freebsd-dev/sys/arm/arm/pmap-v6.c
Konstantin Belousov 901b55218f MFamd64 r313933: microoptimize pmap_protect_pte1().
Noted by:	alc
Tested by:	mmel
Sponsored by:	The FreeBSD Foundation
MFC after:	1 week
2017-02-19 20:40:07 +00:00

6817 lines
184 KiB
C

/*-
* Copyright (c) 1991 Regents of the University of California.
* Copyright (c) 1994 John S. Dyson
* Copyright (c) 1994 David Greenman
* Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
* Copyright (c) 2014-2016 Svatopluk Kraus <skra@FreeBSD.org>
* Copyright (c) 2014-2016 Michal Meloun <mmel@FreeBSD.org>
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department and William Jolitz of UUNET Technologies Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)pmap.c 7.7 (Berkeley) 5/12/91
*/
/*-
* Copyright (c) 2003 Networks Associates Technology, Inc.
* All rights reserved.
*
* This software was developed for the FreeBSD Project by Jake Burkholder,
* Safeport Network Services, and Network Associates Laboratories, the
* Security Research Division of Network Associates, Inc. under
* DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
* CHATS research program.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Manages physical address maps.
*
* Since the information managed by this module is
* also stored by the logical address mapping module,
* this module may throw away valid virtual-to-physical
* mappings at almost any time. However, invalidations
* of virtual-to-physical mappings must be done as
* requested.
*
* In order to cope with hardware architectures which
* make virtual-to-physical map invalidates expensive,
* this module may delay invalidate or reduced protection
* operations until such time as they are actually
* necessary. This module is given full information as
* to which processors are currently using which maps,
* and to when physical maps must be made correct.
*/
#include "opt_vm.h"
#include "opt_pmap.h"
#include "opt_ddb.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/proc.h>
#include <sys/rwlock.h>
#include <sys/malloc.h>
#include <sys/vmmeter.h>
#include <sys/malloc.h>
#include <sys/mman.h>
#include <sys/sf_buf.h>
#include <sys/smp.h>
#include <sys/sched.h>
#include <sys/sysctl.h>
#ifdef DDB
#include <ddb/ddb.h>
#endif
#include <machine/physmem.h>
#include <vm/vm.h>
#include <vm/uma.h>
#include <vm/pmap.h>
#include <vm/vm_param.h>
#include <vm/vm_kern.h>
#include <vm/vm_object.h>
#include <vm/vm_map.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
#include <vm/vm_phys.h>
#include <vm/vm_extern.h>
#include <vm/vm_reserv.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <machine/md_var.h>
#include <machine/pmap_var.h>
#include <machine/cpu.h>
#include <machine/pcb.h>
#include <machine/sf_buf.h>
#ifdef SMP
#include <machine/smp.h>
#endif
#ifndef PMAP_SHPGPERPROC
#define PMAP_SHPGPERPROC 200
#endif
#ifndef DIAGNOSTIC
#define PMAP_INLINE __inline
#else
#define PMAP_INLINE
#endif
#ifdef PMAP_DEBUG
static void pmap_zero_page_check(vm_page_t m);
void pmap_debug(int level);
int pmap_pid_dump(int pid);
#define PDEBUG(_lev_,_stat_) \
if (pmap_debug_level >= (_lev_)) \
((_stat_))
#define dprintf printf
int pmap_debug_level = 1;
#else /* PMAP_DEBUG */
#define PDEBUG(_lev_,_stat_) /* Nothing */
#define dprintf(x, arg...)
#endif /* PMAP_DEBUG */
/*
* Level 2 page tables map definion ('max' is excluded).
*/
#define PT2V_MIN_ADDRESS ((vm_offset_t)PT2MAP)
#define PT2V_MAX_ADDRESS ((vm_offset_t)PT2MAP + PT2MAP_SIZE)
#define UPT2V_MIN_ADDRESS ((vm_offset_t)PT2MAP)
#define UPT2V_MAX_ADDRESS \
((vm_offset_t)(PT2MAP + (KERNBASE >> PT2MAP_SHIFT)))
/*
* Promotion to a 1MB (PTE1) page mapping requires that the corresponding
* 4KB (PTE2) page mappings have identical settings for the following fields:
*/
#define PTE2_PROMOTE (PTE2_V | PTE2_A | PTE2_NM | PTE2_S | PTE2_NG | \
PTE2_NX | PTE2_RO | PTE2_U | PTE2_W | \
PTE2_ATTR_MASK)
#define PTE1_PROMOTE (PTE1_V | PTE1_A | PTE1_NM | PTE1_S | PTE1_NG | \
PTE1_NX | PTE1_RO | PTE1_U | PTE1_W | \
PTE1_ATTR_MASK)
#define ATTR_TO_L1(l2_attr) ((((l2_attr) & L2_TEX0) ? L1_S_TEX0 : 0) | \
(((l2_attr) & L2_C) ? L1_S_C : 0) | \
(((l2_attr) & L2_B) ? L1_S_B : 0) | \
(((l2_attr) & PTE2_A) ? PTE1_A : 0) | \
(((l2_attr) & PTE2_NM) ? PTE1_NM : 0) | \
(((l2_attr) & PTE2_S) ? PTE1_S : 0) | \
(((l2_attr) & PTE2_NG) ? PTE1_NG : 0) | \
(((l2_attr) & PTE2_NX) ? PTE1_NX : 0) | \
(((l2_attr) & PTE2_RO) ? PTE1_RO : 0) | \
(((l2_attr) & PTE2_U) ? PTE1_U : 0) | \
(((l2_attr) & PTE2_W) ? PTE1_W : 0))
#define ATTR_TO_L2(l1_attr) ((((l1_attr) & L1_S_TEX0) ? L2_TEX0 : 0) | \
(((l1_attr) & L1_S_C) ? L2_C : 0) | \
(((l1_attr) & L1_S_B) ? L2_B : 0) | \
(((l1_attr) & PTE1_A) ? PTE2_A : 0) | \
(((l1_attr) & PTE1_NM) ? PTE2_NM : 0) | \
(((l1_attr) & PTE1_S) ? PTE2_S : 0) | \
(((l1_attr) & PTE1_NG) ? PTE2_NG : 0) | \
(((l1_attr) & PTE1_NX) ? PTE2_NX : 0) | \
(((l1_attr) & PTE1_RO) ? PTE2_RO : 0) | \
(((l1_attr) & PTE1_U) ? PTE2_U : 0) | \
(((l1_attr) & PTE1_W) ? PTE2_W : 0))
/*
* PTE2 descriptors creation macros.
*/
#define PTE2_ATTR_DEFAULT vm_memattr_to_pte2(VM_MEMATTR_DEFAULT)
#define PTE2_ATTR_PT vm_memattr_to_pte2(pt_memattr)
#define PTE2_KPT(pa) PTE2_KERN(pa, PTE2_AP_KRW, PTE2_ATTR_PT)
#define PTE2_KPT_NG(pa) PTE2_KERN_NG(pa, PTE2_AP_KRW, PTE2_ATTR_PT)
#define PTE2_KRW(pa) PTE2_KERN(pa, PTE2_AP_KRW, PTE2_ATTR_DEFAULT)
#define PTE2_KRO(pa) PTE2_KERN(pa, PTE2_AP_KR, PTE2_ATTR_DEFAULT)
#define PV_STATS
#ifdef PV_STATS
#define PV_STAT(x) do { x ; } while (0)
#else
#define PV_STAT(x) do { } while (0)
#endif
/*
* The boot_pt1 is used temporary in very early boot stage as L1 page table.
* We can init many things with no memory allocation thanks to its static
* allocation and this brings two main advantages:
* (1) other cores can be started very simply,
* (2) various boot loaders can be supported as its arguments can be processed
* in virtual address space and can be moved to safe location before
* first allocation happened.
* Only disadvantage is that boot_pt1 is used only in very early boot stage.
* However, the table is uninitialized and so lays in bss. Therefore kernel
* image size is not influenced.
*
* QQQ: In the future, maybe, boot_pt1 can be used for soft reset and
* CPU suspend/resume game.
*/
extern pt1_entry_t boot_pt1[];
vm_paddr_t base_pt1;
pt1_entry_t *kern_pt1;
pt2_entry_t *kern_pt2tab;
pt2_entry_t *PT2MAP;
static uint32_t ttb_flags;
static vm_memattr_t pt_memattr;
ttb_entry_t pmap_kern_ttb;
struct pmap kernel_pmap_store;
LIST_HEAD(pmaplist, pmap);
static struct pmaplist allpmaps;
static struct mtx allpmaps_lock;
vm_offset_t virtual_avail; /* VA of first avail page (after kernel bss) */
vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */
static vm_offset_t kernel_vm_end_new;
vm_offset_t kernel_vm_end = KERNBASE + NKPT2PG * NPT2_IN_PG * PTE1_SIZE;
vm_offset_t vm_max_kernel_address;
vm_paddr_t kernel_l1pa;
static struct rwlock __aligned(CACHE_LINE_SIZE) pvh_global_lock;
/*
* Data for the pv entry allocation mechanism
*/
static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
static struct md_page *pv_table; /* XXX: Is it used only the list in md_page? */
static int shpgperproc = PMAP_SHPGPERPROC;
struct pv_chunk *pv_chunkbase; /* KVA block for pv_chunks */
int pv_maxchunks; /* How many chunks we have KVA for */
vm_offset_t pv_vafree; /* freelist stored in the PTE */
vm_paddr_t first_managed_pa;
#define pa_to_pvh(pa) (&pv_table[pte1_index(pa - first_managed_pa)])
/*
* All those kernel PT submaps that BSD is so fond of
*/
caddr_t _tmppt = 0;
struct msgbuf *msgbufp = NULL; /* XXX move it to machdep.c */
/*
* Crashdump maps.
*/
static caddr_t crashdumpmap;
static pt2_entry_t *PMAP1 = NULL, *PMAP2;
static pt2_entry_t *PADDR1 = NULL, *PADDR2;
#ifdef DDB
static pt2_entry_t *PMAP3;
static pt2_entry_t *PADDR3;
static int PMAP3cpu __unused; /* for SMP only */
#endif
#ifdef SMP
static int PMAP1cpu;
static int PMAP1changedcpu;
SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
&PMAP1changedcpu, 0,
"Number of times pmap_pte2_quick changed CPU with same PMAP1");
#endif
static int PMAP1changed;
SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
&PMAP1changed, 0,
"Number of times pmap_pte2_quick changed PMAP1");
static int PMAP1unchanged;
SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
&PMAP1unchanged, 0,
"Number of times pmap_pte2_quick didn't change PMAP1");
static struct mtx PMAP2mutex;
static __inline void pt2_wirecount_init(vm_page_t m);
static boolean_t pmap_demote_pte1(pmap_t pmap, pt1_entry_t *pte1p,
vm_offset_t va);
void cache_icache_sync_fresh(vm_offset_t va, vm_paddr_t pa, vm_size_t size);
/*
* Function to set the debug level of the pmap code.
*/
#ifdef PMAP_DEBUG
void
pmap_debug(int level)
{
pmap_debug_level = level;
dprintf("pmap_debug: level=%d\n", pmap_debug_level);
}
#endif /* PMAP_DEBUG */
/*
* This table must corespond with memory attribute configuration in vm.h.
* First entry is used for normal system mapping.
*
* Device memory is always marked as shared.
* Normal memory is shared only in SMP .
* Not outer shareable bits are not used yet.
* Class 6 cannot be used on ARM11.
*/
#define TEXDEF_TYPE_SHIFT 0
#define TEXDEF_TYPE_MASK 0x3
#define TEXDEF_INNER_SHIFT 2
#define TEXDEF_INNER_MASK 0x3
#define TEXDEF_OUTER_SHIFT 4
#define TEXDEF_OUTER_MASK 0x3
#define TEXDEF_NOS_SHIFT 6
#define TEXDEF_NOS_MASK 0x1
#define TEX(t, i, o, s) \
((t) << TEXDEF_TYPE_SHIFT) | \
((i) << TEXDEF_INNER_SHIFT) | \
((o) << TEXDEF_OUTER_SHIFT | \
((s) << TEXDEF_NOS_SHIFT))
static uint32_t tex_class[8] = {
/* type inner cache outer cache */
TEX(PRRR_MEM, NMRR_WB_WA, NMRR_WB_WA, 0), /* 0 - ATTR_WB_WA */
TEX(PRRR_MEM, NMRR_NC, NMRR_NC, 0), /* 1 - ATTR_NOCACHE */
TEX(PRRR_DEV, NMRR_NC, NMRR_NC, 0), /* 2 - ATTR_DEVICE */
TEX(PRRR_SO, NMRR_NC, NMRR_NC, 0), /* 3 - ATTR_SO */
TEX(PRRR_MEM, NMRR_WT, NMRR_WT, 0), /* 4 - ATTR_WT */
TEX(PRRR_MEM, NMRR_NC, NMRR_NC, 0), /* 5 - NOT USED YET */
TEX(PRRR_MEM, NMRR_NC, NMRR_NC, 0), /* 6 - NOT USED YET */
TEX(PRRR_MEM, NMRR_NC, NMRR_NC, 0), /* 7 - NOT USED YET */
};
#undef TEX
static uint32_t pte2_attr_tab[8] = {
PTE2_ATTR_WB_WA, /* 0 - VM_MEMATTR_WB_WA */
PTE2_ATTR_NOCACHE, /* 1 - VM_MEMATTR_NOCACHE */
PTE2_ATTR_DEVICE, /* 2 - VM_MEMATTR_DEVICE */
PTE2_ATTR_SO, /* 3 - VM_MEMATTR_SO */
PTE2_ATTR_WT, /* 4 - VM_MEMATTR_WRITE_THROUGH */
0, /* 5 - NOT USED YET */
0, /* 6 - NOT USED YET */
0 /* 7 - NOT USED YET */
};
CTASSERT(VM_MEMATTR_WB_WA == 0);
CTASSERT(VM_MEMATTR_NOCACHE == 1);
CTASSERT(VM_MEMATTR_DEVICE == 2);
CTASSERT(VM_MEMATTR_SO == 3);
CTASSERT(VM_MEMATTR_WRITE_THROUGH == 4);
static inline uint32_t
vm_memattr_to_pte2(vm_memattr_t ma)
{
KASSERT((u_int)ma < 5, ("%s: bad vm_memattr_t %d", __func__, ma));
return (pte2_attr_tab[(u_int)ma]);
}
static inline uint32_t
vm_page_pte2_attr(vm_page_t m)
{
return (vm_memattr_to_pte2(m->md.pat_mode));
}
/*
* Convert TEX definition entry to TTB flags.
*/
static uint32_t
encode_ttb_flags(int idx)
{
uint32_t inner, outer, nos, reg;
inner = (tex_class[idx] >> TEXDEF_INNER_SHIFT) &
TEXDEF_INNER_MASK;
outer = (tex_class[idx] >> TEXDEF_OUTER_SHIFT) &
TEXDEF_OUTER_MASK;
nos = (tex_class[idx] >> TEXDEF_NOS_SHIFT) &
TEXDEF_NOS_MASK;
reg = nos << 5;
reg |= outer << 3;
if (cpuinfo.coherent_walk)
reg |= (inner & 0x1) << 6;
reg |= (inner & 0x2) >> 1;
#ifdef SMP
ARM_SMP_UP(
reg |= 1 << 1,
);
#endif
return reg;
}
/*
* Set TEX remapping registers in current CPU.
*/
void
pmap_set_tex(void)
{
uint32_t prrr, nmrr;
uint32_t type, inner, outer, nos;
int i;
#ifdef PMAP_PTE_NOCACHE
/* XXX fixme */
if (cpuinfo.coherent_walk) {
pt_memattr = VM_MEMATTR_WB_WA;
ttb_flags = encode_ttb_flags(0);
}
else {
pt_memattr = VM_MEMATTR_NOCACHE;
ttb_flags = encode_ttb_flags(1);
}
#else
pt_memattr = VM_MEMATTR_WB_WA;
ttb_flags = encode_ttb_flags(0);
#endif
prrr = 0;
nmrr = 0;
/* Build remapping register from TEX classes. */
for (i = 0; i < 8; i++) {
type = (tex_class[i] >> TEXDEF_TYPE_SHIFT) &
TEXDEF_TYPE_MASK;
inner = (tex_class[i] >> TEXDEF_INNER_SHIFT) &
TEXDEF_INNER_MASK;
outer = (tex_class[i] >> TEXDEF_OUTER_SHIFT) &
TEXDEF_OUTER_MASK;
nos = (tex_class[i] >> TEXDEF_NOS_SHIFT) &
TEXDEF_NOS_MASK;
prrr |= type << (i * 2);
prrr |= nos << (i + 24);
nmrr |= inner << (i * 2);
nmrr |= outer << (i * 2 + 16);
}
/* Add shareable bits for device memory. */
prrr |= PRRR_DS0 | PRRR_DS1;
/* Add shareable bits for normal memory in SMP case. */
#ifdef SMP
ARM_SMP_UP(
prrr |= PRRR_NS1,
);
#endif
cp15_prrr_set(prrr);
cp15_nmrr_set(nmrr);
/* Caches are disabled, so full TLB flush should be enough. */
tlb_flush_all_local();
}
/*
* KERNBASE must be multiple of NPT2_IN_PG * PTE1_SIZE. In other words,
* KERNBASE is mapped by first L2 page table in L2 page table page. It
* meets same constrain due to PT2MAP being placed just under KERNBASE.
*/
CTASSERT((KERNBASE & (NPT2_IN_PG * PTE1_SIZE - 1)) == 0);
CTASSERT((KERNBASE - VM_MAXUSER_ADDRESS) >= PT2MAP_SIZE);
/*
* In crazy dreams, PAGE_SIZE could be a multiple of PTE2_SIZE in general.
* For now, anyhow, the following check must be fulfilled.
*/
CTASSERT(PAGE_SIZE == PTE2_SIZE);
/*
* We don't want to mess up MI code with all MMU and PMAP definitions,
* so some things, which depend on other ones, are defined independently.
* Now, it is time to check that we don't screw up something.
*/
CTASSERT(PDRSHIFT == PTE1_SHIFT);
/*
* Check L1 and L2 page table entries definitions consistency.
*/
CTASSERT(NB_IN_PT1 == (sizeof(pt1_entry_t) * NPTE1_IN_PT1));
CTASSERT(NB_IN_PT2 == (sizeof(pt2_entry_t) * NPTE2_IN_PT2));
/*
* Check L2 page tables page consistency.
*/
CTASSERT(PAGE_SIZE == (NPT2_IN_PG * NB_IN_PT2));
CTASSERT((1 << PT2PG_SHIFT) == NPT2_IN_PG);
/*
* Check PT2TAB consistency.
* PT2TAB_ENTRIES is defined as a division of NPTE1_IN_PT1 by NPT2_IN_PG.
* This should be done without remainder.
*/
CTASSERT(NPTE1_IN_PT1 == (PT2TAB_ENTRIES * NPT2_IN_PG));
/*
* A PT2MAP magic.
*
* All level 2 page tables (PT2s) are mapped continuously and accordingly
* into PT2MAP address space. As PT2 size is less than PAGE_SIZE, this can
* be done only if PAGE_SIZE is a multiple of PT2 size. All PT2s in one page
* must be used together, but not necessary at once. The first PT2 in a page
* must map things on correctly aligned address and the others must follow
* in right order.
*/
#define NB_IN_PT2TAB (PT2TAB_ENTRIES * sizeof(pt2_entry_t))
#define NPT2_IN_PT2TAB (NB_IN_PT2TAB / NB_IN_PT2)
#define NPG_IN_PT2TAB (NB_IN_PT2TAB / PAGE_SIZE)
/*
* Check PT2TAB consistency.
* NPT2_IN_PT2TAB is defined as a division of NB_IN_PT2TAB by NB_IN_PT2.
* NPG_IN_PT2TAB is defined as a division of NB_IN_PT2TAB by PAGE_SIZE.
* The both should be done without remainder.
*/
CTASSERT(NB_IN_PT2TAB == (NPT2_IN_PT2TAB * NB_IN_PT2));
CTASSERT(NB_IN_PT2TAB == (NPG_IN_PT2TAB * PAGE_SIZE));
/*
* The implementation was made general, however, with the assumption
* bellow in mind. In case of another value of NPG_IN_PT2TAB,
* the code should be once more rechecked.
*/
CTASSERT(NPG_IN_PT2TAB == 1);
/*
* Get offset of PT2 in a page
* associated with given PT1 index.
*/
static __inline u_int
page_pt2off(u_int pt1_idx)
{
return ((pt1_idx & PT2PG_MASK) * NB_IN_PT2);
}
/*
* Get physical address of PT2
* associated with given PT2s page and PT1 index.
*/
static __inline vm_paddr_t
page_pt2pa(vm_paddr_t pgpa, u_int pt1_idx)
{
return (pgpa + page_pt2off(pt1_idx));
}
/*
* Get first entry of PT2
* associated with given PT2s page and PT1 index.
*/
static __inline pt2_entry_t *
page_pt2(vm_offset_t pgva, u_int pt1_idx)
{
return ((pt2_entry_t *)(pgva + page_pt2off(pt1_idx)));
}
/*
* Get virtual address of PT2s page (mapped in PT2MAP)
* which holds PT2 which holds entry which maps given virtual address.
*/
static __inline vm_offset_t
pt2map_pt2pg(vm_offset_t va)
{
va &= ~(NPT2_IN_PG * PTE1_SIZE - 1);
return ((vm_offset_t)pt2map_entry(va));
}
/*****************************************************************************
*
* THREE pmap initialization milestones exist:
*
* locore.S
* -> fundamental init (including MMU) in ASM
*
* initarm()
* -> fundamental init continues in C
* -> first available physical address is known
*
* pmap_bootstrap_prepare() -> FIRST PMAP MILESTONE (first epoch begins)
* -> basic (safe) interface for physical address allocation is made
* -> basic (safe) interface for virtual mapping is made
* -> limited not SMP coherent work is possible
*
* -> more fundamental init continues in C
* -> locks and some more things are available
* -> all fundamental allocations and mappings are done
*
* pmap_bootstrap() -> SECOND PMAP MILESTONE (second epoch begins)
* -> phys_avail[] and virtual_avail is set
* -> control is passed to vm subsystem
* -> physical and virtual address allocation are off limit
* -> low level mapping functions, some SMP coherent,
* are available, which cannot be used before vm subsystem
* is being inited
*
* mi_startup()
* -> vm subsystem is being inited
*
* pmap_init() -> THIRD PMAP MILESTONE (third epoch begins)
* -> pmap is fully inited
*
*****************************************************************************/
/*****************************************************************************
*
* PMAP first stage initialization and utility functions
* for pre-bootstrap epoch.
*
* After pmap_bootstrap_prepare() is called, the following functions
* can be used:
*
* (1) strictly only for this stage functions for physical page allocations,
* virtual space allocations, and mappings:
*
* vm_paddr_t pmap_preboot_get_pages(u_int num);
* void pmap_preboot_map_pages(vm_paddr_t pa, vm_offset_t va, u_int num);
* vm_offset_t pmap_preboot_reserve_pages(u_int num);
* vm_offset_t pmap_preboot_get_vpages(u_int num);
* void pmap_preboot_map_attr(vm_paddr_t pa, vm_offset_t va, vm_size_t size,
* vm_prot_t prot, vm_memattr_t attr);
*
* (2) for all stages:
*
* vm_paddr_t pmap_kextract(vm_offset_t va);
*
* NOTE: This is not SMP coherent stage.
*
*****************************************************************************/
#define KERNEL_P2V(pa) \
((vm_offset_t)((pa) - arm_physmem_kernaddr + KERNVIRTADDR))
#define KERNEL_V2P(va) \
((vm_paddr_t)((va) - KERNVIRTADDR + arm_physmem_kernaddr))
static vm_paddr_t last_paddr;
/*
* Pre-bootstrap epoch page allocator.
*/
vm_paddr_t
pmap_preboot_get_pages(u_int num)
{
vm_paddr_t ret;
ret = last_paddr;
last_paddr += num * PAGE_SIZE;
return (ret);
}
/*
* The fundamental initialization of PMAP stuff.
*
* Some things already happened in locore.S and some things could happen
* before pmap_bootstrap_prepare() is called, so let's recall what is done:
* 1. Caches are disabled.
* 2. We are running on virtual addresses already with 'boot_pt1'
* as L1 page table.
* 3. So far, all virtual addresses can be converted to physical ones and
* vice versa by the following macros:
* KERNEL_P2V(pa) .... physical to virtual ones,
* KERNEL_V2P(va) .... virtual to physical ones.
*
* What is done herein:
* 1. The 'boot_pt1' is replaced by real kernel L1 page table 'kern_pt1'.
* 2. PT2MAP magic is brought to live.
* 3. Basic preboot functions for page allocations and mappings can be used.
* 4. Everything is prepared for L1 cache enabling.
*
* Variations:
* 1. To use second TTB register, so kernel and users page tables will be
* separated. This way process forking - pmap_pinit() - could be faster,
* it saves physical pages and KVA per a process, and it's simple change.
* However, it will lead, due to hardware matter, to the following:
* (a) 2G space for kernel and 2G space for users.
* (b) 1G space for kernel in low addresses and 3G for users above it.
* A question is: Is the case (b) really an option? Note that case (b)
* does save neither physical memory and KVA.
*/
void
pmap_bootstrap_prepare(vm_paddr_t last)
{
vm_paddr_t pt2pg_pa, pt2tab_pa, pa, size;
vm_offset_t pt2pg_va;
pt1_entry_t *pte1p;
pt2_entry_t *pte2p;
u_int i;
uint32_t actlr_mask, actlr_set, l1_attr;
/*
* Now, we are going to make real kernel mapping. Note that we are
* already running on some mapping made in locore.S and we expect
* that it's large enough to ensure nofault access to physical memory
* allocated herein before switch.
*
* As kernel image and everything needed before are and will be mapped
* by section mappings, we align last physical address to PTE1_SIZE.
*/
last_paddr = pte1_roundup(last);
/*
* Allocate and zero page(s) for kernel L1 page table.
*
* Note that it's first allocation on space which was PTE1_SIZE
* aligned and as such base_pt1 is aligned to NB_IN_PT1 too.
*/
base_pt1 = pmap_preboot_get_pages(NPG_IN_PT1);
kern_pt1 = (pt1_entry_t *)KERNEL_P2V(base_pt1);
bzero((void*)kern_pt1, NB_IN_PT1);
pte1_sync_range(kern_pt1, NB_IN_PT1);
/* Allocate and zero page(s) for kernel PT2TAB. */
pt2tab_pa = pmap_preboot_get_pages(NPG_IN_PT2TAB);
kern_pt2tab = (pt2_entry_t *)KERNEL_P2V(pt2tab_pa);
bzero(kern_pt2tab, NB_IN_PT2TAB);
pte2_sync_range(kern_pt2tab, NB_IN_PT2TAB);
/* Allocate and zero page(s) for kernel L2 page tables. */
pt2pg_pa = pmap_preboot_get_pages(NKPT2PG);
pt2pg_va = KERNEL_P2V(pt2pg_pa);
size = NKPT2PG * PAGE_SIZE;
bzero((void*)pt2pg_va, size);
pte2_sync_range((pt2_entry_t *)pt2pg_va, size);
/*
* Add a physical memory segment (vm_phys_seg) corresponding to the
* preallocated pages for kernel L2 page tables so that vm_page
* structures representing these pages will be created. The vm_page
* structures are required for promotion of the corresponding kernel
* virtual addresses to section mappings.
*/
vm_phys_add_seg(pt2tab_pa, pmap_preboot_get_pages(0));
/*
* Insert allocated L2 page table pages to PT2TAB and make
* link to all PT2s in L1 page table. See how kernel_vm_end
* is initialized.
*
* We play simple and safe. So every KVA will have underlaying
* L2 page table, even kernel image mapped by sections.
*/
pte2p = kern_pt2tab_entry(KERNBASE);
for (pa = pt2pg_pa; pa < pt2pg_pa + size; pa += PTE2_SIZE)
pt2tab_store(pte2p++, PTE2_KPT(pa));
pte1p = kern_pte1(KERNBASE);
for (pa = pt2pg_pa; pa < pt2pg_pa + size; pa += NB_IN_PT2)
pte1_store(pte1p++, PTE1_LINK(pa));
/* Make section mappings for kernel. */
l1_attr = ATTR_TO_L1(PTE2_ATTR_DEFAULT);
pte1p = kern_pte1(KERNBASE);
for (pa = KERNEL_V2P(KERNBASE); pa < last; pa += PTE1_SIZE)
pte1_store(pte1p++, PTE1_KERN(pa, PTE1_AP_KRW, l1_attr));
/*
* Get free and aligned space for PT2MAP and make L1 page table links
* to L2 page tables held in PT2TAB.
*
* Note that pages holding PT2s are stored in PT2TAB as pt2_entry_t
* descriptors and PT2TAB page(s) itself is(are) used as PT2s. Thus
* each entry in PT2TAB maps all PT2s in a page. This implies that
* virtual address of PT2MAP must be aligned to NPT2_IN_PG * PTE1_SIZE.
*/
PT2MAP = (pt2_entry_t *)(KERNBASE - PT2MAP_SIZE);
pte1p = kern_pte1((vm_offset_t)PT2MAP);
for (pa = pt2tab_pa, i = 0; i < NPT2_IN_PT2TAB; i++, pa += NB_IN_PT2) {
pte1_store(pte1p++, PTE1_LINK(pa));
}
/*
* Store PT2TAB in PT2TAB itself, i.e. self reference mapping.
* Each pmap will hold own PT2TAB, so the mapping should be not global.
*/
pte2p = kern_pt2tab_entry((vm_offset_t)PT2MAP);
for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE) {
pt2tab_store(pte2p++, PTE2_KPT_NG(pa));
}
/*
* Choose correct L2 page table and make mappings for allocations
* made herein which replaces temporary locore.S mappings after a while.
* Note that PT2MAP cannot be used until we switch to kern_pt1.
*
* Note, that these allocations started aligned on 1M section and
* kernel PT1 was allocated first. Making of mappings must follow
* order of physical allocations as we've used KERNEL_P2V() macro
* for virtual addresses resolution.
*/
pte2p = kern_pt2tab_entry((vm_offset_t)kern_pt1);
pt2pg_va = KERNEL_P2V(pte2_pa(pte2_load(pte2p)));
pte2p = page_pt2(pt2pg_va, pte1_index((vm_offset_t)kern_pt1));
/* Make mapping for kernel L1 page table. */
for (pa = base_pt1, i = 0; i < NPG_IN_PT1; i++, pa += PTE2_SIZE)
pte2_store(pte2p++, PTE2_KPT(pa));
/* Make mapping for kernel PT2TAB. */
for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE)
pte2_store(pte2p++, PTE2_KPT(pa));
/* Finally, switch from 'boot_pt1' to 'kern_pt1'. */
pmap_kern_ttb = base_pt1 | ttb_flags;
cpuinfo_get_actlr_modifier(&actlr_mask, &actlr_set);
reinit_mmu(pmap_kern_ttb, actlr_mask, actlr_set);
/*
* Initialize the first available KVA. As kernel image is mapped by
* sections, we are leaving some gap behind.
*/
virtual_avail = (vm_offset_t)kern_pt2tab + NPG_IN_PT2TAB * PAGE_SIZE;
}
/*
* Setup L2 page table page for given KVA.
* Used in pre-bootstrap epoch.
*
* Note that we have allocated NKPT2PG pages for L2 page tables in advance
* and used them for mapping KVA starting from KERNBASE. However, this is not
* enough. Vectors and devices need L2 page tables too. Note that they are
* even above VM_MAX_KERNEL_ADDRESS.
*/
static __inline vm_paddr_t
pmap_preboot_pt2pg_setup(vm_offset_t va)
{
pt2_entry_t *pte2p, pte2;
vm_paddr_t pt2pg_pa;
/* Get associated entry in PT2TAB. */
pte2p = kern_pt2tab_entry(va);
/* Just return, if PT2s page exists already. */
pte2 = pt2tab_load(pte2p);
if (pte2_is_valid(pte2))
return (pte2_pa(pte2));
KASSERT(va >= VM_MAX_KERNEL_ADDRESS,
("%s: NKPT2PG too small", __func__));
/*
* Allocate page for PT2s and insert it to PT2TAB.
* In other words, map it into PT2MAP space.
*/
pt2pg_pa = pmap_preboot_get_pages(1);
pt2tab_store(pte2p, PTE2_KPT(pt2pg_pa));
/* Zero all PT2s in allocated page. */
bzero((void*)pt2map_pt2pg(va), PAGE_SIZE);
pte2_sync_range((pt2_entry_t *)pt2map_pt2pg(va), PAGE_SIZE);
return (pt2pg_pa);
}
/*
* Setup L2 page table for given KVA.
* Used in pre-bootstrap epoch.
*/
static void
pmap_preboot_pt2_setup(vm_offset_t va)
{
pt1_entry_t *pte1p;
vm_paddr_t pt2pg_pa, pt2_pa;
/* Setup PT2's page. */
pt2pg_pa = pmap_preboot_pt2pg_setup(va);
pt2_pa = page_pt2pa(pt2pg_pa, pte1_index(va));
/* Insert PT2 to PT1. */
pte1p = kern_pte1(va);
pte1_store(pte1p, PTE1_LINK(pt2_pa));
}
/*
* Get L2 page entry associated with given KVA.
* Used in pre-bootstrap epoch.
*/
static __inline pt2_entry_t*
pmap_preboot_vtopte2(vm_offset_t va)
{
pt1_entry_t *pte1p;
/* Setup PT2 if needed. */
pte1p = kern_pte1(va);
if (!pte1_is_valid(pte1_load(pte1p))) /* XXX - sections ?! */
pmap_preboot_pt2_setup(va);
return (pt2map_entry(va));
}
/*
* Pre-bootstrap epoch page(s) mapping(s).
*/
void
pmap_preboot_map_pages(vm_paddr_t pa, vm_offset_t va, u_int num)
{
u_int i;
pt2_entry_t *pte2p;
/* Map all the pages. */
for (i = 0; i < num; i++) {
pte2p = pmap_preboot_vtopte2(va);
pte2_store(pte2p, PTE2_KRW(pa));
va += PAGE_SIZE;
pa += PAGE_SIZE;
}
}
/*
* Pre-bootstrap epoch virtual space alocator.
*/
vm_offset_t
pmap_preboot_reserve_pages(u_int num)
{
u_int i;
vm_offset_t start, va;
pt2_entry_t *pte2p;
/* Allocate virtual space. */
start = va = virtual_avail;
virtual_avail += num * PAGE_SIZE;
/* Zero the mapping. */
for (i = 0; i < num; i++) {
pte2p = pmap_preboot_vtopte2(va);
pte2_store(pte2p, 0);
va += PAGE_SIZE;
}
return (start);
}
/*
* Pre-bootstrap epoch page(s) allocation and mapping(s).
*/
vm_offset_t
pmap_preboot_get_vpages(u_int num)
{
vm_paddr_t pa;
vm_offset_t va;
/* Allocate physical page(s). */
pa = pmap_preboot_get_pages(num);
/* Allocate virtual space. */
va = virtual_avail;
virtual_avail += num * PAGE_SIZE;
/* Map and zero all. */
pmap_preboot_map_pages(pa, va, num);
bzero((void *)va, num * PAGE_SIZE);
return (va);
}
/*
* Pre-bootstrap epoch page mapping(s) with attributes.
*/
void
pmap_preboot_map_attr(vm_paddr_t pa, vm_offset_t va, vm_size_t size,
vm_prot_t prot, vm_memattr_t attr)
{
u_int num;
u_int l1_attr, l1_prot, l2_prot, l2_attr;
pt1_entry_t *pte1p;
pt2_entry_t *pte2p;
l2_prot = prot & VM_PROT_WRITE ? PTE2_AP_KRW : PTE2_AP_KR;
l2_prot |= (prot & VM_PROT_EXECUTE) ? PTE2_X : PTE2_NX;
l2_attr = vm_memattr_to_pte2(attr);
l1_prot = ATTR_TO_L1(l2_prot);
l1_attr = ATTR_TO_L1(l2_attr);
/* Map all the pages. */
num = round_page(size);
while (num > 0) {
if ((((va | pa) & PTE1_OFFSET) == 0) && (num >= PTE1_SIZE)) {
pte1p = kern_pte1(va);
pte1_store(pte1p, PTE1_KERN(pa, l1_prot, l1_attr));
va += PTE1_SIZE;
pa += PTE1_SIZE;
num -= PTE1_SIZE;
} else {
pte2p = pmap_preboot_vtopte2(va);
pte2_store(pte2p, PTE2_KERN(pa, l2_prot, l2_attr));
va += PAGE_SIZE;
pa += PAGE_SIZE;
num -= PAGE_SIZE;
}
}
}
/*
* Extract from the kernel page table the physical address
* that is mapped by the given virtual address "va".
*/
vm_paddr_t
pmap_kextract(vm_offset_t va)
{
vm_paddr_t pa;
pt1_entry_t pte1;
pt2_entry_t pte2;
pte1 = pte1_load(kern_pte1(va));
if (pte1_is_section(pte1)) {
pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
} else if (pte1_is_link(pte1)) {
/*
* We should beware of concurrent promotion that changes
* pte1 at this point. However, it's not a problem as PT2
* page is preserved by promotion in PT2TAB. So even if
* it happens, using of PT2MAP is still safe.
*
* QQQ: However, concurrent removing is a problem which
* ends in abort on PT2MAP space. Locking must be used
* to deal with this.
*/
pte2 = pte2_load(pt2map_entry(va));
pa = pte2_pa(pte2) | (va & PTE2_OFFSET);
}
else {
panic("%s: va %#x pte1 %#x", __func__, va, pte1);
}
return (pa);
}
/*
* Extract from the kernel page table the physical address
* that is mapped by the given virtual address "va". Also
* return L2 page table entry which maps the address.
*
* This is only intended to be used for panic dumps.
*/
vm_paddr_t
pmap_dump_kextract(vm_offset_t va, pt2_entry_t *pte2p)
{
vm_paddr_t pa;
pt1_entry_t pte1;
pt2_entry_t pte2;
pte1 = pte1_load(kern_pte1(va));
if (pte1_is_section(pte1)) {
pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
pte2 = pa | ATTR_TO_L2(pte1) | PTE2_V;
} else if (pte1_is_link(pte1)) {
pte2 = pte2_load(pt2map_entry(va));
pa = pte2_pa(pte2);
} else {
pte2 = 0;
pa = 0;
}
if (pte2p != NULL)
*pte2p = pte2;
return (pa);
}
/*****************************************************************************
*
* PMAP second stage initialization and utility functions
* for bootstrap epoch.
*
* After pmap_bootstrap() is called, the following functions for
* mappings can be used:
*
* void pmap_kenter(vm_offset_t va, vm_paddr_t pa);
* void pmap_kremove(vm_offset_t va);
* vm_offset_t pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end,
* int prot);
*
* NOTE: This is not SMP coherent stage. And physical page allocation is not
* allowed during this stage.
*
*****************************************************************************/
/*
* Initialize kernel PMAP locks and lists, kernel_pmap itself, and
* reserve various virtual spaces for temporary mappings.
*/
void
pmap_bootstrap(vm_offset_t firstaddr)
{
pt2_entry_t *unused __unused;
struct pcpu *pc;
/*
* Initialize the kernel pmap (which is statically allocated).
*/
PMAP_LOCK_INIT(kernel_pmap);
kernel_l1pa = (vm_paddr_t)kern_pt1; /* for libkvm */
kernel_pmap->pm_pt1 = kern_pt1;
kernel_pmap->pm_pt2tab = kern_pt2tab;
CPU_FILL(&kernel_pmap->pm_active); /* don't allow deactivation */
TAILQ_INIT(&kernel_pmap->pm_pvchunk);
/*
* Initialize the global pv list lock.
*/
rw_init(&pvh_global_lock, "pmap pv global");
LIST_INIT(&allpmaps);
/*
* Request a spin mutex so that changes to allpmaps cannot be
* preempted by smp_rendezvous_cpus().
*/
mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
mtx_lock_spin(&allpmaps_lock);
LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
mtx_unlock_spin(&allpmaps_lock);
/*
* Reserve some special page table entries/VA space for temporary
* mapping of pages.
*/
#define SYSMAP(c, p, v, n) do { \
v = (c)pmap_preboot_reserve_pages(n); \
p = pt2map_entry((vm_offset_t)v); \
} while (0)
/*
* Local CMAP1/CMAP2 are used for zeroing and copying pages.
* Local CMAP2 is also used for data cache cleaning.
*/
pc = get_pcpu();
mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
SYSMAP(caddr_t, pc->pc_cmap1_pte2p, pc->pc_cmap1_addr, 1);
SYSMAP(caddr_t, pc->pc_cmap2_pte2p, pc->pc_cmap2_addr, 1);
SYSMAP(vm_offset_t, pc->pc_qmap_pte2p, pc->pc_qmap_addr, 1);
/*
* Crashdump maps.
*/
SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS);
/*
* _tmppt is used for reading arbitrary physical pages via /dev/mem.
*/
SYSMAP(caddr_t, unused, _tmppt, 1);
/*
* PADDR1 and PADDR2 are used by pmap_pte2_quick() and pmap_pte2(),
* respectively. PADDR3 is used by pmap_pte2_ddb().
*/
SYSMAP(pt2_entry_t *, PMAP1, PADDR1, 1);
SYSMAP(pt2_entry_t *, PMAP2, PADDR2, 1);
#ifdef DDB
SYSMAP(pt2_entry_t *, PMAP3, PADDR3, 1);
#endif
mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
/*
* Note that in very short time in initarm(), we are going to
* initialize phys_avail[] array and no further page allocation
* can happen after that until vm subsystem will be initialized.
*/
kernel_vm_end_new = kernel_vm_end;
virtual_end = vm_max_kernel_address;
}
static void
pmap_init_reserved_pages(void)
{
struct pcpu *pc;
vm_offset_t pages;
int i;
CPU_FOREACH(i) {
pc = pcpu_find(i);
/*
* Skip if the mapping has already been initialized,
* i.e. this is the BSP.
*/
if (pc->pc_cmap1_addr != 0)
continue;
mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
pages = kva_alloc(PAGE_SIZE * 3);
if (pages == 0)
panic("%s: unable to allocate KVA", __func__);
pc->pc_cmap1_pte2p = pt2map_entry(pages);
pc->pc_cmap2_pte2p = pt2map_entry(pages + PAGE_SIZE);
pc->pc_qmap_pte2p = pt2map_entry(pages + (PAGE_SIZE * 2));
pc->pc_cmap1_addr = (caddr_t)pages;
pc->pc_cmap2_addr = (caddr_t)(pages + PAGE_SIZE);
pc->pc_qmap_addr = pages + (PAGE_SIZE * 2);
}
}
SYSINIT(rpages_init, SI_SUB_CPU, SI_ORDER_ANY, pmap_init_reserved_pages, NULL);
/*
* The function can already be use in second initialization stage.
* As such, the function DOES NOT call pmap_growkernel() where PT2
* allocation can happen. So if used, be sure that PT2 for given
* virtual address is allocated already!
*
* Add a wired page to the kva.
* Note: not SMP coherent.
*/
static __inline void
pmap_kenter_prot_attr(vm_offset_t va, vm_paddr_t pa, uint32_t prot,
uint32_t attr)
{
pt1_entry_t *pte1p;
pt2_entry_t *pte2p;
pte1p = kern_pte1(va);
if (!pte1_is_valid(pte1_load(pte1p))) { /* XXX - sections ?! */
/*
* This is a very low level function, so PT2 and particularly
* PT2PG associated with given virtual address must be already
* allocated. It's a pain mainly during pmap initialization
* stage. However, called after pmap initialization with
* virtual address not under kernel_vm_end will lead to
* the same misery.
*/
if (!pte2_is_valid(pte2_load(kern_pt2tab_entry(va))))
panic("%s: kernel PT2 not allocated!", __func__);
}
pte2p = pt2map_entry(va);
pte2_store(pte2p, PTE2_KERN(pa, prot, attr));
}
PMAP_INLINE void
pmap_kenter(vm_offset_t va, vm_paddr_t pa)
{
pmap_kenter_prot_attr(va, pa, PTE2_AP_KRW, PTE2_ATTR_DEFAULT);
}
/*
* Remove a page from the kernel pagetables.
* Note: not SMP coherent.
*/
PMAP_INLINE void
pmap_kremove(vm_offset_t va)
{
pt2_entry_t *pte2p;
pte2p = pt2map_entry(va);
pte2_clear(pte2p);
}
/*
* Share new kernel PT2PG with all pmaps.
* The caller is responsible for maintaining TLB consistency.
*/
static void
pmap_kenter_pt2tab(vm_offset_t va, pt2_entry_t npte2)
{
pmap_t pmap;
pt2_entry_t *pte2p;
mtx_lock_spin(&allpmaps_lock);
LIST_FOREACH(pmap, &allpmaps, pm_list) {
pte2p = pmap_pt2tab_entry(pmap, va);
pt2tab_store(pte2p, npte2);
}
mtx_unlock_spin(&allpmaps_lock);
}
/*
* Share new kernel PTE1 with all pmaps.
* The caller is responsible for maintaining TLB consistency.
*/
static void
pmap_kenter_pte1(vm_offset_t va, pt1_entry_t npte1)
{
pmap_t pmap;
pt1_entry_t *pte1p;
mtx_lock_spin(&allpmaps_lock);
LIST_FOREACH(pmap, &allpmaps, pm_list) {
pte1p = pmap_pte1(pmap, va);
pte1_store(pte1p, npte1);
}
mtx_unlock_spin(&allpmaps_lock);
}
/*
* Used to map a range of physical addresses into kernel
* virtual address space.
*
* The value passed in '*virt' is a suggested virtual address for
* the mapping. Architectures which can support a direct-mapped
* physical to virtual region can return the appropriate address
* within that region, leaving '*virt' unchanged. Other
* architectures should map the pages starting at '*virt' and
* update '*virt' with the first usable address after the mapped
* region.
*
* NOTE: Read the comments above pmap_kenter_prot_attr() as
* the function is used herein!
*/
vm_offset_t
pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
{
vm_offset_t va, sva;
vm_paddr_t pte1_offset;
pt1_entry_t npte1;
uint32_t l1prot, l2prot;
uint32_t l1attr, l2attr;
PDEBUG(1, printf("%s: virt = %#x, start = %#x, end = %#x (size = %#x),"
" prot = %d\n", __func__, *virt, start, end, end - start, prot));
l2prot = (prot & VM_PROT_WRITE) ? PTE2_AP_KRW : PTE2_AP_KR;
l2prot |= (prot & VM_PROT_EXECUTE) ? PTE2_X : PTE2_NX;
l1prot = ATTR_TO_L1(l2prot);
l2attr = PTE2_ATTR_DEFAULT;
l1attr = ATTR_TO_L1(l2attr);
va = *virt;
/*
* Does the physical address range's size and alignment permit at
* least one section mapping to be created?
*/
pte1_offset = start & PTE1_OFFSET;
if ((end - start) - ((PTE1_SIZE - pte1_offset) & PTE1_OFFSET) >=
PTE1_SIZE) {
/*
* Increase the starting virtual address so that its alignment
* does not preclude the use of section mappings.
*/
if ((va & PTE1_OFFSET) < pte1_offset)
va = pte1_trunc(va) + pte1_offset;
else if ((va & PTE1_OFFSET) > pte1_offset)
va = pte1_roundup(va) + pte1_offset;
}
sva = va;
while (start < end) {
if ((start & PTE1_OFFSET) == 0 && end - start >= PTE1_SIZE) {
KASSERT((va & PTE1_OFFSET) == 0,
("%s: misaligned va %#x", __func__, va));
npte1 = PTE1_KERN(start, l1prot, l1attr);
pmap_kenter_pte1(va, npte1);
va += PTE1_SIZE;
start += PTE1_SIZE;
} else {
pmap_kenter_prot_attr(va, start, l2prot, l2attr);
va += PAGE_SIZE;
start += PAGE_SIZE;
}
}
tlb_flush_range(sva, va - sva);
*virt = va;
return (sva);
}
/*
* Make a temporary mapping for a physical address.
* This is only intended to be used for panic dumps.
*/
void *
pmap_kenter_temporary(vm_paddr_t pa, int i)
{
vm_offset_t va;
/* QQQ: 'i' should be less or equal to MAXDUMPPGS. */
va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
pmap_kenter(va, pa);
tlb_flush_local(va);
return ((void *)crashdumpmap);
}
/*************************************
*
* TLB & cache maintenance routines.
*
*************************************/
/*
* We inline these within pmap.c for speed.
*/
PMAP_INLINE void
pmap_tlb_flush(pmap_t pmap, vm_offset_t va)
{
if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
tlb_flush(va);
}
PMAP_INLINE void
pmap_tlb_flush_range(pmap_t pmap, vm_offset_t sva, vm_size_t size)
{
if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
tlb_flush_range(sva, size);
}
/*
* Abuse the pte2 nodes for unmapped kva to thread a kva freelist through.
* Requirements:
* - Must deal with pages in order to ensure that none of the PTE2_* bits
* are ever set, PTE2_V in particular.
* - Assumes we can write to pte2s without pte2_store() atomic ops.
* - Assumes nothing will ever test these addresses for 0 to indicate
* no mapping instead of correctly checking PTE2_V.
* - Assumes a vm_offset_t will fit in a pte2 (true for arm).
* Because PTE2_V is never set, there can be no mappings to invalidate.
*/
static vm_offset_t
pmap_pte2list_alloc(vm_offset_t *head)
{
pt2_entry_t *pte2p;
vm_offset_t va;
va = *head;
if (va == 0)
panic("pmap_ptelist_alloc: exhausted ptelist KVA");
pte2p = pt2map_entry(va);
*head = *pte2p;
if (*head & PTE2_V)
panic("%s: va with PTE2_V set!", __func__);
*pte2p = 0;
return (va);
}
static void
pmap_pte2list_free(vm_offset_t *head, vm_offset_t va)
{
pt2_entry_t *pte2p;
if (va & PTE2_V)
panic("%s: freeing va with PTE2_V set!", __func__);
pte2p = pt2map_entry(va);
*pte2p = *head; /* virtual! PTE2_V is 0 though */
*head = va;
}
static void
pmap_pte2list_init(vm_offset_t *head, void *base, int npages)
{
int i;
vm_offset_t va;
*head = 0;
for (i = npages - 1; i >= 0; i--) {
va = (vm_offset_t)base + i * PAGE_SIZE;
pmap_pte2list_free(head, va);
}
}
/*****************************************************************************
*
* PMAP third and final stage initialization.
*
* After pmap_init() is called, PMAP subsystem is fully initialized.
*
*****************************************************************************/
SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
"Max number of PV entries");
SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
"Page share factor per proc");
static u_long nkpt2pg = NKPT2PG;
SYSCTL_ULONG(_vm_pmap, OID_AUTO, nkpt2pg, CTLFLAG_RD,
&nkpt2pg, 0, "Pre-allocated pages for kernel PT2s");
static int sp_enabled = 1;
SYSCTL_INT(_vm_pmap, OID_AUTO, sp_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
&sp_enabled, 0, "Are large page mappings enabled?");
static SYSCTL_NODE(_vm_pmap, OID_AUTO, pte1, CTLFLAG_RD, 0,
"1MB page mapping counters");
static u_long pmap_pte1_demotions;
SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, demotions, CTLFLAG_RD,
&pmap_pte1_demotions, 0, "1MB page demotions");
static u_long pmap_pte1_mappings;
SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, mappings, CTLFLAG_RD,
&pmap_pte1_mappings, 0, "1MB page mappings");
static u_long pmap_pte1_p_failures;
SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, p_failures, CTLFLAG_RD,
&pmap_pte1_p_failures, 0, "1MB page promotion failures");
static u_long pmap_pte1_promotions;
SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, promotions, CTLFLAG_RD,
&pmap_pte1_promotions, 0, "1MB page promotions");
static u_long pmap_pte1_kern_demotions;
SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, kern_demotions, CTLFLAG_RD,
&pmap_pte1_kern_demotions, 0, "1MB page kernel demotions");
static u_long pmap_pte1_kern_promotions;
SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, kern_promotions, CTLFLAG_RD,
&pmap_pte1_kern_promotions, 0, "1MB page kernel promotions");
static __inline ttb_entry_t
pmap_ttb_get(pmap_t pmap)
{
return (vtophys(pmap->pm_pt1) | ttb_flags);
}
/*
* Initialize a vm_page's machine-dependent fields.
*
* Variations:
* 1. Pages for L2 page tables are always not managed. So, pv_list and
* pt2_wirecount can share same physical space. However, proper
* initialization on a page alloc for page tables and reinitialization
* on the page free must be ensured.
*/
void
pmap_page_init(vm_page_t m)
{
TAILQ_INIT(&m->md.pv_list);
pt2_wirecount_init(m);
m->md.pat_mode = VM_MEMATTR_DEFAULT;
}
/*
* Virtualization for faster way how to zero whole page.
*/
static __inline void
pagezero(void *page)
{
bzero(page, PAGE_SIZE);
}
/*
* Zero L2 page table page.
* Use same KVA as in pmap_zero_page().
*/
static __inline vm_paddr_t
pmap_pt2pg_zero(vm_page_t m)
{
pt2_entry_t *cmap2_pte2p;
vm_paddr_t pa;
struct pcpu *pc;
pa = VM_PAGE_TO_PHYS(m);
/*
* XXX: For now, we map whole page even if it's already zero,
* to sync it even if the sync is only DSB.
*/
sched_pin();
pc = get_pcpu();
cmap2_pte2p = pc->pc_cmap2_pte2p;
mtx_lock(&pc->pc_cmap_lock);
if (pte2_load(cmap2_pte2p) != 0)
panic("%s: CMAP2 busy", __func__);
pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW,
vm_page_pte2_attr(m)));
/* Even VM_ALLOC_ZERO request is only advisory. */
if ((m->flags & PG_ZERO) == 0)
pagezero(pc->pc_cmap2_addr);
pte2_sync_range((pt2_entry_t *)pc->pc_cmap2_addr, PAGE_SIZE);
pte2_clear(cmap2_pte2p);
tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
/*
* Unpin the thread before releasing the lock. Otherwise the thread
* could be rescheduled while still bound to the current CPU, only
* to unpin itself immediately upon resuming execution.
*/
sched_unpin();
mtx_unlock(&pc->pc_cmap_lock);
return (pa);
}
/*
* Init just allocated page as L2 page table(s) holder
* and return its physical address.
*/
static __inline vm_paddr_t
pmap_pt2pg_init(pmap_t pmap, vm_offset_t va, vm_page_t m)
{
vm_paddr_t pa;
pt2_entry_t *pte2p;
/* Check page attributes. */
if (m->md.pat_mode != pt_memattr)
pmap_page_set_memattr(m, pt_memattr);
/* Zero page and init wire counts. */
pa = pmap_pt2pg_zero(m);
pt2_wirecount_init(m);
/*
* Map page to PT2MAP address space for given pmap.
* Note that PT2MAP space is shared with all pmaps.
*/
if (pmap == kernel_pmap)
pmap_kenter_pt2tab(va, PTE2_KPT(pa));
else {
pte2p = pmap_pt2tab_entry(pmap, va);
pt2tab_store(pte2p, PTE2_KPT_NG(pa));
}
return (pa);
}
/*
* Initialize the pmap module.
* Called by vm_init, to initialize any structures that the pmap
* system needs to map virtual memory.
*/
void
pmap_init(void)
{
vm_size_t s;
pt2_entry_t *pte2p, pte2;
u_int i, pte1_idx, pv_npg;
PDEBUG(1, printf("%s: phys_start = %#x\n", __func__, PHYSADDR));
/*
* Initialize the vm page array entries for kernel pmap's
* L2 page table pages allocated in advance.
*/
pte1_idx = pte1_index(KERNBASE - PT2MAP_SIZE);
pte2p = kern_pt2tab_entry(KERNBASE - PT2MAP_SIZE);
for (i = 0; i < nkpt2pg + NPG_IN_PT2TAB; i++, pte2p++) {
vm_paddr_t pa;
vm_page_t m;
pte2 = pte2_load(pte2p);
KASSERT(pte2_is_valid(pte2), ("%s: no valid entry", __func__));
pa = pte2_pa(pte2);
m = PHYS_TO_VM_PAGE(pa);
KASSERT(m >= vm_page_array &&
m < &vm_page_array[vm_page_array_size],
("%s: L2 page table page is out of range", __func__));
m->pindex = pte1_idx;
m->phys_addr = pa;
pte1_idx += NPT2_IN_PG;
}
/*
* Initialize the address space (zone) for the pv entries. Set a
* high water mark so that the system can recover from excessive
* numbers of pv entries.
*/
TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
pv_entry_max = roundup(pv_entry_max, _NPCPV);
pv_entry_high_water = 9 * (pv_entry_max / 10);
/*
* Are large page mappings enabled?
*/
TUNABLE_INT_FETCH("vm.pmap.sp_enabled", &sp_enabled);
if (sp_enabled) {
KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
("%s: can't assign to pagesizes[1]", __func__));
pagesizes[1] = PTE1_SIZE;
}
/*
* Calculate the size of the pv head table for sections.
* Handle the possibility that "vm_phys_segs[...].end" is zero.
* Note that the table is only for sections which could be promoted.
*/
first_managed_pa = pte1_trunc(vm_phys_segs[0].start);
pv_npg = (pte1_trunc(vm_phys_segs[vm_phys_nsegs - 1].end - PAGE_SIZE)
- first_managed_pa) / PTE1_SIZE + 1;
/*
* Allocate memory for the pv head table for sections.
*/
s = (vm_size_t)(pv_npg * sizeof(struct md_page));
s = round_page(s);
pv_table = (struct md_page *)kmem_malloc(kernel_arena, s,
M_WAITOK | M_ZERO);
for (i = 0; i < pv_npg; i++)
TAILQ_INIT(&pv_table[i].pv_list);
pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
pv_chunkbase = (struct pv_chunk *)kva_alloc(PAGE_SIZE * pv_maxchunks);
if (pv_chunkbase == NULL)
panic("%s: not enough kvm for pv chunks", __func__);
pmap_pte2list_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
}
/*
* Add a list of wired pages to the kva
* this routine is only used for temporary
* kernel mappings that do not need to have
* page modification or references recorded.
* Note that old mappings are simply written
* over. The page *must* be wired.
* Note: SMP coherent. Uses a ranged shootdown IPI.
*/
void
pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
{
u_int anychanged;
pt2_entry_t *epte2p, *pte2p, pte2;
vm_page_t m;
vm_paddr_t pa;
anychanged = 0;
pte2p = pt2map_entry(sva);
epte2p = pte2p + count;
while (pte2p < epte2p) {
m = *ma++;
pa = VM_PAGE_TO_PHYS(m);
pte2 = pte2_load(pte2p);
if ((pte2_pa(pte2) != pa) ||
(pte2_attr(pte2) != vm_page_pte2_attr(m))) {
anychanged++;
pte2_store(pte2p, PTE2_KERN(pa, PTE2_AP_KRW,
vm_page_pte2_attr(m)));
}
pte2p++;
}
if (__predict_false(anychanged))
tlb_flush_range(sva, count * PAGE_SIZE);
}
/*
* This routine tears out page mappings from the
* kernel -- it is meant only for temporary mappings.
* Note: SMP coherent. Uses a ranged shootdown IPI.
*/
void
pmap_qremove(vm_offset_t sva, int count)
{
vm_offset_t va;
va = sva;
while (count-- > 0) {
pmap_kremove(va);
va += PAGE_SIZE;
}
tlb_flush_range(sva, va - sva);
}
/*
* Are we current address space or kernel?
*/
static __inline int
pmap_is_current(pmap_t pmap)
{
return (pmap == kernel_pmap ||
(pmap == vmspace_pmap(curthread->td_proc->p_vmspace)));
}
/*
* If the given pmap is not the current or kernel pmap, the returned
* pte2 must be released by passing it to pmap_pte2_release().
*/
static pt2_entry_t *
pmap_pte2(pmap_t pmap, vm_offset_t va)
{
pt1_entry_t pte1;
vm_paddr_t pt2pg_pa;
pte1 = pte1_load(pmap_pte1(pmap, va));
if (pte1_is_section(pte1))
panic("%s: attempt to map PTE1", __func__);
if (pte1_is_link(pte1)) {
/* Are we current address space or kernel? */
if (pmap_is_current(pmap))
return (pt2map_entry(va));
/* Note that L2 page table size is not equal to PAGE_SIZE. */
pt2pg_pa = trunc_page(pte1_link_pa(pte1));
mtx_lock(&PMAP2mutex);
if (pte2_pa(pte2_load(PMAP2)) != pt2pg_pa) {
pte2_store(PMAP2, PTE2_KPT(pt2pg_pa));
tlb_flush((vm_offset_t)PADDR2);
}
return (PADDR2 + (arm32_btop(va) & (NPTE2_IN_PG - 1)));
}
return (NULL);
}
/*
* Releases a pte2 that was obtained from pmap_pte2().
* Be prepared for the pte2p being NULL.
*/
static __inline void
pmap_pte2_release(pt2_entry_t *pte2p)
{
if ((pt2_entry_t *)(trunc_page((vm_offset_t)pte2p)) == PADDR2) {
mtx_unlock(&PMAP2mutex);
}
}
/*
* Super fast pmap_pte2 routine best used when scanning
* the pv lists. This eliminates many coarse-grained
* invltlb calls. Note that many of the pv list
* scans are across different pmaps. It is very wasteful
* to do an entire tlb flush for checking a single mapping.
*
* If the given pmap is not the current pmap, pvh_global_lock
* must be held and curthread pinned to a CPU.
*/
static pt2_entry_t *
pmap_pte2_quick(pmap_t pmap, vm_offset_t va)
{
pt1_entry_t pte1;
vm_paddr_t pt2pg_pa;
pte1 = pte1_load(pmap_pte1(pmap, va));
if (pte1_is_section(pte1))
panic("%s: attempt to map PTE1", __func__);
if (pte1_is_link(pte1)) {
/* Are we current address space or kernel? */
if (pmap_is_current(pmap))
return (pt2map_entry(va));
rw_assert(&pvh_global_lock, RA_WLOCKED);
KASSERT(curthread->td_pinned > 0,
("%s: curthread not pinned", __func__));
/* Note that L2 page table size is not equal to PAGE_SIZE. */
pt2pg_pa = trunc_page(pte1_link_pa(pte1));
if (pte2_pa(pte2_load(PMAP1)) != pt2pg_pa) {
pte2_store(PMAP1, PTE2_KPT(pt2pg_pa));
#ifdef SMP
PMAP1cpu = PCPU_GET(cpuid);
#endif
tlb_flush_local((vm_offset_t)PADDR1);
PMAP1changed++;
} else
#ifdef SMP
if (PMAP1cpu != PCPU_GET(cpuid)) {
PMAP1cpu = PCPU_GET(cpuid);
tlb_flush_local((vm_offset_t)PADDR1);
PMAP1changedcpu++;
} else
#endif
PMAP1unchanged++;
return (PADDR1 + (arm32_btop(va) & (NPTE2_IN_PG - 1)));
}
return (NULL);
}
/*
* Routine: pmap_extract
* Function:
* Extract the physical page address associated
* with the given map/virtual_address pair.
*/
vm_paddr_t
pmap_extract(pmap_t pmap, vm_offset_t va)
{
vm_paddr_t pa;
pt1_entry_t pte1;
pt2_entry_t *pte2p;
PMAP_LOCK(pmap);
pte1 = pte1_load(pmap_pte1(pmap, va));
if (pte1_is_section(pte1))
pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
else if (pte1_is_link(pte1)) {
pte2p = pmap_pte2(pmap, va);
pa = pte2_pa(pte2_load(pte2p)) | (va & PTE2_OFFSET);
pmap_pte2_release(pte2p);
} else
pa = 0;
PMAP_UNLOCK(pmap);
return (pa);
}
/*
* Routine: pmap_extract_and_hold
* Function:
* Atomically extract and hold the physical page
* with the given pmap and virtual address pair
* if that mapping permits the given protection.
*/
vm_page_t
pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
{
vm_paddr_t pa, lockpa;
pt1_entry_t pte1;
pt2_entry_t pte2, *pte2p;
vm_page_t m;
lockpa = 0;
m = NULL;
PMAP_LOCK(pmap);
retry:
pte1 = pte1_load(pmap_pte1(pmap, va));
if (pte1_is_section(pte1)) {
if (!(pte1 & PTE1_RO) || !(prot & VM_PROT_WRITE)) {
pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
if (vm_page_pa_tryrelock(pmap, pa, &lockpa))
goto retry;
m = PHYS_TO_VM_PAGE(pa);
vm_page_hold(m);
}
} else if (pte1_is_link(pte1)) {
pte2p = pmap_pte2(pmap, va);
pte2 = pte2_load(pte2p);
pmap_pte2_release(pte2p);
if (pte2_is_valid(pte2) &&
(!(pte2 & PTE2_RO) || !(prot & VM_PROT_WRITE))) {
pa = pte2_pa(pte2);
if (vm_page_pa_tryrelock(pmap, pa, &lockpa))
goto retry;
m = PHYS_TO_VM_PAGE(pa);
vm_page_hold(m);
}
}
PA_UNLOCK_COND(lockpa);
PMAP_UNLOCK(pmap);
return (m);
}
/*
* Grow the number of kernel L2 page table entries, if needed.
*/
void
pmap_growkernel(vm_offset_t addr)
{
vm_page_t m;
vm_paddr_t pt2pg_pa, pt2_pa;
pt1_entry_t pte1;
pt2_entry_t pte2;
PDEBUG(1, printf("%s: addr = %#x\n", __func__, addr));
/*
* All the time kernel_vm_end is first KVA for which underlying
* L2 page table is either not allocated or linked from L1 page table
* (not considering sections). Except for two possible cases:
*
* (1) in the very beginning as long as pmap_growkernel() was
* not called, it could be first unused KVA (which is not
* rounded up to PTE1_SIZE),
*
* (2) when all KVA space is mapped and kernel_map->max_offset
* address is not rounded up to PTE1_SIZE. (For example,
* it could be 0xFFFFFFFF.)
*/
kernel_vm_end = pte1_roundup(kernel_vm_end);
mtx_assert(&kernel_map->system_mtx, MA_OWNED);
addr = roundup2(addr, PTE1_SIZE);
if (addr - 1 >= kernel_map->max_offset)
addr = kernel_map->max_offset;
while (kernel_vm_end < addr) {
pte1 = pte1_load(kern_pte1(kernel_vm_end));
if (pte1_is_valid(pte1)) {
kernel_vm_end += PTE1_SIZE;
if (kernel_vm_end - 1 >= kernel_map->max_offset) {
kernel_vm_end = kernel_map->max_offset;
break;
}
continue;
}
/*
* kernel_vm_end_new is used in pmap_pinit() when kernel
* mappings are entered to new pmap all at once to avoid race
* between pmap_kenter_pte1() and kernel_vm_end increase.
* The same aplies to pmap_kenter_pt2tab().
*/
kernel_vm_end_new = kernel_vm_end + PTE1_SIZE;
pte2 = pt2tab_load(kern_pt2tab_entry(kernel_vm_end));
if (!pte2_is_valid(pte2)) {
/*
* Install new PT2s page into kernel PT2TAB.
*/
m = vm_page_alloc(NULL,
pte1_index(kernel_vm_end) & ~PT2PG_MASK,
VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
VM_ALLOC_WIRED | VM_ALLOC_ZERO);
if (m == NULL)
panic("%s: no memory to grow kernel", __func__);
/*
* QQQ: To link all new L2 page tables from L1 page
* table now and so pmap_kenter_pte1() them
* at once together with pmap_kenter_pt2tab()
* could be nice speed up. However,
* pmap_growkernel() does not happen so often...
* QQQ: The other TTBR is another option.
*/
pt2pg_pa = pmap_pt2pg_init(kernel_pmap, kernel_vm_end,
m);
} else
pt2pg_pa = pte2_pa(pte2);
pt2_pa = page_pt2pa(pt2pg_pa, pte1_index(kernel_vm_end));
pmap_kenter_pte1(kernel_vm_end, PTE1_LINK(pt2_pa));
kernel_vm_end = kernel_vm_end_new;
if (kernel_vm_end - 1 >= kernel_map->max_offset) {
kernel_vm_end = kernel_map->max_offset;
break;
}
}
}
static int
kvm_size(SYSCTL_HANDLER_ARGS)
{
unsigned long ksize = vm_max_kernel_address - KERNBASE;
return (sysctl_handle_long(oidp, &ksize, 0, req));
}
SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
0, 0, kvm_size, "IU", "Size of KVM");
static int
kvm_free(SYSCTL_HANDLER_ARGS)
{
unsigned long kfree = vm_max_kernel_address - kernel_vm_end;
return (sysctl_handle_long(oidp, &kfree, 0, req));
}
SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
0, 0, kvm_free, "IU", "Amount of KVM free");
/***********************************************
*
* Pmap allocation/deallocation routines.
*
***********************************************/
/*
* Initialize the pmap for the swapper process.
*/
void
pmap_pinit0(pmap_t pmap)
{
PDEBUG(1, printf("%s: pmap = %p\n", __func__, pmap));
PMAP_LOCK_INIT(pmap);
/*
* Kernel page table directory and pmap stuff around is already
* initialized, we are using it right now and here. So, finish
* only PMAP structures initialization for process0 ...
*
* Since the L1 page table and PT2TAB is shared with the kernel pmap,
* which is already included in the list "allpmaps", this pmap does
* not need to be inserted into that list.
*/
pmap->pm_pt1 = kern_pt1;
pmap->pm_pt2tab = kern_pt2tab;
CPU_ZERO(&pmap->pm_active);
PCPU_SET(curpmap, pmap);
TAILQ_INIT(&pmap->pm_pvchunk);
bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
CPU_SET(0, &pmap->pm_active);
}
static __inline void
pte1_copy_nosync(pt1_entry_t *spte1p, pt1_entry_t *dpte1p, vm_offset_t sva,
vm_offset_t eva)
{
u_int idx, count;
idx = pte1_index(sva);
count = (pte1_index(eva) - idx + 1) * sizeof(pt1_entry_t);
bcopy(spte1p + idx, dpte1p + idx, count);
}
static __inline void
pt2tab_copy_nosync(pt2_entry_t *spte2p, pt2_entry_t *dpte2p, vm_offset_t sva,
vm_offset_t eva)
{
u_int idx, count;
idx = pt2tab_index(sva);
count = (pt2tab_index(eva) - idx + 1) * sizeof(pt2_entry_t);
bcopy(spte2p + idx, dpte2p + idx, count);
}
/*
* Initialize a preallocated and zeroed pmap structure,
* such as one in a vmspace structure.
*/
int
pmap_pinit(pmap_t pmap)
{
pt1_entry_t *pte1p;
pt2_entry_t *pte2p;
vm_paddr_t pa, pt2tab_pa;
u_int i;
PDEBUG(6, printf("%s: pmap = %p, pm_pt1 = %p\n", __func__, pmap,
pmap->pm_pt1));
/*
* No need to allocate L2 page table space yet but we do need
* a valid L1 page table and PT2TAB table.
*
* Install shared kernel mappings to these tables. It's a little
* tricky as some parts of KVA are reserved for vectors, devices,
* and whatever else. These parts are supposed to be above
* vm_max_kernel_address. Thus two regions should be installed:
*
* (1) <KERNBASE, kernel_vm_end),
* (2) <vm_max_kernel_address, 0xFFFFFFFF>.
*
* QQQ: The second region should be stable enough to be installed
* only once in time when the tables are allocated.
* QQQ: Maybe copy of both regions at once could be faster ...
* QQQ: Maybe the other TTBR is an option.
*
* Finally, install own PT2TAB table to these tables.
*/
if (pmap->pm_pt1 == NULL) {
pmap->pm_pt1 = (pt1_entry_t *)kmem_alloc_contig(kernel_arena,
NB_IN_PT1, M_NOWAIT | M_ZERO, 0, -1UL, NB_IN_PT1, 0,
pt_memattr);
if (pmap->pm_pt1 == NULL)
return (0);
}
if (pmap->pm_pt2tab == NULL) {
/*
* QQQ: (1) PT2TAB must be contiguous. If PT2TAB is one page
* only, what should be the only size for 32 bit systems,
* then we could allocate it with vm_page_alloc() and all
* the stuff needed as other L2 page table pages.
* (2) Note that a process PT2TAB is special L2 page table
* page. Its mapping in kernel_arena is permanent and can
* be used no matter which process is current. Its mapping
* in PT2MAP can be used only for current process.
*/
pmap->pm_pt2tab = (pt2_entry_t *)kmem_alloc_attr(kernel_arena,
NB_IN_PT2TAB, M_NOWAIT | M_ZERO, 0, -1UL, pt_memattr);
if (pmap->pm_pt2tab == NULL) {
/*
* QQQ: As struct pmap is allocated from UMA with
* UMA_ZONE_NOFREE flag, it's important to leave
* no allocation in pmap if initialization failed.
*/
kmem_free(kernel_arena, (vm_offset_t)pmap->pm_pt1,
NB_IN_PT1);
pmap->pm_pt1 = NULL;
return (0);
}
/*
* QQQ: Each L2 page table page vm_page_t has pindex set to
* pte1 index of virtual address mapped by this page.
* It's not valid for non kernel PT2TABs themselves.
* The pindex of these pages can not be altered because
* of the way how they are allocated now. However, it
* should not be a problem.
*/
}
mtx_lock_spin(&allpmaps_lock);
/*
* To avoid race with pmap_kenter_pte1() and pmap_kenter_pt2tab(),
* kernel_vm_end_new is used here instead of kernel_vm_end.
*/
pte1_copy_nosync(kern_pt1, pmap->pm_pt1, KERNBASE,
kernel_vm_end_new - 1);
pte1_copy_nosync(kern_pt1, pmap->pm_pt1, vm_max_kernel_address,
0xFFFFFFFF);
pt2tab_copy_nosync(kern_pt2tab, pmap->pm_pt2tab, KERNBASE,
kernel_vm_end_new - 1);
pt2tab_copy_nosync(kern_pt2tab, pmap->pm_pt2tab, vm_max_kernel_address,
0xFFFFFFFF);
LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
mtx_unlock_spin(&allpmaps_lock);
/*
* Store PT2MAP PT2 pages (a.k.a. PT2TAB) in PT2TAB itself.
* I.e. self reference mapping. The PT2TAB is private, however mapped
* into shared PT2MAP space, so the mapping should be not global.
*/
pt2tab_pa = vtophys(pmap->pm_pt2tab);
pte2p = pmap_pt2tab_entry(pmap, (vm_offset_t)PT2MAP);
for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE) {
pt2tab_store(pte2p++, PTE2_KPT_NG(pa));
}
/* Insert PT2MAP PT2s into pmap PT1. */
pte1p = pmap_pte1(pmap, (vm_offset_t)PT2MAP);
for (pa = pt2tab_pa, i = 0; i < NPT2_IN_PT2TAB; i++, pa += NB_IN_PT2) {
pte1_store(pte1p++, PTE1_LINK(pa));
}
/*
* Now synchronize new mapping which was made above.
*/
pte1_sync_range(pmap->pm_pt1, NB_IN_PT1);
pte2_sync_range(pmap->pm_pt2tab, NB_IN_PT2TAB);
CPU_ZERO(&pmap->pm_active);
TAILQ_INIT(&pmap->pm_pvchunk);
bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
return (1);
}
#ifdef INVARIANTS
static boolean_t
pt2tab_user_is_empty(pt2_entry_t *tab)
{
u_int i, end;
end = pt2tab_index(VM_MAXUSER_ADDRESS);
for (i = 0; i < end; i++)
if (tab[i] != 0) return (FALSE);
return (TRUE);
}
#endif
/*
* Release any resources held by the given physical map.
* Called when a pmap initialized by pmap_pinit is being released.
* Should only be called if the map contains no valid mappings.
*/
void
pmap_release(pmap_t pmap)
{
#ifdef INVARIANTS
vm_offset_t start, end;
#endif
KASSERT(pmap->pm_stats.resident_count == 0,
("%s: pmap resident count %ld != 0", __func__,
pmap->pm_stats.resident_count));
KASSERT(pt2tab_user_is_empty(pmap->pm_pt2tab),
("%s: has allocated user PT2(s)", __func__));
KASSERT(CPU_EMPTY(&pmap->pm_active),
("%s: pmap %p is active on some CPU(s)", __func__, pmap));
mtx_lock_spin(&allpmaps_lock);
LIST_REMOVE(pmap, pm_list);
mtx_unlock_spin(&allpmaps_lock);
#ifdef INVARIANTS
start = pte1_index(KERNBASE) * sizeof(pt1_entry_t);
end = (pte1_index(0xFFFFFFFF) + 1) * sizeof(pt1_entry_t);
bzero((char *)pmap->pm_pt1 + start, end - start);
start = pt2tab_index(KERNBASE) * sizeof(pt2_entry_t);
end = (pt2tab_index(0xFFFFFFFF) + 1) * sizeof(pt2_entry_t);
bzero((char *)pmap->pm_pt2tab + start, end - start);
#endif
/*
* We are leaving PT1 and PT2TAB allocated on released pmap,
* so hopefully UMA vmspace_zone will always be inited with
* UMA_ZONE_NOFREE flag.
*/
}
/*********************************************************
*
* L2 table pages and their pages management routines.
*
*********************************************************/
/*
* Virtual interface for L2 page table wire counting.
*
* Each L2 page table in a page has own counter which counts a number of
* valid mappings in a table. Global page counter counts mappings in all
* tables in a page plus a single itself mapping in PT2TAB.
*
* During a promotion we leave the associated L2 page table counter
* untouched, so the table (strictly speaking a page which holds it)
* is never freed if promoted.
*
* If a page m->wire_count == 1 then no valid mappings exist in any L2 page
* table in the page and the page itself is only mapped in PT2TAB.
*/
static __inline void
pt2_wirecount_init(vm_page_t m)
{
u_int i;
/*
* Note: A page m is allocated with VM_ALLOC_WIRED flag and
* m->wire_count should be already set correctly.
* So, there is no need to set it again herein.
*/
for (i = 0; i < NPT2_IN_PG; i++)
m->md.pt2_wirecount[i] = 0;
}
static __inline void
pt2_wirecount_inc(vm_page_t m, uint32_t pte1_idx)
{
/*
* Note: A just modificated pte2 (i.e. already allocated)
* is acquiring one extra reference which must be
* explicitly cleared. It influences the KASSERTs herein.
* All L2 page tables in a page always belong to the same
* pmap, so we allow only one extra reference for the page.
*/
KASSERT(m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] < (NPTE2_IN_PT2 + 1),
("%s: PT2 is overflowing ...", __func__));
KASSERT(m->wire_count <= (NPTE2_IN_PG + 1),
("%s: PT2PG is overflowing ...", __func__));
m->wire_count++;
m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]++;
}
static __inline void
pt2_wirecount_dec(vm_page_t m, uint32_t pte1_idx)
{
KASSERT(m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] != 0,
("%s: PT2 is underflowing ...", __func__));
KASSERT(m->wire_count > 1,
("%s: PT2PG is underflowing ...", __func__));
m->wire_count--;
m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]--;
}
static __inline void
pt2_wirecount_set(vm_page_t m, uint32_t pte1_idx, uint16_t count)
{
KASSERT(count <= NPTE2_IN_PT2,
("%s: invalid count %u", __func__, count));
KASSERT(m->wire_count > m->md.pt2_wirecount[pte1_idx & PT2PG_MASK],
("%s: PT2PG corrupting (%u, %u) ...", __func__, m->wire_count,
m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]));
m->wire_count -= m->md.pt2_wirecount[pte1_idx & PT2PG_MASK];
m->wire_count += count;
m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] = count;
KASSERT(m->wire_count <= (NPTE2_IN_PG + 1),
("%s: PT2PG is overflowed (%u) ...", __func__, m->wire_count));
}
static __inline uint32_t
pt2_wirecount_get(vm_page_t m, uint32_t pte1_idx)
{
return (m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]);
}
static __inline boolean_t
pt2_is_empty(vm_page_t m, vm_offset_t va)
{
return (m->md.pt2_wirecount[pte1_index(va) & PT2PG_MASK] == 0);
}
static __inline boolean_t
pt2_is_full(vm_page_t m, vm_offset_t va)
{
return (m->md.pt2_wirecount[pte1_index(va) & PT2PG_MASK] ==
NPTE2_IN_PT2);
}
static __inline boolean_t
pt2pg_is_empty(vm_page_t m)
{
return (m->wire_count == 1);
}
/*
* This routine is called if the L2 page table
* is not mapped correctly.
*/
static vm_page_t
_pmap_allocpte2(pmap_t pmap, vm_offset_t va, u_int flags)
{
uint32_t pte1_idx;
pt1_entry_t *pte1p;
pt2_entry_t pte2;
vm_page_t m;
vm_paddr_t pt2pg_pa, pt2_pa;
pte1_idx = pte1_index(va);
pte1p = pmap->pm_pt1 + pte1_idx;
KASSERT(pte1_load(pte1p) == 0,
("%s: pm_pt1[%#x] is not zero: %#x", __func__, pte1_idx,
pte1_load(pte1p)));
pte2 = pt2tab_load(pmap_pt2tab_entry(pmap, va));
if (!pte2_is_valid(pte2)) {
/*
* Install new PT2s page into pmap PT2TAB.
*/
m = vm_page_alloc(NULL, pte1_idx & ~PT2PG_MASK,
VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
if (m == NULL) {
if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
PMAP_UNLOCK(pmap);
rw_wunlock(&pvh_global_lock);
VM_WAIT;
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pmap);
}
/*
* Indicate the need to retry. While waiting,
* the L2 page table page may have been allocated.
*/
return (NULL);
}
pmap->pm_stats.resident_count++;
pt2pg_pa = pmap_pt2pg_init(pmap, va, m);
} else {
pt2pg_pa = pte2_pa(pte2);
m = PHYS_TO_VM_PAGE(pt2pg_pa);
}
pt2_wirecount_inc(m, pte1_idx);
pt2_pa = page_pt2pa(pt2pg_pa, pte1_idx);
pte1_store(pte1p, PTE1_LINK(pt2_pa));
return (m);
}
static vm_page_t
pmap_allocpte2(pmap_t pmap, vm_offset_t va, u_int flags)
{
u_int pte1_idx;
pt1_entry_t *pte1p, pte1;
vm_page_t m;
pte1_idx = pte1_index(va);
retry:
pte1p = pmap->pm_pt1 + pte1_idx;
pte1 = pte1_load(pte1p);
/*
* This supports switching from a 1MB page to a
* normal 4K page.
*/
if (pte1_is_section(pte1)) {
(void)pmap_demote_pte1(pmap, pte1p, va);
/*
* Reload pte1 after demotion.
*
* Note: Demotion can even fail as either PT2 is not find for
* the virtual address or PT2PG can not be allocated.
*/
pte1 = pte1_load(pte1p);
}
/*
* If the L2 page table page is mapped, we just increment the
* hold count, and activate it.
*/
if (pte1_is_link(pte1)) {
m = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
pt2_wirecount_inc(m, pte1_idx);
} else {
/*
* Here if the PT2 isn't mapped, or if it has
* been deallocated.
*/
m = _pmap_allocpte2(pmap, va, flags);
if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0)
goto retry;
}
return (m);
}
static __inline void
pmap_free_zero_pages(struct spglist *free)
{
vm_page_t m;
while ((m = SLIST_FIRST(free)) != NULL) {
SLIST_REMOVE_HEAD(free, plinks.s.ss);
/* Preserve the page's PG_ZERO setting. */
vm_page_free_toq(m);
}
}
/*
* Schedule the specified unused L2 page table page to be freed. Specifically,
* add the page to the specified list of pages that will be released to the
* physical memory manager after the TLB has been updated.
*/
static __inline void
pmap_add_delayed_free_list(vm_page_t m, struct spglist *free)
{
/*
* Put page on a list so that it is released after
* *ALL* TLB shootdown is done
*/
#ifdef PMAP_DEBUG
pmap_zero_page_check(m);
#endif
m->flags |= PG_ZERO;
SLIST_INSERT_HEAD(free, m, plinks.s.ss);
}
/*
* Unwire L2 page tables page.
*/
static void
pmap_unwire_pt2pg(pmap_t pmap, vm_offset_t va, vm_page_t m)
{
pt1_entry_t *pte1p, opte1 __unused;
pt2_entry_t *pte2p;
uint32_t i;
KASSERT(pt2pg_is_empty(m),
("%s: pmap %p PT2PG %p wired", __func__, pmap, m));
/*
* Unmap all L2 page tables in the page from L1 page table.
*
* QQQ: Individual L2 page tables (except the last one) can be unmapped
* earlier. However, we are doing that this way.
*/
KASSERT(m->pindex == (pte1_index(va) & ~PT2PG_MASK),
("%s: pmap %p va %#x PT2PG %p bad index", __func__, pmap, va, m));
pte1p = pmap->pm_pt1 + m->pindex;
for (i = 0; i < NPT2_IN_PG; i++, pte1p++) {
KASSERT(m->md.pt2_wirecount[i] == 0,
("%s: pmap %p PT2 %u (PG %p) wired", __func__, pmap, i, m));
opte1 = pte1_load(pte1p);
if (pte1_is_link(opte1)) {
pte1_clear(pte1p);
/*
* Flush intermediate TLB cache.
*/
pmap_tlb_flush(pmap, (m->pindex + i) << PTE1_SHIFT);
}
#ifdef INVARIANTS
else
KASSERT((opte1 == 0) || pte1_is_section(opte1),
("%s: pmap %p va %#x bad pte1 %x at %u", __func__,
pmap, va, opte1, i));
#endif
}
/*
* Unmap the page from PT2TAB.
*/
pte2p = pmap_pt2tab_entry(pmap, va);
(void)pt2tab_load_clear(pte2p);
pmap_tlb_flush(pmap, pt2map_pt2pg(va));
m->wire_count = 0;
pmap->pm_stats.resident_count--;
/*
* This is a release store so that the ordinary store unmapping
* the L2 page table page is globally performed before TLB shoot-
* down is begun.
*/
atomic_subtract_rel_int(&vm_cnt.v_wire_count, 1);
}
/*
* Decrements a L2 page table page's wire count, which is used to record the
* number of valid page table entries within the page. If the wire count
* drops to zero, then the page table page is unmapped. Returns TRUE if the
* page table page was unmapped and FALSE otherwise.
*/
static __inline boolean_t
pmap_unwire_pt2(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
{
pt2_wirecount_dec(m, pte1_index(va));
if (pt2pg_is_empty(m)) {
/*
* QQQ: Wire count is zero, so whole page should be zero and
* we can set PG_ZERO flag to it.
* Note that when promotion is enabled, it takes some
* more efforts. See pmap_unwire_pt2_all() below.
*/
pmap_unwire_pt2pg(pmap, va, m);
pmap_add_delayed_free_list(m, free);
return (TRUE);
} else
return (FALSE);
}
/*
* Drop a L2 page table page's wire count at once, which is used to record
* the number of valid L2 page table entries within the page. If the wire
* count drops to zero, then the L2 page table page is unmapped.
*/
static __inline void
pmap_unwire_pt2_all(pmap_t pmap, vm_offset_t va, vm_page_t m,
struct spglist *free)
{
u_int pte1_idx = pte1_index(va);
KASSERT(m->pindex == (pte1_idx & ~PT2PG_MASK),
("%s: PT2 page's pindex is wrong", __func__));
KASSERT(m->wire_count > pt2_wirecount_get(m, pte1_idx),
("%s: bad pt2 wire count %u > %u", __func__, m->wire_count,
pt2_wirecount_get(m, pte1_idx)));
/*
* It's possible that the L2 page table was never used.
* It happened in case that a section was created without promotion.
*/
if (pt2_is_full(m, va)) {
pt2_wirecount_set(m, pte1_idx, 0);
/*
* QQQ: We clear L2 page table now, so when L2 page table page
* is going to be freed, we can set it PG_ZERO flag ...
* This function is called only on section mappings, so
* hopefully it's not to big overload.
*
* XXX: If pmap is current, existing PT2MAP mapping could be
* used for zeroing.
*/
pmap_zero_page_area(m, page_pt2off(pte1_idx), NB_IN_PT2);
}
#ifdef INVARIANTS
else
KASSERT(pt2_is_empty(m, va), ("%s: PT2 is not empty (%u)",
__func__, pt2_wirecount_get(m, pte1_idx)));
#endif
if (pt2pg_is_empty(m)) {
pmap_unwire_pt2pg(pmap, va, m);
pmap_add_delayed_free_list(m, free);
}
}
/*
* After removing a L2 page table entry, this routine is used to
* conditionally free the page, and manage the hold/wire counts.
*/
static boolean_t
pmap_unuse_pt2(pmap_t pmap, vm_offset_t va, struct spglist *free)
{
pt1_entry_t pte1;
vm_page_t mpte;
if (va >= VM_MAXUSER_ADDRESS)
return (FALSE);
pte1 = pte1_load(pmap_pte1(pmap, va));
mpte = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
return (pmap_unwire_pt2(pmap, va, mpte, free));
}
/*************************************
*
* Page management routines.
*
*************************************/
CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
CTASSERT(_NPCM == 11);
CTASSERT(_NPCPV == 336);
static __inline struct pv_chunk *
pv_to_chunk(pv_entry_t pv)
{
return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
}
#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
#define PC_FREE0_9 0xfffffffful /* Free values for index 0 through 9 */
#define PC_FREE10 0x0000fffful /* Free values for index 10 */
static const uint32_t pc_freemask[_NPCM] = {
PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
PC_FREE0_9, PC_FREE10
};
SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
"Current number of pv entries");
#ifdef PV_STATS
static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
"Current number of pv entry chunks");
SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
"Current number of pv entry chunks allocated");
SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
"Current number of pv entry chunks frees");
SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail,
0, "Number of times tried to get a chunk page but failed.");
static long pv_entry_frees, pv_entry_allocs;
static int pv_entry_spare;
SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
"Current number of pv entry frees");
SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs,
0, "Current number of pv entry allocs");
SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
"Current number of spare pv entries");
#endif
/*
* Is given page managed?
*/
static __inline bool
is_managed(vm_paddr_t pa)
{
vm_page_t m;
m = PHYS_TO_VM_PAGE(pa);
if (m == NULL)
return (false);
return ((m->oflags & VPO_UNMANAGED) == 0);
}
static __inline bool
pte1_is_managed(pt1_entry_t pte1)
{
return (is_managed(pte1_pa(pte1)));
}
static __inline bool
pte2_is_managed(pt2_entry_t pte2)
{
return (is_managed(pte2_pa(pte2)));
}
/*
* We are in a serious low memory condition. Resort to
* drastic measures to free some pages so we can allocate
* another pv entry chunk.
*/
static vm_page_t
pmap_pv_reclaim(pmap_t locked_pmap)
{
struct pch newtail;
struct pv_chunk *pc;
struct md_page *pvh;
pt1_entry_t *pte1p;
pmap_t pmap;
pt2_entry_t *pte2p, tpte2;
pv_entry_t pv;
vm_offset_t va;
vm_page_t m, m_pc;
struct spglist free;
uint32_t inuse;
int bit, field, freed;
PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
pmap = NULL;
m_pc = NULL;
SLIST_INIT(&free);
TAILQ_INIT(&newtail);
while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
SLIST_EMPTY(&free))) {
TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
if (pmap != pc->pc_pmap) {
if (pmap != NULL) {
if (pmap != locked_pmap)
PMAP_UNLOCK(pmap);
}
pmap = pc->pc_pmap;
/* Avoid deadlock and lock recursion. */
if (pmap > locked_pmap)
PMAP_LOCK(pmap);
else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
pmap = NULL;
TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
continue;
}
}
/*
* Destroy every non-wired, 4 KB page mapping in the chunk.
*/
freed = 0;
for (field = 0; field < _NPCM; field++) {
for (inuse = ~pc->pc_map[field] & pc_freemask[field];
inuse != 0; inuse &= ~(1UL << bit)) {
bit = ffs(inuse) - 1;
pv = &pc->pc_pventry[field * 32 + bit];
va = pv->pv_va;
pte1p = pmap_pte1(pmap, va);
if (pte1_is_section(pte1_load(pte1p)))
continue;
pte2p = pmap_pte2(pmap, va);
tpte2 = pte2_load(pte2p);
if ((tpte2 & PTE2_W) == 0)
tpte2 = pte2_load_clear(pte2p);
pmap_pte2_release(pte2p);
if ((tpte2 & PTE2_W) != 0)
continue;
KASSERT(tpte2 != 0,
("pmap_pv_reclaim: pmap %p va %#x zero pte",
pmap, va));
pmap_tlb_flush(pmap, va);
m = PHYS_TO_VM_PAGE(pte2_pa(tpte2));
if (pte2_is_dirty(tpte2))
vm_page_dirty(m);
if ((tpte2 & PTE2_A) != 0)
vm_page_aflag_set(m, PGA_REFERENCED);
TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
if (TAILQ_EMPTY(&m->md.pv_list) &&
(m->flags & PG_FICTITIOUS) == 0) {
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
if (TAILQ_EMPTY(&pvh->pv_list)) {
vm_page_aflag_clear(m,
PGA_WRITEABLE);
}
}
pc->pc_map[field] |= 1UL << bit;
pmap_unuse_pt2(pmap, va, &free);
freed++;
}
}
if (freed == 0) {
TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
continue;
}
/* Every freed mapping is for a 4 KB page. */
pmap->pm_stats.resident_count -= freed;
PV_STAT(pv_entry_frees += freed);
PV_STAT(pv_entry_spare += freed);
pv_entry_count -= freed;
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
for (field = 0; field < _NPCM; field++)
if (pc->pc_map[field] != pc_freemask[field]) {
TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
pc_list);
TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
/*
* One freed pv entry in locked_pmap is
* sufficient.
*/
if (pmap == locked_pmap)
goto out;
break;
}
if (field == _NPCM) {
PV_STAT(pv_entry_spare -= _NPCPV);
PV_STAT(pc_chunk_count--);
PV_STAT(pc_chunk_frees++);
/* Entire chunk is free; return it. */
m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
pmap_qremove((vm_offset_t)pc, 1);
pmap_pte2list_free(&pv_vafree, (vm_offset_t)pc);
break;
}
}
out:
TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
if (pmap != NULL) {
if (pmap != locked_pmap)
PMAP_UNLOCK(pmap);
}
if (m_pc == NULL && pv_vafree != 0 && SLIST_EMPTY(&free)) {
m_pc = SLIST_FIRST(&free);
SLIST_REMOVE_HEAD(&free, plinks.s.ss);
/* Recycle a freed page table page. */
m_pc->wire_count = 1;
atomic_add_int(&vm_cnt.v_wire_count, 1);
}
pmap_free_zero_pages(&free);
return (m_pc);
}
static void
free_pv_chunk(struct pv_chunk *pc)
{
vm_page_t m;
TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
PV_STAT(pv_entry_spare -= _NPCPV);
PV_STAT(pc_chunk_count--);
PV_STAT(pc_chunk_frees++);
/* entire chunk is free, return it */
m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
pmap_qremove((vm_offset_t)pc, 1);
vm_page_unwire(m, PQ_NONE);
vm_page_free(m);
pmap_pte2list_free(&pv_vafree, (vm_offset_t)pc);
}
/*
* Free the pv_entry back to the free list.
*/
static void
free_pv_entry(pmap_t pmap, pv_entry_t pv)
{
struct pv_chunk *pc;
int idx, field, bit;
rw_assert(&pvh_global_lock, RA_WLOCKED);
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
PV_STAT(pv_entry_frees++);
PV_STAT(pv_entry_spare++);
pv_entry_count--;
pc = pv_to_chunk(pv);
idx = pv - &pc->pc_pventry[0];
field = idx / 32;
bit = idx % 32;
pc->pc_map[field] |= 1ul << bit;
for (idx = 0; idx < _NPCM; idx++)
if (pc->pc_map[idx] != pc_freemask[idx]) {
/*
* 98% of the time, pc is already at the head of the
* list. If it isn't already, move it to the head.
*/
if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
pc)) {
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
pc_list);
}
return;
}
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
free_pv_chunk(pc);
}
/*
* Get a new pv_entry, allocating a block from the system
* when needed.
*/
static pv_entry_t
get_pv_entry(pmap_t pmap, boolean_t try)
{
static const struct timeval printinterval = { 60, 0 };
static struct timeval lastprint;
int bit, field;
pv_entry_t pv;
struct pv_chunk *pc;
vm_page_t m;
rw_assert(&pvh_global_lock, RA_WLOCKED);
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
PV_STAT(pv_entry_allocs++);
pv_entry_count++;
if (pv_entry_count > pv_entry_high_water)
if (ratecheck(&lastprint, &printinterval))
printf("Approaching the limit on PV entries, consider "
"increasing either the vm.pmap.shpgperproc or the "
"vm.pmap.pv_entry_max tunable.\n");
retry:
pc = TAILQ_FIRST(&pmap->pm_pvchunk);
if (pc != NULL) {
for (field = 0; field < _NPCM; field++) {
if (pc->pc_map[field]) {
bit = ffs(pc->pc_map[field]) - 1;
break;
}
}
if (field < _NPCM) {
pv = &pc->pc_pventry[field * 32 + bit];
pc->pc_map[field] &= ~(1ul << bit);
/* If this was the last item, move it to tail */
for (field = 0; field < _NPCM; field++)
if (pc->pc_map[field] != 0) {
PV_STAT(pv_entry_spare--);
return (pv); /* not full, return */
}
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
PV_STAT(pv_entry_spare--);
return (pv);
}
}
/*
* Access to the pte2list "pv_vafree" is synchronized by the pvh
* global lock. If "pv_vafree" is currently non-empty, it will
* remain non-empty until pmap_pte2list_alloc() completes.
*/
if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
if (try) {
pv_entry_count--;
PV_STAT(pc_chunk_tryfail++);
return (NULL);
}
m = pmap_pv_reclaim(pmap);
if (m == NULL)
goto retry;
}
PV_STAT(pc_chunk_count++);
PV_STAT(pc_chunk_allocs++);
pc = (struct pv_chunk *)pmap_pte2list_alloc(&pv_vafree);
pmap_qenter((vm_offset_t)pc, &m, 1);
pc->pc_pmap = pmap;
pc->pc_map[0] = pc_freemask[0] & ~1ul; /* preallocated bit 0 */
for (field = 1; field < _NPCM; field++)
pc->pc_map[field] = pc_freemask[field];
TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
pv = &pc->pc_pventry[0];
TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
PV_STAT(pv_entry_spare += _NPCPV - 1);
return (pv);
}
/*
* Create a pv entry for page at pa for
* (pmap, va).
*/
static void
pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
{
pv_entry_t pv;
rw_assert(&pvh_global_lock, RA_WLOCKED);
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
pv = get_pv_entry(pmap, FALSE);
pv->pv_va = va;
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
}
static __inline pv_entry_t
pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
{
pv_entry_t pv;
rw_assert(&pvh_global_lock, RA_WLOCKED);
TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
break;
}
}
return (pv);
}
static void
pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
{
pv_entry_t pv;
pv = pmap_pvh_remove(pvh, pmap, va);
KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
free_pv_entry(pmap, pv);
}
static void
pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
{
struct md_page *pvh;
rw_assert(&pvh_global_lock, RA_WLOCKED);
pmap_pvh_free(&m->md, pmap, va);
if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
if (TAILQ_EMPTY(&pvh->pv_list))
vm_page_aflag_clear(m, PGA_WRITEABLE);
}
}
static void
pmap_pv_demote_pte1(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
{
struct md_page *pvh;
pv_entry_t pv;
vm_offset_t va_last;
vm_page_t m;
rw_assert(&pvh_global_lock, RA_WLOCKED);
KASSERT((pa & PTE1_OFFSET) == 0,
("pmap_pv_demote_pte1: pa is not 1mpage aligned"));
/*
* Transfer the 1mpage's pv entry for this mapping to the first
* page's pv list.
*/
pvh = pa_to_pvh(pa);
va = pte1_trunc(va);
pv = pmap_pvh_remove(pvh, pmap, va);
KASSERT(pv != NULL, ("pmap_pv_demote_pte1: pv not found"));
m = PHYS_TO_VM_PAGE(pa);
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
/* Instantiate the remaining NPTE2_IN_PT2 - 1 pv entries. */
va_last = va + PTE1_SIZE - PAGE_SIZE;
do {
m++;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_pv_demote_pte1: page %p is not managed", m));
va += PAGE_SIZE;
pmap_insert_entry(pmap, va, m);
} while (va < va_last);
}
static void
pmap_pv_promote_pte1(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
{
struct md_page *pvh;
pv_entry_t pv;
vm_offset_t va_last;
vm_page_t m;
rw_assert(&pvh_global_lock, RA_WLOCKED);
KASSERT((pa & PTE1_OFFSET) == 0,
("pmap_pv_promote_pte1: pa is not 1mpage aligned"));
/*
* Transfer the first page's pv entry for this mapping to the
* 1mpage's pv list. Aside from avoiding the cost of a call
* to get_pv_entry(), a transfer avoids the possibility that
* get_pv_entry() calls pmap_pv_reclaim() and that pmap_pv_reclaim()
* removes one of the mappings that is being promoted.
*/
m = PHYS_TO_VM_PAGE(pa);
va = pte1_trunc(va);
pv = pmap_pvh_remove(&m->md, pmap, va);
KASSERT(pv != NULL, ("pmap_pv_promote_pte1: pv not found"));
pvh = pa_to_pvh(pa);
TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
/* Free the remaining NPTE2_IN_PT2 - 1 pv entries. */
va_last = va + PTE1_SIZE - PAGE_SIZE;
do {
m++;
va += PAGE_SIZE;
pmap_pvh_free(&m->md, pmap, va);
} while (va < va_last);
}
/*
* Conditionally create a pv entry.
*/
static boolean_t
pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
{
pv_entry_t pv;
rw_assert(&pvh_global_lock, RA_WLOCKED);
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
if (pv_entry_count < pv_entry_high_water &&
(pv = get_pv_entry(pmap, TRUE)) != NULL) {
pv->pv_va = va;
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
return (TRUE);
} else
return (FALSE);
}
/*
* Create the pv entries for each of the pages within a section.
*/
static boolean_t
pmap_pv_insert_pte1(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
{
struct md_page *pvh;
pv_entry_t pv;
rw_assert(&pvh_global_lock, RA_WLOCKED);
if (pv_entry_count < pv_entry_high_water &&
(pv = get_pv_entry(pmap, TRUE)) != NULL) {
pv->pv_va = va;
pvh = pa_to_pvh(pa);
TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
return (TRUE);
} else
return (FALSE);
}
static inline void
pmap_tlb_flush_pte1(pmap_t pmap, vm_offset_t va, pt1_entry_t npte1)
{
/* Kill all the small mappings or the big one only. */
if (pte1_is_section(npte1))
pmap_tlb_flush_range(pmap, pte1_trunc(va), PTE1_SIZE);
else
pmap_tlb_flush(pmap, pte1_trunc(va));
}
/*
* Update kernel pte1 on all pmaps.
*
* The following function is called only on one cpu with disabled interrupts.
* In SMP case, smp_rendezvous_cpus() is used to stop other cpus. This way
* nobody can invoke explicit hardware table walk during the update of pte1.
* Unsolicited hardware table walk can still happen, invoked by speculative
* data or instruction prefetch or even by speculative hardware table walk.
*
* The break-before-make approach should be implemented here. However, it's
* not so easy to do that for kernel mappings as it would be unhappy to unmap
* itself unexpectedly but voluntarily.
*/
static void
pmap_update_pte1_kernel(vm_offset_t va, pt1_entry_t npte1)
{
pmap_t pmap;
pt1_entry_t *pte1p;
/*
* Get current pmap. Interrupts should be disabled here
* so PCPU_GET() is done atomically.
*/
pmap = PCPU_GET(curpmap);
if (pmap == NULL)
pmap = kernel_pmap;
/*
* (1) Change pte1 on current pmap.
* (2) Flush all obsolete TLB entries on current CPU.
* (3) Change pte1 on all pmaps.
* (4) Flush all obsolete TLB entries on all CPUs in SMP case.
*/
pte1p = pmap_pte1(pmap, va);
pte1_store(pte1p, npte1);
/* Kill all the small mappings or the big one only. */
if (pte1_is_section(npte1)) {
pmap_pte1_kern_promotions++;
tlb_flush_range_local(pte1_trunc(va), PTE1_SIZE);
} else {
pmap_pte1_kern_demotions++;
tlb_flush_local(pte1_trunc(va));
}
/*
* In SMP case, this function is called when all cpus are at smp
* rendezvous, so there is no need to use 'allpmaps_lock' lock here.
* In UP case, the function is called with this lock locked.
*/
LIST_FOREACH(pmap, &allpmaps, pm_list) {
pte1p = pmap_pte1(pmap, va);
pte1_store(pte1p, npte1);
}
#ifdef SMP
/* Kill all the small mappings or the big one only. */
if (pte1_is_section(npte1))
tlb_flush_range(pte1_trunc(va), PTE1_SIZE);
else
tlb_flush(pte1_trunc(va));
#endif
}
#ifdef SMP
struct pte1_action {
vm_offset_t va;
pt1_entry_t npte1;
u_int update; /* CPU that updates the PTE1 */
};
static void
pmap_update_pte1_action(void *arg)
{
struct pte1_action *act = arg;
if (act->update == PCPU_GET(cpuid))
pmap_update_pte1_kernel(act->va, act->npte1);
}
/*
* Change pte1 on current pmap.
* Note that kernel pte1 must be changed on all pmaps.
*
* According to the architecture reference manual published by ARM,
* the behaviour is UNPREDICTABLE when two or more TLB entries map the same VA.
* According to this manual, UNPREDICTABLE behaviours must never happen in
* a viable system. In contrast, on x86 processors, it is not specified which
* TLB entry mapping the virtual address will be used, but the MMU doesn't
* generate a bogus translation the way it does on Cortex-A8 rev 2 (Beaglebone
* Black).
*
* It's a problem when either promotion or demotion is being done. The pte1
* update and appropriate TLB flush must be done atomically in general.
*/
static void
pmap_change_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va,
pt1_entry_t npte1)
{
if (pmap == kernel_pmap) {
struct pte1_action act;
sched_pin();
act.va = va;
act.npte1 = npte1;
act.update = PCPU_GET(cpuid);
smp_rendezvous_cpus(all_cpus, smp_no_rendevous_barrier,
pmap_update_pte1_action, NULL, &act);
sched_unpin();
} else {
register_t cspr;
/*
* Use break-before-make approach for changing userland
* mappings. It can cause L1 translation aborts on other
* cores in SMP case. So, special treatment is implemented
* in pmap_fault(). To reduce the likelihood that another core
* will be affected by the broken mapping, disable interrupts
* until the mapping change is completed.
*/
cspr = disable_interrupts(PSR_I | PSR_F);
pte1_clear(pte1p);
pmap_tlb_flush_pte1(pmap, va, npte1);
pte1_store(pte1p, npte1);
restore_interrupts(cspr);
}
}
#else
static void
pmap_change_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va,
pt1_entry_t npte1)
{
if (pmap == kernel_pmap) {
mtx_lock_spin(&allpmaps_lock);
pmap_update_pte1_kernel(va, npte1);
mtx_unlock_spin(&allpmaps_lock);
} else {
register_t cspr;
/*
* Use break-before-make approach for changing userland
* mappings. It's absolutely safe in UP case when interrupts
* are disabled.
*/
cspr = disable_interrupts(PSR_I | PSR_F);
pte1_clear(pte1p);
pmap_tlb_flush_pte1(pmap, va, npte1);
pte1_store(pte1p, npte1);
restore_interrupts(cspr);
}
}
#endif
/*
* Tries to promote the NPTE2_IN_PT2, contiguous 4KB page mappings that are
* within a single page table page (PT2) to a single 1MB page mapping.
* For promotion to occur, two conditions must be met: (1) the 4KB page
* mappings must map aligned, contiguous physical memory and (2) the 4KB page
* mappings must have identical characteristics.
*
* Managed (PG_MANAGED) mappings within the kernel address space are not
* promoted. The reason is that kernel PTE1s are replicated in each pmap but
* pmap_remove_write(), pmap_clear_modify(), and pmap_clear_reference() only
* read the PTE1 from the kernel pmap.
*/
static void
pmap_promote_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va)
{
pt1_entry_t npte1;
pt2_entry_t *fpte2p, fpte2, fpte2_fav;
pt2_entry_t *pte2p, pte2;
vm_offset_t pteva __unused;
vm_page_t m __unused;
PDEBUG(6, printf("%s(%p): try for va %#x pte1 %#x at %p\n", __func__,
pmap, va, pte1_load(pte1p), pte1p));
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
/*
* Examine the first PTE2 in the specified PT2. Abort if this PTE2 is
* either invalid, unused, or does not map the first 4KB physical page
* within a 1MB page.
*/
fpte2p = pmap_pte2_quick(pmap, pte1_trunc(va));
fpte2 = pte2_load(fpte2p);
if ((fpte2 & ((PTE2_FRAME & PTE1_OFFSET) | PTE2_A | PTE2_V)) !=
(PTE2_A | PTE2_V)) {
pmap_pte1_p_failures++;
CTR3(KTR_PMAP, "%s: failure(1) for va %#x in pmap %p",
__func__, va, pmap);
return;
}
if (pte2_is_managed(fpte2) && pmap == kernel_pmap) {
pmap_pte1_p_failures++;
CTR3(KTR_PMAP, "%s: failure(2) for va %#x in pmap %p",
__func__, va, pmap);
return;
}
if ((fpte2 & (PTE2_NM | PTE2_RO)) == PTE2_NM) {
/*
* When page is not modified, PTE2_RO can be set without
* a TLB invalidation.
*/
fpte2 |= PTE2_RO;
pte2_store(fpte2p, fpte2);
}
/*
* Examine each of the other PTE2s in the specified PT2. Abort if this
* PTE2 maps an unexpected 4KB physical page or does not have identical
* characteristics to the first PTE2.
*/
fpte2_fav = (fpte2 & (PTE2_FRAME | PTE2_A | PTE2_V));
fpte2_fav += PTE1_SIZE - PTE2_SIZE; /* examine from the end */
for (pte2p = fpte2p + NPTE2_IN_PT2 - 1; pte2p > fpte2p; pte2p--) {
pte2 = pte2_load(pte2p);
if ((pte2 & (PTE2_FRAME | PTE2_A | PTE2_V)) != fpte2_fav) {
pmap_pte1_p_failures++;
CTR3(KTR_PMAP, "%s: failure(3) for va %#x in pmap %p",
__func__, va, pmap);
return;
}
if ((pte2 & (PTE2_NM | PTE2_RO)) == PTE2_NM) {
/*
* When page is not modified, PTE2_RO can be set
* without a TLB invalidation. See note above.
*/
pte2 |= PTE2_RO;
pte2_store(pte2p, pte2);
pteva = pte1_trunc(va) | (pte2 & PTE1_OFFSET &
PTE2_FRAME);
CTR3(KTR_PMAP, "%s: protect for va %#x in pmap %p",
__func__, pteva, pmap);
}
if ((pte2 & PTE2_PROMOTE) != (fpte2 & PTE2_PROMOTE)) {
pmap_pte1_p_failures++;
CTR3(KTR_PMAP, "%s: failure(4) for va %#x in pmap %p",
__func__, va, pmap);
return;
}
fpte2_fav -= PTE2_SIZE;
}
/*
* The page table page in its current state will stay in PT2TAB
* until the PTE1 mapping the section is demoted by pmap_demote_pte1()
* or destroyed by pmap_remove_pte1().
*
* Note that L2 page table size is not equal to PAGE_SIZE.
*/
m = PHYS_TO_VM_PAGE(trunc_page(pte1_link_pa(pte1_load(pte1p))));
KASSERT(m >= vm_page_array && m < &vm_page_array[vm_page_array_size],
("%s: PT2 page is out of range", __func__));
KASSERT(m->pindex == (pte1_index(va) & ~PT2PG_MASK),
("%s: PT2 page's pindex is wrong", __func__));
/*
* Get pte1 from pte2 format.
*/
npte1 = (fpte2 & PTE1_FRAME) | ATTR_TO_L1(fpte2) | PTE1_V;
/*
* Promote the pv entries.
*/
if (pte2_is_managed(fpte2))
pmap_pv_promote_pte1(pmap, va, pte1_pa(npte1));
/*
* Promote the mappings.
*/
pmap_change_pte1(pmap, pte1p, va, npte1);
pmap_pte1_promotions++;
CTR3(KTR_PMAP, "%s: success for va %#x in pmap %p",
__func__, va, pmap);
PDEBUG(6, printf("%s(%p): success for va %#x pte1 %#x(%#x) at %p\n",
__func__, pmap, va, npte1, pte1_load(pte1p), pte1p));
}
/*
* Zero L2 page table page.
*/
static __inline void
pmap_clear_pt2(pt2_entry_t *fpte2p)
{
pt2_entry_t *pte2p;
for (pte2p = fpte2p; pte2p < fpte2p + NPTE2_IN_PT2; pte2p++)
pte2_clear(pte2p);
}
/*
* Removes a 1MB page mapping from the kernel pmap.
*/
static void
pmap_remove_kernel_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va)
{
vm_page_t m;
uint32_t pte1_idx;
pt2_entry_t *fpte2p;
vm_paddr_t pt2_pa;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
m = pmap_pt2_page(pmap, va);
if (m == NULL)
/*
* QQQ: Is this function called only on promoted pte1?
* We certainly do section mappings directly
* (without promotion) in kernel !!!
*/
panic("%s: missing pt2 page", __func__);
pte1_idx = pte1_index(va);
/*
* Initialize the L2 page table.
*/
fpte2p = page_pt2(pt2map_pt2pg(va), pte1_idx);
pmap_clear_pt2(fpte2p);
/*
* Remove the mapping.
*/
pt2_pa = page_pt2pa(VM_PAGE_TO_PHYS(m), pte1_idx);
pmap_kenter_pte1(va, PTE1_LINK(pt2_pa));
/*
* QQQ: We do not need to invalidate PT2MAP mapping
* as we did not change it. I.e. the L2 page table page
* was and still is mapped the same way.
*/
}
/*
* Do the things to unmap a section in a process
*/
static void
pmap_remove_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t sva,
struct spglist *free)
{
pt1_entry_t opte1;
struct md_page *pvh;
vm_offset_t eva, va;
vm_page_t m;
PDEBUG(6, printf("%s(%p): va %#x pte1 %#x at %p\n", __func__, pmap, sva,
pte1_load(pte1p), pte1p));
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
KASSERT((sva & PTE1_OFFSET) == 0,
("%s: sva is not 1mpage aligned", __func__));
/*
* Clear and invalidate the mapping. It should occupy one and only TLB
* entry. So, pmap_tlb_flush() called with aligned address should be
* sufficient.
*/
opte1 = pte1_load_clear(pte1p);
pmap_tlb_flush(pmap, sva);
if (pte1_is_wired(opte1))
pmap->pm_stats.wired_count -= PTE1_SIZE / PAGE_SIZE;
pmap->pm_stats.resident_count -= PTE1_SIZE / PAGE_SIZE;
if (pte1_is_managed(opte1)) {
pvh = pa_to_pvh(pte1_pa(opte1));
pmap_pvh_free(pvh, pmap, sva);
eva = sva + PTE1_SIZE;
for (va = sva, m = PHYS_TO_VM_PAGE(pte1_pa(opte1));
va < eva; va += PAGE_SIZE, m++) {
if (pte1_is_dirty(opte1))
vm_page_dirty(m);
if (opte1 & PTE1_A)
vm_page_aflag_set(m, PGA_REFERENCED);
if (TAILQ_EMPTY(&m->md.pv_list) &&
TAILQ_EMPTY(&pvh->pv_list))
vm_page_aflag_clear(m, PGA_WRITEABLE);
}
}
if (pmap == kernel_pmap) {
/*
* L2 page table(s) can't be removed from kernel map as
* kernel counts on it (stuff around pmap_growkernel()).
*/
pmap_remove_kernel_pte1(pmap, pte1p, sva);
} else {
/*
* Get associated L2 page table page.
* It's possible that the page was never allocated.
*/
m = pmap_pt2_page(pmap, sva);
if (m != NULL)
pmap_unwire_pt2_all(pmap, sva, m, free);
}
}
/*
* Fills L2 page table page with mappings to consecutive physical pages.
*/
static __inline void
pmap_fill_pt2(pt2_entry_t *fpte2p, pt2_entry_t npte2)
{
pt2_entry_t *pte2p;
for (pte2p = fpte2p; pte2p < fpte2p + NPTE2_IN_PT2; pte2p++) {
pte2_store(pte2p, npte2);
npte2 += PTE2_SIZE;
}
}
/*
* Tries to demote a 1MB page mapping. If demotion fails, the
* 1MB page mapping is invalidated.
*/
static boolean_t
pmap_demote_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va)
{
pt1_entry_t opte1, npte1;
pt2_entry_t *fpte2p, npte2;
vm_paddr_t pt2pg_pa, pt2_pa;
vm_page_t m;
struct spglist free;
uint32_t pte1_idx, isnew = 0;
PDEBUG(6, printf("%s(%p): try for va %#x pte1 %#x at %p\n", __func__,
pmap, va, pte1_load(pte1p), pte1p));
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
opte1 = pte1_load(pte1p);
KASSERT(pte1_is_section(opte1), ("%s: opte1 not a section", __func__));
if ((opte1 & PTE1_A) == 0 || (m = pmap_pt2_page(pmap, va)) == NULL) {
KASSERT(!pte1_is_wired(opte1),
("%s: PT2 page for a wired mapping is missing", __func__));
/*
* Invalidate the 1MB page mapping and return
* "failure" if the mapping was never accessed or the
* allocation of the new page table page fails.
*/
if ((opte1 & PTE1_A) == 0 || (m = vm_page_alloc(NULL,
pte1_index(va) & ~PT2PG_MASK, VM_ALLOC_NOOBJ |
VM_ALLOC_NORMAL | VM_ALLOC_WIRED)) == NULL) {
SLIST_INIT(&free);
pmap_remove_pte1(pmap, pte1p, pte1_trunc(va), &free);
pmap_free_zero_pages(&free);
CTR3(KTR_PMAP, "%s: failure for va %#x in pmap %p",
__func__, va, pmap);
return (FALSE);
}
if (va < VM_MAXUSER_ADDRESS)
pmap->pm_stats.resident_count++;
isnew = 1;
/*
* We init all L2 page tables in the page even if
* we are going to change everything for one L2 page
* table in a while.
*/
pt2pg_pa = pmap_pt2pg_init(pmap, va, m);
} else {
if (va < VM_MAXUSER_ADDRESS) {
if (pt2_is_empty(m, va))
isnew = 1; /* Demoting section w/o promotion. */
#ifdef INVARIANTS
else
KASSERT(pt2_is_full(m, va), ("%s: bad PT2 wire"
" count %u", __func__,
pt2_wirecount_get(m, pte1_index(va))));
#endif
}
}
pt2pg_pa = VM_PAGE_TO_PHYS(m);
pte1_idx = pte1_index(va);
/*
* If the pmap is current, then the PT2MAP can provide access to
* the page table page (promoted L2 page tables are not unmapped).
* Otherwise, temporarily map the L2 page table page (m) into
* the kernel's address space at either PADDR1 or PADDR2.
*
* Note that L2 page table size is not equal to PAGE_SIZE.
*/
if (pmap_is_current(pmap))
fpte2p = page_pt2(pt2map_pt2pg(va), pte1_idx);
else if (curthread->td_pinned > 0 && rw_wowned(&pvh_global_lock)) {
if (pte2_pa(pte2_load(PMAP1)) != pt2pg_pa) {
pte2_store(PMAP1, PTE2_KPT(pt2pg_pa));
#ifdef SMP
PMAP1cpu = PCPU_GET(cpuid);
#endif
tlb_flush_local((vm_offset_t)PADDR1);
PMAP1changed++;
} else
#ifdef SMP
if (PMAP1cpu != PCPU_GET(cpuid)) {
PMAP1cpu = PCPU_GET(cpuid);
tlb_flush_local((vm_offset_t)PADDR1);
PMAP1changedcpu++;
} else
#endif
PMAP1unchanged++;
fpte2p = page_pt2((vm_offset_t)PADDR1, pte1_idx);
} else {
mtx_lock(&PMAP2mutex);
if (pte2_pa(pte2_load(PMAP2)) != pt2pg_pa) {
pte2_store(PMAP2, PTE2_KPT(pt2pg_pa));
tlb_flush((vm_offset_t)PADDR2);
}
fpte2p = page_pt2((vm_offset_t)PADDR2, pte1_idx);
}
pt2_pa = page_pt2pa(pt2pg_pa, pte1_idx);
npte1 = PTE1_LINK(pt2_pa);
KASSERT((opte1 & PTE1_A) != 0,
("%s: opte1 is missing PTE1_A", __func__));
KASSERT((opte1 & (PTE1_NM | PTE1_RO)) != PTE1_NM,
("%s: opte1 has PTE1_NM", __func__));
/*
* Get pte2 from pte1 format.
*/
npte2 = pte1_pa(opte1) | ATTR_TO_L2(opte1) | PTE2_V;
/*
* If the L2 page table page is new, initialize it. If the mapping
* has changed attributes, update the page table entries.
*/
if (isnew != 0) {
pt2_wirecount_set(m, pte1_idx, NPTE2_IN_PT2);
pmap_fill_pt2(fpte2p, npte2);
} else if ((pte2_load(fpte2p) & PTE2_PROMOTE) !=
(npte2 & PTE2_PROMOTE))
pmap_fill_pt2(fpte2p, npte2);
KASSERT(pte2_pa(pte2_load(fpte2p)) == pte2_pa(npte2),
("%s: fpte2p and npte2 map different physical addresses",
__func__));
if (fpte2p == PADDR2)
mtx_unlock(&PMAP2mutex);
/*
* Demote the mapping. This pmap is locked. The old PTE1 has
* PTE1_A set. If the old PTE1 has not PTE1_RO set, it also
* has not PTE1_NM set. Thus, there is no danger of a race with
* another processor changing the setting of PTE1_A and/or PTE1_NM
* between the read above and the store below.
*/
pmap_change_pte1(pmap, pte1p, va, npte1);
/*
* Demote the pv entry. This depends on the earlier demotion
* of the mapping. Specifically, the (re)creation of a per-
* page pv entry might trigger the execution of pmap_pv_reclaim(),
* which might reclaim a newly (re)created per-page pv entry
* and destroy the associated mapping. In order to destroy
* the mapping, the PTE1 must have already changed from mapping
* the 1mpage to referencing the page table page.
*/
if (pte1_is_managed(opte1))
pmap_pv_demote_pte1(pmap, va, pte1_pa(opte1));
pmap_pte1_demotions++;
CTR3(KTR_PMAP, "%s: success for va %#x in pmap %p",
__func__, va, pmap);
PDEBUG(6, printf("%s(%p): success for va %#x pte1 %#x(%#x) at %p\n",
__func__, pmap, va, npte1, pte1_load(pte1p), pte1p));
return (TRUE);
}
/*
* Insert the given physical page (p) at
* the specified virtual address (v) in the
* target physical map with the protection requested.
*
* If specified, the page will be wired down, meaning
* that the related pte can not be reclaimed.
*
* NB: This is the only routine which MAY NOT lazy-evaluate
* or lose information. That is, this routine must actually
* insert this page into the given map NOW.
*/
int
pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
u_int flags, int8_t psind)
{
pt1_entry_t *pte1p;
pt2_entry_t *pte2p;
pt2_entry_t npte2, opte2;
pv_entry_t pv;
vm_paddr_t opa, pa;
vm_page_t mpte2, om;
boolean_t wired;
va = trunc_page(va);
mpte2 = NULL;
wired = (flags & PMAP_ENTER_WIRED) != 0;
KASSERT(va <= vm_max_kernel_address, ("%s: toobig", __func__));
KASSERT(va < UPT2V_MIN_ADDRESS || va >= UPT2V_MAX_ADDRESS,
("%s: invalid to pmap_enter page table pages (va: 0x%x)", __func__,
va));
if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
VM_OBJECT_ASSERT_LOCKED(m->object);
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pmap);
sched_pin();
/*
* In the case that a page table page is not
* resident, we are creating it here.
*/
if (va < VM_MAXUSER_ADDRESS) {
mpte2 = pmap_allocpte2(pmap, va, flags);
if (mpte2 == NULL) {
KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0,
("pmap_allocpte2 failed with sleep allowed"));
sched_unpin();
rw_wunlock(&pvh_global_lock);
PMAP_UNLOCK(pmap);
return (KERN_RESOURCE_SHORTAGE);
}
}
pte1p = pmap_pte1(pmap, va);
if (pte1_is_section(pte1_load(pte1p)))
panic("%s: attempted on 1MB page", __func__);
pte2p = pmap_pte2_quick(pmap, va);
if (pte2p == NULL)
panic("%s: invalid L1 page table entry va=%#x", __func__, va);
om = NULL;
pa = VM_PAGE_TO_PHYS(m);
opte2 = pte2_load(pte2p);
opa = pte2_pa(opte2);
/*
* Mapping has not changed, must be protection or wiring change.
*/
if (pte2_is_valid(opte2) && (opa == pa)) {
/*
* Wiring change, just update stats. We don't worry about
* wiring PT2 pages as they remain resident as long as there
* are valid mappings in them. Hence, if a user page is wired,
* the PT2 page will be also.
*/
if (wired && !pte2_is_wired(opte2))
pmap->pm_stats.wired_count++;
else if (!wired && pte2_is_wired(opte2))
pmap->pm_stats.wired_count--;
/*
* Remove extra pte2 reference
*/
if (mpte2)
pt2_wirecount_dec(mpte2, pte1_index(va));
if (pte2_is_managed(opte2))
om = m;
goto validate;
}
/*
* QQQ: We think that changing physical address on writeable mapping
* is not safe. Well, maybe on kernel address space with correct
* locking, it can make a sense. However, we have no idea why
* anyone should do that on user address space. Are we wrong?
*/
KASSERT((opa == 0) || (opa == pa) ||
!pte2_is_valid(opte2) || ((opte2 & PTE2_RO) != 0),
("%s: pmap %p va %#x(%#x) opa %#x pa %#x - gotcha %#x %#x!",
__func__, pmap, va, opte2, opa, pa, flags, prot));
pv = NULL;
/*
* Mapping has changed, invalidate old range and fall through to
* handle validating new mapping.
*/
if (opa) {
if (pte2_is_wired(opte2))
pmap->pm_stats.wired_count--;
if (pte2_is_managed(opte2)) {
om = PHYS_TO_VM_PAGE(opa);
pv = pmap_pvh_remove(&om->md, pmap, va);
}
/*
* Remove extra pte2 reference
*/
if (mpte2 != NULL)
pt2_wirecount_dec(mpte2, va >> PTE1_SHIFT);
} else
pmap->pm_stats.resident_count++;
/*
* Enter on the PV list if part of our managed memory.
*/
if ((m->oflags & VPO_UNMANAGED) == 0) {
KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
("%s: managed mapping within the clean submap", __func__));
if (pv == NULL)
pv = get_pv_entry(pmap, FALSE);
pv->pv_va = va;
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
} else if (pv != NULL)
free_pv_entry(pmap, pv);
/*
* Increment counters
*/
if (wired)
pmap->pm_stats.wired_count++;
validate:
/*
* Now validate mapping with desired protection/wiring.
*/
npte2 = PTE2(pa, PTE2_NM, vm_page_pte2_attr(m));
if (prot & VM_PROT_WRITE) {
if (pte2_is_managed(npte2))
vm_page_aflag_set(m, PGA_WRITEABLE);
}
else
npte2 |= PTE2_RO;
if ((prot & VM_PROT_EXECUTE) == 0)
npte2 |= PTE2_NX;
if (wired)
npte2 |= PTE2_W;
if (va < VM_MAXUSER_ADDRESS)
npte2 |= PTE2_U;
if (pmap != kernel_pmap)
npte2 |= PTE2_NG;
/*
* If the mapping or permission bits are different, we need
* to update the pte2.
*
* QQQ: Think again and again what to do
* if the mapping is going to be changed!
*/
if ((opte2 & ~(PTE2_NM | PTE2_A)) != (npte2 & ~(PTE2_NM | PTE2_A))) {
/*
* Sync icache if exec permission and attribute VM_MEMATTR_WB_WA
* is set. Do it now, before the mapping is stored and made
* valid for hardware table walk. If done later, there is a race
* for other threads of current process in lazy loading case.
* Don't do it for kernel memory which is mapped with exec
* permission even if the memory isn't going to hold executable
* code. The only time when icache sync is needed is after
* kernel module is loaded and the relocation info is processed.
* And it's done in elf_cpu_load_file().
*
* QQQ: (1) Does it exist any better way where
* or how to sync icache?
* (2) Now, we do it on a page basis.
*/
if ((prot & VM_PROT_EXECUTE) && pmap != kernel_pmap &&
m->md.pat_mode == VM_MEMATTR_WB_WA &&
(opa != pa || (opte2 & PTE2_NX)))
cache_icache_sync_fresh(va, pa, PAGE_SIZE);
npte2 |= PTE2_A;
if (flags & VM_PROT_WRITE)
npte2 &= ~PTE2_NM;
if (opte2 & PTE2_V) {
/* Change mapping with break-before-make approach. */
opte2 = pte2_load_clear(pte2p);
pmap_tlb_flush(pmap, va);
pte2_store(pte2p, npte2);
if (opte2 & PTE2_A) {
if (pte2_is_managed(opte2))
vm_page_aflag_set(om, PGA_REFERENCED);
}
if (pte2_is_dirty(opte2)) {
if (pte2_is_managed(opte2))
vm_page_dirty(om);
}
if (pte2_is_managed(opte2) &&
TAILQ_EMPTY(&om->md.pv_list) &&
((om->flags & PG_FICTITIOUS) != 0 ||
TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
vm_page_aflag_clear(om, PGA_WRITEABLE);
} else
pte2_store(pte2p, npte2);
}
#if 0
else {
/*
* QQQ: In time when both access and not mofified bits are
* emulated by software, this should not happen. Some
* analysis is need, if this really happen. Missing
* tlb flush somewhere could be the reason.
*/
panic("%s: pmap %p va %#x opte2 %x npte2 %x !!", __func__, pmap,
va, opte2, npte2);
}
#endif
/*
* If both the L2 page table page and the reservation are fully
* populated, then attempt promotion.
*/
if ((mpte2 == NULL || pt2_is_full(mpte2, va)) &&
sp_enabled && (m->flags & PG_FICTITIOUS) == 0 &&
vm_reserv_level_iffullpop(m) == 0)
pmap_promote_pte1(pmap, pte1p, va);
sched_unpin();
rw_wunlock(&pvh_global_lock);
PMAP_UNLOCK(pmap);
return (KERN_SUCCESS);
}
/*
* Do the things to unmap a page in a process.
*/
static int
pmap_remove_pte2(pmap_t pmap, pt2_entry_t *pte2p, vm_offset_t va,
struct spglist *free)
{
pt2_entry_t opte2;
vm_page_t m;
rw_assert(&pvh_global_lock, RA_WLOCKED);
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
/* Clear and invalidate the mapping. */
opte2 = pte2_load_clear(pte2p);
pmap_tlb_flush(pmap, va);
KASSERT(pte2_is_valid(opte2), ("%s: pmap %p va %#x not link pte2 %#x",
__func__, pmap, va, opte2));
if (opte2 & PTE2_W)
pmap->pm_stats.wired_count -= 1;
pmap->pm_stats.resident_count -= 1;
if (pte2_is_managed(opte2)) {
m = PHYS_TO_VM_PAGE(pte2_pa(opte2));
if (pte2_is_dirty(opte2))
vm_page_dirty(m);
if (opte2 & PTE2_A)
vm_page_aflag_set(m, PGA_REFERENCED);
pmap_remove_entry(pmap, m, va);
}
return (pmap_unuse_pt2(pmap, va, free));
}
/*
* Remove a single page from a process address space.
*/
static void
pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free)
{
pt2_entry_t *pte2p;
rw_assert(&pvh_global_lock, RA_WLOCKED);
KASSERT(curthread->td_pinned > 0,
("%s: curthread not pinned", __func__));
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
if ((pte2p = pmap_pte2_quick(pmap, va)) == NULL ||
!pte2_is_valid(pte2_load(pte2p)))
return;
pmap_remove_pte2(pmap, pte2p, va, free);
}
/*
* Remove the given range of addresses from the specified map.
*
* It is assumed that the start and end are properly
* rounded to the page size.
*/
void
pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
{
vm_offset_t nextva;
pt1_entry_t *pte1p, pte1;
pt2_entry_t *pte2p, pte2;
struct spglist free;
/*
* Perform an unsynchronized read. This is, however, safe.
*/
if (pmap->pm_stats.resident_count == 0)
return;
SLIST_INIT(&free);
rw_wlock(&pvh_global_lock);
sched_pin();
PMAP_LOCK(pmap);
/*
* Special handling of removing one page. A very common
* operation and easy to short circuit some code.
*/
if (sva + PAGE_SIZE == eva) {
pte1 = pte1_load(pmap_pte1(pmap, sva));
if (pte1_is_link(pte1)) {
pmap_remove_page(pmap, sva, &free);
goto out;
}
}
for (; sva < eva; sva = nextva) {
/*
* Calculate address for next L2 page table.
*/
nextva = pte1_trunc(sva + PTE1_SIZE);
if (nextva < sva)
nextva = eva;
if (pmap->pm_stats.resident_count == 0)
break;
pte1p = pmap_pte1(pmap, sva);
pte1 = pte1_load(pte1p);
/*
* Weed out invalid mappings. Note: we assume that the L1 page
* table is always allocated, and in kernel virtual.
*/
if (pte1 == 0)
continue;
if (pte1_is_section(pte1)) {
/*
* Are we removing the entire large page? If not,
* demote the mapping and fall through.
*/
if (sva + PTE1_SIZE == nextva && eva >= nextva) {
pmap_remove_pte1(pmap, pte1p, sva, &free);
continue;
} else if (!pmap_demote_pte1(pmap, pte1p, sva)) {
/* The large page mapping was destroyed. */
continue;
}
#ifdef INVARIANTS
else {
/* Update pte1 after demotion. */
pte1 = pte1_load(pte1p);
}
#endif
}
KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p"
" is not link", __func__, pmap, sva, pte1, pte1p));
/*
* Limit our scan to either the end of the va represented
* by the current L2 page table page, or to the end of the
* range being removed.
*/
if (nextva > eva)
nextva = eva;
for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva;
pte2p++, sva += PAGE_SIZE) {
pte2 = pte2_load(pte2p);
if (!pte2_is_valid(pte2))
continue;
if (pmap_remove_pte2(pmap, pte2p, sva, &free))
break;
}
}
out:
sched_unpin();
rw_wunlock(&pvh_global_lock);
PMAP_UNLOCK(pmap);
pmap_free_zero_pages(&free);
}
/*
* Routine: pmap_remove_all
* Function:
* Removes this physical page from
* all physical maps in which it resides.
* Reflects back modify bits to the pager.
*
* Notes:
* Original versions of this routine were very
* inefficient because they iteratively called
* pmap_remove (slow...)
*/
void
pmap_remove_all(vm_page_t m)
{
struct md_page *pvh;
pv_entry_t pv;
pmap_t pmap;
pt2_entry_t *pte2p, opte2;
pt1_entry_t *pte1p;
vm_offset_t va;
struct spglist free;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("%s: page %p is not managed", __func__, m));
SLIST_INIT(&free);
rw_wlock(&pvh_global_lock);
sched_pin();
if ((m->flags & PG_FICTITIOUS) != 0)
goto small_mappings;
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
va = pv->pv_va;
pmap = PV_PMAP(pv);
PMAP_LOCK(pmap);
pte1p = pmap_pte1(pmap, va);
(void)pmap_demote_pte1(pmap, pte1p, va);
PMAP_UNLOCK(pmap);
}
small_mappings:
while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
pmap = PV_PMAP(pv);
PMAP_LOCK(pmap);
pmap->pm_stats.resident_count--;
pte1p = pmap_pte1(pmap, pv->pv_va);
KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found "
"a 1mpage in page %p's pv list", __func__, m));
pte2p = pmap_pte2_quick(pmap, pv->pv_va);
opte2 = pte2_load_clear(pte2p);
pmap_tlb_flush(pmap, pv->pv_va);
KASSERT(pte2_is_valid(opte2), ("%s: pmap %p va %x zero pte2",
__func__, pmap, pv->pv_va));
if (pte2_is_wired(opte2))
pmap->pm_stats.wired_count--;
if (opte2 & PTE2_A)
vm_page_aflag_set(m, PGA_REFERENCED);
/*
* Update the vm_page_t clean and reference bits.
*/
if (pte2_is_dirty(opte2))
vm_page_dirty(m);
pmap_unuse_pt2(pmap, pv->pv_va, &free);
TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
free_pv_entry(pmap, pv);
PMAP_UNLOCK(pmap);
}
vm_page_aflag_clear(m, PGA_WRITEABLE);
sched_unpin();
rw_wunlock(&pvh_global_lock);
pmap_free_zero_pages(&free);
}
/*
* Just subroutine for pmap_remove_pages() to reasonably satisfy
* good coding style, a.k.a. 80 character line width limit hell.
*/
static __inline void
pmap_remove_pte1_quick(pmap_t pmap, pt1_entry_t pte1, pv_entry_t pv,
struct spglist *free)
{
vm_paddr_t pa;
vm_page_t m, mt, mpt2pg;
struct md_page *pvh;
pa = pte1_pa(pte1);
m = PHYS_TO_VM_PAGE(pa);
KASSERT(m->phys_addr == pa, ("%s: vm_page_t %p addr mismatch %#x %#x",
__func__, m, m->phys_addr, pa));
KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
m < &vm_page_array[vm_page_array_size],
("%s: bad pte1 %#x", __func__, pte1));
if (pte1_is_dirty(pte1)) {
for (mt = m; mt < &m[PTE1_SIZE / PAGE_SIZE]; mt++)
vm_page_dirty(mt);
}
pmap->pm_stats.resident_count -= PTE1_SIZE / PAGE_SIZE;
pvh = pa_to_pvh(pa);
TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
if (TAILQ_EMPTY(&pvh->pv_list)) {
for (mt = m; mt < &m[PTE1_SIZE / PAGE_SIZE]; mt++)
if (TAILQ_EMPTY(&mt->md.pv_list))
vm_page_aflag_clear(mt, PGA_WRITEABLE);
}
mpt2pg = pmap_pt2_page(pmap, pv->pv_va);
if (mpt2pg != NULL)
pmap_unwire_pt2_all(pmap, pv->pv_va, mpt2pg, free);
}
/*
* Just subroutine for pmap_remove_pages() to reasonably satisfy
* good coding style, a.k.a. 80 character line width limit hell.
*/
static __inline void
pmap_remove_pte2_quick(pmap_t pmap, pt2_entry_t pte2, pv_entry_t pv,
struct spglist *free)
{
vm_paddr_t pa;
vm_page_t m;
struct md_page *pvh;
pa = pte2_pa(pte2);
m = PHYS_TO_VM_PAGE(pa);
KASSERT(m->phys_addr == pa, ("%s: vm_page_t %p addr mismatch %#x %#x",
__func__, m, m->phys_addr, pa));
KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
m < &vm_page_array[vm_page_array_size],
("%s: bad pte2 %#x", __func__, pte2));
if (pte2_is_dirty(pte2))
vm_page_dirty(m);
pmap->pm_stats.resident_count--;
TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
pvh = pa_to_pvh(pa);
if (TAILQ_EMPTY(&pvh->pv_list))
vm_page_aflag_clear(m, PGA_WRITEABLE);
}
pmap_unuse_pt2(pmap, pv->pv_va, free);
}
/*
* Remove all pages from specified address space this aids process
* exit speeds. Also, this code is special cased for current process
* only, but can have the more generic (and slightly slower) mode enabled.
* This is much faster than pmap_remove in the case of running down
* an entire address space.
*/
void
pmap_remove_pages(pmap_t pmap)
{
pt1_entry_t *pte1p, pte1;
pt2_entry_t *pte2p, pte2;
pv_entry_t pv;
struct pv_chunk *pc, *npc;
struct spglist free;
int field, idx;
int32_t bit;
uint32_t inuse, bitmask;
boolean_t allfree;
/*
* Assert that the given pmap is only active on the current
* CPU. Unfortunately, we cannot block another CPU from
* activating the pmap while this function is executing.
*/
KASSERT(pmap == vmspace_pmap(curthread->td_proc->p_vmspace),
("%s: non-current pmap %p", __func__, pmap));
#if defined(SMP) && defined(INVARIANTS)
{
cpuset_t other_cpus;
sched_pin();
other_cpus = pmap->pm_active;
CPU_CLR(PCPU_GET(cpuid), &other_cpus);
sched_unpin();
KASSERT(CPU_EMPTY(&other_cpus),
("%s: pmap %p active on other cpus", __func__, pmap));
}
#endif
SLIST_INIT(&free);
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pmap);
sched_pin();
TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
KASSERT(pc->pc_pmap == pmap, ("%s: wrong pmap %p %p",
__func__, pmap, pc->pc_pmap));
allfree = TRUE;
for (field = 0; field < _NPCM; field++) {
inuse = (~(pc->pc_map[field])) & pc_freemask[field];
while (inuse != 0) {
bit = ffs(inuse) - 1;
bitmask = 1UL << bit;
idx = field * 32 + bit;
pv = &pc->pc_pventry[idx];
inuse &= ~bitmask;
/*
* Note that we cannot remove wired pages
* from a process' mapping at this time
*/
pte1p = pmap_pte1(pmap, pv->pv_va);
pte1 = pte1_load(pte1p);
if (pte1_is_section(pte1)) {
if (pte1_is_wired(pte1)) {
allfree = FALSE;
continue;
}
pte1_clear(pte1p);
pmap_remove_pte1_quick(pmap, pte1, pv,
&free);
}
else if (pte1_is_link(pte1)) {
pte2p = pt2map_entry(pv->pv_va);
pte2 = pte2_load(pte2p);
if (!pte2_is_valid(pte2)) {
printf("%s: pmap %p va %#x "
"pte2 %#x\n", __func__,
pmap, pv->pv_va, pte2);
panic("bad pte2");
}
if (pte2_is_wired(pte2)) {
allfree = FALSE;
continue;
}
pte2_clear(pte2p);
pmap_remove_pte2_quick(pmap, pte2, pv,
&free);
} else {
printf("%s: pmap %p va %#x pte1 %#x\n",
__func__, pmap, pv->pv_va, pte1);
panic("bad pte1");
}
/* Mark free */
PV_STAT(pv_entry_frees++);
PV_STAT(pv_entry_spare++);
pv_entry_count--;
pc->pc_map[field] |= bitmask;
}
}
if (allfree) {
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
free_pv_chunk(pc);
}
}
tlb_flush_all_ng_local();
sched_unpin();
rw_wunlock(&pvh_global_lock);
PMAP_UNLOCK(pmap);
pmap_free_zero_pages(&free);
}
/*
* This code makes some *MAJOR* assumptions:
* 1. Current pmap & pmap exists.
* 2. Not wired.
* 3. Read access.
* 4. No L2 page table pages.
* but is *MUCH* faster than pmap_enter...
*/
static vm_page_t
pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
vm_prot_t prot, vm_page_t mpt2pg)
{
pt2_entry_t *pte2p, pte2;
vm_paddr_t pa;
struct spglist free;
uint32_t l2prot;
KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
(m->oflags & VPO_UNMANAGED) != 0,
("%s: managed mapping within the clean submap", __func__));
rw_assert(&pvh_global_lock, RA_WLOCKED);
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
/*
* In the case that a L2 page table page is not
* resident, we are creating it here.
*/
if (va < VM_MAXUSER_ADDRESS) {
u_int pte1_idx;
pt1_entry_t pte1, *pte1p;
vm_paddr_t pt2_pa;
/*
* Get L1 page table things.
*/
pte1_idx = pte1_index(va);
pte1p = pmap_pte1(pmap, va);
pte1 = pte1_load(pte1p);
if (mpt2pg && (mpt2pg->pindex == (pte1_idx & ~PT2PG_MASK))) {
/*
* Each of NPT2_IN_PG L2 page tables on the page can
* come here. Make sure that associated L1 page table
* link is established.
*
* QQQ: It comes that we don't establish all links to
* L2 page tables for newly allocated L2 page
* tables page.
*/
KASSERT(!pte1_is_section(pte1),
("%s: pte1 %#x is section", __func__, pte1));
if (!pte1_is_link(pte1)) {
pt2_pa = page_pt2pa(VM_PAGE_TO_PHYS(mpt2pg),
pte1_idx);
pte1_store(pte1p, PTE1_LINK(pt2_pa));
}
pt2_wirecount_inc(mpt2pg, pte1_idx);
} else {
/*
* If the L2 page table page is mapped, we just
* increment the hold count, and activate it.
*/
if (pte1_is_section(pte1)) {
return (NULL);
} else if (pte1_is_link(pte1)) {
mpt2pg = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
pt2_wirecount_inc(mpt2pg, pte1_idx);
} else {
mpt2pg = _pmap_allocpte2(pmap, va,
PMAP_ENTER_NOSLEEP);
if (mpt2pg == NULL)
return (NULL);
}
}
} else {
mpt2pg = NULL;
}
/*
* This call to pt2map_entry() makes the assumption that we are
* entering the page into the current pmap. In order to support
* quick entry into any pmap, one would likely use pmap_pte2_quick().
* But that isn't as quick as pt2map_entry().
*/
pte2p = pt2map_entry(va);
pte2 = pte2_load(pte2p);
if (pte2_is_valid(pte2)) {
if (mpt2pg != NULL) {
/*
* Remove extra pte2 reference
*/
pt2_wirecount_dec(mpt2pg, pte1_index(va));
mpt2pg = NULL;
}
return (NULL);
}
/*
* Enter on the PV list if part of our managed memory.
*/
if ((m->oflags & VPO_UNMANAGED) == 0 &&
!pmap_try_insert_pv_entry(pmap, va, m)) {
if (mpt2pg != NULL) {
SLIST_INIT(&free);
if (pmap_unwire_pt2(pmap, va, mpt2pg, &free)) {
pmap_tlb_flush(pmap, va);
pmap_free_zero_pages(&free);
}
mpt2pg = NULL;
}
return (NULL);
}
/*
* Increment counters
*/
pmap->pm_stats.resident_count++;
/*
* Now validate mapping with RO protection
*/
pa = VM_PAGE_TO_PHYS(m);
l2prot = PTE2_RO | PTE2_NM;
if (va < VM_MAXUSER_ADDRESS)
l2prot |= PTE2_U | PTE2_NG;
if ((prot & VM_PROT_EXECUTE) == 0)
l2prot |= PTE2_NX;
else if (m->md.pat_mode == VM_MEMATTR_WB_WA && pmap != kernel_pmap) {
/*
* Sync icache if exec permission and attribute VM_MEMATTR_WB_WA
* is set. QQQ: For more info, see comments in pmap_enter().
*/
cache_icache_sync_fresh(va, pa, PAGE_SIZE);
}
pte2_store(pte2p, PTE2(pa, l2prot, vm_page_pte2_attr(m)));
return (mpt2pg);
}
void
pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
{
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pmap);
(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
rw_wunlock(&pvh_global_lock);
PMAP_UNLOCK(pmap);
}
/*
* Tries to create 1MB page mapping. Returns TRUE if successful and
* FALSE otherwise. Fails if (1) a page table page cannot be allocated without
* blocking, (2) a mapping already exists at the specified virtual address, or
* (3) a pv entry cannot be allocated without reclaiming another pv entry.
*/
static boolean_t
pmap_enter_pte1(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
{
pt1_entry_t *pte1p;
vm_paddr_t pa;
uint32_t l1prot;
rw_assert(&pvh_global_lock, RA_WLOCKED);
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
pte1p = pmap_pte1(pmap, va);
if (pte1_is_valid(pte1_load(pte1p))) {
CTR3(KTR_PMAP, "%s: failure for va %#lx in pmap %p", __func__,
va, pmap);
return (FALSE);
}
if ((m->oflags & VPO_UNMANAGED) == 0) {
/*
* Abort this mapping if its PV entry could not be created.
*/
if (!pmap_pv_insert_pte1(pmap, va, VM_PAGE_TO_PHYS(m))) {
CTR3(KTR_PMAP, "%s: failure for va %#lx in pmap %p",
__func__, va, pmap);
return (FALSE);
}
}
/*
* Increment counters.
*/
pmap->pm_stats.resident_count += PTE1_SIZE / PAGE_SIZE;
/*
* Map the section.
*
* QQQ: Why VM_PROT_WRITE is not evaluated and the mapping is
* made readonly?
*/
pa = VM_PAGE_TO_PHYS(m);
l1prot = PTE1_RO | PTE1_NM;
if (va < VM_MAXUSER_ADDRESS)
l1prot |= PTE1_U | PTE1_NG;
if ((prot & VM_PROT_EXECUTE) == 0)
l1prot |= PTE1_NX;
else if (m->md.pat_mode == VM_MEMATTR_WB_WA && pmap != kernel_pmap) {
/*
* Sync icache if exec permission and attribute VM_MEMATTR_WB_WA
* is set. QQQ: For more info, see comments in pmap_enter().
*/
cache_icache_sync_fresh(va, pa, PTE1_SIZE);
}
pte1_store(pte1p, PTE1(pa, l1prot, ATTR_TO_L1(vm_page_pte2_attr(m))));
pmap_pte1_mappings++;
CTR3(KTR_PMAP, "%s: success for va %#lx in pmap %p", __func__, va,
pmap);
return (TRUE);
}
/*
* Maps a sequence of resident pages belonging to the same object.
* The sequence begins with the given page m_start. This page is
* mapped at the given virtual address start. Each subsequent page is
* mapped at a virtual address that is offset from start by the same
* amount as the page is offset from m_start within the object. The
* last page in the sequence is the page with the largest offset from
* m_start that can be mapped at a virtual address less than the given
* virtual address end. Not every virtual page between start and end
* is mapped; only those for which a resident page exists with the
* corresponding offset from m_start are mapped.
*/
void
pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
vm_page_t m_start, vm_prot_t prot)
{
vm_offset_t va;
vm_page_t m, mpt2pg;
vm_pindex_t diff, psize;
PDEBUG(6, printf("%s: pmap %p start %#x end %#x m %p prot %#x\n",
__func__, pmap, start, end, m_start, prot));
VM_OBJECT_ASSERT_LOCKED(m_start->object);
psize = atop(end - start);
mpt2pg = NULL;
m = m_start;
rw_wlock(&pvh_global_lock);
PMAP_LOCK(pmap);
while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
va = start + ptoa(diff);
if ((va & PTE1_OFFSET) == 0 && va + PTE1_SIZE <= end &&
m->psind == 1 && sp_enabled &&
pmap_enter_pte1(pmap, va, m, prot))
m = &m[PTE1_SIZE / PAGE_SIZE - 1];
else
mpt2pg = pmap_enter_quick_locked(pmap, va, m, prot,
mpt2pg);
m = TAILQ_NEXT(m, listq);
}
rw_wunlock(&pvh_global_lock);
PMAP_UNLOCK(pmap);
}
/*
* This code maps large physical mmap regions into the
* processor address space. Note that some shortcuts
* are taken, but the code works.
*/
void
pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
vm_pindex_t pindex, vm_size_t size)
{
pt1_entry_t *pte1p;
vm_paddr_t pa, pte2_pa;
vm_page_t p;
vm_memattr_t pat_mode;
u_int l1attr, l1prot;
VM_OBJECT_ASSERT_WLOCKED(object);
KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
("%s: non-device object", __func__));
if ((addr & PTE1_OFFSET) == 0 && (size & PTE1_OFFSET) == 0) {
if (!vm_object_populate(object, pindex, pindex + atop(size)))
return;
p = vm_page_lookup(object, pindex);
KASSERT(p->valid == VM_PAGE_BITS_ALL,
("%s: invalid page %p", __func__, p));
pat_mode = p->md.pat_mode;
/*
* Abort the mapping if the first page is not physically
* aligned to a 1MB page boundary.
*/
pte2_pa = VM_PAGE_TO_PHYS(p);
if (pte2_pa & PTE1_OFFSET)
return;
/*
* Skip the first page. Abort the mapping if the rest of
* the pages are not physically contiguous or have differing
* memory attributes.
*/
p = TAILQ_NEXT(p, listq);
for (pa = pte2_pa + PAGE_SIZE; pa < pte2_pa + size;
pa += PAGE_SIZE) {
KASSERT(p->valid == VM_PAGE_BITS_ALL,
("%s: invalid page %p", __func__, p));
if (pa != VM_PAGE_TO_PHYS(p) ||
pat_mode != p->md.pat_mode)
return;
p = TAILQ_NEXT(p, listq);
}
/*
* Map using 1MB pages.
*
* QQQ: Well, we are mapping a section, so same condition must
* be hold like during promotion. It looks that only RW mapping
* is done here, so readonly mapping must be done elsewhere.
*/
l1prot = PTE1_U | PTE1_NG | PTE1_RW | PTE1_M | PTE1_A;
l1attr = ATTR_TO_L1(vm_memattr_to_pte2(pat_mode));
PMAP_LOCK(pmap);
for (pa = pte2_pa; pa < pte2_pa + size; pa += PTE1_SIZE) {
pte1p = pmap_pte1(pmap, addr);
if (!pte1_is_valid(pte1_load(pte1p))) {
pte1_store(pte1p, PTE1(pa, l1prot, l1attr));
pmap->pm_stats.resident_count += PTE1_SIZE /
PAGE_SIZE;
pmap_pte1_mappings++;
}
/* Else continue on if the PTE1 is already valid. */
addr += PTE1_SIZE;
}
PMAP_UNLOCK(pmap);
}
}
/*
* Do the things to protect a 1mpage in a process.
*/
static void
pmap_protect_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t sva,
vm_prot_t prot)
{
pt1_entry_t npte1, opte1;
vm_offset_t eva, va;
vm_page_t m;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
KASSERT((sva & PTE1_OFFSET) == 0,
("%s: sva is not 1mpage aligned", __func__));
opte1 = npte1 = pte1_load(pte1p);
if (pte1_is_managed(opte1) && pte1_is_dirty(opte1)) {
eva = sva + PTE1_SIZE;
for (va = sva, m = PHYS_TO_VM_PAGE(pte1_pa(opte1));
va < eva; va += PAGE_SIZE, m++)
vm_page_dirty(m);
}
if ((prot & VM_PROT_WRITE) == 0)
npte1 |= PTE1_RO | PTE1_NM;
if ((prot & VM_PROT_EXECUTE) == 0)
npte1 |= PTE1_NX;
/*
* QQQ: Herein, execute permission is never set.
* It only can be cleared. So, no icache
* syncing is needed.
*/
if (npte1 != opte1) {
pte1_store(pte1p, npte1);
pmap_tlb_flush(pmap, sva);
}
}
/*
* Set the physical protection on the
* specified range of this map as requested.
*/
void
pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
{
boolean_t pv_lists_locked;
vm_offset_t nextva;
pt1_entry_t *pte1p, pte1;
pt2_entry_t *pte2p, opte2, npte2;
KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
if (prot == VM_PROT_NONE) {
pmap_remove(pmap, sva, eva);
return;
}
if ((prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) ==
(VM_PROT_WRITE | VM_PROT_EXECUTE))
return;
if (pmap_is_current(pmap))
pv_lists_locked = FALSE;
else {
pv_lists_locked = TRUE;
resume:
rw_wlock(&pvh_global_lock);
sched_pin();
}
PMAP_LOCK(pmap);
for (; sva < eva; sva = nextva) {
/*
* Calculate address for next L2 page table.
*/
nextva = pte1_trunc(sva + PTE1_SIZE);
if (nextva < sva)
nextva = eva;
pte1p = pmap_pte1(pmap, sva);
pte1 = pte1_load(pte1p);
/*
* Weed out invalid mappings. Note: we assume that L1 page
* page table is always allocated, and in kernel virtual.
*/
if (pte1 == 0)
continue;
if (pte1_is_section(pte1)) {
/*
* Are we protecting the entire large page? If not,
* demote the mapping and fall through.
*/
if (sva + PTE1_SIZE == nextva && eva >= nextva) {
pmap_protect_pte1(pmap, pte1p, sva, prot);
continue;
} else {
if (!pv_lists_locked) {
pv_lists_locked = TRUE;
if (!rw_try_wlock(&pvh_global_lock)) {
PMAP_UNLOCK(pmap);
goto resume;
}
sched_pin();
}
if (!pmap_demote_pte1(pmap, pte1p, sva)) {
/*
* The large page mapping
* was destroyed.
*/
continue;
}
#ifdef INVARIANTS
else {
/* Update pte1 after demotion */
pte1 = pte1_load(pte1p);
}
#endif
}
}
KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p"
" is not link", __func__, pmap, sva, pte1, pte1p));
/*
* Limit our scan to either the end of the va represented
* by the current L2 page table page, or to the end of the
* range being protected.
*/
if (nextva > eva)
nextva = eva;
for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva; pte2p++,
sva += PAGE_SIZE) {
vm_page_t m;
opte2 = npte2 = pte2_load(pte2p);
if (!pte2_is_valid(opte2))
continue;
if ((prot & VM_PROT_WRITE) == 0) {
if (pte2_is_managed(opte2) &&
pte2_is_dirty(opte2)) {
m = PHYS_TO_VM_PAGE(pte2_pa(opte2));
vm_page_dirty(m);
}
npte2 |= PTE2_RO | PTE2_NM;
}
if ((prot & VM_PROT_EXECUTE) == 0)
npte2 |= PTE2_NX;
/*
* QQQ: Herein, execute permission is never set.
* It only can be cleared. So, no icache
* syncing is needed.
*/
if (npte2 != opte2) {
pte2_store(pte2p, npte2);
pmap_tlb_flush(pmap, sva);
}
}
}
if (pv_lists_locked) {
sched_unpin();
rw_wunlock(&pvh_global_lock);
}
PMAP_UNLOCK(pmap);
}
/*
* pmap_pvh_wired_mappings:
*
* Return the updated number "count" of managed mappings that are wired.
*/
static int
pmap_pvh_wired_mappings(struct md_page *pvh, int count)
{
pmap_t pmap;
pt1_entry_t pte1;
pt2_entry_t pte2;
pv_entry_t pv;
rw_assert(&pvh_global_lock, RA_WLOCKED);
sched_pin();
TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
pmap = PV_PMAP(pv);
PMAP_LOCK(pmap);
pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va));
if (pte1_is_section(pte1)) {
if (pte1_is_wired(pte1))
count++;
} else {
KASSERT(pte1_is_link(pte1),
("%s: pte1 %#x is not link", __func__, pte1));
pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va));
if (pte2_is_wired(pte2))
count++;
}
PMAP_UNLOCK(pmap);
}
sched_unpin();
return (count);
}
/*
* pmap_page_wired_mappings:
*
* Return the number of managed mappings to the given physical page
* that are wired.
*/
int
pmap_page_wired_mappings(vm_page_t m)
{
int count;
count = 0;
if ((m->oflags & VPO_UNMANAGED) != 0)
return (count);
rw_wlock(&pvh_global_lock);
count = pmap_pvh_wired_mappings(&m->md, count);
if ((m->flags & PG_FICTITIOUS) == 0) {
count = pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)),
count);
}
rw_wunlock(&pvh_global_lock);
return (count);
}
/*
* Returns TRUE if any of the given mappings were used to modify
* physical memory. Otherwise, returns FALSE. Both page and 1mpage
* mappings are supported.
*/
static boolean_t
pmap_is_modified_pvh(struct md_page *pvh)
{
pv_entry_t pv;
pt1_entry_t pte1;
pt2_entry_t pte2;
pmap_t pmap;
boolean_t rv;
rw_assert(&pvh_global_lock, RA_WLOCKED);
rv = FALSE;
sched_pin();
TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
pmap = PV_PMAP(pv);
PMAP_LOCK(pmap);
pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va));
if (pte1_is_section(pte1)) {
rv = pte1_is_dirty(pte1);
} else {
KASSERT(pte1_is_link(pte1),
("%s: pte1 %#x is not link", __func__, pte1));
pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va));
rv = pte2_is_dirty(pte2);
}
PMAP_UNLOCK(pmap);
if (rv)
break;
}
sched_unpin();
return (rv);
}
/*
* pmap_is_modified:
*
* Return whether or not the specified physical page was modified
* in any physical maps.
*/
boolean_t
pmap_is_modified(vm_page_t m)
{
boolean_t rv;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("%s: page %p is not managed", __func__, m));
/*
* If the page is not exclusive busied, then PGA_WRITEABLE cannot be
* concurrently set while the object is locked. Thus, if PGA_WRITEABLE
* is clear, no PTE2s can have PG_M set.
*/
VM_OBJECT_ASSERT_WLOCKED(m->object);
if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
return (FALSE);
rw_wlock(&pvh_global_lock);
rv = pmap_is_modified_pvh(&m->md) ||
((m->flags & PG_FICTITIOUS) == 0 &&
pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
rw_wunlock(&pvh_global_lock);
return (rv);
}
/*
* pmap_is_prefaultable:
*
* Return whether or not the specified virtual address is eligible
* for prefault.
*/
boolean_t
pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
{
pt1_entry_t pte1;
pt2_entry_t pte2;
boolean_t rv;
rv = FALSE;
PMAP_LOCK(pmap);
pte1 = pte1_load(pmap_pte1(pmap, addr));
if (pte1_is_link(pte1)) {
pte2 = pte2_load(pt2map_entry(addr));
rv = !pte2_is_valid(pte2) ;
}
PMAP_UNLOCK(pmap);
return (rv);
}
/*
* Returns TRUE if any of the given mappings were referenced and FALSE
* otherwise. Both page and 1mpage mappings are supported.
*/
static boolean_t
pmap_is_referenced_pvh(struct md_page *pvh)
{
pv_entry_t pv;
pt1_entry_t pte1;
pt2_entry_t pte2;
pmap_t pmap;
boolean_t rv;
rw_assert(&pvh_global_lock, RA_WLOCKED);
rv = FALSE;
sched_pin();
TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
pmap = PV_PMAP(pv);
PMAP_LOCK(pmap);
pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va));
if (pte1_is_section(pte1)) {
rv = (pte1 & (PTE1_A | PTE1_V)) == (PTE1_A | PTE1_V);
} else {
pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va));
rv = (pte2 & (PTE2_A | PTE2_V)) == (PTE2_A | PTE2_V);
}
PMAP_UNLOCK(pmap);
if (rv)
break;
}
sched_unpin();
return (rv);
}
/*
* pmap_is_referenced:
*
* Return whether or not the specified physical page was referenced
* in any physical maps.
*/
boolean_t
pmap_is_referenced(vm_page_t m)
{
boolean_t rv;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("%s: page %p is not managed", __func__, m));
rw_wlock(&pvh_global_lock);
rv = pmap_is_referenced_pvh(&m->md) ||
((m->flags & PG_FICTITIOUS) == 0 &&
pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
rw_wunlock(&pvh_global_lock);
return (rv);
}
/*
* pmap_ts_referenced:
*
* Return a count of reference bits for a page, clearing those bits.
* It is not necessary for every reference bit to be cleared, but it
* is necessary that 0 only be returned when there are truly no
* reference bits set.
*
* As an optimization, update the page's dirty field if a modified bit is
* found while counting reference bits. This opportunistic update can be
* performed at low cost and can eliminate the need for some future calls
* to pmap_is_modified(). However, since this function stops after
* finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
* dirty pages. Those dirty pages will only be detected by a future call
* to pmap_is_modified().
*/
int
pmap_ts_referenced(vm_page_t m)
{
struct md_page *pvh;
pv_entry_t pv, pvf;
pmap_t pmap;
pt1_entry_t *pte1p, opte1;
pt2_entry_t *pte2p, opte2;
vm_paddr_t pa;
int rtval = 0;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("%s: page %p is not managed", __func__, m));
pa = VM_PAGE_TO_PHYS(m);
pvh = pa_to_pvh(pa);
rw_wlock(&pvh_global_lock);
sched_pin();
if ((m->flags & PG_FICTITIOUS) != 0 ||
(pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
goto small_mappings;
pv = pvf;
do {
pmap = PV_PMAP(pv);
PMAP_LOCK(pmap);
pte1p = pmap_pte1(pmap, pv->pv_va);
opte1 = pte1_load(pte1p);
if (pte1_is_dirty(opte1)) {
/*
* Although "opte1" is mapping a 1MB page, because
* this function is called at a 4KB page granularity,
* we only update the 4KB page under test.
*/
vm_page_dirty(m);
}
if ((opte1 & PTE1_A) != 0) {
/*
* Since this reference bit is shared by 256 4KB pages,
* it should not be cleared every time it is tested.
* Apply a simple "hash" function on the physical page
* number, the virtual section number, and the pmap
* address to select one 4KB page out of the 256
* on which testing the reference bit will result
* in clearing that bit. This function is designed
* to avoid the selection of the same 4KB page
* for every 1MB page mapping.
*
* On demotion, a mapping that hasn't been referenced
* is simply destroyed. To avoid the possibility of a
* subsequent page fault on a demoted wired mapping,
* always leave its reference bit set. Moreover,
* since the section is wired, the current state of
* its reference bit won't affect page replacement.
*/
if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PTE1_SHIFT) ^
(uintptr_t)pmap) & (NPTE2_IN_PG - 1)) == 0 &&
!pte1_is_wired(opte1)) {
pte1_clear_bit(pte1p, PTE1_A);
pmap_tlb_flush(pmap, pv->pv_va);
}
rtval++;
}
PMAP_UNLOCK(pmap);
/* Rotate the PV list if it has more than one entry. */
if (TAILQ_NEXT(pv, pv_next) != NULL) {
TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
}
if (rtval >= PMAP_TS_REFERENCED_MAX)
goto out;
} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
small_mappings:
if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
goto out;
pv = pvf;
do {
pmap = PV_PMAP(pv);
PMAP_LOCK(pmap);
pte1p = pmap_pte1(pmap, pv->pv_va);
KASSERT(pte1_is_link(pte1_load(pte1p)),
("%s: not found a link in page %p's pv list", __func__, m));
pte2p = pmap_pte2_quick(pmap, pv->pv_va);
opte2 = pte2_load(pte2p);
if (pte2_is_dirty(opte2))
vm_page_dirty(m);
if ((opte2 & PTE2_A) != 0) {
pte2_clear_bit(pte2p, PTE2_A);
pmap_tlb_flush(pmap, pv->pv_va);
rtval++;
}
PMAP_UNLOCK(pmap);
/* Rotate the PV list if it has more than one entry. */
if (TAILQ_NEXT(pv, pv_next) != NULL) {
TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
}
} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && rtval <
PMAP_TS_REFERENCED_MAX);
out:
sched_unpin();
rw_wunlock(&pvh_global_lock);
return (rtval);
}
/*
* Clear the wired attribute from the mappings for the specified range of
* addresses in the given pmap. Every valid mapping within that range
* must have the wired attribute set. In contrast, invalid mappings
* cannot have the wired attribute set, so they are ignored.
*
* The wired attribute of the page table entry is not a hardware feature,
* so there is no need to invalidate any TLB entries.
*/
void
pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
{
vm_offset_t nextva;
pt1_entry_t *pte1p, pte1;
pt2_entry_t *pte2p, pte2;
boolean_t pv_lists_locked;
if (pmap_is_current(pmap))
pv_lists_locked = FALSE;
else {
pv_lists_locked = TRUE;
resume:
rw_wlock(&pvh_global_lock);
sched_pin();
}
PMAP_LOCK(pmap);
for (; sva < eva; sva = nextva) {
nextva = pte1_trunc(sva + PTE1_SIZE);
if (nextva < sva)
nextva = eva;
pte1p = pmap_pte1(pmap, sva);
pte1 = pte1_load(pte1p);
/*
* Weed out invalid mappings. Note: we assume that L1 page
* page table is always allocated, and in kernel virtual.
*/
if (pte1 == 0)
continue;
if (pte1_is_section(pte1)) {
if (!pte1_is_wired(pte1))
panic("%s: pte1 %#x not wired", __func__, pte1);
/*
* Are we unwiring the entire large page? If not,
* demote the mapping and fall through.
*/
if (sva + PTE1_SIZE == nextva && eva >= nextva) {
pte1_clear_bit(pte1p, PTE1_W);
pmap->pm_stats.wired_count -= PTE1_SIZE /
PAGE_SIZE;
continue;
} else {
if (!pv_lists_locked) {
pv_lists_locked = TRUE;
if (!rw_try_wlock(&pvh_global_lock)) {
PMAP_UNLOCK(pmap);
/* Repeat sva. */
goto resume;
}
sched_pin();
}
if (!pmap_demote_pte1(pmap, pte1p, sva))
panic("%s: demotion failed", __func__);
#ifdef INVARIANTS
else {
/* Update pte1 after demotion */
pte1 = pte1_load(pte1p);
}
#endif
}
}
KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p"
" is not link", __func__, pmap, sva, pte1, pte1p));
/*
* Limit our scan to either the end of the va represented
* by the current L2 page table page, or to the end of the
* range being protected.
*/
if (nextva > eva)
nextva = eva;
for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva; pte2p++,
sva += PAGE_SIZE) {
pte2 = pte2_load(pte2p);
if (!pte2_is_valid(pte2))
continue;
if (!pte2_is_wired(pte2))
panic("%s: pte2 %#x is missing PTE2_W",
__func__, pte2);
/*
* PTE2_W must be cleared atomically. Although the pmap
* lock synchronizes access to PTE2_W, another processor
* could be changing PTE2_NM and/or PTE2_A concurrently.
*/
pte2_clear_bit(pte2p, PTE2_W);
pmap->pm_stats.wired_count--;
}
}
if (pv_lists_locked) {
sched_unpin();
rw_wunlock(&pvh_global_lock);
}
PMAP_UNLOCK(pmap);
}
/*
* Clear the write and modified bits in each of the given page's mappings.
*/
void
pmap_remove_write(vm_page_t m)
{
struct md_page *pvh;
pv_entry_t next_pv, pv;
pmap_t pmap;
pt1_entry_t *pte1p;
pt2_entry_t *pte2p, opte2;
vm_offset_t va;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("%s: page %p is not managed", __func__, m));
/*
* If the page is not exclusive busied, then PGA_WRITEABLE cannot be
* set by another thread while the object is locked. Thus,
* if PGA_WRITEABLE is clear, no page table entries need updating.
*/
VM_OBJECT_ASSERT_WLOCKED(m->object);
if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
return;
rw_wlock(&pvh_global_lock);
sched_pin();
if ((m->flags & PG_FICTITIOUS) != 0)
goto small_mappings;
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
va = pv->pv_va;
pmap = PV_PMAP(pv);
PMAP_LOCK(pmap);
pte1p = pmap_pte1(pmap, va);
if (!(pte1_load(pte1p) & PTE1_RO))
(void)pmap_demote_pte1(pmap, pte1p, va);
PMAP_UNLOCK(pmap);
}
small_mappings:
TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
pmap = PV_PMAP(pv);
PMAP_LOCK(pmap);
pte1p = pmap_pte1(pmap, pv->pv_va);
KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found"
" a section in page %p's pv list", __func__, m));
pte2p = pmap_pte2_quick(pmap, pv->pv_va);
opte2 = pte2_load(pte2p);
if (!(opte2 & PTE2_RO)) {
pte2_store(pte2p, opte2 | PTE2_RO | PTE2_NM);
if (pte2_is_dirty(opte2))
vm_page_dirty(m);
pmap_tlb_flush(pmap, pv->pv_va);
}
PMAP_UNLOCK(pmap);
}
vm_page_aflag_clear(m, PGA_WRITEABLE);
sched_unpin();
rw_wunlock(&pvh_global_lock);
}
/*
* Apply the given advice to the specified range of addresses within the
* given pmap. Depending on the advice, clear the referenced and/or
* modified flags in each mapping and set the mapped page's dirty field.
*/
void
pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
{
pt1_entry_t *pte1p, opte1;
pt2_entry_t *pte2p, pte2;
vm_offset_t pdnxt;
vm_page_t m;
boolean_t pv_lists_locked;
if (advice != MADV_DONTNEED && advice != MADV_FREE)
return;
if (pmap_is_current(pmap))
pv_lists_locked = FALSE;
else {
pv_lists_locked = TRUE;
resume:
rw_wlock(&pvh_global_lock);
sched_pin();
}
PMAP_LOCK(pmap);
for (; sva < eva; sva = pdnxt) {
pdnxt = pte1_trunc(sva + PTE1_SIZE);
if (pdnxt < sva)
pdnxt = eva;
pte1p = pmap_pte1(pmap, sva);
opte1 = pte1_load(pte1p);
if (!pte1_is_valid(opte1)) /* XXX */
continue;
else if (pte1_is_section(opte1)) {
if (!pte1_is_managed(opte1))
continue;
if (!pv_lists_locked) {
pv_lists_locked = TRUE;
if (!rw_try_wlock(&pvh_global_lock)) {
PMAP_UNLOCK(pmap);
goto resume;
}
sched_pin();
}
if (!pmap_demote_pte1(pmap, pte1p, sva)) {
/*
* The large page mapping was destroyed.
*/
continue;
}
/*
* Unless the page mappings are wired, remove the
* mapping to a single page so that a subsequent
* access may repromote. Since the underlying L2 page
* table is fully populated, this removal never
* frees a L2 page table page.
*/
if (!pte1_is_wired(opte1)) {
pte2p = pmap_pte2_quick(pmap, sva);
KASSERT(pte2_is_valid(pte2_load(pte2p)),
("%s: invalid PTE2", __func__));
pmap_remove_pte2(pmap, pte2p, sva, NULL);
}
}
if (pdnxt > eva)
pdnxt = eva;
for (pte2p = pmap_pte2_quick(pmap, sva); sva != pdnxt; pte2p++,
sva += PAGE_SIZE) {
pte2 = pte2_load(pte2p);
if (!pte2_is_valid(pte2) || !pte2_is_managed(pte2))
continue;
else if (pte2_is_dirty(pte2)) {
if (advice == MADV_DONTNEED) {
/*
* Future calls to pmap_is_modified()
* can be avoided by making the page
* dirty now.
*/
m = PHYS_TO_VM_PAGE(pte2_pa(pte2));
vm_page_dirty(m);
}
pte2_set_bit(pte2p, PTE2_NM);
pte2_clear_bit(pte2p, PTE2_A);
} else if ((pte2 & PTE2_A) != 0)
pte2_clear_bit(pte2p, PTE2_A);
else
continue;
pmap_tlb_flush(pmap, sva);
}
}
if (pv_lists_locked) {
sched_unpin();
rw_wunlock(&pvh_global_lock);
}
PMAP_UNLOCK(pmap);
}
/*
* Clear the modify bits on the specified physical page.
*/
void
pmap_clear_modify(vm_page_t m)
{
struct md_page *pvh;
pv_entry_t next_pv, pv;
pmap_t pmap;
pt1_entry_t *pte1p, opte1;
pt2_entry_t *pte2p, opte2;
vm_offset_t va;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("%s: page %p is not managed", __func__, m));
VM_OBJECT_ASSERT_WLOCKED(m->object);
KASSERT(!vm_page_xbusied(m),
("%s: page %p is exclusive busy", __func__, m));
/*
* If the page is not PGA_WRITEABLE, then no PTE2s can have PTE2_NM
* cleared. If the object containing the page is locked and the page
* is not exclusive busied, then PGA_WRITEABLE cannot be concurrently
* set.
*/
if ((m->flags & PGA_WRITEABLE) == 0)
return;
rw_wlock(&pvh_global_lock);
sched_pin();
if ((m->flags & PG_FICTITIOUS) != 0)
goto small_mappings;
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
va = pv->pv_va;
pmap = PV_PMAP(pv);
PMAP_LOCK(pmap);
pte1p = pmap_pte1(pmap, va);
opte1 = pte1_load(pte1p);
if (!(opte1 & PTE1_RO)) {
if (pmap_demote_pte1(pmap, pte1p, va) &&
!pte1_is_wired(opte1)) {
/*
* Write protect the mapping to a
* single page so that a subsequent
* write access may repromote.
*/
va += VM_PAGE_TO_PHYS(m) - pte1_pa(opte1);
pte2p = pmap_pte2_quick(pmap, va);
opte2 = pte2_load(pte2p);
if ((opte2 & PTE2_V)) {
pte2_set_bit(pte2p, PTE2_NM | PTE2_RO);
vm_page_dirty(m);
pmap_tlb_flush(pmap, va);
}
}
}
PMAP_UNLOCK(pmap);
}
small_mappings:
TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
pmap = PV_PMAP(pv);
PMAP_LOCK(pmap);
pte1p = pmap_pte1(pmap, pv->pv_va);
KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found"
" a section in page %p's pv list", __func__, m));
pte2p = pmap_pte2_quick(pmap, pv->pv_va);
if (pte2_is_dirty(pte2_load(pte2p))) {
pte2_set_bit(pte2p, PTE2_NM);
pmap_tlb_flush(pmap, pv->pv_va);
}
PMAP_UNLOCK(pmap);
}
sched_unpin();
rw_wunlock(&pvh_global_lock);
}
/*
* Sets the memory attribute for the specified page.
*/
void
pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
{
pt2_entry_t *cmap2_pte2p;
vm_memattr_t oma;
vm_paddr_t pa;
struct pcpu *pc;
oma = m->md.pat_mode;
m->md.pat_mode = ma;
CTR5(KTR_PMAP, "%s: page %p - 0x%08X oma: %d, ma: %d", __func__, m,
VM_PAGE_TO_PHYS(m), oma, ma);
if ((m->flags & PG_FICTITIOUS) != 0)
return;
#if 0
/*
* If "m" is a normal page, flush it from the cache.
*
* First, try to find an existing mapping of the page by sf
* buffer. sf_buf_invalidate_cache() modifies mapping and
* flushes the cache.
*/
if (sf_buf_invalidate_cache(m, oma))
return;
#endif
/*
* If page is not mapped by sf buffer, map the page
* transient and do invalidation.
*/
if (ma != oma) {
pa = VM_PAGE_TO_PHYS(m);
sched_pin();
pc = get_pcpu();
cmap2_pte2p = pc->pc_cmap2_pte2p;
mtx_lock(&pc->pc_cmap_lock);
if (pte2_load(cmap2_pte2p) != 0)
panic("%s: CMAP2 busy", __func__);
pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW,
vm_memattr_to_pte2(ma)));
dcache_wbinv_poc((vm_offset_t)pc->pc_cmap2_addr, pa, PAGE_SIZE);
pte2_clear(cmap2_pte2p);
tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
sched_unpin();
mtx_unlock(&pc->pc_cmap_lock);
}
}
/*
* Miscellaneous support routines follow
*/
/*
* Returns TRUE if the given page is mapped individually or as part of
* a 1mpage. Otherwise, returns FALSE.
*/
boolean_t
pmap_page_is_mapped(vm_page_t m)
{
boolean_t rv;
if ((m->oflags & VPO_UNMANAGED) != 0)
return (FALSE);
rw_wlock(&pvh_global_lock);
rv = !TAILQ_EMPTY(&m->md.pv_list) ||
((m->flags & PG_FICTITIOUS) == 0 &&
!TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
rw_wunlock(&pvh_global_lock);
return (rv);
}
/*
* Returns true if the pmap's pv is one of the first
* 16 pvs linked to from this page. This count may
* be changed upwards or downwards in the future; it
* is only necessary that true be returned for a small
* subset of pmaps for proper page aging.
*/
boolean_t
pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
{
struct md_page *pvh;
pv_entry_t pv;
int loops = 0;
boolean_t rv;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("%s: page %p is not managed", __func__, m));
rv = FALSE;
rw_wlock(&pvh_global_lock);
TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
if (PV_PMAP(pv) == pmap) {
rv = TRUE;
break;
}
loops++;
if (loops >= 16)
break;
}
if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
if (PV_PMAP(pv) == pmap) {
rv = TRUE;
break;
}
loops++;
if (loops >= 16)
break;
}
}
rw_wunlock(&pvh_global_lock);
return (rv);
}
/*
* pmap_zero_page zeros the specified hardware page by mapping
* the page into KVM and using bzero to clear its contents.
*/
void
pmap_zero_page(vm_page_t m)
{
pt2_entry_t *cmap2_pte2p;
struct pcpu *pc;
sched_pin();
pc = get_pcpu();
cmap2_pte2p = pc->pc_cmap2_pte2p;
mtx_lock(&pc->pc_cmap_lock);
if (pte2_load(cmap2_pte2p) != 0)
panic("%s: CMAP2 busy", __func__);
pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
vm_page_pte2_attr(m)));
pagezero(pc->pc_cmap2_addr);
pte2_clear(cmap2_pte2p);
tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
sched_unpin();
mtx_unlock(&pc->pc_cmap_lock);
}
/*
* pmap_zero_page_area zeros the specified hardware page by mapping
* the page into KVM and using bzero to clear its contents.
*
* off and size may not cover an area beyond a single hardware page.
*/
void
pmap_zero_page_area(vm_page_t m, int off, int size)
{
pt2_entry_t *cmap2_pte2p;
struct pcpu *pc;
sched_pin();
pc = get_pcpu();
cmap2_pte2p = pc->pc_cmap2_pte2p;
mtx_lock(&pc->pc_cmap_lock);
if (pte2_load(cmap2_pte2p) != 0)
panic("%s: CMAP2 busy", __func__);
pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
vm_page_pte2_attr(m)));
if (off == 0 && size == PAGE_SIZE)
pagezero(pc->pc_cmap2_addr);
else
bzero(pc->pc_cmap2_addr + off, size);
pte2_clear(cmap2_pte2p);
tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
sched_unpin();
mtx_unlock(&pc->pc_cmap_lock);
}
/*
* pmap_copy_page copies the specified (machine independent)
* page by mapping the page into virtual memory and using
* bcopy to copy the page, one machine dependent page at a
* time.
*/
void
pmap_copy_page(vm_page_t src, vm_page_t dst)
{
pt2_entry_t *cmap1_pte2p, *cmap2_pte2p;
struct pcpu *pc;
sched_pin();
pc = get_pcpu();
cmap1_pte2p = pc->pc_cmap1_pte2p;
cmap2_pte2p = pc->pc_cmap2_pte2p;
mtx_lock(&pc->pc_cmap_lock);
if (pte2_load(cmap1_pte2p) != 0)
panic("%s: CMAP1 busy", __func__);
if (pte2_load(cmap2_pte2p) != 0)
panic("%s: CMAP2 busy", __func__);
pte2_store(cmap1_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(src),
PTE2_AP_KR | PTE2_NM, vm_page_pte2_attr(src)));
pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(dst),
PTE2_AP_KRW, vm_page_pte2_attr(dst)));
bcopy(pc->pc_cmap1_addr, pc->pc_cmap2_addr, PAGE_SIZE);
pte2_clear(cmap1_pte2p);
tlb_flush((vm_offset_t)pc->pc_cmap1_addr);
pte2_clear(cmap2_pte2p);
tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
sched_unpin();
mtx_unlock(&pc->pc_cmap_lock);
}
int unmapped_buf_allowed = 1;
void
pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
vm_offset_t b_offset, int xfersize)
{
pt2_entry_t *cmap1_pte2p, *cmap2_pte2p;
vm_page_t a_pg, b_pg;
char *a_cp, *b_cp;
vm_offset_t a_pg_offset, b_pg_offset;
struct pcpu *pc;
int cnt;
sched_pin();
pc = get_pcpu();
cmap1_pte2p = pc->pc_cmap1_pte2p;
cmap2_pte2p = pc->pc_cmap2_pte2p;
mtx_lock(&pc->pc_cmap_lock);
if (pte2_load(cmap1_pte2p) != 0)
panic("pmap_copy_pages: CMAP1 busy");
if (pte2_load(cmap2_pte2p) != 0)
panic("pmap_copy_pages: CMAP2 busy");
while (xfersize > 0) {
a_pg = ma[a_offset >> PAGE_SHIFT];
a_pg_offset = a_offset & PAGE_MASK;
cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
b_pg = mb[b_offset >> PAGE_SHIFT];
b_pg_offset = b_offset & PAGE_MASK;
cnt = min(cnt, PAGE_SIZE - b_pg_offset);
pte2_store(cmap1_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(a_pg),
PTE2_AP_KR | PTE2_NM, vm_page_pte2_attr(a_pg)));
tlb_flush_local((vm_offset_t)pc->pc_cmap1_addr);
pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(b_pg),
PTE2_AP_KRW, vm_page_pte2_attr(b_pg)));
tlb_flush_local((vm_offset_t)pc->pc_cmap2_addr);
a_cp = pc->pc_cmap1_addr + a_pg_offset;
b_cp = pc->pc_cmap2_addr + b_pg_offset;
bcopy(a_cp, b_cp, cnt);
a_offset += cnt;
b_offset += cnt;
xfersize -= cnt;
}
pte2_clear(cmap1_pte2p);
tlb_flush((vm_offset_t)pc->pc_cmap1_addr);
pte2_clear(cmap2_pte2p);
tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
sched_unpin();
mtx_unlock(&pc->pc_cmap_lock);
}
vm_offset_t
pmap_quick_enter_page(vm_page_t m)
{
struct pcpu *pc;
pt2_entry_t *pte2p;
critical_enter();
pc = get_pcpu();
pte2p = pc->pc_qmap_pte2p;
KASSERT(pte2_load(pte2p) == 0, ("%s: PTE2 busy", __func__));
pte2_store(pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
vm_page_pte2_attr(m)));
return (pc->pc_qmap_addr);
}
void
pmap_quick_remove_page(vm_offset_t addr)
{
struct pcpu *pc;
pt2_entry_t *pte2p;
pc = get_pcpu();
pte2p = pc->pc_qmap_pte2p;
KASSERT(addr == pc->pc_qmap_addr, ("%s: invalid address", __func__));
KASSERT(pte2_load(pte2p) != 0, ("%s: PTE2 not in use", __func__));
pte2_clear(pte2p);
tlb_flush(pc->pc_qmap_addr);
critical_exit();
}
/*
* Copy the range specified by src_addr/len
* from the source map to the range dst_addr/len
* in the destination map.
*
* This routine is only advisory and need not do anything.
*/
void
pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
vm_offset_t src_addr)
{
struct spglist free;
vm_offset_t addr;
vm_offset_t end_addr = src_addr + len;
vm_offset_t nextva;
if (dst_addr != src_addr)
return;
if (!pmap_is_current(src_pmap))
return;
rw_wlock(&pvh_global_lock);
if (dst_pmap < src_pmap) {
PMAP_LOCK(dst_pmap);
PMAP_LOCK(src_pmap);
} else {
PMAP_LOCK(src_pmap);
PMAP_LOCK(dst_pmap);
}
sched_pin();
for (addr = src_addr; addr < end_addr; addr = nextva) {
pt2_entry_t *src_pte2p, *dst_pte2p;
vm_page_t dst_mpt2pg, src_mpt2pg;
pt1_entry_t src_pte1;
u_int pte1_idx;
KASSERT(addr < VM_MAXUSER_ADDRESS,
("%s: invalid to pmap_copy page tables", __func__));
nextva = pte1_trunc(addr + PTE1_SIZE);
if (nextva < addr)
nextva = end_addr;
pte1_idx = pte1_index(addr);
src_pte1 = src_pmap->pm_pt1[pte1_idx];
if (pte1_is_section(src_pte1)) {
if ((addr & PTE1_OFFSET) != 0 ||
(addr + PTE1_SIZE) > end_addr)
continue;
if (dst_pmap->pm_pt1[pte1_idx] == 0 &&
(!pte1_is_managed(src_pte1) ||
pmap_pv_insert_pte1(dst_pmap, addr,
pte1_pa(src_pte1)))) {
dst_pmap->pm_pt1[pte1_idx] = src_pte1 &
~PTE1_W;
dst_pmap->pm_stats.resident_count +=
PTE1_SIZE / PAGE_SIZE;
pmap_pte1_mappings++;
}
continue;
} else if (!pte1_is_link(src_pte1))
continue;
src_mpt2pg = PHYS_TO_VM_PAGE(pte1_link_pa(src_pte1));
/*
* We leave PT2s to be linked from PT1 even if they are not
* referenced until all PT2s in a page are without reference.
*
* QQQ: It could be changed ...
*/
#if 0 /* single_pt2_link_is_cleared */
KASSERT(pt2_wirecount_get(src_mpt2pg, pte1_idx) > 0,
("%s: source page table page is unused", __func__));
#else
if (pt2_wirecount_get(src_mpt2pg, pte1_idx) == 0)
continue;
#endif
if (nextva > end_addr)
nextva = end_addr;
src_pte2p = pt2map_entry(addr);
while (addr < nextva) {
pt2_entry_t temp_pte2;
temp_pte2 = pte2_load(src_pte2p);
/*
* we only virtual copy managed pages
*/
if (pte2_is_managed(temp_pte2)) {
dst_mpt2pg = pmap_allocpte2(dst_pmap, addr,
PMAP_ENTER_NOSLEEP);
if (dst_mpt2pg == NULL)
goto out;
dst_pte2p = pmap_pte2_quick(dst_pmap, addr);
if (!pte2_is_valid(pte2_load(dst_pte2p)) &&
pmap_try_insert_pv_entry(dst_pmap, addr,
PHYS_TO_VM_PAGE(pte2_pa(temp_pte2)))) {
/*
* Clear the wired, modified, and
* accessed (referenced) bits
* during the copy.
*/
temp_pte2 &= ~(PTE2_W | PTE2_A);
temp_pte2 |= PTE2_NM;
pte2_store(dst_pte2p, temp_pte2);
dst_pmap->pm_stats.resident_count++;
} else {
SLIST_INIT(&free);
if (pmap_unwire_pt2(dst_pmap, addr,
dst_mpt2pg, &free)) {
pmap_tlb_flush(dst_pmap, addr);
pmap_free_zero_pages(&free);
}
goto out;
}
if (pt2_wirecount_get(dst_mpt2pg, pte1_idx) >=
pt2_wirecount_get(src_mpt2pg, pte1_idx))
break;
}
addr += PAGE_SIZE;
src_pte2p++;
}
}
out:
sched_unpin();
rw_wunlock(&pvh_global_lock);
PMAP_UNLOCK(src_pmap);
PMAP_UNLOCK(dst_pmap);
}
/*
* Increase the starting virtual address of the given mapping if a
* different alignment might result in more section mappings.
*/
void
pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
vm_offset_t *addr, vm_size_t size)
{
vm_offset_t pte1_offset;
if (size < PTE1_SIZE)
return;
if (object != NULL && (object->flags & OBJ_COLORED) != 0)
offset += ptoa(object->pg_color);
pte1_offset = offset & PTE1_OFFSET;
if (size - ((PTE1_SIZE - pte1_offset) & PTE1_OFFSET) < PTE1_SIZE ||
(*addr & PTE1_OFFSET) == pte1_offset)
return;
if ((*addr & PTE1_OFFSET) < pte1_offset)
*addr = pte1_trunc(*addr) + pte1_offset;
else
*addr = pte1_roundup(*addr) + pte1_offset;
}
void
pmap_activate(struct thread *td)
{
pmap_t pmap, oldpmap;
u_int cpuid, ttb;
PDEBUG(9, printf("%s: td = %08x\n", __func__, (uint32_t)td));
critical_enter();
pmap = vmspace_pmap(td->td_proc->p_vmspace);
oldpmap = PCPU_GET(curpmap);
cpuid = PCPU_GET(cpuid);
#if defined(SMP)
CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
#else
CPU_CLR(cpuid, &oldpmap->pm_active);
CPU_SET(cpuid, &pmap->pm_active);
#endif
ttb = pmap_ttb_get(pmap);
/*
* pmap_activate is for the current thread on the current cpu
*/
td->td_pcb->pcb_pagedir = ttb;
cp15_ttbr_set(ttb);
PCPU_SET(curpmap, pmap);
critical_exit();
}
/*
* Perform the pmap work for mincore.
*/
int
pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
{
pt1_entry_t *pte1p, pte1;
pt2_entry_t *pte2p, pte2;
vm_paddr_t pa;
bool managed;
int val;
PMAP_LOCK(pmap);
retry:
pte1p = pmap_pte1(pmap, addr);
pte1 = pte1_load(pte1p);
if (pte1_is_section(pte1)) {
pa = trunc_page(pte1_pa(pte1) | (addr & PTE1_OFFSET));
managed = pte1_is_managed(pte1);
val = MINCORE_SUPER | MINCORE_INCORE;
if (pte1_is_dirty(pte1))
val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
if (pte1 & PTE1_A)
val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
} else if (pte1_is_link(pte1)) {
pte2p = pmap_pte2(pmap, addr);
pte2 = pte2_load(pte2p);
pmap_pte2_release(pte2p);
pa = pte2_pa(pte2);
managed = pte2_is_managed(pte2);
val = MINCORE_INCORE;
if (pte2_is_dirty(pte2))
val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
if (pte2 & PTE2_A)
val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
} else {
managed = false;
val = 0;
}
if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
(MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
goto retry;
} else
PA_UNLOCK_COND(*locked_pa);
PMAP_UNLOCK(pmap);
return (val);
}
void
pmap_kenter_device(vm_offset_t va, vm_size_t size, vm_paddr_t pa)
{
vm_offset_t sva;
uint32_t l2attr;
KASSERT((size & PAGE_MASK) == 0,
("%s: device mapping not page-sized", __func__));
sva = va;
l2attr = vm_memattr_to_pte2(VM_MEMATTR_DEVICE);
while (size != 0) {
pmap_kenter_prot_attr(va, pa, PTE2_AP_KRW, l2attr);
va += PAGE_SIZE;
pa += PAGE_SIZE;
size -= PAGE_SIZE;
}
tlb_flush_range(sva, va - sva);
}
void
pmap_kremove_device(vm_offset_t va, vm_size_t size)
{
vm_offset_t sva;
KASSERT((size & PAGE_MASK) == 0,
("%s: device mapping not page-sized", __func__));
sva = va;
while (size != 0) {
pmap_kremove(va);
va += PAGE_SIZE;
size -= PAGE_SIZE;
}
tlb_flush_range(sva, va - sva);
}
void
pmap_set_pcb_pagedir(pmap_t pmap, struct pcb *pcb)
{
pcb->pcb_pagedir = pmap_ttb_get(pmap);
}
/*
* Clean L1 data cache range by physical address.
* The range must be within a single page.
*/
static void
pmap_dcache_wb_pou(vm_paddr_t pa, vm_size_t size, uint32_t attr)
{
pt2_entry_t *cmap2_pte2p;
struct pcpu *pc;
KASSERT(((pa & PAGE_MASK) + size) <= PAGE_SIZE,
("%s: not on single page", __func__));
sched_pin();
pc = get_pcpu();
cmap2_pte2p = pc->pc_cmap2_pte2p;
mtx_lock(&pc->pc_cmap_lock);
if (pte2_load(cmap2_pte2p) != 0)
panic("%s: CMAP2 busy", __func__);
pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW, attr));
dcache_wb_pou((vm_offset_t)pc->pc_cmap2_addr + (pa & PAGE_MASK), size);
pte2_clear(cmap2_pte2p);
tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
sched_unpin();
mtx_unlock(&pc->pc_cmap_lock);
}
/*
* Sync instruction cache range which is not mapped yet.
*/
void
cache_icache_sync_fresh(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
{
uint32_t len, offset;
vm_page_t m;
/* Write back d-cache on given address range. */
offset = pa & PAGE_MASK;
for ( ; size != 0; size -= len, pa += len, offset = 0) {
len = min(PAGE_SIZE - offset, size);
m = PHYS_TO_VM_PAGE(pa);
KASSERT(m != NULL, ("%s: vm_page_t is null for %#x",
__func__, pa));
pmap_dcache_wb_pou(pa, len, vm_page_pte2_attr(m));
}
/*
* I-cache is VIPT. Only way how to flush all virtual mappings
* on given physical address is to invalidate all i-cache.
*/
icache_inv_all();
}
void
pmap_sync_icache(pmap_t pmap, vm_offset_t va, vm_size_t size)
{
/* Write back d-cache on given address range. */
if (va >= VM_MIN_KERNEL_ADDRESS) {
dcache_wb_pou(va, size);
} else {
uint32_t len, offset;
vm_paddr_t pa;
vm_page_t m;
offset = va & PAGE_MASK;
for ( ; size != 0; size -= len, va += len, offset = 0) {
pa = pmap_extract(pmap, va); /* offset is preserved */
len = min(PAGE_SIZE - offset, size);
m = PHYS_TO_VM_PAGE(pa);
KASSERT(m != NULL, ("%s: vm_page_t is null for %#x",
__func__, pa));
pmap_dcache_wb_pou(pa, len, vm_page_pte2_attr(m));
}
}
/*
* I-cache is VIPT. Only way how to flush all virtual mappings
* on given physical address is to invalidate all i-cache.
*/
icache_inv_all();
}
/*
* The implementation of pmap_fault() uses IN_RANGE2() macro which
* depends on the fact that given range size is a power of 2.
*/
CTASSERT(powerof2(NB_IN_PT1));
CTASSERT(powerof2(PT2MAP_SIZE));
#define IN_RANGE2(addr, start, size) \
((vm_offset_t)(start) == ((vm_offset_t)(addr) & ~((size) - 1)))
/*
* Handle access and R/W emulation faults.
*/
int
pmap_fault(pmap_t pmap, vm_offset_t far, uint32_t fsr, int idx, bool usermode)
{
pt1_entry_t *pte1p, pte1;
pt2_entry_t *pte2p, pte2;
if (pmap == NULL)
pmap = kernel_pmap;
/*
* In kernel, we should never get abort with FAR which is in range of
* pmap->pm_pt1 or PT2MAP address spaces. If it happens, stop here
* and print out a useful abort message and even get to the debugger
* otherwise it likely ends with never ending loop of aborts.
*/
if (__predict_false(IN_RANGE2(far, pmap->pm_pt1, NB_IN_PT1))) {
/*
* All L1 tables should always be mapped and present.
* However, we check only current one herein. For user mode,
* only permission abort from malicious user is not fatal.
* And alignment abort as it may have higher priority.
*/
if (!usermode || (idx != FAULT_ALIGN && idx != FAULT_PERM_L2)) {
CTR4(KTR_PMAP, "%s: pmap %#x pm_pt1 %#x far %#x",
__func__, pmap, pmap->pm_pt1, far);
panic("%s: pm_pt1 abort", __func__);
}
return (KERN_INVALID_ADDRESS);
}
if (__predict_false(IN_RANGE2(far, PT2MAP, PT2MAP_SIZE))) {
/*
* PT2MAP should be always mapped and present in current
* L1 table. However, only existing L2 tables are mapped
* in PT2MAP. For user mode, only L2 translation abort and
* permission abort from malicious user is not fatal.
* And alignment abort as it may have higher priority.
*/
if (!usermode || (idx != FAULT_ALIGN &&
idx != FAULT_TRAN_L2 && idx != FAULT_PERM_L2)) {
CTR4(KTR_PMAP, "%s: pmap %#x PT2MAP %#x far %#x",
__func__, pmap, PT2MAP, far);
panic("%s: PT2MAP abort", __func__);
}
return (KERN_INVALID_ADDRESS);
}
/*
* A pmap lock is used below for handling of access and R/W emulation
* aborts. They were handled by atomic operations before so some
* analysis of new situation is needed to answer the following question:
* Is it safe to use the lock even for these aborts?
*
* There may happen two cases in general:
*
* (1) Aborts while the pmap lock is locked already - this should not
* happen as pmap lock is not recursive. However, under pmap lock only
* internal kernel data should be accessed and such data should be
* mapped with A bit set and NM bit cleared. If double abort happens,
* then a mapping of data which has caused it must be fixed. Further,
* all new mappings are always made with A bit set and the bit can be
* cleared only on managed mappings.
*
* (2) Aborts while another lock(s) is/are locked - this already can
* happen. However, there is no difference here if it's either access or
* R/W emulation abort, or if it's some other abort.
*/
PMAP_LOCK(pmap);
#ifdef SMP
/*
* Special treatment is due to break-before-make approach done when
* pte1 is updated for userland mapping during section promotion or
* demotion. If not caught here, pmap_enter() can find a section
* mapping on faulting address. That is not allowed.
*/
if (idx == FAULT_TRAN_L1 && usermode && cp15_ats1cur_check(far) == 0) {
PMAP_UNLOCK(pmap);
return (KERN_SUCCESS);
}
#endif
/*
* Accesss bits for page and section. Note that the entry
* is not in TLB yet, so TLB flush is not necessary.
*
* QQQ: This is hardware emulation, we do not call userret()
* for aborts from user mode.
*/
if (idx == FAULT_ACCESS_L2) {
pte2p = pt2map_entry(far);
pte2 = pte2_load(pte2p);
if (pte2_is_valid(pte2)) {
pte2_store(pte2p, pte2 | PTE2_A);
PMAP_UNLOCK(pmap);
return (KERN_SUCCESS);
}
}
if (idx == FAULT_ACCESS_L1) {
pte1p = pmap_pte1(pmap, far);
pte1 = pte1_load(pte1p);
if (pte1_is_section(pte1)) {
pte1_store(pte1p, pte1 | PTE1_A);
PMAP_UNLOCK(pmap);
return (KERN_SUCCESS);
}
}
/*
* Handle modify bits for page and section. Note that the modify
* bit is emulated by software. So PTEx_RO is software read only
* bit and PTEx_NM flag is real hardware read only bit.
*
* QQQ: This is hardware emulation, we do not call userret()
* for aborts from user mode.
*/
if ((fsr & FSR_WNR) && (idx == FAULT_PERM_L2)) {
pte2p = pt2map_entry(far);
pte2 = pte2_load(pte2p);
if (pte2_is_valid(pte2) && !(pte2 & PTE2_RO) &&
(pte2 & PTE2_NM)) {
pte2_store(pte2p, pte2 & ~PTE2_NM);
tlb_flush(trunc_page(far));
PMAP_UNLOCK(pmap);
return (KERN_SUCCESS);
}
}
if ((fsr & FSR_WNR) && (idx == FAULT_PERM_L1)) {
pte1p = pmap_pte1(pmap, far);
pte1 = pte1_load(pte1p);
if (pte1_is_section(pte1) && !(pte1 & PTE1_RO) &&
(pte1 & PTE1_NM)) {
pte1_store(pte1p, pte1 & ~PTE1_NM);
tlb_flush(pte1_trunc(far));
PMAP_UNLOCK(pmap);
return (KERN_SUCCESS);
}
}
/*
* QQQ: The previous code, mainly fast handling of access and
* modify bits aborts, could be moved to ASM. Now we are
* starting to deal with not fast aborts.
*/
#ifdef INVARIANTS
/*
* Read an entry in PT2TAB associated with both pmap and far.
* It's safe because PT2TAB is always mapped.
*/
pte2 = pt2tab_load(pmap_pt2tab_entry(pmap, far));
if (pte2_is_valid(pte2)) {
/*
* Now, when we know that L2 page table is allocated,
* we can use PT2MAP to get L2 page table entry.
*/
pte2 = pte2_load(pt2map_entry(far));
if (pte2_is_valid(pte2)) {
/*
* If L2 page table entry is valid, make sure that
* L1 page table entry is valid too. Note that we
* leave L2 page entries untouched when promoted.
*/
pte1 = pte1_load(pmap_pte1(pmap, far));
if (!pte1_is_valid(pte1)) {
panic("%s: missing L1 page entry (%p, %#x)",
__func__, pmap, far);
}
}
}
#endif
PMAP_UNLOCK(pmap);
return (KERN_FAILURE);
}
#if defined(PMAP_DEBUG)
/*
* Reusing of KVA used in pmap_zero_page function !!!
*/
static void
pmap_zero_page_check(vm_page_t m)
{
pt2_entry_t *cmap2_pte2p;
uint32_t *p, *end;
struct pcpu *pc;
sched_pin();
pc = get_pcpu();
cmap2_pte2p = pc->pc_cmap2_pte2p;
mtx_lock(&pc->pc_cmap_lock);
if (pte2_load(cmap2_pte2p) != 0)
panic("%s: CMAP2 busy", __func__);
pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
vm_page_pte2_attr(m)));
end = (uint32_t*)(pc->pc_cmap2_addr + PAGE_SIZE);
for (p = (uint32_t*)pc->pc_cmap2_addr; p < end; p++)
if (*p != 0)
panic("%s: page %p not zero, va: %p", __func__, m,
pc->pc_cmap2_addr);
pte2_clear(cmap2_pte2p);
tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
sched_unpin();
mtx_unlock(&pc->pc_cmap_lock);
}
int
pmap_pid_dump(int pid)
{
pmap_t pmap;
struct proc *p;
int npte2 = 0;
int i, j, index;
sx_slock(&allproc_lock);
FOREACH_PROC_IN_SYSTEM(p) {
if (p->p_pid != pid || p->p_vmspace == NULL)
continue;
index = 0;
pmap = vmspace_pmap(p->p_vmspace);
for (i = 0; i < NPTE1_IN_PT1; i++) {
pt1_entry_t pte1;
pt2_entry_t *pte2p, pte2;
vm_offset_t base, va;
vm_paddr_t pa;
vm_page_t m;
base = i << PTE1_SHIFT;
pte1 = pte1_load(&pmap->pm_pt1[i]);
if (pte1_is_section(pte1)) {
/*
* QQQ: Do something here!
*/
} else if (pte1_is_link(pte1)) {
for (j = 0; j < NPTE2_IN_PT2; j++) {
va = base + (j << PAGE_SHIFT);
if (va >= VM_MIN_KERNEL_ADDRESS) {
if (index) {
index = 0;
printf("\n");
}
sx_sunlock(&allproc_lock);
return (npte2);
}
pte2p = pmap_pte2(pmap, va);
pte2 = pte2_load(pte2p);
pmap_pte2_release(pte2p);
if (!pte2_is_valid(pte2))
continue;
pa = pte2_pa(pte2);
m = PHYS_TO_VM_PAGE(pa);
printf("va: 0x%x, pa: 0x%x, h: %d, w:"
" %d, f: 0x%x", va, pa,
m->hold_count, m->wire_count,
m->flags);
npte2++;
index++;
if (index >= 2) {
index = 0;
printf("\n");
} else {
printf(" ");
}
}
}
}
}
sx_sunlock(&allproc_lock);
return (npte2);
}
#endif
#ifdef DDB
static pt2_entry_t *
pmap_pte2_ddb(pmap_t pmap, vm_offset_t va)
{
pt1_entry_t pte1;
vm_paddr_t pt2pg_pa;
pte1 = pte1_load(pmap_pte1(pmap, va));
if (!pte1_is_link(pte1))
return (NULL);
if (pmap_is_current(pmap))
return (pt2map_entry(va));
/* Note that L2 page table size is not equal to PAGE_SIZE. */
pt2pg_pa = trunc_page(pte1_link_pa(pte1));
if (pte2_pa(pte2_load(PMAP3)) != pt2pg_pa) {
pte2_store(PMAP3, PTE2_KPT(pt2pg_pa));
#ifdef SMP
PMAP3cpu = PCPU_GET(cpuid);
#endif
tlb_flush_local((vm_offset_t)PADDR3);
}
#ifdef SMP
else if (PMAP3cpu != PCPU_GET(cpuid)) {
PMAP3cpu = PCPU_GET(cpuid);
tlb_flush_local((vm_offset_t)PADDR3);
}
#endif
return (PADDR3 + (arm32_btop(va) & (NPTE2_IN_PG - 1)));
}
static void
dump_pmap(pmap_t pmap)
{
printf("pmap %p\n", pmap);
printf(" pm_pt1: %p\n", pmap->pm_pt1);
printf(" pm_pt2tab: %p\n", pmap->pm_pt2tab);
printf(" pm_active: 0x%08lX\n", pmap->pm_active.__bits[0]);
}
DB_SHOW_COMMAND(pmaps, pmap_list_pmaps)
{
pmap_t pmap;
LIST_FOREACH(pmap, &allpmaps, pm_list) {
dump_pmap(pmap);
}
}
static int
pte2_class(pt2_entry_t pte2)
{
int cls;
cls = (pte2 >> 2) & 0x03;
cls |= (pte2 >> 4) & 0x04;
return (cls);
}
static void
dump_section(pmap_t pmap, uint32_t pte1_idx)
{
}
static void
dump_link(pmap_t pmap, uint32_t pte1_idx, boolean_t invalid_ok)
{
uint32_t i;
vm_offset_t va;
pt2_entry_t *pte2p, pte2;
vm_page_t m;
va = pte1_idx << PTE1_SHIFT;
pte2p = pmap_pte2_ddb(pmap, va);
for (i = 0; i < NPTE2_IN_PT2; i++, pte2p++, va += PAGE_SIZE) {
pte2 = pte2_load(pte2p);
if (pte2 == 0)
continue;
if (!pte2_is_valid(pte2)) {
printf(" 0x%08X: 0x%08X", va, pte2);
if (!invalid_ok)
printf(" - not valid !!!");
printf("\n");
continue;
}
m = PHYS_TO_VM_PAGE(pte2_pa(pte2));
printf(" 0x%08X: 0x%08X, TEX%d, s:%d, g:%d, m:%p", va , pte2,
pte2_class(pte2), !!(pte2 & PTE2_S), !(pte2 & PTE2_NG), m);
if (m != NULL) {
printf(" v:%d h:%d w:%d f:0x%04X\n", m->valid,
m->hold_count, m->wire_count, m->flags);
} else {
printf("\n");
}
}
}
static __inline boolean_t
is_pv_chunk_space(vm_offset_t va)
{
if ((((vm_offset_t)pv_chunkbase) <= va) &&
(va < ((vm_offset_t)pv_chunkbase + PAGE_SIZE * pv_maxchunks)))
return (TRUE);
return (FALSE);
}
DB_SHOW_COMMAND(pmap, pmap_pmap_print)
{
/* XXX convert args. */
pmap_t pmap = (pmap_t)addr;
pt1_entry_t pte1;
pt2_entry_t pte2;
vm_offset_t va, eva;
vm_page_t m;
uint32_t i;
boolean_t invalid_ok, dump_link_ok, dump_pv_chunk;
if (have_addr) {
pmap_t pm;
LIST_FOREACH(pm, &allpmaps, pm_list)
if (pm == pmap) break;
if (pm == NULL) {
printf("given pmap %p is not in allpmaps list\n", pmap);
return;
}
} else
pmap = PCPU_GET(curpmap);
eva = (modif[0] == 'u') ? VM_MAXUSER_ADDRESS : 0xFFFFFFFF;
dump_pv_chunk = FALSE; /* XXX evaluate from modif[] */
printf("pmap: 0x%08X\n", (uint32_t)pmap);
printf("PT2MAP: 0x%08X\n", (uint32_t)PT2MAP);
printf("pt2tab: 0x%08X\n", (uint32_t)pmap->pm_pt2tab);
for(i = 0; i < NPTE1_IN_PT1; i++) {
pte1 = pte1_load(&pmap->pm_pt1[i]);
if (pte1 == 0)
continue;
va = i << PTE1_SHIFT;
if (va >= eva)
break;
if (pte1_is_section(pte1)) {
printf("0x%08X: Section 0x%08X, s:%d g:%d\n", va, pte1,
!!(pte1 & PTE1_S), !(pte1 & PTE1_NG));
dump_section(pmap, i);
} else if (pte1_is_link(pte1)) {
dump_link_ok = TRUE;
invalid_ok = FALSE;
pte2 = pte2_load(pmap_pt2tab_entry(pmap, va));
m = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
printf("0x%08X: Link 0x%08X, pt2tab: 0x%08X m: %p",
va, pte1, pte2, m);
if (is_pv_chunk_space(va)) {
printf(" - pv_chunk space");
if (dump_pv_chunk)
invalid_ok = TRUE;
else
dump_link_ok = FALSE;
}
else if (m != NULL)
printf(" w:%d w2:%u", m->wire_count,
pt2_wirecount_get(m, pte1_index(va)));
if (pte2 == 0)
printf(" !!! pt2tab entry is ZERO");
else if (pte2_pa(pte1) != pte2_pa(pte2))
printf(" !!! pt2tab entry is DIFFERENT - m: %p",
PHYS_TO_VM_PAGE(pte2_pa(pte2)));
printf("\n");
if (dump_link_ok)
dump_link(pmap, i, invalid_ok);
} else
printf("0x%08X: Invalid entry 0x%08X\n", va, pte1);
}
}
static void
dump_pt2tab(pmap_t pmap)
{
uint32_t i;
pt2_entry_t pte2;
vm_offset_t va;
vm_paddr_t pa;
vm_page_t m;
printf("PT2TAB:\n");
for (i = 0; i < PT2TAB_ENTRIES; i++) {
pte2 = pte2_load(&pmap->pm_pt2tab[i]);
if (!pte2_is_valid(pte2))
continue;
va = i << PT2TAB_SHIFT;
pa = pte2_pa(pte2);
m = PHYS_TO_VM_PAGE(pa);
printf(" 0x%08X: 0x%08X, TEX%d, s:%d, m:%p", va, pte2,
pte2_class(pte2), !!(pte2 & PTE2_S), m);
if (m != NULL)
printf(" , h: %d, w: %d, f: 0x%04X pidx: %lld",
m->hold_count, m->wire_count, m->flags, m->pindex);
printf("\n");
}
}
DB_SHOW_COMMAND(pmap_pt2tab, pmap_pt2tab_print)
{
/* XXX convert args. */
pmap_t pmap = (pmap_t)addr;
pt1_entry_t pte1;
pt2_entry_t pte2;
vm_offset_t va;
uint32_t i, start;
if (have_addr) {
printf("supported only on current pmap\n");
return;
}
pmap = PCPU_GET(curpmap);
printf("curpmap: 0x%08X\n", (uint32_t)pmap);
printf("PT2MAP: 0x%08X\n", (uint32_t)PT2MAP);
printf("pt2tab: 0x%08X\n", (uint32_t)pmap->pm_pt2tab);
start = pte1_index((vm_offset_t)PT2MAP);
for (i = start; i < (start + NPT2_IN_PT2TAB); i++) {
pte1 = pte1_load(&pmap->pm_pt1[i]);
if (pte1 == 0)
continue;
va = i << PTE1_SHIFT;
if (pte1_is_section(pte1)) {
printf("0x%08X: Section 0x%08X, s:%d\n", va, pte1,
!!(pte1 & PTE1_S));
dump_section(pmap, i);
} else if (pte1_is_link(pte1)) {
pte2 = pte2_load(pmap_pt2tab_entry(pmap, va));
printf("0x%08X: Link 0x%08X, pt2tab: 0x%08X\n", va,
pte1, pte2);
if (pte2 == 0)
printf(" !!! pt2tab entry is ZERO\n");
} else
printf("0x%08X: Invalid entry 0x%08X\n", va, pte1);
}
dump_pt2tab(pmap);
}
#endif