx.nfa_states, re_seprint, stdout);
|
||
}
|
||
#endif
|
||
}
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
|
||
|
||
/* This table gives an error message for each of the error codes listed
|
||
in regex.h. Obviously the order here has to be same as there. */
|
||
|
||
__const__ char * rx_error_msg[] =
|
||
{ 0, /* REG_NOERROR */
|
||
"No match", /* REG_NOMATCH */
|
||
"Invalid regular expression", /* REG_BADPAT */
|
||
"Invalid collation character", /* REG_ECOLLATE */
|
||
"Invalid character class name", /* REG_ECTYPE */
|
||
"Trailing backslash", /* REG_EESCAPE */
|
||
"Invalid back reference", /* REG_ESUBREG */
|
||
"Unmatched [ or [^", /* REG_EBRACK */
|
||
"Unmatched ( or \\(", /* REG_EPAREN */
|
||
"Unmatched \\{", /* REG_EBRACE */
|
||
"Invalid content of \\{\\}", /* REG_BADBR */
|
||
"Invalid range end", /* REG_ERANGE */
|
||
"Memory exhausted", /* REG_ESPACE */
|
||
"Invalid preceding regular expression", /* REG_BADRPT */
|
||
"Premature end of regular expression", /* REG_EEND */
|
||
"Regular expression too big", /* REG_ESIZE */
|
||
"Unmatched ) or \\)", /* REG_ERPAREN */
|
||
};
|
||
|
||
|
||
|
||
|
||
char rx_slowmap [256] =
|
||
{
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||
};
|
||
|
||
#ifdef __STDC__
|
||
RX_DECL void
|
||
rx_blow_up_fastmap (struct re_pattern_buffer * rxb)
|
||
#else
|
||
RX_DECL void
|
||
rx_blow_up_fastmap (rxb)
|
||
struct re_pattern_buffer * rxb;
|
||
#endif
|
||
{
|
||
int x;
|
||
for (x = 0; x < 256; ++x) /* &&&& 3.6 % */
|
||
rxb->fastmap [x] = !!RX_bitset_member (rxb->fastset, x);
|
||
rxb->fastmap_accurate = 1;
|
||
}
|
||
|
||
|
||
|
||
|
||
#if !defined(REGEX_MALLOC) && !defined(__GNUC__)
|
||
#define RE_SEARCH_2_FN inner_re_search_2
|
||
#define RE_S2_QUAL static
|
||
#else
|
||
#define RE_SEARCH_2_FN re_search_2
|
||
#define RE_S2_QUAL
|
||
#endif
|
||
|
||
struct re_search_2_closure
|
||
{
|
||
__const__ char * string1;
|
||
int size1;
|
||
__const__ char * string2;
|
||
int size2;
|
||
};
|
||
|
||
|
||
static __inline__ enum rx_get_burst_return
|
||
re_search_2_get_burst (pos, vclosure, stop)
|
||
struct rx_string_position * pos;
|
||
void * vclosure;
|
||
int stop;
|
||
{
|
||
struct re_search_2_closure * closure;
|
||
closure = (struct re_search_2_closure *)vclosure;
|
||
if (!closure->string2)
|
||
{
|
||
int inset;
|
||
|
||
inset = pos->pos - pos->string;
|
||
if ((inset < -1) || (inset > closure->size1))
|
||
return rx_get_burst_no_more;
|
||
else
|
||
{
|
||
pos->pos = (__const__ unsigned char *) closure->string1 + inset;
|
||
pos->string = (__const__ unsigned char *) closure->string1;
|
||
pos->size = closure->size1;
|
||
pos->end = ((__const__ unsigned char *)
|
||
MIN(closure->string1 + closure->size1,
|
||
closure->string1 + stop));
|
||
pos->offset = 0;
|
||
return ((pos->pos < pos->end)
|
||
? rx_get_burst_ok
|
||
: rx_get_burst_no_more);
|
||
}
|
||
}
|
||
else if (!closure->string1)
|
||
{
|
||
int inset;
|
||
|
||
inset = pos->pos - pos->string;
|
||
pos->pos = (__const__ unsigned char *) closure->string2 + inset;
|
||
pos->string = (__const__ unsigned char *) closure->string2;
|
||
pos->size = closure->size2;
|
||
pos->end = ((__const__ unsigned char *)
|
||
MIN(closure->string2 + closure->size2,
|
||
closure->string2 + stop));
|
||
pos->offset = 0;
|
||
return ((pos->pos < pos->end)
|
||
? rx_get_burst_ok
|
||
: rx_get_burst_no_more);
|
||
}
|
||
else
|
||
{
|
||
int inset;
|
||
|
||
inset = pos->pos - pos->string + pos->offset;
|
||
if (inset < closure->size1)
|
||
{
|
||
pos->pos = (__const__ unsigned char *) closure->string1 + inset;
|
||
pos->string = (__const__ unsigned char *) closure->string1;
|
||
pos->size = closure->size1;
|
||
pos->end = ((__const__ unsigned char *)
|
||
MIN(closure->string1 + closure->size1,
|
||
closure->string1 + stop));
|
||
pos->offset = 0;
|
||
return rx_get_burst_ok;
|
||
}
|
||
else
|
||
{
|
||
pos->pos = ((__const__ unsigned char *)
|
||
closure->string2 + inset - closure->size1);
|
||
pos->string = (__const__ unsigned char *) closure->string2;
|
||
pos->size = closure->size2;
|
||
pos->end = ((__const__ unsigned char *)
|
||
MIN(closure->string2 + closure->size2,
|
||
closure->string2 + stop - closure->size1));
|
||
pos->offset = closure->size1;
|
||
return ((pos->pos < pos->end)
|
||
? rx_get_burst_ok
|
||
: rx_get_burst_no_more);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
static __inline__ enum rx_back_check_return
|
||
re_search_2_back_check (pos, lparen, rparen, translate, vclosure, stop)
|
||
struct rx_string_position * pos;
|
||
int lparen;
|
||
int rparen;
|
||
unsigned char * translate;
|
||
void * vclosure;
|
||
int stop;
|
||
{
|
||
struct rx_string_position there;
|
||
struct rx_string_position past;
|
||
|
||
there = *pos;
|
||
there.pos = there.string + lparen - there.offset;
|
||
re_search_2_get_burst (&there, vclosure, stop);
|
||
|
||
past = *pos;
|
||
past.pos = past.string + rparen - there.offset;
|
||
re_search_2_get_burst (&past, vclosure, stop);
|
||
|
||
++pos->pos;
|
||
re_search_2_get_burst (pos, vclosure, stop);
|
||
|
||
while ( (there.pos != past.pos)
|
||
&& (pos->pos != pos->end))
|
||
if (TRANSLATE(*there.pos) != TRANSLATE(*pos->pos))
|
||
return rx_back_check_fail;
|
||
else
|
||
{
|
||
++there.pos;
|
||
++pos->pos;
|
||
if (there.pos == there.end)
|
||
re_search_2_get_burst (&there, vclosure, stop);
|
||
if (pos->pos == pos->end)
|
||
re_search_2_get_burst (pos, vclosure, stop);
|
||
}
|
||
|
||
if (there.pos != past.pos)
|
||
return rx_back_check_fail;
|
||
--pos->pos;
|
||
re_search_2_get_burst (pos, vclosure, stop);
|
||
return rx_back_check_pass;
|
||
}
|
||
|
||
static __inline__ int
|
||
re_search_2_fetch_char (pos, offset, app_closure, stop)
|
||
struct rx_string_position * pos;
|
||
int offset;
|
||
void * app_closure;
|
||
int stop;
|
||
{
|
||
struct re_search_2_closure * closure;
|
||
closure = (struct re_search_2_closure *)app_closure;
|
||
if (offset == 0)
|
||
{
|
||
if (pos->pos >= pos->string)
|
||
return *pos->pos;
|
||
else
|
||
{
|
||
if ( (pos->string == (__const__ unsigned char *) closure->string2)
|
||
&& (closure->string1)
|
||
&& (closure->size1))
|
||
return closure->string1[closure->size1 - 1];
|
||
else
|
||
return 0; /* sure, why not. */
|
||
}
|
||
}
|
||
if (pos->pos == pos->end)
|
||
return *closure->string2;
|
||
else
|
||
return pos->pos[1];
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
RE_S2_QUAL int
|
||
RE_SEARCH_2_FN (struct re_pattern_buffer *rxb,
|
||
__const__ char * string1, int size1,
|
||
__const__ char * string2, int size2,
|
||
int startpos, int range,
|
||
struct re_registers *regs,
|
||
int stop)
|
||
#else
|
||
RE_S2_QUAL int
|
||
RE_SEARCH_2_FN (rxb,
|
||
string1, size1, string2, size2, startpos, range, regs, stop)
|
||
struct re_pattern_buffer *rxb;
|
||
__const__ char * string1;
|
||
int size1;
|
||
__const__ char * string2;
|
||
int size2;
|
||
int startpos;
|
||
int range;
|
||
struct re_registers *regs;
|
||
int stop;
|
||
#endif
|
||
{
|
||
int answer;
|
||
struct re_search_2_closure closure;
|
||
closure.string1 = string1;
|
||
closure.size1 = size1;
|
||
closure.string2 = string2;
|
||
closure.size2 = size2;
|
||
answer = rx_search (rxb, startpos, range, stop, size1 + size2,
|
||
re_search_2_get_burst,
|
||
re_search_2_back_check,
|
||
re_search_2_fetch_char,
|
||
(void *)&closure,
|
||
regs,
|
||
0,
|
||
0);
|
||
switch (answer)
|
||
{
|
||
case rx_search_continuation:
|
||
abort ();
|
||
case rx_search_error:
|
||
return -2;
|
||
case rx_search_soft_fail:
|
||
case rx_search_fail:
|
||
return -1;
|
||
default:
|
||
return answer;
|
||
}
|
||
}
|
||
|
||
/* Export rx_search to callers outside this file. */
|
||
|
||
int
|
||
re_rx_search (rxb, startpos, range, stop, total_size,
|
||
get_burst, back_check, fetch_char,
|
||
app_closure, regs, resume_state, save_state)
|
||
struct re_pattern_buffer * rxb;
|
||
int startpos;
|
||
int range;
|
||
int stop;
|
||
int total_size;
|
||
rx_get_burst_fn get_burst;
|
||
rx_back_check_fn back_check;
|
||
rx_fetch_char_fn fetch_char;
|
||
void * app_closure;
|
||
struct re_registers * regs;
|
||
struct rx_search_state * resume_state;
|
||
struct rx_search_state * save_state;
|
||
{
|
||
return rx_search (rxb, startpos, range, stop, total_size,
|
||
get_burst, back_check, fetch_char, app_closure,
|
||
regs, resume_state, save_state);
|
||
}
|
||
|
||
#if !defined(REGEX_MALLOC) && !defined(__GNUC__)
|
||
#ifdef __STDC__
|
||
int
|
||
re_search_2 (struct re_pattern_buffer *rxb,
|
||
__const__ char * string1, int size1,
|
||
__const__ char * string2, int size2,
|
||
int startpos, int range,
|
||
struct re_registers *regs,
|
||
int stop)
|
||
#else
|
||
int
|
||
re_search_2 (rxb, string1, size1, string2, size2, startpos, range, regs, stop)
|
||
struct re_pattern_buffer *rxb;
|
||
__const__ char * string1;
|
||
int size1;
|
||
__const__ char * string2;
|
||
int size2;
|
||
int startpos;
|
||
int range;
|
||
struct re_registers *regs;
|
||
int stop;
|
||
#endif
|
||
{
|
||
int ret;
|
||
ret = inner_re_search_2 (rxb, string1, size1, string2, size2, startpos,
|
||
range, regs, stop);
|
||
alloca (0);
|
||
return ret;
|
||
}
|
||
#endif
|
||
|
||
|
||
/* Like re_search_2, above, but only one string is specified, and
|
||
* doesn't let you say where to stop matching.
|
||
*/
|
||
|
||
#ifdef __STDC__
|
||
int
|
||
re_search (struct re_pattern_buffer * rxb, __const__ char *string,
|
||
int size, int startpos, int range,
|
||
struct re_registers *regs)
|
||
#else
|
||
int
|
||
re_search (rxb, string, size, startpos, range, regs)
|
||
struct re_pattern_buffer * rxb;
|
||
__const__ char * string;
|
||
int size;
|
||
int startpos;
|
||
int range;
|
||
struct re_registers *regs;
|
||
#endif
|
||
{
|
||
return re_search_2 (rxb, 0, 0, string, size, startpos, range, regs, size);
|
||
}
|
||
|
||
#ifdef __STDC__
|
||
int
|
||
re_match_2 (struct re_pattern_buffer * rxb,
|
||
__const__ char * string1, int size1,
|
||
__const__ char * string2, int size2,
|
||
int pos, struct re_registers *regs, int stop)
|
||
#else
|
||
int
|
||
re_match_2 (rxb, string1, size1, string2, size2, pos, regs, stop)
|
||
struct re_pattern_buffer * rxb;
|
||
__const__ char * string1;
|
||
int size1;
|
||
__const__ char * string2;
|
||
int size2;
|
||
int pos;
|
||
struct re_registers *regs;
|
||
int stop;
|
||
#endif
|
||
{
|
||
struct re_registers some_regs;
|
||
regoff_t start;
|
||
regoff_t end;
|
||
int srch;
|
||
int save = rxb->regs_allocated;
|
||
struct re_registers * regs_to_pass = regs;
|
||
|
||
if (!regs)
|
||
{
|
||
some_regs.start = &start;
|
||
some_regs.end = &end;
|
||
some_regs.num_regs = 1;
|
||
regs_to_pass = &some_regs;
|
||
rxb->regs_allocated = REGS_FIXED;
|
||
}
|
||
|
||
srch = re_search_2 (rxb, string1, size1, string2, size2,
|
||
pos, 1, regs_to_pass, stop);
|
||
if (regs_to_pass != regs)
|
||
rxb->regs_allocated = save;
|
||
if (srch < 0)
|
||
return srch;
|
||
return regs_to_pass->end[0] - regs_to_pass->start[0];
|
||
}
|
||
|
||
/* re_match is like re_match_2 except it takes only a single string. */
|
||
|
||
#ifdef __STDC__
|
||
int
|
||
re_match (struct re_pattern_buffer * rxb,
|
||
__const__ char * string,
|
||
int size, int pos,
|
||
struct re_registers *regs)
|
||
#else
|
||
int
|
||
re_match (rxb, string, size, pos, regs)
|
||
struct re_pattern_buffer * rxb;
|
||
__const__ char *string;
|
||
int size;
|
||
int pos;
|
||
struct re_registers *regs;
|
||
#endif
|
||
{
|
||
return re_match_2 (rxb, string, size, 0, 0, pos, regs, size);
|
||
}
|
||
|
||
|
||
|
||
/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
|
||
also be assigned to arbitrarily: each pattern buffer stores its own
|
||
syntax, so it can be changed between regex compilations. */
|
||
reg_syntax_t re_syntax_options = RE_SYNTAX_EMACS;
|
||
|
||
|
||
/* Specify the precise syntax of regexps for compilation. This provides
|
||
for compatibility for various utilities which historically have
|
||
different, incompatible syntaxes.
|
||
|
||
The argument SYNTAX is a bit mask comprised of the various bits
|
||
defined in regex.h. We return the old syntax. */
|
||
|
||
#ifdef __STDC__
|
||
reg_syntax_t
|
||
re_set_syntax (reg_syntax_t syntax)
|
||
#else
|
||
reg_syntax_t
|
||
re_set_syntax (syntax)
|
||
reg_syntax_t syntax;
|
||
#endif
|
||
{
|
||
reg_syntax_t ret = re_syntax_options;
|
||
|
||
re_syntax_options = syntax;
|
||
return ret;
|
||
}
|
||
|
||
|
||
/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
|
||
ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
|
||
this memory for recording register information. STARTS and ENDS
|
||
must be allocated using the malloc library routine, and must each
|
||
be at least NUM_REGS * sizeof (regoff_t) bytes long.
|
||
|
||
If NUM_REGS == 0, then subsequent matches should allocate their own
|
||
register data.
|
||
|
||
Unless this function is called, the first search or match using
|
||
PATTERN_BUFFER will allocate its own register data, without
|
||
freeing the old data. */
|
||
|
||
#ifdef __STDC__
|
||
void
|
||
re_set_registers (struct re_pattern_buffer *bufp,
|
||
struct re_registers *regs,
|
||
unsigned num_regs,
|
||
regoff_t * starts, regoff_t * ends)
|
||
#else
|
||
void
|
||
re_set_registers (bufp, regs, num_regs, starts, ends)
|
||
struct re_pattern_buffer *bufp;
|
||
struct re_registers *regs;
|
||
unsigned num_regs;
|
||
regoff_t * starts;
|
||
regoff_t * ends;
|
||
#endif
|
||
{
|
||
if (num_regs)
|
||
{
|
||
bufp->regs_allocated = REGS_REALLOCATE;
|
||
regs->num_regs = num_regs;
|
||
regs->start = starts;
|
||
regs->end = ends;
|
||
}
|
||
else
|
||
{
|
||
bufp->regs_allocated = REGS_UNALLOCATED;
|
||
regs->num_regs = 0;
|
||
regs->start = regs->end = (regoff_t) 0;
|
||
}
|
||
}
|
||
|
||
|
||
|
||
|
||
#ifdef __STDC__
|
||
static int
|
||
cplx_se_sublist_len (struct rx_se_list * list)
|
||
#else
|
||
static int
|
||
cplx_se_sublist_len (list)
|
||
struct rx_se_list * list;
|
||
#endif
|
||
{
|
||
int x = 0;
|
||
while (list)
|
||
{
|
||
if ((long)list->car >= 0)
|
||
++x;
|
||
list = list->cdr;
|
||
}
|
||
return x;
|
||
}
|
||
|
||
|
||
/* For rx->se_list_cmp */
|
||
|
||
#ifdef __STDC__
|
||
static int
|
||
posix_se_list_order (struct rx * rx,
|
||
struct rx_se_list * a, struct rx_se_list * b)
|
||
#else
|
||
static int
|
||
posix_se_list_order (rx, a, b)
|
||
struct rx * rx;
|
||
struct rx_se_list * a;
|
||
struct rx_se_list * b;
|
||
#endif
|
||
{
|
||
int al = cplx_se_sublist_len (a);
|
||
int bl = cplx_se_sublist_len (b);
|
||
|
||
if (!al && !bl)
|
||
return ((a == b)
|
||
? 0
|
||
: ((a < b) ? -1 : 1));
|
||
|
||
else if (!al)
|
||
return -1;
|
||
|
||
else if (!bl)
|
||
return 1;
|
||
|
||
else
|
||
{
|
||
rx_side_effect * av = ((rx_side_effect *)
|
||
alloca (sizeof (rx_side_effect) * (al + 1)));
|
||
rx_side_effect * bv = ((rx_side_effect *)
|
||
alloca (sizeof (rx_side_effect) * (bl + 1)));
|
||
struct rx_se_list * ap = a;
|
||
struct rx_se_list * bp = b;
|
||
int ai, bi;
|
||
|
||
for (ai = al - 1; ai >= 0; --ai)
|
||
{
|
||
while ((long)ap->car < 0)
|
||
ap = ap->cdr;
|
||
av[ai] = ap->car;
|
||
ap = ap->cdr;
|
||
}
|
||
av[al] = (rx_side_effect)-2;
|
||
for (bi = bl - 1; bi >= 0; --bi)
|
||
{
|
||
while ((long)bp->car < 0)
|
||
bp = bp->cdr;
|
||
bv[bi] = bp->car;
|
||
bp = bp->cdr;
|
||
}
|
||
bv[bl] = (rx_side_effect)-1;
|
||
|
||
{
|
||
int ret;
|
||
int x = 0;
|
||
while (av[x] == bv[x])
|
||
++x;
|
||
ret = (((unsigned *)(av[x]) < (unsigned *)(bv[x])) ? -1 : 1);
|
||
return ret;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
|
||
|
||
/* re_compile_pattern is the GNU regular expression compiler: it
|
||
compiles PATTERN (of length SIZE) and puts the result in RXB.
|
||
Returns 0 if the pattern was valid, otherwise an error string.
|
||
|
||
Assumes the `allocated' (and perhaps `buffer') and `translate' fields
|
||
are set in RXB on entry.
|
||
|
||
We call rx_compile to do the actual compilation. */
|
||
|
||
#ifdef __STDC__
|
||
__const__ char *
|
||
re_compile_pattern (__const__ char *pattern,
|
||
int length,
|
||
struct re_pattern_buffer * rxb)
|
||
#else
|
||
__const__ char *
|
||
re_compile_pattern (pattern, length, rxb)
|
||
__const__ char *pattern;
|
||
int length;
|
||
struct re_pattern_buffer * rxb;
|
||
#endif
|
||
{
|
||
reg_errcode_t ret;
|
||
|
||
/* GNU code is written to assume at least RE_NREGS registers will be set
|
||
(and at least one extra will be -1). */
|
||
rxb->regs_allocated = REGS_UNALLOCATED;
|
||
|
||
/* And GNU code determines whether or not to get register information
|
||
by passing null for the REGS argument to re_match, etc., not by
|
||
setting no_sub. */
|
||
rxb->no_sub = 0;
|
||
|
||
rxb->rx.local_cset_size = 256;
|
||
|
||
/* Match anchors at newline. */
|
||
rxb->newline_anchor = 1;
|
||
|
||
rxb->re_nsub = 0;
|
||
rxb->start = 0;
|
||
rxb->se_params = 0;
|
||
rxb->rx.nodec = 0;
|
||
rxb->rx.epsnodec = 0;
|
||
rxb->rx.instruction_table = 0;
|
||
rxb->rx.nfa_states = 0;
|
||
rxb->rx.se_list_cmp = posix_se_list_order;
|
||
rxb->rx.start_set = 0;
|
||
|
||
ret = rx_compile (pattern, length, re_syntax_options, rxb);
|
||
alloca (0);
|
||
return rx_error_msg[(int) ret];
|
||
}
|
||
|
||
|
||
|
||
#ifdef __STDC__
|
||
int
|
||
re_compile_fastmap (struct re_pattern_buffer * rxb)
|
||
#else
|
||
int
|
||
re_compile_fastmap (rxb)
|
||
struct re_pattern_buffer * rxb;
|
||
#endif
|
||
{
|
||
rx_blow_up_fastmap (rxb);
|
||
return 0;
|
||
}
|
||
|
||
|
||
|
||
|
||
/* Entry points compatible with 4.2 BSD regex library. We don't define
|
||
them if this is an Emacs or POSIX compilation. */
|
||
|
||
/* Don't build them for libg++ either. This is a temporary measure
|
||
* until the functions are moved to another file and reconditionalized.
|
||
*/
|
||
#if 0
|
||
/* #if (!defined (emacs) && !defined (_POSIX_SOURCE)) || defined(USE_BSD_REGEX) */
|
||
|
||
/* BSD has one and only one pattern buffer. */
|
||
static struct re_pattern_buffer rx_comp_buf;
|
||
|
||
#ifdef __STDC__
|
||
char *
|
||
re_comp (__const__ char *s)
|
||
#else
|
||
char *
|
||
re_comp (s)
|
||
__const__ char *s;
|
||
#endif
|
||
{
|
||
reg_errcode_t ret;
|
||
|
||
if (!s || (*s == '\0'))
|
||
{
|
||
if (!rx_comp_buf.buffer)
|
||
return "No previous regular expression";
|
||
return 0;
|
||
}
|
||
|
||
if (!rx_comp_buf.fastmap)
|
||
{
|
||
rx_comp_buf.fastmap = (char *) malloc (1 << CHARBITS);
|
||
if (!rx_comp_buf.fastmap)
|
||
return "Memory exhausted";
|
||
}
|
||
|
||
/* Since `rx_exec' always passes NULL for the `regs' argument, we
|
||
don't need to initialize the pattern buffer fields which affect it. */
|
||
|
||
/* Match anchors at newlines. */
|
||
rx_comp_buf.newline_anchor = 1;
|
||
|
||
rx_comp_buf.fastmap_accurate = 0;
|
||
rx_comp_buf.re_nsub = 0;
|
||
rx_comp_buf.start = 0;
|
||
rx_comp_buf.se_params = 0;
|
||
rx_comp_buf.rx.nodec = 0;
|
||
rx_comp_buf.rx.epsnodec = 0;
|
||
rx_comp_buf.rx.instruction_table = 0;
|
||
rx_comp_buf.rx.nfa_states = 0;
|
||
rx_comp_buf.rx.start = 0;
|
||
rx_comp_buf.rx.se_list_cmp = posix_se_list_order;
|
||
rx_comp_buf.rx.start_set = 0;
|
||
rx_comp_buf.rx.local_cset_size = 256;
|
||
|
||
ret = rx_compile (s, strlen (s), re_syntax_options, &rx_comp_buf);
|
||
alloca (0);
|
||
|
||
/* Yes, we're discarding `__const__' here. */
|
||
return (char *) rx_error_msg[(int) ret];
|
||
}
|
||
|
||
|
||
#ifdef __STDC__
|
||
int
|
||
re_exec (__const__ char *s)
|
||
#else
|
||
int
|
||
re_exec (s)
|
||
__const__ char *s;
|
||
#endif
|
||
{
|
||
__const__ int len = strlen (s);
|
||
return
|
||
0 <= re_search (&rx_comp_buf, s, len, 0, len, (struct re_registers *) 0);
|
||
}
|
||
#endif /* not emacs and not _POSIX_SOURCE */
|
||
|
||
|
||
|
||
/* POSIX.2 functions. Don't define these for Emacs. */
|
||
|
||
/* For now we leave these out, because regex_t is not binary
|
||
compatible with the implementation in other systems. */
|
||
#if 0 /*!defined(emacs)*/
|
||
|
||
/* regcomp takes a regular expression as a string and compiles it.
|
||
|
||
PREG is a regex_t *. We do not expect any fields to be initialized,
|
||
since POSIX says we shouldn't. Thus, we set
|
||
|
||
`buffer' to the compiled pattern;
|
||
`used' to the length of the compiled pattern;
|
||
`syntax' to RE_SYNTAX_POSIX_EXTENDED if the
|
||
REG_EXTENDED bit in CFLAGS is set; otherwise, to
|
||
RE_SYNTAX_POSIX_BASIC;
|
||
`newline_anchor' to REG_NEWLINE being set in CFLAGS;
|
||
`fastmap' and `fastmap_accurate' to zero;
|
||
`re_nsub' to the number of subexpressions in PATTERN.
|
||
|
||
PATTERN is the address of the pattern string.
|
||
|
||
CFLAGS is a series of bits which affect compilation.
|
||
|
||
If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
|
||
use POSIX basic syntax.
|
||
|
||
If REG_NEWLINE is set, then . and [^...] don't match newline.
|
||
Also, regexec will try a match beginning after every newline.
|
||
|
||
If REG_ICASE is set, then we considers upper- and lowercase
|
||
versions of letters to be equivalent when matching.
|
||
|
||
If REG_NOSUB is set, then when PREG is passed to regexec, that
|
||
routine will report only success or failure, and nothing about the
|
||
registers.
|
||
|
||
It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
|
||
the return codes and their meanings.) */
|
||
|
||
|
||
#ifdef __STDC__
|
||
int
|
||
regcomp (regex_t * preg, __const__ char * pattern, int cflags)
|
||
#else
|
||
int
|
||
regcomp (preg, pattern, cflags)
|
||
regex_t * preg;
|
||
__const__ char * pattern;
|
||
int cflags;
|
||
#endif
|
||
{
|
||
reg_errcode_t ret;
|
||
unsigned syntax
|
||
= cflags & REG_EXTENDED ? RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
|
||
|
||
/* regex_compile will allocate the space for the compiled pattern. */
|
||
preg->buffer = 0;
|
||
preg->allocated = 0;
|
||
preg->fastmap = malloc (256);
|
||
if (!preg->fastmap)
|
||
return REG_ESPACE;
|
||
preg->fastmap_accurate = 0;
|
||
|
||
if (cflags & REG_ICASE)
|
||
{
|
||
unsigned i;
|
||
|
||
preg->translate = (unsigned char *) malloc (256);
|
||
if (!preg->translate)
|
||
return (int) REG_ESPACE;
|
||
|
||
/* Map uppercase characters to corresponding lowercase ones. */
|
||
for (i = 0; i < CHAR_SET_SIZE; i++)
|
||
preg->translate[i] = isupper (i) ? tolower (i) : i;
|
||
}
|
||
else
|
||
preg->translate = 0;
|
||
|
||
/* If REG_NEWLINE is set, newlines are treated differently. */
|
||
if (cflags & REG_NEWLINE)
|
||
{ /* REG_NEWLINE implies neither . nor [^...] match newline. */
|
||
syntax &= ~RE_DOT_NEWLINE;
|
||
syntax |= RE_HAT_LISTS_NOT_NEWLINE;
|
||
/* It also changes the matching behavior. */
|
||
preg->newline_anchor = 1;
|
||
}
|
||
else
|
||
preg->newline_anchor = 0;
|
||
|
||
preg->no_sub = !!(cflags & REG_NOSUB);
|
||
|
||
/* POSIX says a null character in the pattern terminates it, so we
|
||
can use strlen here in compiling the pattern. */
|
||
preg->re_nsub = 0;
|
||
preg->start = 0;
|
||
preg->se_params = 0;
|
||
preg->syntax_parens = 0;
|
||
preg->rx.nodec = 0;
|
||
preg->rx.epsnodec = 0;
|
||
preg->rx.instruction_table = 0;
|
||
preg->rx.nfa_states = 0;
|
||
preg->rx.local_cset_size = 256;
|
||
preg->rx.start = 0;
|
||
preg->rx.se_list_cmp = posix_se_list_order;
|
||
preg->rx.start_set = 0;
|
||
ret = rx_compile (pattern, strlen (pattern), syntax, preg);
|
||
alloca (0);
|
||
|
||
/* POSIX doesn't distinguish between an unmatched open-group and an
|
||
unmatched close-group: both are REG_EPAREN. */
|
||
if (ret == REG_ERPAREN) ret = REG_EPAREN;
|
||
|
||
return (int) ret;
|
||
}
|
||
|
||
|
||
/* regexec searches for a given pattern, specified by PREG, in the
|
||
string STRING.
|
||
|
||
If NMATCH is zero or REG_NOSUB was set in the cflags argument to
|
||
`regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
|
||
least NMATCH elements, and we set them to the offsets of the
|
||
corresponding matched substrings.
|
||
|
||
EFLAGS specifies `execution flags' which affect matching: if
|
||
REG_NOTBOL is set, then ^ does not match at the beginning of the
|
||
string; if REG_NOTEOL is set, then $ does not match at the end.
|
||
|
||
We return 0 if we find a match and REG_NOMATCH if not. */
|
||
|
||
#ifdef __STDC__
|
||
int
|
||
regexec (__const__ regex_t *preg, __const__ char *string,
|
||
size_t nmatch, regmatch_t pmatch[],
|
||
int eflags)
|
||
#else
|
||
int
|
||
regexec (preg, string, nmatch, pmatch, eflags)
|
||
__const__ regex_t *preg;
|
||
__const__ char *string;
|
||
size_t nmatch;
|
||
regmatch_t pmatch[];
|
||
int eflags;
|
||
#endif
|
||
{
|
||
int ret;
|
||
struct re_registers regs;
|
||
regex_t private_preg;
|
||
int len = strlen (string);
|
||
boolean want_reg_info = !preg->no_sub && nmatch > 0;
|
||
|
||
private_preg = *preg;
|
||
|
||
private_preg.not_bol = !!(eflags & REG_NOTBOL);
|
||
private_preg.not_eol = !!(eflags & REG_NOTEOL);
|
||
|
||
/* The user has told us exactly how many registers to return
|
||
* information about, via `nmatch'. We have to pass that on to the
|
||
* matching routines.
|
||
*/
|
||
private_preg.regs_allocated = REGS_FIXED;
|
||
|
||
if (want_reg_info)
|
||
{
|
||
regs.num_regs = nmatch;
|
||
regs.start = (( regoff_t *) malloc ((nmatch) * sizeof ( regoff_t)));
|
||
regs.end = (( regoff_t *) malloc ((nmatch) * sizeof ( regoff_t)));
|
||
if (regs.start == 0 || regs.end == 0)
|
||
return (int) REG_NOMATCH;
|
||
}
|
||
|
||
/* Perform the searching operation. */
|
||
ret = re_search (&private_preg,
|
||
string, len,
|
||
/* start: */ 0,
|
||
/* range: */ len,
|
||
want_reg_info ? ®s : (struct re_registers *) 0);
|
||
|
||
/* Copy the register information to the POSIX structure. */
|
||
if (want_reg_info)
|
||
{
|
||
if (ret >= 0)
|
||
{
|
||
unsigned r;
|
||
|
||
for (r = 0; r < nmatch; r++)
|
||
{
|
||
pmatch[r].rm_so = regs.start[r];
|
||
pmatch[r].rm_eo = regs.end[r];
|
||
}
|
||
}
|
||
|
||
/* If we needed the temporary register info, free the space now. */
|
||
free (regs.start);
|
||
free (regs.end);
|
||
}
|
||
|
||
/* We want zero return to mean success, unlike `re_search'. */
|
||
return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
|
||
}
|
||
|
||
|
||
/* Returns a message corresponding to an error code, ERRCODE, returned
|
||
from either regcomp or regexec. */
|
||
|
||
#ifdef __STDC__
|
||
size_t
|
||
regerror (int errcode, __const__ regex_t *preg,
|
||
char *errbuf, size_t errbuf_size)
|
||
#else
|
||
size_t
|
||
regerror (errcode, preg, errbuf, errbuf_size)
|
||
int errcode;
|
||
__const__ regex_t *preg;
|
||
char *errbuf;
|
||
size_t errbuf_size;
|
||
#endif
|
||
{
|
||
__const__ char *msg
|
||
= rx_error_msg[errcode] == 0 ? "Success" : rx_error_msg[errcode];
|
||
size_t msg_size = strlen (msg) + 1; /* Includes the 0. */
|
||
|
||
if (errbuf_size != 0)
|
||
{
|
||
if (msg_size > errbuf_size)
|
||
{
|
||
strncpy (errbuf, msg, errbuf_size - 1);
|
||
errbuf[errbuf_size - 1] = 0;
|
||
}
|
||
else
|
||
strcpy (errbuf, msg);
|
||
}
|
||
|
||
return msg_size;
|
||
}
|
||
|
||
|
||
/* Free dynamically allocated space used by PREG. */
|
||
|
||
#ifdef __STDC__
|
||
void
|
||
regfree (regex_t *preg)
|
||
#else
|
||
void
|
||
regfree (preg)
|
||
regex_t *preg;
|
||
#endif
|
||
{
|
||
if (preg->buffer != 0)
|
||
free (preg->buffer);
|
||
preg->buffer = 0;
|
||
preg->allocated = 0;
|
||
|
||
if (preg->fastmap != 0)
|
||
free (preg->fastmap);
|
||
preg->fastmap = 0;
|
||
preg->fastmap_accurate = 0;
|
||
|
||
if (preg->translate != 0)
|
||
free (preg->translate);
|
||
preg->translate = 0;
|
||
}
|
||
|
||
#endif /* not emacs */
|