freebsd-dev/sys/vm/vm_phys.c
Alan Cox 44aab2c3de Introduce vm_reserv_reclaim_contig(). This function is used by
contigmalloc(9) as a last resort to steal pages from an inactive,
partially-used superpage reservation.

Rename vm_reserv_reclaim() to vm_reserv_reclaim_inactive() and
refactor it so that a separate subroutine is responsible for breaking
the selected reservation.  This subroutine is also used by
vm_reserv_reclaim_contig().
2008-04-06 18:09:28 +00:00

762 lines
21 KiB
C

/*-
* Copyright (c) 2002-2006 Rice University
* Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
* All rights reserved.
*
* This software was developed for the FreeBSD Project by Alan L. Cox,
* Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
* WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ddb.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/lock.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/queue.h>
#include <sys/sbuf.h>
#include <sys/sysctl.h>
#include <sys/vmmeter.h>
#include <sys/vnode.h>
#include <ddb/ddb.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_kern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_phys.h>
#include <vm/vm_reserv.h>
struct vm_freelist {
struct pglist pl;
int lcnt;
};
struct vm_phys_seg {
vm_paddr_t start;
vm_paddr_t end;
vm_page_t first_page;
struct vm_freelist (*free_queues)[VM_NFREEPOOL][VM_NFREEORDER];
};
static struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
static int vm_phys_nsegs;
static struct vm_freelist
vm_phys_free_queues[VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
static int vm_nfreelists = VM_FREELIST_DEFAULT + 1;
static int cnt_prezero;
SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD,
&cnt_prezero, 0, "The number of physical pages prezeroed at idle time");
static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind);
static int vm_phys_paddr_to_segind(vm_paddr_t pa);
static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
int order);
/*
* Outputs the state of the physical memory allocator, specifically,
* the amount of physical memory in each free list.
*/
static int
sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
{
struct sbuf sbuf;
struct vm_freelist *fl;
char *cbuf;
const int cbufsize = vm_nfreelists*(VM_NFREEORDER + 1)*81;
int error, flind, oind, pind;
cbuf = malloc(cbufsize, M_TEMP, M_WAITOK | M_ZERO);
sbuf_new(&sbuf, cbuf, cbufsize, SBUF_FIXEDLEN);
for (flind = 0; flind < vm_nfreelists; flind++) {
sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
"\n ORDER (SIZE) | NUMBER"
"\n ", flind);
for (pind = 0; pind < VM_NFREEPOOL; pind++)
sbuf_printf(&sbuf, " | POOL %d", pind);
sbuf_printf(&sbuf, "\n-- ");
for (pind = 0; pind < VM_NFREEPOOL; pind++)
sbuf_printf(&sbuf, "-- -- ");
sbuf_printf(&sbuf, "--\n");
for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
sbuf_printf(&sbuf, " %2.2d (%6.6dK)", oind,
1 << (PAGE_SHIFT - 10 + oind));
for (pind = 0; pind < VM_NFREEPOOL; pind++) {
fl = vm_phys_free_queues[flind][pind];
sbuf_printf(&sbuf, " | %6.6d", fl[oind].lcnt);
}
sbuf_printf(&sbuf, "\n");
}
}
sbuf_finish(&sbuf);
error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf));
sbuf_delete(&sbuf);
free(cbuf, M_TEMP);
return (error);
}
/*
* Outputs the set of physical memory segments.
*/
static int
sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
{
struct sbuf sbuf;
struct vm_phys_seg *seg;
char *cbuf;
const int cbufsize = VM_PHYSSEG_MAX*(VM_NFREEORDER + 1)*81;
int error, segind;
cbuf = malloc(cbufsize, M_TEMP, M_WAITOK | M_ZERO);
sbuf_new(&sbuf, cbuf, cbufsize, SBUF_FIXEDLEN);
for (segind = 0; segind < vm_phys_nsegs; segind++) {
sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
seg = &vm_phys_segs[segind];
sbuf_printf(&sbuf, "start: %#jx\n",
(uintmax_t)seg->start);
sbuf_printf(&sbuf, "end: %#jx\n",
(uintmax_t)seg->end);
sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
}
sbuf_finish(&sbuf);
error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf));
sbuf_delete(&sbuf);
free(cbuf, M_TEMP);
return (error);
}
/*
* Create a physical memory segment.
*/
static void
vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind)
{
struct vm_phys_seg *seg;
#ifdef VM_PHYSSEG_SPARSE
long pages;
int segind;
pages = 0;
for (segind = 0; segind < vm_phys_nsegs; segind++) {
seg = &vm_phys_segs[segind];
pages += atop(seg->end - seg->start);
}
#endif
KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
seg = &vm_phys_segs[vm_phys_nsegs++];
seg->start = start;
seg->end = end;
#ifdef VM_PHYSSEG_SPARSE
seg->first_page = &vm_page_array[pages];
#else
seg->first_page = PHYS_TO_VM_PAGE(start);
#endif
seg->free_queues = &vm_phys_free_queues[flind];
}
/*
* Initialize the physical memory allocator.
*/
void
vm_phys_init(void)
{
struct vm_freelist *fl;
int flind, i, oind, pind;
for (i = 0; phys_avail[i + 1] != 0; i += 2) {
#ifdef VM_FREELIST_ISADMA
if (phys_avail[i] < 16777216) {
if (phys_avail[i + 1] > 16777216) {
vm_phys_create_seg(phys_avail[i], 16777216,
VM_FREELIST_ISADMA);
vm_phys_create_seg(16777216, phys_avail[i + 1],
VM_FREELIST_DEFAULT);
} else {
vm_phys_create_seg(phys_avail[i],
phys_avail[i + 1], VM_FREELIST_ISADMA);
}
if (VM_FREELIST_ISADMA >= vm_nfreelists)
vm_nfreelists = VM_FREELIST_ISADMA + 1;
} else
#endif
#ifdef VM_FREELIST_HIGHMEM
if (phys_avail[i + 1] > VM_HIGHMEM_ADDRESS) {
if (phys_avail[i] < VM_HIGHMEM_ADDRESS) {
vm_phys_create_seg(phys_avail[i],
VM_HIGHMEM_ADDRESS, VM_FREELIST_DEFAULT);
vm_phys_create_seg(VM_HIGHMEM_ADDRESS,
phys_avail[i + 1], VM_FREELIST_HIGHMEM);
} else {
vm_phys_create_seg(phys_avail[i],
phys_avail[i + 1], VM_FREELIST_HIGHMEM);
}
if (VM_FREELIST_HIGHMEM >= vm_nfreelists)
vm_nfreelists = VM_FREELIST_HIGHMEM + 1;
} else
#endif
vm_phys_create_seg(phys_avail[i], phys_avail[i + 1],
VM_FREELIST_DEFAULT);
}
for (flind = 0; flind < vm_nfreelists; flind++) {
for (pind = 0; pind < VM_NFREEPOOL; pind++) {
fl = vm_phys_free_queues[flind][pind];
for (oind = 0; oind < VM_NFREEORDER; oind++)
TAILQ_INIT(&fl[oind].pl);
}
}
}
/*
* Split a contiguous, power of two-sized set of physical pages.
*/
static __inline void
vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
{
vm_page_t m_buddy;
while (oind > order) {
oind--;
m_buddy = &m[1 << oind];
KASSERT(m_buddy->order == VM_NFREEORDER,
("vm_phys_split_pages: page %p has unexpected order %d",
m_buddy, m_buddy->order));
m_buddy->order = oind;
TAILQ_INSERT_HEAD(&fl[oind].pl, m_buddy, pageq);
fl[oind].lcnt++;
}
}
/*
* Initialize a physical page and add it to the free lists.
*/
void
vm_phys_add_page(vm_paddr_t pa)
{
vm_page_t m;
cnt.v_page_count++;
m = vm_phys_paddr_to_vm_page(pa);
m->phys_addr = pa;
m->segind = vm_phys_paddr_to_segind(pa);
m->flags = PG_FREE;
KASSERT(m->order == VM_NFREEORDER,
("vm_phys_add_page: page %p has unexpected order %d",
m, m->order));
m->pool = VM_FREEPOOL_DEFAULT;
pmap_page_init(m);
mtx_lock(&vm_page_queue_free_mtx);
cnt.v_free_count++;
vm_phys_free_pages(m, 0);
mtx_unlock(&vm_page_queue_free_mtx);
}
/*
* Allocate a contiguous, power of two-sized set of physical pages
* from the free lists.
*
* The free page queues must be locked.
*/
vm_page_t
vm_phys_alloc_pages(int pool, int order)
{
struct vm_freelist *fl;
struct vm_freelist *alt;
int flind, oind, pind;
vm_page_t m;
KASSERT(pool < VM_NFREEPOOL,
("vm_phys_alloc_pages: pool %d is out of range", pool));
KASSERT(order < VM_NFREEORDER,
("vm_phys_alloc_pages: order %d is out of range", order));
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
for (flind = 0; flind < vm_nfreelists; flind++) {
fl = vm_phys_free_queues[flind][pool];
for (oind = order; oind < VM_NFREEORDER; oind++) {
m = TAILQ_FIRST(&fl[oind].pl);
if (m != NULL) {
TAILQ_REMOVE(&fl[oind].pl, m, pageq);
fl[oind].lcnt--;
m->order = VM_NFREEORDER;
vm_phys_split_pages(m, oind, fl, order);
return (m);
}
}
/*
* The given pool was empty. Find the largest
* contiguous, power-of-two-sized set of pages in any
* pool. Transfer these pages to the given pool, and
* use them to satisfy the allocation.
*/
for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
for (pind = 0; pind < VM_NFREEPOOL; pind++) {
alt = vm_phys_free_queues[flind][pind];
m = TAILQ_FIRST(&alt[oind].pl);
if (m != NULL) {
TAILQ_REMOVE(&alt[oind].pl, m, pageq);
alt[oind].lcnt--;
m->order = VM_NFREEORDER;
vm_phys_set_pool(pool, m, oind);
vm_phys_split_pages(m, oind, fl, order);
return (m);
}
}
}
}
return (NULL);
}
/*
* Allocate physical memory from phys_avail[].
*/
vm_paddr_t
vm_phys_bootstrap_alloc(vm_size_t size, unsigned long alignment)
{
vm_paddr_t pa;
int i;
size = round_page(size);
for (i = 0; phys_avail[i + 1] != 0; i += 2) {
if (phys_avail[i + 1] - phys_avail[i] < size)
continue;
pa = phys_avail[i];
phys_avail[i] += size;
return (pa);
}
panic("vm_phys_bootstrap_alloc");
}
/*
* Find the vm_page corresponding to the given physical address.
*/
vm_page_t
vm_phys_paddr_to_vm_page(vm_paddr_t pa)
{
struct vm_phys_seg *seg;
int segind;
for (segind = 0; segind < vm_phys_nsegs; segind++) {
seg = &vm_phys_segs[segind];
if (pa >= seg->start && pa < seg->end)
return (&seg->first_page[atop(pa - seg->start)]);
}
panic("vm_phys_paddr_to_vm_page: paddr %#jx is not in any segment",
(uintmax_t)pa);
}
/*
* Find the segment containing the given physical address.
*/
static int
vm_phys_paddr_to_segind(vm_paddr_t pa)
{
struct vm_phys_seg *seg;
int segind;
for (segind = 0; segind < vm_phys_nsegs; segind++) {
seg = &vm_phys_segs[segind];
if (pa >= seg->start && pa < seg->end)
return (segind);
}
panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" ,
(uintmax_t)pa);
}
/*
* Free a contiguous, power of two-sized set of physical pages.
*
* The free page queues must be locked.
*/
void
vm_phys_free_pages(vm_page_t m, int order)
{
struct vm_freelist *fl;
struct vm_phys_seg *seg;
vm_paddr_t pa, pa_buddy;
vm_page_t m_buddy;
KASSERT(m->order == VM_NFREEORDER,
("vm_phys_free_pages: page %p has unexpected order %d",
m, m->order));
KASSERT(m->pool < VM_NFREEPOOL,
("vm_phys_free_pages: page %p has unexpected pool %d",
m, m->pool));
KASSERT(order < VM_NFREEORDER,
("vm_phys_free_pages: order %d is out of range", order));
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
pa = VM_PAGE_TO_PHYS(m);
seg = &vm_phys_segs[m->segind];
while (order < VM_NFREEORDER - 1) {
pa_buddy = pa ^ (1 << (PAGE_SHIFT + order));
if (pa_buddy < seg->start ||
pa_buddy >= seg->end)
break;
m_buddy = &seg->first_page[atop(pa_buddy - seg->start)];
if (m_buddy->order != order)
break;
fl = (*seg->free_queues)[m_buddy->pool];
TAILQ_REMOVE(&fl[m_buddy->order].pl, m_buddy, pageq);
fl[m_buddy->order].lcnt--;
m_buddy->order = VM_NFREEORDER;
if (m_buddy->pool != m->pool)
vm_phys_set_pool(m->pool, m_buddy, order);
order++;
pa &= ~((1 << (PAGE_SHIFT + order)) - 1);
m = &seg->first_page[atop(pa - seg->start)];
}
m->order = order;
fl = (*seg->free_queues)[m->pool];
TAILQ_INSERT_TAIL(&fl[order].pl, m, pageq);
fl[order].lcnt++;
}
/*
* Set the pool for a contiguous, power of two-sized set of physical pages.
*/
void
vm_phys_set_pool(int pool, vm_page_t m, int order)
{
vm_page_t m_tmp;
for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
m_tmp->pool = pool;
}
/*
* Search for the given physical page "m" in the free lists. If the search
* succeeds, remove "m" from the free lists and return TRUE. Otherwise, return
* FALSE, indicating that "m" is not in the free lists.
*
* The free page queues must be locked.
*/
boolean_t
vm_phys_unfree_page(vm_page_t m)
{
struct vm_freelist *fl;
struct vm_phys_seg *seg;
vm_paddr_t pa, pa_half;
vm_page_t m_set, m_tmp;
int order;
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
/*
* First, find the contiguous, power of two-sized set of free
* physical pages containing the given physical page "m" and
* assign it to "m_set".
*/
seg = &vm_phys_segs[m->segind];
for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
order < VM_NFREEORDER - 1; ) {
order++;
pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
if (pa >= seg->start)
m_set = &seg->first_page[atop(pa - seg->start)];
else
return (FALSE);
}
if (m_set->order < order)
return (FALSE);
if (m_set->order == VM_NFREEORDER)
return (FALSE);
KASSERT(m_set->order < VM_NFREEORDER,
("vm_phys_unfree_page: page %p has unexpected order %d",
m_set, m_set->order));
/*
* Next, remove "m_set" from the free lists. Finally, extract
* "m" from "m_set" using an iterative algorithm: While "m_set"
* is larger than a page, shrink "m_set" by returning the half
* of "m_set" that does not contain "m" to the free lists.
*/
fl = (*seg->free_queues)[m_set->pool];
order = m_set->order;
TAILQ_REMOVE(&fl[order].pl, m_set, pageq);
fl[order].lcnt--;
m_set->order = VM_NFREEORDER;
while (order > 0) {
order--;
pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
if (m->phys_addr < pa_half)
m_tmp = &seg->first_page[atop(pa_half - seg->start)];
else {
m_tmp = m_set;
m_set = &seg->first_page[atop(pa_half - seg->start)];
}
m_tmp->order = order;
TAILQ_INSERT_HEAD(&fl[order].pl, m_tmp, pageq);
fl[order].lcnt++;
}
KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
return (TRUE);
}
/*
* Try to zero one physical page. Used by an idle priority thread.
*/
boolean_t
vm_phys_zero_pages_idle(void)
{
static struct vm_freelist *fl = vm_phys_free_queues[0][0];
static int flind, oind, pind;
vm_page_t m, m_tmp;
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
for (;;) {
TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, pageq) {
for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) {
if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) {
vm_phys_unfree_page(m_tmp);
cnt.v_free_count--;
mtx_unlock(&vm_page_queue_free_mtx);
pmap_zero_page_idle(m_tmp);
m_tmp->flags |= PG_ZERO;
mtx_lock(&vm_page_queue_free_mtx);
cnt.v_free_count++;
vm_phys_free_pages(m_tmp, 0);
vm_page_zero_count++;
cnt_prezero++;
return (TRUE);
}
}
}
oind++;
if (oind == VM_NFREEORDER) {
oind = 0;
pind++;
if (pind == VM_NFREEPOOL) {
pind = 0;
flind++;
if (flind == vm_nfreelists)
flind = 0;
}
fl = vm_phys_free_queues[flind][pind];
}
}
}
/*
* Allocate a contiguous set of physical pages of the given size
* "npages" from the free lists. All of the physical pages must be at
* or above the given physical address "low" and below the given
* physical address "high". The given value "alignment" determines the
* alignment of the first physical page in the set. If the given value
* "boundary" is non-zero, then the set of physical pages cannot cross
* any physical address boundary that is a multiple of that value. Both
* "alignment" and "boundary" must be a power of two.
*/
vm_page_t
vm_phys_alloc_contig(unsigned long npages, vm_paddr_t low, vm_paddr_t high,
unsigned long alignment, unsigned long boundary)
{
struct vm_freelist *fl;
struct vm_phys_seg *seg;
vm_object_t m_object;
vm_paddr_t pa, pa_last, size;
vm_page_t m, m_ret;
int flind, i, oind, order, pind;
size = npages << PAGE_SHIFT;
KASSERT(size != 0,
("vm_phys_alloc_contig: size must not be 0"));
KASSERT((alignment & (alignment - 1)) == 0,
("vm_phys_alloc_contig: alignment must be a power of 2"));
KASSERT((boundary & (boundary - 1)) == 0,
("vm_phys_alloc_contig: boundary must be a power of 2"));
/* Compute the queue that is the best fit for npages. */
for (order = 0; (1 << order) < npages; order++);
mtx_lock(&vm_page_queue_free_mtx);
#if VM_NRESERVLEVEL > 0
retry:
#endif
for (flind = 0; flind < vm_nfreelists; flind++) {
for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) {
for (pind = 0; pind < VM_NFREEPOOL; pind++) {
fl = vm_phys_free_queues[flind][pind];
TAILQ_FOREACH(m_ret, &fl[oind].pl, pageq) {
/*
* A free list may contain physical pages
* from one or more segments.
*/
seg = &vm_phys_segs[m_ret->segind];
if (seg->start > high ||
low >= seg->end)
continue;
/*
* Is the size of this allocation request
* larger than the largest block size?
*/
if (order >= VM_NFREEORDER) {
/*
* Determine if a sufficient number
* of subsequent blocks to satisfy
* the allocation request are free.
*/
pa = VM_PAGE_TO_PHYS(m_ret);
pa_last = pa + size;
for (;;) {
pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1);
if (pa >= pa_last)
break;
if (pa < seg->start ||
pa >= seg->end)
break;
m = &seg->first_page[atop(pa - seg->start)];
if (m->order != VM_NFREEORDER - 1)
break;
}
/* If not, continue to the next block. */
if (pa < pa_last)
continue;
}
/*
* Determine if the blocks are within the given range,
* satisfy the given alignment, and do not cross the
* given boundary.
*/
pa = VM_PAGE_TO_PHYS(m_ret);
if (pa >= low &&
pa + size <= high &&
(pa & (alignment - 1)) == 0 &&
((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0)
goto done;
}
}
}
}
#if VM_NRESERVLEVEL > 0
if (vm_reserv_reclaim_contig(size, low, high, alignment, boundary))
goto retry;
#endif
mtx_unlock(&vm_page_queue_free_mtx);
return (NULL);
done:
for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
fl = (*seg->free_queues)[m->pool];
TAILQ_REMOVE(&fl[m->order].pl, m, pageq);
fl[m->order].lcnt--;
m->order = VM_NFREEORDER;
}
if (m_ret->pool != VM_FREEPOOL_DEFAULT)
vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
fl = (*seg->free_queues)[m_ret->pool];
vm_phys_split_pages(m_ret, oind, fl, order);
for (i = 0; i < npages; i++) {
m = &m_ret[i];
KASSERT(m->queue == PQ_NONE,
("vm_phys_alloc_contig: page %p has unexpected queue %d",
m, m->queue));
m_object = m->object;
if ((m->flags & PG_CACHED) != 0)
vm_page_cache_remove(m);
else {
KASSERT(VM_PAGE_IS_FREE(m),
("vm_phys_alloc_contig: page %p is not free", m));
cnt.v_free_count--;
}
m->valid = VM_PAGE_BITS_ALL;
if (m->flags & PG_ZERO)
vm_page_zero_count--;
/* Don't clear the PG_ZERO flag; we'll need it later. */
m->flags = PG_UNMANAGED | (m->flags & PG_ZERO);
m->oflags = 0;
KASSERT(m->dirty == 0,
("vm_phys_alloc_contig: page %p was dirty", m));
m->wire_count = 0;
m->busy = 0;
if (m_object != NULL &&
m_object->type == OBJT_VNODE &&
m_object->cache == NULL) {
mtx_unlock(&vm_page_queue_free_mtx);
vdrop(m_object->handle);
mtx_lock(&vm_page_queue_free_mtx);
}
}
for (; i < roundup2(npages, 1 << imin(oind, order)); i++) {
m = &m_ret[i];
KASSERT(m->order == VM_NFREEORDER,
("vm_phys_alloc_contig: page %p has unexpected order %d",
m, m->order));
vm_phys_free_pages(m, 0);
}
mtx_unlock(&vm_page_queue_free_mtx);
return (m_ret);
}
#ifdef DDB
/*
* Show the number of physical pages in each of the free lists.
*/
DB_SHOW_COMMAND(freepages, db_show_freepages)
{
struct vm_freelist *fl;
int flind, oind, pind;
for (flind = 0; flind < vm_nfreelists; flind++) {
db_printf("FREE LIST %d:\n"
"\n ORDER (SIZE) | NUMBER"
"\n ", flind);
for (pind = 0; pind < VM_NFREEPOOL; pind++)
db_printf(" | POOL %d", pind);
db_printf("\n-- ");
for (pind = 0; pind < VM_NFREEPOOL; pind++)
db_printf("-- -- ");
db_printf("--\n");
for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
db_printf(" %2.2d (%6.6dK)", oind,
1 << (PAGE_SHIFT - 10 + oind));
for (pind = 0; pind < VM_NFREEPOOL; pind++) {
fl = vm_phys_free_queues[flind][pind];
db_printf(" | %6.6d", fl[oind].lcnt);
}
db_printf("\n");
}
db_printf("\n");
}
}
#endif