freebsd-dev/sys/dev/ubsec/ubsec.c
2012-12-04 09:32:43 +00:00

2883 lines
75 KiB
C

/* $OpenBSD: ubsec.c,v 1.115 2002/09/24 18:33:26 jason Exp $ */
/*-
* Copyright (c) 2000 Jason L. Wright (jason@thought.net)
* Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org)
* Copyright (c) 2001 Patrik Lindergren (patrik@ipunplugged.com)
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Jason L. Wright
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Effort sponsored in part by the Defense Advanced Research Projects
* Agency (DARPA) and Air Force Research Laboratory, Air Force
* Materiel Command, USAF, under agreement number F30602-01-2-0537.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* uBsec 5[56]01, 58xx hardware crypto accelerator
*/
#include "opt_ubsec.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/errno.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/mbuf.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/sysctl.h>
#include <sys/endian.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <crypto/sha1.h>
#include <opencrypto/cryptodev.h>
#include <opencrypto/cryptosoft.h>
#include <sys/md5.h>
#include <sys/random.h>
#include <sys/kobj.h>
#include "cryptodev_if.h"
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
/* grr, #defines for gratuitous incompatibility in queue.h */
#define SIMPLEQ_HEAD STAILQ_HEAD
#define SIMPLEQ_ENTRY STAILQ_ENTRY
#define SIMPLEQ_INIT STAILQ_INIT
#define SIMPLEQ_INSERT_TAIL STAILQ_INSERT_TAIL
#define SIMPLEQ_EMPTY STAILQ_EMPTY
#define SIMPLEQ_FIRST STAILQ_FIRST
#define SIMPLEQ_REMOVE_HEAD STAILQ_REMOVE_HEAD
#define SIMPLEQ_FOREACH STAILQ_FOREACH
/* ditto for endian.h */
#define letoh16(x) le16toh(x)
#define letoh32(x) le32toh(x)
#ifdef UBSEC_RNDTEST
#include <dev/rndtest/rndtest.h>
#endif
#include <dev/ubsec/ubsecreg.h>
#include <dev/ubsec/ubsecvar.h>
/*
* Prototypes and count for the pci_device structure
*/
static int ubsec_probe(device_t);
static int ubsec_attach(device_t);
static int ubsec_detach(device_t);
static int ubsec_suspend(device_t);
static int ubsec_resume(device_t);
static int ubsec_shutdown(device_t);
static int ubsec_newsession(device_t, u_int32_t *, struct cryptoini *);
static int ubsec_freesession(device_t, u_int64_t);
static int ubsec_process(device_t, struct cryptop *, int);
static int ubsec_kprocess(device_t, struct cryptkop *, int);
static device_method_t ubsec_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, ubsec_probe),
DEVMETHOD(device_attach, ubsec_attach),
DEVMETHOD(device_detach, ubsec_detach),
DEVMETHOD(device_suspend, ubsec_suspend),
DEVMETHOD(device_resume, ubsec_resume),
DEVMETHOD(device_shutdown, ubsec_shutdown),
/* crypto device methods */
DEVMETHOD(cryptodev_newsession, ubsec_newsession),
DEVMETHOD(cryptodev_freesession,ubsec_freesession),
DEVMETHOD(cryptodev_process, ubsec_process),
DEVMETHOD(cryptodev_kprocess, ubsec_kprocess),
DEVMETHOD_END
};
static driver_t ubsec_driver = {
"ubsec",
ubsec_methods,
sizeof (struct ubsec_softc)
};
static devclass_t ubsec_devclass;
DRIVER_MODULE(ubsec, pci, ubsec_driver, ubsec_devclass, 0, 0);
MODULE_DEPEND(ubsec, crypto, 1, 1, 1);
#ifdef UBSEC_RNDTEST
MODULE_DEPEND(ubsec, rndtest, 1, 1, 1);
#endif
static void ubsec_intr(void *);
static void ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
static void ubsec_feed(struct ubsec_softc *);
static void ubsec_mcopy(struct mbuf *, struct mbuf *, int, int);
static void ubsec_callback2(struct ubsec_softc *, struct ubsec_q2 *);
static int ubsec_feed2(struct ubsec_softc *);
static void ubsec_rng(void *);
static int ubsec_dma_malloc(struct ubsec_softc *, bus_size_t,
struct ubsec_dma_alloc *, int);
#define ubsec_dma_sync(_dma, _flags) \
bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
static void ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
static int ubsec_dmamap_aligned(struct ubsec_operand *op);
static void ubsec_reset_board(struct ubsec_softc *sc);
static void ubsec_init_board(struct ubsec_softc *sc);
static void ubsec_init_pciregs(device_t dev);
static void ubsec_totalreset(struct ubsec_softc *sc);
static int ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q);
static int ubsec_kprocess_modexp_hw(struct ubsec_softc *, struct cryptkop *, int);
static int ubsec_kprocess_modexp_sw(struct ubsec_softc *, struct cryptkop *, int);
static int ubsec_kprocess_rsapriv(struct ubsec_softc *, struct cryptkop *, int);
static void ubsec_kfree(struct ubsec_softc *, struct ubsec_q2 *);
static int ubsec_ksigbits(struct crparam *);
static void ubsec_kshift_r(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
static void ubsec_kshift_l(u_int, u_int8_t *, u_int, u_int8_t *, u_int);
static SYSCTL_NODE(_hw, OID_AUTO, ubsec, CTLFLAG_RD, 0,
"Broadcom driver parameters");
#ifdef UBSEC_DEBUG
static void ubsec_dump_pb(volatile struct ubsec_pktbuf *);
static void ubsec_dump_mcr(struct ubsec_mcr *);
static void ubsec_dump_ctx2(struct ubsec_ctx_keyop *);
static int ubsec_debug = 0;
SYSCTL_INT(_hw_ubsec, OID_AUTO, debug, CTLFLAG_RW, &ubsec_debug,
0, "control debugging msgs");
#endif
#define READ_REG(sc,r) \
bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
#define WRITE_REG(sc,reg,val) \
bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
#define SWAP32(x) (x) = htole32(ntohl((x)))
#define HTOLE32(x) (x) = htole32(x)
struct ubsec_stats ubsecstats;
SYSCTL_STRUCT(_hw_ubsec, OID_AUTO, stats, CTLFLAG_RD, &ubsecstats,
ubsec_stats, "driver statistics");
static int
ubsec_probe(device_t dev)
{
if (pci_get_vendor(dev) == PCI_VENDOR_SUN &&
(pci_get_device(dev) == PCI_PRODUCT_SUN_5821 ||
pci_get_device(dev) == PCI_PRODUCT_SUN_SCA1K))
return (BUS_PROBE_DEFAULT);
if (pci_get_vendor(dev) == PCI_VENDOR_BLUESTEEL &&
(pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5501 ||
pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5601))
return (BUS_PROBE_DEFAULT);
if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
(pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5801 ||
pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5802 ||
pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5805 ||
pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5820 ||
pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5821 ||
pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5822 ||
pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5823 ||
pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5825
))
return (BUS_PROBE_DEFAULT);
return (ENXIO);
}
static const char*
ubsec_partname(struct ubsec_softc *sc)
{
/* XXX sprintf numbers when not decoded */
switch (pci_get_vendor(sc->sc_dev)) {
case PCI_VENDOR_BROADCOM:
switch (pci_get_device(sc->sc_dev)) {
case PCI_PRODUCT_BROADCOM_5801: return "Broadcom 5801";
case PCI_PRODUCT_BROADCOM_5802: return "Broadcom 5802";
case PCI_PRODUCT_BROADCOM_5805: return "Broadcom 5805";
case PCI_PRODUCT_BROADCOM_5820: return "Broadcom 5820";
case PCI_PRODUCT_BROADCOM_5821: return "Broadcom 5821";
case PCI_PRODUCT_BROADCOM_5822: return "Broadcom 5822";
case PCI_PRODUCT_BROADCOM_5823: return "Broadcom 5823";
case PCI_PRODUCT_BROADCOM_5825: return "Broadcom 5825";
}
return "Broadcom unknown-part";
case PCI_VENDOR_BLUESTEEL:
switch (pci_get_device(sc->sc_dev)) {
case PCI_PRODUCT_BLUESTEEL_5601: return "Bluesteel 5601";
}
return "Bluesteel unknown-part";
case PCI_VENDOR_SUN:
switch (pci_get_device(sc->sc_dev)) {
case PCI_PRODUCT_SUN_5821: return "Sun Crypto 5821";
case PCI_PRODUCT_SUN_SCA1K: return "Sun Crypto 1K";
}
return "Sun unknown-part";
}
return "Unknown-vendor unknown-part";
}
static void
default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
{
random_harvest(buf, count, count*NBBY, 0, RANDOM_PURE);
}
static int
ubsec_attach(device_t dev)
{
struct ubsec_softc *sc = device_get_softc(dev);
struct ubsec_dma *dmap;
u_int32_t cmd, i;
int rid;
bzero(sc, sizeof (*sc));
sc->sc_dev = dev;
SIMPLEQ_INIT(&sc->sc_queue);
SIMPLEQ_INIT(&sc->sc_qchip);
SIMPLEQ_INIT(&sc->sc_queue2);
SIMPLEQ_INIT(&sc->sc_qchip2);
SIMPLEQ_INIT(&sc->sc_q2free);
/* XXX handle power management */
sc->sc_statmask = BS_STAT_MCR1_DONE | BS_STAT_DMAERR;
if (pci_get_vendor(dev) == PCI_VENDOR_BLUESTEEL &&
pci_get_device(dev) == PCI_PRODUCT_BLUESTEEL_5601)
sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG;
if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
(pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5802 ||
pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5805))
sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG;
if (pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5820)
sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG |
UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY;
if ((pci_get_vendor(dev) == PCI_VENDOR_BROADCOM &&
(pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5821 ||
pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5822 ||
pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5823 ||
pci_get_device(dev) == PCI_PRODUCT_BROADCOM_5825)) ||
(pci_get_vendor(dev) == PCI_VENDOR_SUN &&
(pci_get_device(dev) == PCI_PRODUCT_SUN_SCA1K ||
pci_get_device(dev) == PCI_PRODUCT_SUN_5821))) {
/* NB: the 5821/5822 defines some additional status bits */
sc->sc_statmask |= BS_STAT_MCR1_ALLEMPTY |
BS_STAT_MCR2_ALLEMPTY;
sc->sc_flags |= UBS_FLAGS_KEY | UBS_FLAGS_RNG |
UBS_FLAGS_LONGCTX | UBS_FLAGS_HWNORM | UBS_FLAGS_BIGKEY;
}
cmd = pci_read_config(dev, PCIR_COMMAND, 4);
cmd |= PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN;
pci_write_config(dev, PCIR_COMMAND, cmd, 4);
cmd = pci_read_config(dev, PCIR_COMMAND, 4);
if (!(cmd & PCIM_CMD_MEMEN)) {
device_printf(dev, "failed to enable memory mapping\n");
goto bad;
}
if (!(cmd & PCIM_CMD_BUSMASTEREN)) {
device_printf(dev, "failed to enable bus mastering\n");
goto bad;
}
/*
* Setup memory-mapping of PCI registers.
*/
rid = BS_BAR;
sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (sc->sc_sr == NULL) {
device_printf(dev, "cannot map register space\n");
goto bad;
}
sc->sc_st = rman_get_bustag(sc->sc_sr);
sc->sc_sh = rman_get_bushandle(sc->sc_sr);
/*
* Arrange interrupt line.
*/
rid = 0;
sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE|RF_ACTIVE);
if (sc->sc_irq == NULL) {
device_printf(dev, "could not map interrupt\n");
goto bad1;
}
/*
* NB: Network code assumes we are blocked with splimp()
* so make sure the IRQ is mapped appropriately.
*/
if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
NULL, ubsec_intr, sc, &sc->sc_ih)) {
device_printf(dev, "could not establish interrupt\n");
goto bad2;
}
sc->sc_cid = crypto_get_driverid(dev, CRYPTOCAP_F_HARDWARE);
if (sc->sc_cid < 0) {
device_printf(dev, "could not get crypto driver id\n");
goto bad3;
}
/*
* Setup DMA descriptor area.
*/
if (bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */
1, 0, /* alignment, bounds */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
0x3ffff, /* maxsize */
UBS_MAX_SCATTER, /* nsegments */
0xffff, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->sc_dmat)) {
device_printf(dev, "cannot allocate DMA tag\n");
goto bad4;
}
SIMPLEQ_INIT(&sc->sc_freequeue);
dmap = sc->sc_dmaa;
for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
struct ubsec_q *q;
q = (struct ubsec_q *)malloc(sizeof(struct ubsec_q),
M_DEVBUF, M_NOWAIT);
if (q == NULL) {
device_printf(dev, "cannot allocate queue buffers\n");
break;
}
if (ubsec_dma_malloc(sc, sizeof(struct ubsec_dmachunk),
&dmap->d_alloc, 0)) {
device_printf(dev, "cannot allocate dma buffers\n");
free(q, M_DEVBUF);
break;
}
dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
q->q_dma = dmap;
sc->sc_queuea[i] = q;
SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
}
mtx_init(&sc->sc_mcr1lock, device_get_nameunit(dev),
"mcr1 operations", MTX_DEF);
mtx_init(&sc->sc_freeqlock, device_get_nameunit(dev),
"mcr1 free q", MTX_DEF);
device_printf(sc->sc_dev, "%s\n", ubsec_partname(sc));
crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
/*
* Reset Broadcom chip
*/
ubsec_reset_board(sc);
/*
* Init Broadcom specific PCI settings
*/
ubsec_init_pciregs(dev);
/*
* Init Broadcom chip
*/
ubsec_init_board(sc);
#ifndef UBSEC_NO_RNG
if (sc->sc_flags & UBS_FLAGS_RNG) {
sc->sc_statmask |= BS_STAT_MCR2_DONE;
#ifdef UBSEC_RNDTEST
sc->sc_rndtest = rndtest_attach(dev);
if (sc->sc_rndtest)
sc->sc_harvest = rndtest_harvest;
else
sc->sc_harvest = default_harvest;
#else
sc->sc_harvest = default_harvest;
#endif
if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
&sc->sc_rng.rng_q.q_mcr, 0))
goto skip_rng;
if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rngbypass),
&sc->sc_rng.rng_q.q_ctx, 0)) {
ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
goto skip_rng;
}
if (ubsec_dma_malloc(sc, sizeof(u_int32_t) *
UBSEC_RNG_BUFSIZ, &sc->sc_rng.rng_buf, 0)) {
ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
goto skip_rng;
}
if (hz >= 100)
sc->sc_rnghz = hz / 100;
else
sc->sc_rnghz = 1;
callout_init(&sc->sc_rngto, CALLOUT_MPSAFE);
callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
skip_rng:
;
}
#endif /* UBSEC_NO_RNG */
mtx_init(&sc->sc_mcr2lock, device_get_nameunit(dev),
"mcr2 operations", MTX_DEF);
if (sc->sc_flags & UBS_FLAGS_KEY) {
sc->sc_statmask |= BS_STAT_MCR2_DONE;
crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0);
#if 0
crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0);
#endif
}
return (0);
bad4:
crypto_unregister_all(sc->sc_cid);
bad3:
bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
bad2:
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
bad1:
bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
bad:
return (ENXIO);
}
/*
* Detach a device that successfully probed.
*/
static int
ubsec_detach(device_t dev)
{
struct ubsec_softc *sc = device_get_softc(dev);
/* XXX wait/abort active ops */
/* disable interrupts */
WRITE_REG(sc, BS_CTRL, READ_REG(sc, BS_CTRL) &~
(BS_CTRL_MCR2INT | BS_CTRL_MCR1INT | BS_CTRL_DMAERR));
callout_stop(&sc->sc_rngto);
crypto_unregister_all(sc->sc_cid);
#ifdef UBSEC_RNDTEST
if (sc->sc_rndtest)
rndtest_detach(sc->sc_rndtest);
#endif
while (!SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
struct ubsec_q *q;
q = SIMPLEQ_FIRST(&sc->sc_freequeue);
SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, q_next);
ubsec_dma_free(sc, &q->q_dma->d_alloc);
free(q, M_DEVBUF);
}
mtx_destroy(&sc->sc_mcr1lock);
mtx_destroy(&sc->sc_freeqlock);
#ifndef UBSEC_NO_RNG
if (sc->sc_flags & UBS_FLAGS_RNG) {
ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_mcr);
ubsec_dma_free(sc, &sc->sc_rng.rng_q.q_ctx);
ubsec_dma_free(sc, &sc->sc_rng.rng_buf);
}
#endif /* UBSEC_NO_RNG */
mtx_destroy(&sc->sc_mcr2lock);
bus_generic_detach(dev);
bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
bus_dma_tag_destroy(sc->sc_dmat);
bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
return (0);
}
/*
* Stop all chip i/o so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static int
ubsec_shutdown(device_t dev)
{
#ifdef notyet
ubsec_stop(device_get_softc(dev));
#endif
return (0);
}
/*
* Device suspend routine.
*/
static int
ubsec_suspend(device_t dev)
{
struct ubsec_softc *sc = device_get_softc(dev);
#ifdef notyet
/* XXX stop the device and save PCI settings */
#endif
sc->sc_suspended = 1;
return (0);
}
static int
ubsec_resume(device_t dev)
{
struct ubsec_softc *sc = device_get_softc(dev);
#ifdef notyet
/* XXX retore PCI settings and start the device */
#endif
sc->sc_suspended = 0;
return (0);
}
/*
* UBSEC Interrupt routine
*/
static void
ubsec_intr(void *arg)
{
struct ubsec_softc *sc = arg;
volatile u_int32_t stat;
struct ubsec_q *q;
struct ubsec_dma *dmap;
int npkts = 0, i;
stat = READ_REG(sc, BS_STAT);
stat &= sc->sc_statmask;
if (stat == 0)
return;
WRITE_REG(sc, BS_STAT, stat); /* IACK */
/*
* Check to see if we have any packets waiting for us
*/
if ((stat & BS_STAT_MCR1_DONE)) {
mtx_lock(&sc->sc_mcr1lock);
while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
q = SIMPLEQ_FIRST(&sc->sc_qchip);
dmap = q->q_dma;
if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0)
break;
SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q_next);
npkts = q->q_nstacked_mcrs;
sc->sc_nqchip -= 1+npkts;
/*
* search for further sc_qchip ubsec_q's that share
* the same MCR, and complete them too, they must be
* at the top.
*/
for (i = 0; i < npkts; i++) {
if(q->q_stacked_mcr[i]) {
ubsec_callback(sc, q->q_stacked_mcr[i]);
} else {
break;
}
}
ubsec_callback(sc, q);
}
/*
* Don't send any more packet to chip if there has been
* a DMAERR.
*/
if (!(stat & BS_STAT_DMAERR))
ubsec_feed(sc);
mtx_unlock(&sc->sc_mcr1lock);
}
/*
* Check to see if we have any key setups/rng's waiting for us
*/
if ((sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG)) &&
(stat & BS_STAT_MCR2_DONE)) {
struct ubsec_q2 *q2;
struct ubsec_mcr *mcr;
mtx_lock(&sc->sc_mcr2lock);
while (!SIMPLEQ_EMPTY(&sc->sc_qchip2)) {
q2 = SIMPLEQ_FIRST(&sc->sc_qchip2);
ubsec_dma_sync(&q2->q_mcr,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
mcr = (struct ubsec_mcr *)q2->q_mcr.dma_vaddr;
if ((mcr->mcr_flags & htole16(UBS_MCR_DONE)) == 0) {
ubsec_dma_sync(&q2->q_mcr,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
break;
}
SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip2, q_next);
ubsec_callback2(sc, q2);
/*
* Don't send any more packet to chip if there has been
* a DMAERR.
*/
if (!(stat & BS_STAT_DMAERR))
ubsec_feed2(sc);
}
mtx_unlock(&sc->sc_mcr2lock);
}
/*
* Check to see if we got any DMA Error
*/
if (stat & BS_STAT_DMAERR) {
#ifdef UBSEC_DEBUG
if (ubsec_debug) {
volatile u_int32_t a = READ_REG(sc, BS_ERR);
printf("dmaerr %s@%08x\n",
(a & BS_ERR_READ) ? "read" : "write",
a & BS_ERR_ADDR);
}
#endif /* UBSEC_DEBUG */
ubsecstats.hst_dmaerr++;
mtx_lock(&sc->sc_mcr1lock);
ubsec_totalreset(sc);
ubsec_feed(sc);
mtx_unlock(&sc->sc_mcr1lock);
}
if (sc->sc_needwakeup) { /* XXX check high watermark */
int wakeup;
mtx_lock(&sc->sc_freeqlock);
wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
#ifdef UBSEC_DEBUG
if (ubsec_debug)
device_printf(sc->sc_dev, "wakeup crypto (%x)\n",
sc->sc_needwakeup);
#endif /* UBSEC_DEBUG */
sc->sc_needwakeup &= ~wakeup;
mtx_unlock(&sc->sc_freeqlock);
crypto_unblock(sc->sc_cid, wakeup);
}
}
/*
* ubsec_feed() - aggregate and post requests to chip
*/
static void
ubsec_feed(struct ubsec_softc *sc)
{
struct ubsec_q *q, *q2;
int npkts, i;
void *v;
u_int32_t stat;
/*
* Decide how many ops to combine in a single MCR. We cannot
* aggregate more than UBS_MAX_AGGR because this is the number
* of slots defined in the data structure. Note that
* aggregation only happens if ops are marked batch'able.
* Aggregating ops reduces the number of interrupts to the host
* but also (potentially) increases the latency for processing
* completed ops as we only get an interrupt when all aggregated
* ops have completed.
*/
if (sc->sc_nqueue == 0)
return;
if (sc->sc_nqueue > 1) {
npkts = 0;
SIMPLEQ_FOREACH(q, &sc->sc_queue, q_next) {
npkts++;
if ((q->q_crp->crp_flags & CRYPTO_F_BATCH) == 0)
break;
}
} else
npkts = 1;
/*
* Check device status before going any further.
*/
if ((stat = READ_REG(sc, BS_STAT)) & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
if (stat & BS_STAT_DMAERR) {
ubsec_totalreset(sc);
ubsecstats.hst_dmaerr++;
} else
ubsecstats.hst_mcr1full++;
return;
}
if (sc->sc_nqueue > ubsecstats.hst_maxqueue)
ubsecstats.hst_maxqueue = sc->sc_nqueue;
if (npkts > UBS_MAX_AGGR)
npkts = UBS_MAX_AGGR;
if (npkts < 2) /* special case 1 op */
goto feed1;
ubsecstats.hst_totbatch += npkts-1;
#ifdef UBSEC_DEBUG
if (ubsec_debug)
printf("merging %d records\n", npkts);
#endif /* UBSEC_DEBUG */
q = SIMPLEQ_FIRST(&sc->sc_queue);
SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
--sc->sc_nqueue;
bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_PREWRITE);
if (q->q_dst_map != NULL)
bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, BUS_DMASYNC_PREREAD);
q->q_nstacked_mcrs = npkts - 1; /* Number of packets stacked */
for (i = 0; i < q->q_nstacked_mcrs; i++) {
q2 = SIMPLEQ_FIRST(&sc->sc_queue);
bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
BUS_DMASYNC_PREWRITE);
if (q2->q_dst_map != NULL)
bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
BUS_DMASYNC_PREREAD);
SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
--sc->sc_nqueue;
v = (void*)(((char *)&q2->q_dma->d_dma->d_mcr) + sizeof(struct ubsec_mcr) -
sizeof(struct ubsec_mcr_add));
bcopy(v, &q->q_dma->d_dma->d_mcradd[i], sizeof(struct ubsec_mcr_add));
q->q_stacked_mcr[i] = q2;
}
q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
sc->sc_nqchip += npkts;
if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
ubsecstats.hst_maxqchip = sc->sc_nqchip;
ubsec_dma_sync(&q->q_dma->d_alloc,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
offsetof(struct ubsec_dmachunk, d_mcr));
return;
feed1:
q = SIMPLEQ_FIRST(&sc->sc_queue);
bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_PREWRITE);
if (q->q_dst_map != NULL)
bus_dmamap_sync(sc->sc_dmat, q->q_dst_map, BUS_DMASYNC_PREREAD);
ubsec_dma_sync(&q->q_dma->d_alloc,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
offsetof(struct ubsec_dmachunk, d_mcr));
#ifdef UBSEC_DEBUG
if (ubsec_debug)
printf("feed1: q->chip %p %08x stat %08x\n",
q, (u_int32_t)vtophys(&q->q_dma->d_dma->d_mcr),
stat);
#endif /* UBSEC_DEBUG */
SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
--sc->sc_nqueue;
SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
sc->sc_nqchip++;
if (sc->sc_nqchip > ubsecstats.hst_maxqchip)
ubsecstats.hst_maxqchip = sc->sc_nqchip;
return;
}
static void
ubsec_setup_enckey(struct ubsec_session *ses, int algo, caddr_t key)
{
/* Go ahead and compute key in ubsec's byte order */
if (algo == CRYPTO_DES_CBC) {
bcopy(key, &ses->ses_deskey[0], 8);
bcopy(key, &ses->ses_deskey[2], 8);
bcopy(key, &ses->ses_deskey[4], 8);
} else
bcopy(key, ses->ses_deskey, 24);
SWAP32(ses->ses_deskey[0]);
SWAP32(ses->ses_deskey[1]);
SWAP32(ses->ses_deskey[2]);
SWAP32(ses->ses_deskey[3]);
SWAP32(ses->ses_deskey[4]);
SWAP32(ses->ses_deskey[5]);
}
static void
ubsec_setup_mackey(struct ubsec_session *ses, int algo, caddr_t key, int klen)
{
MD5_CTX md5ctx;
SHA1_CTX sha1ctx;
int i;
for (i = 0; i < klen; i++)
key[i] ^= HMAC_IPAD_VAL;
if (algo == CRYPTO_MD5_HMAC) {
MD5Init(&md5ctx);
MD5Update(&md5ctx, key, klen);
MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen);
bcopy(md5ctx.state, ses->ses_hminner, sizeof(md5ctx.state));
} else {
SHA1Init(&sha1ctx);
SHA1Update(&sha1ctx, key, klen);
SHA1Update(&sha1ctx, hmac_ipad_buffer,
SHA1_HMAC_BLOCK_LEN - klen);
bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
}
for (i = 0; i < klen; i++)
key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
if (algo == CRYPTO_MD5_HMAC) {
MD5Init(&md5ctx);
MD5Update(&md5ctx, key, klen);
MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen);
bcopy(md5ctx.state, ses->ses_hmouter, sizeof(md5ctx.state));
} else {
SHA1Init(&sha1ctx);
SHA1Update(&sha1ctx, key, klen);
SHA1Update(&sha1ctx, hmac_opad_buffer,
SHA1_HMAC_BLOCK_LEN - klen);
bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
}
for (i = 0; i < klen; i++)
key[i] ^= HMAC_OPAD_VAL;
}
/*
* Allocate a new 'session' and return an encoded session id. 'sidp'
* contains our registration id, and should contain an encoded session
* id on successful allocation.
*/
static int
ubsec_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
{
struct ubsec_softc *sc = device_get_softc(dev);
struct cryptoini *c, *encini = NULL, *macini = NULL;
struct ubsec_session *ses = NULL;
int sesn;
if (sidp == NULL || cri == NULL || sc == NULL)
return (EINVAL);
for (c = cri; c != NULL; c = c->cri_next) {
if (c->cri_alg == CRYPTO_MD5_HMAC ||
c->cri_alg == CRYPTO_SHA1_HMAC) {
if (macini)
return (EINVAL);
macini = c;
} else if (c->cri_alg == CRYPTO_DES_CBC ||
c->cri_alg == CRYPTO_3DES_CBC) {
if (encini)
return (EINVAL);
encini = c;
} else
return (EINVAL);
}
if (encini == NULL && macini == NULL)
return (EINVAL);
if (sc->sc_sessions == NULL) {
ses = sc->sc_sessions = (struct ubsec_session *)malloc(
sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
if (ses == NULL)
return (ENOMEM);
sesn = 0;
sc->sc_nsessions = 1;
} else {
for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
if (sc->sc_sessions[sesn].ses_used == 0) {
ses = &sc->sc_sessions[sesn];
break;
}
}
if (ses == NULL) {
sesn = sc->sc_nsessions;
ses = (struct ubsec_session *)malloc((sesn + 1) *
sizeof(struct ubsec_session), M_DEVBUF, M_NOWAIT);
if (ses == NULL)
return (ENOMEM);
bcopy(sc->sc_sessions, ses, sesn *
sizeof(struct ubsec_session));
bzero(sc->sc_sessions, sesn *
sizeof(struct ubsec_session));
free(sc->sc_sessions, M_DEVBUF);
sc->sc_sessions = ses;
ses = &sc->sc_sessions[sesn];
sc->sc_nsessions++;
}
}
bzero(ses, sizeof(struct ubsec_session));
ses->ses_used = 1;
if (encini) {
/* get an IV, network byte order */
/* XXX may read fewer than requested */
read_random(ses->ses_iv, sizeof(ses->ses_iv));
if (encini->cri_key != NULL) {
ubsec_setup_enckey(ses, encini->cri_alg,
encini->cri_key);
}
}
if (macini) {
ses->ses_mlen = macini->cri_mlen;
if (ses->ses_mlen == 0) {
if (macini->cri_alg == CRYPTO_MD5_HMAC)
ses->ses_mlen = MD5_HASH_LEN;
else
ses->ses_mlen = SHA1_HASH_LEN;
}
if (macini->cri_key != NULL) {
ubsec_setup_mackey(ses, macini->cri_alg,
macini->cri_key, macini->cri_klen / 8);
}
}
*sidp = UBSEC_SID(device_get_unit(sc->sc_dev), sesn);
return (0);
}
/*
* Deallocate a session.
*/
static int
ubsec_freesession(device_t dev, u_int64_t tid)
{
struct ubsec_softc *sc = device_get_softc(dev);
int session, ret;
u_int32_t sid = CRYPTO_SESID2LID(tid);
if (sc == NULL)
return (EINVAL);
session = UBSEC_SESSION(sid);
if (session < sc->sc_nsessions) {
bzero(&sc->sc_sessions[session],
sizeof(sc->sc_sessions[session]));
ret = 0;
} else
ret = EINVAL;
return (ret);
}
static void
ubsec_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize, int error)
{
struct ubsec_operand *op = arg;
KASSERT(nsegs <= UBS_MAX_SCATTER,
("Too many DMA segments returned when mapping operand"));
#ifdef UBSEC_DEBUG
if (ubsec_debug)
printf("ubsec_op_cb: mapsize %u nsegs %d error %d\n",
(u_int) mapsize, nsegs, error);
#endif
if (error != 0)
return;
op->mapsize = mapsize;
op->nsegs = nsegs;
bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
}
static int
ubsec_process(device_t dev, struct cryptop *crp, int hint)
{
struct ubsec_softc *sc = device_get_softc(dev);
struct ubsec_q *q = NULL;
int err = 0, i, j, nicealign;
struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
int encoffset = 0, macoffset = 0, cpskip, cpoffset;
int sskip, dskip, stheend, dtheend;
int16_t coffset;
struct ubsec_session *ses;
struct ubsec_pktctx ctx;
struct ubsec_dma *dmap = NULL;
if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
ubsecstats.hst_invalid++;
return (EINVAL);
}
if (UBSEC_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
ubsecstats.hst_badsession++;
return (EINVAL);
}
mtx_lock(&sc->sc_freeqlock);
if (SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
ubsecstats.hst_queuefull++;
sc->sc_needwakeup |= CRYPTO_SYMQ;
mtx_unlock(&sc->sc_freeqlock);
return (ERESTART);
}
q = SIMPLEQ_FIRST(&sc->sc_freequeue);
SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, q_next);
mtx_unlock(&sc->sc_freeqlock);
dmap = q->q_dma; /* Save dma pointer */
bzero(q, sizeof(struct ubsec_q));
bzero(&ctx, sizeof(ctx));
q->q_sesn = UBSEC_SESSION(crp->crp_sid);
q->q_dma = dmap;
ses = &sc->sc_sessions[q->q_sesn];
if (crp->crp_flags & CRYPTO_F_IMBUF) {
q->q_src_m = (struct mbuf *)crp->crp_buf;
q->q_dst_m = (struct mbuf *)crp->crp_buf;
} else if (crp->crp_flags & CRYPTO_F_IOV) {
q->q_src_io = (struct uio *)crp->crp_buf;
q->q_dst_io = (struct uio *)crp->crp_buf;
} else {
ubsecstats.hst_badflags++;
err = EINVAL;
goto errout; /* XXX we don't handle contiguous blocks! */
}
bzero(&dmap->d_dma->d_mcr, sizeof(struct ubsec_mcr));
dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
dmap->d_dma->d_mcr.mcr_flags = 0;
q->q_crp = crp;
crd1 = crp->crp_desc;
if (crd1 == NULL) {
ubsecstats.hst_nodesc++;
err = EINVAL;
goto errout;
}
crd2 = crd1->crd_next;
if (crd2 == NULL) {
if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
crd1->crd_alg == CRYPTO_SHA1_HMAC) {
maccrd = crd1;
enccrd = NULL;
} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
crd1->crd_alg == CRYPTO_3DES_CBC) {
maccrd = NULL;
enccrd = crd1;
} else {
ubsecstats.hst_badalg++;
err = EINVAL;
goto errout;
}
} else {
if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
crd1->crd_alg == CRYPTO_SHA1_HMAC) &&
(crd2->crd_alg == CRYPTO_DES_CBC ||
crd2->crd_alg == CRYPTO_3DES_CBC) &&
((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
maccrd = crd1;
enccrd = crd2;
} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
crd1->crd_alg == CRYPTO_3DES_CBC) &&
(crd2->crd_alg == CRYPTO_MD5_HMAC ||
crd2->crd_alg == CRYPTO_SHA1_HMAC) &&
(crd1->crd_flags & CRD_F_ENCRYPT)) {
enccrd = crd1;
maccrd = crd2;
} else {
/*
* We cannot order the ubsec as requested
*/
ubsecstats.hst_badalg++;
err = EINVAL;
goto errout;
}
}
if (enccrd) {
if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT) {
ubsec_setup_enckey(ses, enccrd->crd_alg,
enccrd->crd_key);
}
encoffset = enccrd->crd_skip;
ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_3DES);
if (enccrd->crd_flags & CRD_F_ENCRYPT) {
q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
else {
ctx.pc_iv[0] = ses->ses_iv[0];
ctx.pc_iv[1] = ses->ses_iv[1];
}
if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
crypto_copyback(crp->crp_flags, crp->crp_buf,
enccrd->crd_inject, 8, (caddr_t)ctx.pc_iv);
}
} else {
ctx.pc_flags |= htole16(UBS_PKTCTX_INBOUND);
if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
bcopy(enccrd->crd_iv, ctx.pc_iv, 8);
else {
crypto_copydata(crp->crp_flags, crp->crp_buf,
enccrd->crd_inject, 8, (caddr_t)ctx.pc_iv);
}
}
ctx.pc_deskey[0] = ses->ses_deskey[0];
ctx.pc_deskey[1] = ses->ses_deskey[1];
ctx.pc_deskey[2] = ses->ses_deskey[2];
ctx.pc_deskey[3] = ses->ses_deskey[3];
ctx.pc_deskey[4] = ses->ses_deskey[4];
ctx.pc_deskey[5] = ses->ses_deskey[5];
SWAP32(ctx.pc_iv[0]);
SWAP32(ctx.pc_iv[1]);
}
if (maccrd) {
if (maccrd->crd_flags & CRD_F_KEY_EXPLICIT) {
ubsec_setup_mackey(ses, maccrd->crd_alg,
maccrd->crd_key, maccrd->crd_klen / 8);
}
macoffset = maccrd->crd_skip;
if (maccrd->crd_alg == CRYPTO_MD5_HMAC)
ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_MD5);
else
ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
for (i = 0; i < 5; i++) {
ctx.pc_hminner[i] = ses->ses_hminner[i];
ctx.pc_hmouter[i] = ses->ses_hmouter[i];
HTOLE32(ctx.pc_hminner[i]);
HTOLE32(ctx.pc_hmouter[i]);
}
}
if (enccrd && maccrd) {
/*
* ubsec cannot handle packets where the end of encryption
* and authentication are not the same, or where the
* encrypted part begins before the authenticated part.
*/
if ((encoffset + enccrd->crd_len) !=
(macoffset + maccrd->crd_len)) {
ubsecstats.hst_lenmismatch++;
err = EINVAL;
goto errout;
}
if (enccrd->crd_skip < maccrd->crd_skip) {
ubsecstats.hst_skipmismatch++;
err = EINVAL;
goto errout;
}
sskip = maccrd->crd_skip;
cpskip = dskip = enccrd->crd_skip;
stheend = maccrd->crd_len;
dtheend = enccrd->crd_len;
coffset = enccrd->crd_skip - maccrd->crd_skip;
cpoffset = cpskip + dtheend;
#ifdef UBSEC_DEBUG
if (ubsec_debug) {
printf("mac: skip %d, len %d, inject %d\n",
maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject);
printf("enc: skip %d, len %d, inject %d\n",
enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject);
printf("src: skip %d, len %d\n", sskip, stheend);
printf("dst: skip %d, len %d\n", dskip, dtheend);
printf("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
coffset, stheend, cpskip, cpoffset);
}
#endif
} else {
cpskip = dskip = sskip = macoffset + encoffset;
dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
cpoffset = cpskip + dtheend;
coffset = 0;
}
ctx.pc_offset = htole16(coffset >> 2);
if (bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &q->q_src_map)) {
ubsecstats.hst_nomap++;
err = ENOMEM;
goto errout;
}
if (crp->crp_flags & CRYPTO_F_IMBUF) {
if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
q->q_src_m, ubsec_op_cb, &q->q_src, BUS_DMA_NOWAIT) != 0) {
bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
q->q_src_map = NULL;
ubsecstats.hst_noload++;
err = ENOMEM;
goto errout;
}
} else if (crp->crp_flags & CRYPTO_F_IOV) {
if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
q->q_src_io, ubsec_op_cb, &q->q_src, BUS_DMA_NOWAIT) != 0) {
bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
q->q_src_map = NULL;
ubsecstats.hst_noload++;
err = ENOMEM;
goto errout;
}
}
nicealign = ubsec_dmamap_aligned(&q->q_src);
dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
#ifdef UBSEC_DEBUG
if (ubsec_debug)
printf("src skip: %d nicealign: %u\n", sskip, nicealign);
#endif
for (i = j = 0; i < q->q_src_nsegs; i++) {
struct ubsec_pktbuf *pb;
bus_size_t packl = q->q_src_segs[i].ds_len;
bus_addr_t packp = q->q_src_segs[i].ds_addr;
if (sskip >= packl) {
sskip -= packl;
continue;
}
packl -= sskip;
packp += sskip;
sskip = 0;
if (packl > 0xfffc) {
err = EIO;
goto errout;
}
if (j == 0)
pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
else
pb = &dmap->d_dma->d_sbuf[j - 1];
pb->pb_addr = htole32(packp);
if (stheend) {
if (packl > stheend) {
pb->pb_len = htole32(stheend);
stheend = 0;
} else {
pb->pb_len = htole32(packl);
stheend -= packl;
}
} else
pb->pb_len = htole32(packl);
if ((i + 1) == q->q_src_nsegs)
pb->pb_next = 0;
else
pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
offsetof(struct ubsec_dmachunk, d_sbuf[j]));
j++;
}
if (enccrd == NULL && maccrd != NULL) {
dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
dmap->d_dma->d_mcr.mcr_opktbuf.pb_next = htole32(dmap->d_alloc.dma_paddr +
offsetof(struct ubsec_dmachunk, d_macbuf[0]));
#ifdef UBSEC_DEBUG
if (ubsec_debug)
printf("opkt: %x %x %x\n",
dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
#endif
} else {
if (crp->crp_flags & CRYPTO_F_IOV) {
if (!nicealign) {
ubsecstats.hst_iovmisaligned++;
err = EINVAL;
goto errout;
}
if (bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
&q->q_dst_map)) {
ubsecstats.hst_nomap++;
err = ENOMEM;
goto errout;
}
if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
q->q_dst_io, ubsec_op_cb, &q->q_dst, BUS_DMA_NOWAIT) != 0) {
bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
q->q_dst_map = NULL;
ubsecstats.hst_noload++;
err = ENOMEM;
goto errout;
}
} else if (crp->crp_flags & CRYPTO_F_IMBUF) {
if (nicealign) {
q->q_dst = q->q_src;
} else {
int totlen, len;
struct mbuf *m, *top, **mp;
ubsecstats.hst_unaligned++;
totlen = q->q_src_mapsize;
if (totlen >= MINCLSIZE) {
m = m_getcl(M_NOWAIT, MT_DATA,
q->q_src_m->m_flags & M_PKTHDR);
len = MCLBYTES;
} else if (q->q_src_m->m_flags & M_PKTHDR) {
m = m_gethdr(M_NOWAIT, MT_DATA);
len = MHLEN;
} else {
m = m_get(M_NOWAIT, MT_DATA);
len = MLEN;
}
if (m && q->q_src_m->m_flags & M_PKTHDR &&
!m_dup_pkthdr(m, q->q_src_m, M_NOWAIT)) {
m_free(m);
m = NULL;
}
if (m == NULL) {
ubsecstats.hst_nombuf++;
err = sc->sc_nqueue ? ERESTART : ENOMEM;
goto errout;
}
m->m_len = len = min(totlen, len);
totlen -= len;
top = m;
mp = &top;
while (totlen > 0) {
if (totlen >= MINCLSIZE) {
m = m_getcl(M_NOWAIT,
MT_DATA, 0);
len = MCLBYTES;
} else {
m = m_get(M_NOWAIT, MT_DATA);
len = MLEN;
}
if (m == NULL) {
m_freem(top);
ubsecstats.hst_nombuf++;
err = sc->sc_nqueue ? ERESTART : ENOMEM;
goto errout;
}
m->m_len = len = min(totlen, len);
totlen -= len;
*mp = m;
mp = &m->m_next;
}
q->q_dst_m = top;
ubsec_mcopy(q->q_src_m, q->q_dst_m,
cpskip, cpoffset);
if (bus_dmamap_create(sc->sc_dmat,
BUS_DMA_NOWAIT, &q->q_dst_map) != 0) {
ubsecstats.hst_nomap++;
err = ENOMEM;
goto errout;
}
if (bus_dmamap_load_mbuf(sc->sc_dmat,
q->q_dst_map, q->q_dst_m,
ubsec_op_cb, &q->q_dst,
BUS_DMA_NOWAIT) != 0) {
bus_dmamap_destroy(sc->sc_dmat,
q->q_dst_map);
q->q_dst_map = NULL;
ubsecstats.hst_noload++;
err = ENOMEM;
goto errout;
}
}
} else {
ubsecstats.hst_badflags++;
err = EINVAL;
goto errout;
}
#ifdef UBSEC_DEBUG
if (ubsec_debug)
printf("dst skip: %d\n", dskip);
#endif
for (i = j = 0; i < q->q_dst_nsegs; i++) {
struct ubsec_pktbuf *pb;
bus_size_t packl = q->q_dst_segs[i].ds_len;
bus_addr_t packp = q->q_dst_segs[i].ds_addr;
if (dskip >= packl) {
dskip -= packl;
continue;
}
packl -= dskip;
packp += dskip;
dskip = 0;
if (packl > 0xfffc) {
err = EIO;
goto errout;
}
if (j == 0)
pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
else
pb = &dmap->d_dma->d_dbuf[j - 1];
pb->pb_addr = htole32(packp);
if (dtheend) {
if (packl > dtheend) {
pb->pb_len = htole32(dtheend);
dtheend = 0;
} else {
pb->pb_len = htole32(packl);
dtheend -= packl;
}
} else
pb->pb_len = htole32(packl);
if ((i + 1) == q->q_dst_nsegs) {
if (maccrd)
pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
offsetof(struct ubsec_dmachunk, d_macbuf[0]));
else
pb->pb_next = 0;
} else
pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
offsetof(struct ubsec_dmachunk, d_dbuf[j]));
j++;
}
}
dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
offsetof(struct ubsec_dmachunk, d_ctx));
if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
struct ubsec_pktctx_long *ctxl;
ctxl = (struct ubsec_pktctx_long *)(dmap->d_alloc.dma_vaddr +
offsetof(struct ubsec_dmachunk, d_ctx));
/* transform small context into long context */
ctxl->pc_len = htole16(sizeof(struct ubsec_pktctx_long));
ctxl->pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC);
ctxl->pc_flags = ctx.pc_flags;
ctxl->pc_offset = ctx.pc_offset;
for (i = 0; i < 6; i++)
ctxl->pc_deskey[i] = ctx.pc_deskey[i];
for (i = 0; i < 5; i++)
ctxl->pc_hminner[i] = ctx.pc_hminner[i];
for (i = 0; i < 5; i++)
ctxl->pc_hmouter[i] = ctx.pc_hmouter[i];
ctxl->pc_iv[0] = ctx.pc_iv[0];
ctxl->pc_iv[1] = ctx.pc_iv[1];
} else
bcopy(&ctx, dmap->d_alloc.dma_vaddr +
offsetof(struct ubsec_dmachunk, d_ctx),
sizeof(struct ubsec_pktctx));
mtx_lock(&sc->sc_mcr1lock);
SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
sc->sc_nqueue++;
ubsecstats.hst_ipackets++;
ubsecstats.hst_ibytes += dmap->d_alloc.dma_size;
if ((hint & CRYPTO_HINT_MORE) == 0 || sc->sc_nqueue >= UBS_MAX_AGGR)
ubsec_feed(sc);
mtx_unlock(&sc->sc_mcr1lock);
return (0);
errout:
if (q != NULL) {
if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
m_freem(q->q_dst_m);
if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
}
if (q->q_src_map != NULL) {
bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
}
}
if (q != NULL || err == ERESTART) {
mtx_lock(&sc->sc_freeqlock);
if (q != NULL)
SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
if (err == ERESTART)
sc->sc_needwakeup |= CRYPTO_SYMQ;
mtx_unlock(&sc->sc_freeqlock);
}
if (err != ERESTART) {
crp->crp_etype = err;
crypto_done(crp);
}
return (err);
}
static void
ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
{
struct cryptop *crp = (struct cryptop *)q->q_crp;
struct cryptodesc *crd;
struct ubsec_dma *dmap = q->q_dma;
ubsecstats.hst_opackets++;
ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
ubsec_dma_sync(&dmap->d_alloc,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
}
bus_dmamap_sync(sc->sc_dmat, q->q_src_map, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
if ((crp->crp_flags & CRYPTO_F_IMBUF) && (q->q_src_m != q->q_dst_m)) {
m_freem(q->q_src_m);
crp->crp_buf = (caddr_t)q->q_dst_m;
}
/* copy out IV for future use */
if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
if (crd->crd_alg != CRYPTO_DES_CBC &&
crd->crd_alg != CRYPTO_3DES_CBC)
continue;
crypto_copydata(crp->crp_flags, crp->crp_buf,
crd->crd_skip + crd->crd_len - 8, 8,
(caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
break;
}
}
for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
if (crd->crd_alg != CRYPTO_MD5_HMAC &&
crd->crd_alg != CRYPTO_SHA1_HMAC)
continue;
crypto_copyback(crp->crp_flags, crp->crp_buf, crd->crd_inject,
sc->sc_sessions[q->q_sesn].ses_mlen,
(caddr_t)dmap->d_dma->d_macbuf);
break;
}
mtx_lock(&sc->sc_freeqlock);
SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
mtx_unlock(&sc->sc_freeqlock);
crypto_done(crp);
}
static void
ubsec_mcopy(struct mbuf *srcm, struct mbuf *dstm, int hoffset, int toffset)
{
int i, j, dlen, slen;
caddr_t dptr, sptr;
j = 0;
sptr = srcm->m_data;
slen = srcm->m_len;
dptr = dstm->m_data;
dlen = dstm->m_len;
while (1) {
for (i = 0; i < min(slen, dlen); i++) {
if (j < hoffset || j >= toffset)
*dptr++ = *sptr++;
slen--;
dlen--;
j++;
}
if (slen == 0) {
srcm = srcm->m_next;
if (srcm == NULL)
return;
sptr = srcm->m_data;
slen = srcm->m_len;
}
if (dlen == 0) {
dstm = dstm->m_next;
if (dstm == NULL)
return;
dptr = dstm->m_data;
dlen = dstm->m_len;
}
}
}
/*
* feed the key generator, must be called at splimp() or higher.
*/
static int
ubsec_feed2(struct ubsec_softc *sc)
{
struct ubsec_q2 *q;
while (!SIMPLEQ_EMPTY(&sc->sc_queue2)) {
if (READ_REG(sc, BS_STAT) & BS_STAT_MCR2_FULL)
break;
q = SIMPLEQ_FIRST(&sc->sc_queue2);
ubsec_dma_sync(&q->q_mcr,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
ubsec_dma_sync(&q->q_ctx, BUS_DMASYNC_PREWRITE);
WRITE_REG(sc, BS_MCR2, q->q_mcr.dma_paddr);
SIMPLEQ_REMOVE_HEAD(&sc->sc_queue2, q_next);
--sc->sc_nqueue2;
SIMPLEQ_INSERT_TAIL(&sc->sc_qchip2, q, q_next);
}
return (0);
}
/*
* Callback for handling random numbers
*/
static void
ubsec_callback2(struct ubsec_softc *sc, struct ubsec_q2 *q)
{
struct cryptkop *krp;
struct ubsec_ctx_keyop *ctx;
ctx = (struct ubsec_ctx_keyop *)q->q_ctx.dma_vaddr;
ubsec_dma_sync(&q->q_ctx, BUS_DMASYNC_POSTWRITE);
switch (q->q_type) {
#ifndef UBSEC_NO_RNG
case UBS_CTXOP_RNGBYPASS: {
struct ubsec_q2_rng *rng = (struct ubsec_q2_rng *)q;
ubsec_dma_sync(&rng->rng_buf, BUS_DMASYNC_POSTREAD);
(*sc->sc_harvest)(sc->sc_rndtest,
rng->rng_buf.dma_vaddr,
UBSEC_RNG_BUFSIZ*sizeof (u_int32_t));
rng->rng_used = 0;
callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
break;
}
#endif
case UBS_CTXOP_MODEXP: {
struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
u_int rlen, clen;
krp = me->me_krp;
rlen = (me->me_modbits + 7) / 8;
clen = (krp->krp_param[krp->krp_iparams].crp_nbits + 7) / 8;
ubsec_dma_sync(&me->me_M, BUS_DMASYNC_POSTWRITE);
ubsec_dma_sync(&me->me_E, BUS_DMASYNC_POSTWRITE);
ubsec_dma_sync(&me->me_C, BUS_DMASYNC_POSTREAD);
ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_POSTWRITE);
if (clen < rlen)
krp->krp_status = E2BIG;
else {
if (sc->sc_flags & UBS_FLAGS_HWNORM) {
bzero(krp->krp_param[krp->krp_iparams].crp_p,
(krp->krp_param[krp->krp_iparams].crp_nbits
+ 7) / 8);
bcopy(me->me_C.dma_vaddr,
krp->krp_param[krp->krp_iparams].crp_p,
(me->me_modbits + 7) / 8);
} else
ubsec_kshift_l(me->me_shiftbits,
me->me_C.dma_vaddr, me->me_normbits,
krp->krp_param[krp->krp_iparams].crp_p,
krp->krp_param[krp->krp_iparams].crp_nbits);
}
crypto_kdone(krp);
/* bzero all potentially sensitive data */
bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
/* Can't free here, so put us on the free list. */
SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &me->me_q, q_next);
break;
}
case UBS_CTXOP_RSAPRIV: {
struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
u_int len;
krp = rp->rpr_krp;
ubsec_dma_sync(&rp->rpr_msgin, BUS_DMASYNC_POSTWRITE);
ubsec_dma_sync(&rp->rpr_msgout, BUS_DMASYNC_POSTREAD);
len = (krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_nbits + 7) / 8;
bcopy(rp->rpr_msgout.dma_vaddr,
krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT].crp_p, len);
crypto_kdone(krp);
bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
bzero(rp->rpr_q.q_ctx.dma_vaddr, rp->rpr_q.q_ctx.dma_size);
/* Can't free here, so put us on the free list. */
SIMPLEQ_INSERT_TAIL(&sc->sc_q2free, &rp->rpr_q, q_next);
break;
}
default:
device_printf(sc->sc_dev, "unknown ctx op: %x\n",
letoh16(ctx->ctx_op));
break;
}
}
#ifndef UBSEC_NO_RNG
static void
ubsec_rng(void *vsc)
{
struct ubsec_softc *sc = vsc;
struct ubsec_q2_rng *rng = &sc->sc_rng;
struct ubsec_mcr *mcr;
struct ubsec_ctx_rngbypass *ctx;
mtx_lock(&sc->sc_mcr2lock);
if (rng->rng_used) {
mtx_unlock(&sc->sc_mcr2lock);
return;
}
sc->sc_nqueue2++;
if (sc->sc_nqueue2 >= UBS_MAX_NQUEUE)
goto out;
mcr = (struct ubsec_mcr *)rng->rng_q.q_mcr.dma_vaddr;
ctx = (struct ubsec_ctx_rngbypass *)rng->rng_q.q_ctx.dma_vaddr;
mcr->mcr_pkts = htole16(1);
mcr->mcr_flags = 0;
mcr->mcr_cmdctxp = htole32(rng->rng_q.q_ctx.dma_paddr);
mcr->mcr_ipktbuf.pb_addr = mcr->mcr_ipktbuf.pb_next = 0;
mcr->mcr_ipktbuf.pb_len = 0;
mcr->mcr_reserved = mcr->mcr_pktlen = 0;
mcr->mcr_opktbuf.pb_addr = htole32(rng->rng_buf.dma_paddr);
mcr->mcr_opktbuf.pb_len = htole32(((sizeof(u_int32_t) * UBSEC_RNG_BUFSIZ)) &
UBS_PKTBUF_LEN);
mcr->mcr_opktbuf.pb_next = 0;
ctx->rbp_len = htole16(sizeof(struct ubsec_ctx_rngbypass));
ctx->rbp_op = htole16(UBS_CTXOP_RNGBYPASS);
rng->rng_q.q_type = UBS_CTXOP_RNGBYPASS;
ubsec_dma_sync(&rng->rng_buf, BUS_DMASYNC_PREREAD);
SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rng->rng_q, q_next);
rng->rng_used = 1;
ubsec_feed2(sc);
ubsecstats.hst_rng++;
mtx_unlock(&sc->sc_mcr2lock);
return;
out:
/*
* Something weird happened, generate our own call back.
*/
sc->sc_nqueue2--;
mtx_unlock(&sc->sc_mcr2lock);
callout_reset(&sc->sc_rngto, sc->sc_rnghz, ubsec_rng, sc);
}
#endif /* UBSEC_NO_RNG */
static void
ubsec_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
bus_addr_t *paddr = (bus_addr_t*) arg;
*paddr = segs->ds_addr;
}
static int
ubsec_dma_malloc(
struct ubsec_softc *sc,
bus_size_t size,
struct ubsec_dma_alloc *dma,
int mapflags
)
{
int r;
/* XXX could specify sc_dmat as parent but that just adds overhead */
r = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */
1, 0, /* alignment, bounds */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
size, /* maxsize */
1, /* nsegments */
size, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&dma->dma_tag);
if (r != 0) {
device_printf(sc->sc_dev, "ubsec_dma_malloc: "
"bus_dma_tag_create failed; error %u\n", r);
goto fail_0;
}
r = bus_dmamap_create(dma->dma_tag, BUS_DMA_NOWAIT, &dma->dma_map);
if (r != 0) {
device_printf(sc->sc_dev, "ubsec_dma_malloc: "
"bus_dmamap_create failed; error %u\n", r);
goto fail_1;
}
r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
BUS_DMA_NOWAIT, &dma->dma_map);
if (r != 0) {
device_printf(sc->sc_dev, "ubsec_dma_malloc: "
"bus_dmammem_alloc failed; size %ju, error %u\n",
(intmax_t)size, r);
goto fail_2;
}
r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
size,
ubsec_dmamap_cb,
&dma->dma_paddr,
mapflags | BUS_DMA_NOWAIT);
if (r != 0) {
device_printf(sc->sc_dev, "ubsec_dma_malloc: "
"bus_dmamap_load failed; error %u\n", r);
goto fail_3;
}
dma->dma_size = size;
return (0);
fail_3:
bus_dmamap_unload(dma->dma_tag, dma->dma_map);
fail_2:
bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
fail_1:
bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
bus_dma_tag_destroy(dma->dma_tag);
fail_0:
dma->dma_map = NULL;
dma->dma_tag = NULL;
return (r);
}
static void
ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
{
bus_dmamap_unload(dma->dma_tag, dma->dma_map);
bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
bus_dma_tag_destroy(dma->dma_tag);
}
/*
* Resets the board. Values in the regesters are left as is
* from the reset (i.e. initial values are assigned elsewhere).
*/
static void
ubsec_reset_board(struct ubsec_softc *sc)
{
volatile u_int32_t ctrl;
ctrl = READ_REG(sc, BS_CTRL);
ctrl |= BS_CTRL_RESET;
WRITE_REG(sc, BS_CTRL, ctrl);
/*
* Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
*/
DELAY(10);
}
/*
* Init Broadcom registers
*/
static void
ubsec_init_board(struct ubsec_softc *sc)
{
u_int32_t ctrl;
ctrl = READ_REG(sc, BS_CTRL);
ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT;
if (sc->sc_flags & (UBS_FLAGS_KEY|UBS_FLAGS_RNG))
ctrl |= BS_CTRL_MCR2INT;
else
ctrl &= ~BS_CTRL_MCR2INT;
if (sc->sc_flags & UBS_FLAGS_HWNORM)
ctrl &= ~BS_CTRL_SWNORM;
WRITE_REG(sc, BS_CTRL, ctrl);
}
/*
* Init Broadcom PCI registers
*/
static void
ubsec_init_pciregs(device_t dev)
{
#if 0
u_int32_t misc;
misc = pci_conf_read(pc, pa->pa_tag, BS_RTY_TOUT);
misc = (misc & ~(UBS_PCI_RTY_MASK << UBS_PCI_RTY_SHIFT))
| ((UBS_DEF_RTY & 0xff) << UBS_PCI_RTY_SHIFT);
misc = (misc & ~(UBS_PCI_TOUT_MASK << UBS_PCI_TOUT_SHIFT))
| ((UBS_DEF_TOUT & 0xff) << UBS_PCI_TOUT_SHIFT);
pci_conf_write(pc, pa->pa_tag, BS_RTY_TOUT, misc);
#endif
/*
* This will set the cache line size to 1, this will
* force the BCM58xx chip just to do burst read/writes.
* Cache line read/writes are to slow
*/
pci_write_config(dev, PCIR_CACHELNSZ, UBS_DEF_CACHELINE, 1);
}
/*
* Clean up after a chip crash.
* It is assumed that the caller in splimp()
*/
static void
ubsec_cleanchip(struct ubsec_softc *sc)
{
struct ubsec_q *q;
while (!SIMPLEQ_EMPTY(&sc->sc_qchip)) {
q = SIMPLEQ_FIRST(&sc->sc_qchip);
SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q_next);
ubsec_free_q(sc, q);
}
sc->sc_nqchip = 0;
}
/*
* free a ubsec_q
* It is assumed that the caller is within splimp().
*/
static int
ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
{
struct ubsec_q *q2;
struct cryptop *crp;
int npkts;
int i;
npkts = q->q_nstacked_mcrs;
for (i = 0; i < npkts; i++) {
if(q->q_stacked_mcr[i]) {
q2 = q->q_stacked_mcr[i];
if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m))
m_freem(q2->q_dst_m);
crp = (struct cryptop *)q2->q_crp;
SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
crp->crp_etype = EFAULT;
crypto_done(crp);
} else {
break;
}
}
/*
* Free header MCR
*/
if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
m_freem(q->q_dst_m);
crp = (struct cryptop *)q->q_crp;
SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
crp->crp_etype = EFAULT;
crypto_done(crp);
return(0);
}
/*
* Routine to reset the chip and clean up.
* It is assumed that the caller is in splimp()
*/
static void
ubsec_totalreset(struct ubsec_softc *sc)
{
ubsec_reset_board(sc);
ubsec_init_board(sc);
ubsec_cleanchip(sc);
}
static int
ubsec_dmamap_aligned(struct ubsec_operand *op)
{
int i;
for (i = 0; i < op->nsegs; i++) {
if (op->segs[i].ds_addr & 3)
return (0);
if ((i != (op->nsegs - 1)) &&
(op->segs[i].ds_len & 3))
return (0);
}
return (1);
}
static void
ubsec_kfree(struct ubsec_softc *sc, struct ubsec_q2 *q)
{
switch (q->q_type) {
case UBS_CTXOP_MODEXP: {
struct ubsec_q2_modexp *me = (struct ubsec_q2_modexp *)q;
ubsec_dma_free(sc, &me->me_q.q_mcr);
ubsec_dma_free(sc, &me->me_q.q_ctx);
ubsec_dma_free(sc, &me->me_M);
ubsec_dma_free(sc, &me->me_E);
ubsec_dma_free(sc, &me->me_C);
ubsec_dma_free(sc, &me->me_epb);
free(me, M_DEVBUF);
break;
}
case UBS_CTXOP_RSAPRIV: {
struct ubsec_q2_rsapriv *rp = (struct ubsec_q2_rsapriv *)q;
ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
ubsec_dma_free(sc, &rp->rpr_q.q_ctx);
ubsec_dma_free(sc, &rp->rpr_msgin);
ubsec_dma_free(sc, &rp->rpr_msgout);
free(rp, M_DEVBUF);
break;
}
default:
device_printf(sc->sc_dev, "invalid kfree 0x%x\n", q->q_type);
break;
}
}
static int
ubsec_kprocess(device_t dev, struct cryptkop *krp, int hint)
{
struct ubsec_softc *sc = device_get_softc(dev);
int r;
if (krp == NULL || krp->krp_callback == NULL)
return (EINVAL);
while (!SIMPLEQ_EMPTY(&sc->sc_q2free)) {
struct ubsec_q2 *q;
q = SIMPLEQ_FIRST(&sc->sc_q2free);
SIMPLEQ_REMOVE_HEAD(&sc->sc_q2free, q_next);
ubsec_kfree(sc, q);
}
switch (krp->krp_op) {
case CRK_MOD_EXP:
if (sc->sc_flags & UBS_FLAGS_HWNORM)
r = ubsec_kprocess_modexp_hw(sc, krp, hint);
else
r = ubsec_kprocess_modexp_sw(sc, krp, hint);
break;
case CRK_MOD_EXP_CRT:
return (ubsec_kprocess_rsapriv(sc, krp, hint));
default:
device_printf(sc->sc_dev, "kprocess: invalid op 0x%x\n",
krp->krp_op);
krp->krp_status = EOPNOTSUPP;
crypto_kdone(krp);
return (0);
}
return (0); /* silence compiler */
}
/*
* Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (sw normalization)
*/
static int
ubsec_kprocess_modexp_sw(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
{
struct ubsec_q2_modexp *me;
struct ubsec_mcr *mcr;
struct ubsec_ctx_modexp *ctx;
struct ubsec_pktbuf *epb;
int err = 0;
u_int nbits, normbits, mbits, shiftbits, ebits;
me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
if (me == NULL) {
err = ENOMEM;
goto errout;
}
bzero(me, sizeof *me);
me->me_krp = krp;
me->me_q.q_type = UBS_CTXOP_MODEXP;
nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
if (nbits <= 512)
normbits = 512;
else if (nbits <= 768)
normbits = 768;
else if (nbits <= 1024)
normbits = 1024;
else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
normbits = 1536;
else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
normbits = 2048;
else {
err = E2BIG;
goto errout;
}
shiftbits = normbits - nbits;
me->me_modbits = nbits;
me->me_shiftbits = shiftbits;
me->me_normbits = normbits;
/* Sanity check: result bits must be >= true modulus bits. */
if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
err = ERANGE;
goto errout;
}
if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
&me->me_q.q_mcr, 0)) {
err = ENOMEM;
goto errout;
}
mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
&me->me_q.q_ctx, 0)) {
err = ENOMEM;
goto errout;
}
mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
if (mbits > nbits) {
err = E2BIG;
goto errout;
}
if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
err = ENOMEM;
goto errout;
}
ubsec_kshift_r(shiftbits,
krp->krp_param[UBS_MODEXP_PAR_M].crp_p, mbits,
me->me_M.dma_vaddr, normbits);
if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
err = ENOMEM;
goto errout;
}
bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
if (ebits > nbits) {
err = E2BIG;
goto errout;
}
if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
err = ENOMEM;
goto errout;
}
ubsec_kshift_r(shiftbits,
krp->krp_param[UBS_MODEXP_PAR_E].crp_p, ebits,
me->me_E.dma_vaddr, normbits);
if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
&me->me_epb, 0)) {
err = ENOMEM;
goto errout;
}
epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
epb->pb_addr = htole32(me->me_E.dma_paddr);
epb->pb_next = 0;
epb->pb_len = htole32(normbits / 8);
#ifdef UBSEC_DEBUG
if (ubsec_debug) {
printf("Epb ");
ubsec_dump_pb(epb);
}
#endif
mcr->mcr_pkts = htole16(1);
mcr->mcr_flags = 0;
mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
mcr->mcr_reserved = 0;
mcr->mcr_pktlen = 0;
mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
mcr->mcr_opktbuf.pb_next = 0;
mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
#ifdef DIAGNOSTIC
/* Misaligned output buffer will hang the chip. */
if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
panic("%s: modexp invalid addr 0x%x\n",
device_get_nameunit(sc->sc_dev),
letoh32(mcr->mcr_opktbuf.pb_addr));
if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
panic("%s: modexp invalid len 0x%x\n",
device_get_nameunit(sc->sc_dev),
letoh32(mcr->mcr_opktbuf.pb_len));
#endif
ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
bzero(ctx, sizeof(*ctx));
ubsec_kshift_r(shiftbits,
krp->krp_param[UBS_MODEXP_PAR_N].crp_p, nbits,
ctx->me_N, normbits);
ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
ctx->me_op = htole16(UBS_CTXOP_MODEXP);
ctx->me_E_len = htole16(nbits);
ctx->me_N_len = htole16(nbits);
#ifdef UBSEC_DEBUG
if (ubsec_debug) {
ubsec_dump_mcr(mcr);
ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
}
#endif
/*
* ubsec_feed2 will sync mcr and ctx, we just need to sync
* everything else.
*/
ubsec_dma_sync(&me->me_M, BUS_DMASYNC_PREWRITE);
ubsec_dma_sync(&me->me_E, BUS_DMASYNC_PREWRITE);
ubsec_dma_sync(&me->me_C, BUS_DMASYNC_PREREAD);
ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_PREWRITE);
/* Enqueue and we're done... */
mtx_lock(&sc->sc_mcr2lock);
SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
ubsec_feed2(sc);
ubsecstats.hst_modexp++;
mtx_unlock(&sc->sc_mcr2lock);
return (0);
errout:
if (me != NULL) {
if (me->me_q.q_mcr.dma_map != NULL)
ubsec_dma_free(sc, &me->me_q.q_mcr);
if (me->me_q.q_ctx.dma_map != NULL) {
bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
ubsec_dma_free(sc, &me->me_q.q_ctx);
}
if (me->me_M.dma_map != NULL) {
bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
ubsec_dma_free(sc, &me->me_M);
}
if (me->me_E.dma_map != NULL) {
bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
ubsec_dma_free(sc, &me->me_E);
}
if (me->me_C.dma_map != NULL) {
bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
ubsec_dma_free(sc, &me->me_C);
}
if (me->me_epb.dma_map != NULL)
ubsec_dma_free(sc, &me->me_epb);
free(me, M_DEVBUF);
}
krp->krp_status = err;
crypto_kdone(krp);
return (0);
}
/*
* Start computation of cr[C] = (cr[M] ^ cr[E]) mod cr[N] (hw normalization)
*/
static int
ubsec_kprocess_modexp_hw(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
{
struct ubsec_q2_modexp *me;
struct ubsec_mcr *mcr;
struct ubsec_ctx_modexp *ctx;
struct ubsec_pktbuf *epb;
int err = 0;
u_int nbits, normbits, mbits, shiftbits, ebits;
me = (struct ubsec_q2_modexp *)malloc(sizeof *me, M_DEVBUF, M_NOWAIT);
if (me == NULL) {
err = ENOMEM;
goto errout;
}
bzero(me, sizeof *me);
me->me_krp = krp;
me->me_q.q_type = UBS_CTXOP_MODEXP;
nbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_N]);
if (nbits <= 512)
normbits = 512;
else if (nbits <= 768)
normbits = 768;
else if (nbits <= 1024)
normbits = 1024;
else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 1536)
normbits = 1536;
else if (sc->sc_flags & UBS_FLAGS_BIGKEY && nbits <= 2048)
normbits = 2048;
else {
err = E2BIG;
goto errout;
}
shiftbits = normbits - nbits;
/* XXX ??? */
me->me_modbits = nbits;
me->me_shiftbits = shiftbits;
me->me_normbits = normbits;
/* Sanity check: result bits must be >= true modulus bits. */
if (krp->krp_param[krp->krp_iparams].crp_nbits < nbits) {
err = ERANGE;
goto errout;
}
if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
&me->me_q.q_mcr, 0)) {
err = ENOMEM;
goto errout;
}
mcr = (struct ubsec_mcr *)me->me_q.q_mcr.dma_vaddr;
if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_modexp),
&me->me_q.q_ctx, 0)) {
err = ENOMEM;
goto errout;
}
mbits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_M]);
if (mbits > nbits) {
err = E2BIG;
goto errout;
}
if (ubsec_dma_malloc(sc, normbits / 8, &me->me_M, 0)) {
err = ENOMEM;
goto errout;
}
bzero(me->me_M.dma_vaddr, normbits / 8);
bcopy(krp->krp_param[UBS_MODEXP_PAR_M].crp_p,
me->me_M.dma_vaddr, (mbits + 7) / 8);
if (ubsec_dma_malloc(sc, normbits / 8, &me->me_C, 0)) {
err = ENOMEM;
goto errout;
}
bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
ebits = ubsec_ksigbits(&krp->krp_param[UBS_MODEXP_PAR_E]);
if (ebits > nbits) {
err = E2BIG;
goto errout;
}
if (ubsec_dma_malloc(sc, normbits / 8, &me->me_E, 0)) {
err = ENOMEM;
goto errout;
}
bzero(me->me_E.dma_vaddr, normbits / 8);
bcopy(krp->krp_param[UBS_MODEXP_PAR_E].crp_p,
me->me_E.dma_vaddr, (ebits + 7) / 8);
if (ubsec_dma_malloc(sc, sizeof(struct ubsec_pktbuf),
&me->me_epb, 0)) {
err = ENOMEM;
goto errout;
}
epb = (struct ubsec_pktbuf *)me->me_epb.dma_vaddr;
epb->pb_addr = htole32(me->me_E.dma_paddr);
epb->pb_next = 0;
epb->pb_len = htole32((ebits + 7) / 8);
#ifdef UBSEC_DEBUG
if (ubsec_debug) {
printf("Epb ");
ubsec_dump_pb(epb);
}
#endif
mcr->mcr_pkts = htole16(1);
mcr->mcr_flags = 0;
mcr->mcr_cmdctxp = htole32(me->me_q.q_ctx.dma_paddr);
mcr->mcr_reserved = 0;
mcr->mcr_pktlen = 0;
mcr->mcr_ipktbuf.pb_addr = htole32(me->me_M.dma_paddr);
mcr->mcr_ipktbuf.pb_len = htole32(normbits / 8);
mcr->mcr_ipktbuf.pb_next = htole32(me->me_epb.dma_paddr);
mcr->mcr_opktbuf.pb_addr = htole32(me->me_C.dma_paddr);
mcr->mcr_opktbuf.pb_next = 0;
mcr->mcr_opktbuf.pb_len = htole32(normbits / 8);
#ifdef DIAGNOSTIC
/* Misaligned output buffer will hang the chip. */
if ((letoh32(mcr->mcr_opktbuf.pb_addr) & 3) != 0)
panic("%s: modexp invalid addr 0x%x\n",
device_get_nameunit(sc->sc_dev),
letoh32(mcr->mcr_opktbuf.pb_addr));
if ((letoh32(mcr->mcr_opktbuf.pb_len) & 3) != 0)
panic("%s: modexp invalid len 0x%x\n",
device_get_nameunit(sc->sc_dev),
letoh32(mcr->mcr_opktbuf.pb_len));
#endif
ctx = (struct ubsec_ctx_modexp *)me->me_q.q_ctx.dma_vaddr;
bzero(ctx, sizeof(*ctx));
bcopy(krp->krp_param[UBS_MODEXP_PAR_N].crp_p, ctx->me_N,
(nbits + 7) / 8);
ctx->me_len = htole16((normbits / 8) + (4 * sizeof(u_int16_t)));
ctx->me_op = htole16(UBS_CTXOP_MODEXP);
ctx->me_E_len = htole16(ebits);
ctx->me_N_len = htole16(nbits);
#ifdef UBSEC_DEBUG
if (ubsec_debug) {
ubsec_dump_mcr(mcr);
ubsec_dump_ctx2((struct ubsec_ctx_keyop *)ctx);
}
#endif
/*
* ubsec_feed2 will sync mcr and ctx, we just need to sync
* everything else.
*/
ubsec_dma_sync(&me->me_M, BUS_DMASYNC_PREWRITE);
ubsec_dma_sync(&me->me_E, BUS_DMASYNC_PREWRITE);
ubsec_dma_sync(&me->me_C, BUS_DMASYNC_PREREAD);
ubsec_dma_sync(&me->me_epb, BUS_DMASYNC_PREWRITE);
/* Enqueue and we're done... */
mtx_lock(&sc->sc_mcr2lock);
SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &me->me_q, q_next);
ubsec_feed2(sc);
mtx_unlock(&sc->sc_mcr2lock);
return (0);
errout:
if (me != NULL) {
if (me->me_q.q_mcr.dma_map != NULL)
ubsec_dma_free(sc, &me->me_q.q_mcr);
if (me->me_q.q_ctx.dma_map != NULL) {
bzero(me->me_q.q_ctx.dma_vaddr, me->me_q.q_ctx.dma_size);
ubsec_dma_free(sc, &me->me_q.q_ctx);
}
if (me->me_M.dma_map != NULL) {
bzero(me->me_M.dma_vaddr, me->me_M.dma_size);
ubsec_dma_free(sc, &me->me_M);
}
if (me->me_E.dma_map != NULL) {
bzero(me->me_E.dma_vaddr, me->me_E.dma_size);
ubsec_dma_free(sc, &me->me_E);
}
if (me->me_C.dma_map != NULL) {
bzero(me->me_C.dma_vaddr, me->me_C.dma_size);
ubsec_dma_free(sc, &me->me_C);
}
if (me->me_epb.dma_map != NULL)
ubsec_dma_free(sc, &me->me_epb);
free(me, M_DEVBUF);
}
krp->krp_status = err;
crypto_kdone(krp);
return (0);
}
static int
ubsec_kprocess_rsapriv(struct ubsec_softc *sc, struct cryptkop *krp, int hint)
{
struct ubsec_q2_rsapriv *rp = NULL;
struct ubsec_mcr *mcr;
struct ubsec_ctx_rsapriv *ctx;
int err = 0;
u_int padlen, msglen;
msglen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_P]);
padlen = ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_Q]);
if (msglen > padlen)
padlen = msglen;
if (padlen <= 256)
padlen = 256;
else if (padlen <= 384)
padlen = 384;
else if (padlen <= 512)
padlen = 512;
else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 768)
padlen = 768;
else if (sc->sc_flags & UBS_FLAGS_BIGKEY && padlen <= 1024)
padlen = 1024;
else {
err = E2BIG;
goto errout;
}
if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DP]) > padlen) {
err = E2BIG;
goto errout;
}
if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_DQ]) > padlen) {
err = E2BIG;
goto errout;
}
if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_PINV]) > padlen) {
err = E2BIG;
goto errout;
}
rp = (struct ubsec_q2_rsapriv *)malloc(sizeof *rp, M_DEVBUF, M_NOWAIT);
if (rp == NULL)
return (ENOMEM);
bzero(rp, sizeof *rp);
rp->rpr_krp = krp;
rp->rpr_q.q_type = UBS_CTXOP_RSAPRIV;
if (ubsec_dma_malloc(sc, sizeof(struct ubsec_mcr),
&rp->rpr_q.q_mcr, 0)) {
err = ENOMEM;
goto errout;
}
mcr = (struct ubsec_mcr *)rp->rpr_q.q_mcr.dma_vaddr;
if (ubsec_dma_malloc(sc, sizeof(struct ubsec_ctx_rsapriv),
&rp->rpr_q.q_ctx, 0)) {
err = ENOMEM;
goto errout;
}
ctx = (struct ubsec_ctx_rsapriv *)rp->rpr_q.q_ctx.dma_vaddr;
bzero(ctx, sizeof *ctx);
/* Copy in p */
bcopy(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_p,
&ctx->rpr_buf[0 * (padlen / 8)],
(krp->krp_param[UBS_RSAPRIV_PAR_P].crp_nbits + 7) / 8);
/* Copy in q */
bcopy(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_p,
&ctx->rpr_buf[1 * (padlen / 8)],
(krp->krp_param[UBS_RSAPRIV_PAR_Q].crp_nbits + 7) / 8);
/* Copy in dp */
bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_p,
&ctx->rpr_buf[2 * (padlen / 8)],
(krp->krp_param[UBS_RSAPRIV_PAR_DP].crp_nbits + 7) / 8);
/* Copy in dq */
bcopy(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_p,
&ctx->rpr_buf[3 * (padlen / 8)],
(krp->krp_param[UBS_RSAPRIV_PAR_DQ].crp_nbits + 7) / 8);
/* Copy in pinv */
bcopy(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_p,
&ctx->rpr_buf[4 * (padlen / 8)],
(krp->krp_param[UBS_RSAPRIV_PAR_PINV].crp_nbits + 7) / 8);
msglen = padlen * 2;
/* Copy in input message (aligned buffer/length). */
if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGIN]) > msglen) {
/* Is this likely? */
err = E2BIG;
goto errout;
}
if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgin, 0)) {
err = ENOMEM;
goto errout;
}
bzero(rp->rpr_msgin.dma_vaddr, (msglen + 7) / 8);
bcopy(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_p,
rp->rpr_msgin.dma_vaddr,
(krp->krp_param[UBS_RSAPRIV_PAR_MSGIN].crp_nbits + 7) / 8);
/* Prepare space for output message (aligned buffer/length). */
if (ubsec_ksigbits(&krp->krp_param[UBS_RSAPRIV_PAR_MSGOUT]) < msglen) {
/* Is this likely? */
err = E2BIG;
goto errout;
}
if (ubsec_dma_malloc(sc, (msglen + 7) / 8, &rp->rpr_msgout, 0)) {
err = ENOMEM;
goto errout;
}
bzero(rp->rpr_msgout.dma_vaddr, (msglen + 7) / 8);
mcr->mcr_pkts = htole16(1);
mcr->mcr_flags = 0;
mcr->mcr_cmdctxp = htole32(rp->rpr_q.q_ctx.dma_paddr);
mcr->mcr_ipktbuf.pb_addr = htole32(rp->rpr_msgin.dma_paddr);
mcr->mcr_ipktbuf.pb_next = 0;
mcr->mcr_ipktbuf.pb_len = htole32(rp->rpr_msgin.dma_size);
mcr->mcr_reserved = 0;
mcr->mcr_pktlen = htole16(msglen);
mcr->mcr_opktbuf.pb_addr = htole32(rp->rpr_msgout.dma_paddr);
mcr->mcr_opktbuf.pb_next = 0;
mcr->mcr_opktbuf.pb_len = htole32(rp->rpr_msgout.dma_size);
#ifdef DIAGNOSTIC
if (rp->rpr_msgin.dma_paddr & 3 || rp->rpr_msgin.dma_size & 3) {
panic("%s: rsapriv: invalid msgin %x(0x%jx)",
device_get_nameunit(sc->sc_dev),
rp->rpr_msgin.dma_paddr, (uintmax_t)rp->rpr_msgin.dma_size);
}
if (rp->rpr_msgout.dma_paddr & 3 || rp->rpr_msgout.dma_size & 3) {
panic("%s: rsapriv: invalid msgout %x(0x%jx)",
device_get_nameunit(sc->sc_dev),
rp->rpr_msgout.dma_paddr, (uintmax_t)rp->rpr_msgout.dma_size);
}
#endif
ctx->rpr_len = (sizeof(u_int16_t) * 4) + (5 * (padlen / 8));
ctx->rpr_op = htole16(UBS_CTXOP_RSAPRIV);
ctx->rpr_q_len = htole16(padlen);
ctx->rpr_p_len = htole16(padlen);
/*
* ubsec_feed2 will sync mcr and ctx, we just need to sync
* everything else.
*/
ubsec_dma_sync(&rp->rpr_msgin, BUS_DMASYNC_PREWRITE);
ubsec_dma_sync(&rp->rpr_msgout, BUS_DMASYNC_PREREAD);
/* Enqueue and we're done... */
mtx_lock(&sc->sc_mcr2lock);
SIMPLEQ_INSERT_TAIL(&sc->sc_queue2, &rp->rpr_q, q_next);
ubsec_feed2(sc);
ubsecstats.hst_modexpcrt++;
mtx_unlock(&sc->sc_mcr2lock);
return (0);
errout:
if (rp != NULL) {
if (rp->rpr_q.q_mcr.dma_map != NULL)
ubsec_dma_free(sc, &rp->rpr_q.q_mcr);
if (rp->rpr_msgin.dma_map != NULL) {
bzero(rp->rpr_msgin.dma_vaddr, rp->rpr_msgin.dma_size);
ubsec_dma_free(sc, &rp->rpr_msgin);
}
if (rp->rpr_msgout.dma_map != NULL) {
bzero(rp->rpr_msgout.dma_vaddr, rp->rpr_msgout.dma_size);
ubsec_dma_free(sc, &rp->rpr_msgout);
}
free(rp, M_DEVBUF);
}
krp->krp_status = err;
crypto_kdone(krp);
return (0);
}
#ifdef UBSEC_DEBUG
static void
ubsec_dump_pb(volatile struct ubsec_pktbuf *pb)
{
printf("addr 0x%x (0x%x) next 0x%x\n",
pb->pb_addr, pb->pb_len, pb->pb_next);
}
static void
ubsec_dump_ctx2(struct ubsec_ctx_keyop *c)
{
printf("CTX (0x%x):\n", c->ctx_len);
switch (letoh16(c->ctx_op)) {
case UBS_CTXOP_RNGBYPASS:
case UBS_CTXOP_RNGSHA1:
break;
case UBS_CTXOP_MODEXP:
{
struct ubsec_ctx_modexp *cx = (void *)c;
int i, len;
printf(" Elen %u, Nlen %u\n",
letoh16(cx->me_E_len), letoh16(cx->me_N_len));
len = (cx->me_N_len + 7)/8;
for (i = 0; i < len; i++)
printf("%s%02x", (i == 0) ? " N: " : ":", cx->me_N[i]);
printf("\n");
break;
}
default:
printf("unknown context: %x\n", c->ctx_op);
}
printf("END CTX\n");
}
static void
ubsec_dump_mcr(struct ubsec_mcr *mcr)
{
volatile struct ubsec_mcr_add *ma;
int i;
printf("MCR:\n");
printf(" pkts: %u, flags 0x%x\n",
letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
ma = (volatile struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
letoh16(ma->mcr_reserved));
printf(" %d: ipkt ", i);
ubsec_dump_pb(&ma->mcr_ipktbuf);
printf(" %d: opkt ", i);
ubsec_dump_pb(&ma->mcr_opktbuf);
ma++;
}
printf("END MCR\n");
}
#endif /* UBSEC_DEBUG */
/*
* Return the number of significant bits of a big number.
*/
static int
ubsec_ksigbits(struct crparam *cr)
{
u_int plen = (cr->crp_nbits + 7) / 8;
int i, sig = plen * 8;
u_int8_t c, *p = cr->crp_p;
for (i = plen - 1; i >= 0; i--) {
c = p[i];
if (c != 0) {
while ((c & 0x80) == 0) {
sig--;
c <<= 1;
}
break;
}
sig -= 8;
}
return (sig);
}
static void
ubsec_kshift_r(
u_int shiftbits,
u_int8_t *src, u_int srcbits,
u_int8_t *dst, u_int dstbits)
{
u_int slen, dlen;
int i, si, di, n;
slen = (srcbits + 7) / 8;
dlen = (dstbits + 7) / 8;
for (i = 0; i < slen; i++)
dst[i] = src[i];
for (i = 0; i < dlen - slen; i++)
dst[slen + i] = 0;
n = shiftbits / 8;
if (n != 0) {
si = dlen - n - 1;
di = dlen - 1;
while (si >= 0)
dst[di--] = dst[si--];
while (di >= 0)
dst[di--] = 0;
}
n = shiftbits % 8;
if (n != 0) {
for (i = dlen - 1; i > 0; i--)
dst[i] = (dst[i] << n) |
(dst[i - 1] >> (8 - n));
dst[0] = dst[0] << n;
}
}
static void
ubsec_kshift_l(
u_int shiftbits,
u_int8_t *src, u_int srcbits,
u_int8_t *dst, u_int dstbits)
{
int slen, dlen, i, n;
slen = (srcbits + 7) / 8;
dlen = (dstbits + 7) / 8;
n = shiftbits / 8;
for (i = 0; i < slen; i++)
dst[i] = src[i + n];
for (i = 0; i < dlen - slen; i++)
dst[slen + i] = 0;
n = shiftbits % 8;
if (n != 0) {
for (i = 0; i < (dlen - 1); i++)
dst[i] = (dst[i] >> n) | (dst[i + 1] << (8 - n));
dst[dlen - 1] = dst[dlen - 1] >> n;
}
}