1252 lines
37 KiB
C
1252 lines
37 KiB
C
/* Inlining decision heuristics.
|
|
Copyright (C) 2003, 2004 Free Software Foundation, Inc.
|
|
Contributed by Jan Hubicka
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 2, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING. If not, write to the Free
|
|
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
|
|
02110-1301, USA. */
|
|
|
|
/* Inlining decision heuristics
|
|
|
|
We separate inlining decisions from the inliner itself and store it
|
|
inside callgraph as so called inline plan. Refer to cgraph.c
|
|
documentation about particular representation of inline plans in the
|
|
callgraph.
|
|
|
|
There are three major parts of this file:
|
|
|
|
cgraph_mark_inline implementation
|
|
|
|
This function allows to mark given call inline and performs necessary
|
|
modifications of cgraph (production of the clones and updating overall
|
|
statistics)
|
|
|
|
inlining heuristics limits
|
|
|
|
These functions allow to check that particular inlining is allowed
|
|
by the limits specified by user (allowed function growth, overall unit
|
|
growth and so on).
|
|
|
|
inlining heuristics
|
|
|
|
This is implementation of IPA pass aiming to get as much of benefit
|
|
from inlining obeying the limits checked above.
|
|
|
|
The implementation of particular heuristics is separated from
|
|
the rest of code to make it easier to replace it with more complicated
|
|
implementation in the future. The rest of inlining code acts as a
|
|
library aimed to modify the callgraph and verify that the parameters
|
|
on code size growth fits.
|
|
|
|
To mark given call inline, use cgraph_mark_inline function, the
|
|
verification is performed by cgraph_default_inline_p and
|
|
cgraph_check_inline_limits.
|
|
|
|
The heuristics implements simple knapsack style algorithm ordering
|
|
all functions by their "profitability" (estimated by code size growth)
|
|
and inlining them in priority order.
|
|
|
|
cgraph_decide_inlining implements heuristics taking whole callgraph
|
|
into account, while cgraph_decide_inlining_incrementally considers
|
|
only one function at a time and is used in non-unit-at-a-time mode. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "tm.h"
|
|
#include "tree.h"
|
|
#include "tree-inline.h"
|
|
#include "langhooks.h"
|
|
#include "flags.h"
|
|
#include "cgraph.h"
|
|
#include "diagnostic.h"
|
|
#include "timevar.h"
|
|
#include "params.h"
|
|
#include "fibheap.h"
|
|
#include "intl.h"
|
|
#include "tree-pass.h"
|
|
#include "hashtab.h"
|
|
#include "coverage.h"
|
|
#include "ggc.h"
|
|
|
|
/* Statistics we collect about inlining algorithm. */
|
|
static int ncalls_inlined;
|
|
static int nfunctions_inlined;
|
|
static int initial_insns;
|
|
static int overall_insns;
|
|
static int max_insns;
|
|
static gcov_type max_count;
|
|
|
|
/* Estimate size of the function after inlining WHAT into TO. */
|
|
|
|
static int
|
|
cgraph_estimate_size_after_inlining (int times, struct cgraph_node *to,
|
|
struct cgraph_node *what)
|
|
{
|
|
int size;
|
|
tree fndecl = what->decl, arg;
|
|
int call_insns = PARAM_VALUE (PARAM_INLINE_CALL_COST);
|
|
|
|
for (arg = DECL_ARGUMENTS (fndecl); arg; arg = TREE_CHAIN (arg))
|
|
call_insns += estimate_move_cost (TREE_TYPE (arg));
|
|
size = (what->global.insns - call_insns) * times + to->global.insns;
|
|
gcc_assert (size >= 0);
|
|
return size;
|
|
}
|
|
|
|
/* E is expected to be an edge being inlined. Clone destination node of
|
|
the edge and redirect it to the new clone.
|
|
DUPLICATE is used for bookkeeping on whether we are actually creating new
|
|
clones or re-using node originally representing out-of-line function call.
|
|
*/
|
|
void
|
|
cgraph_clone_inlined_nodes (struct cgraph_edge *e, bool duplicate, bool update_original)
|
|
{
|
|
if (duplicate)
|
|
{
|
|
/* We may eliminate the need for out-of-line copy to be output.
|
|
In that case just go ahead and re-use it. */
|
|
if (!e->callee->callers->next_caller
|
|
&& !e->callee->needed
|
|
&& flag_unit_at_a_time)
|
|
{
|
|
gcc_assert (!e->callee->global.inlined_to);
|
|
if (DECL_SAVED_TREE (e->callee->decl))
|
|
overall_insns -= e->callee->global.insns, nfunctions_inlined++;
|
|
duplicate = false;
|
|
}
|
|
else
|
|
{
|
|
struct cgraph_node *n;
|
|
n = cgraph_clone_node (e->callee, e->count, e->loop_nest,
|
|
update_original);
|
|
cgraph_redirect_edge_callee (e, n);
|
|
}
|
|
}
|
|
|
|
if (e->caller->global.inlined_to)
|
|
e->callee->global.inlined_to = e->caller->global.inlined_to;
|
|
else
|
|
e->callee->global.inlined_to = e->caller;
|
|
|
|
/* Recursively clone all bodies. */
|
|
for (e = e->callee->callees; e; e = e->next_callee)
|
|
if (!e->inline_failed)
|
|
cgraph_clone_inlined_nodes (e, duplicate, update_original);
|
|
}
|
|
|
|
/* Mark edge E as inlined and update callgraph accordingly.
|
|
UPDATE_ORIGINAL specify whether profile of original function should be
|
|
updated. */
|
|
|
|
void
|
|
cgraph_mark_inline_edge (struct cgraph_edge *e, bool update_original)
|
|
{
|
|
int old_insns = 0, new_insns = 0;
|
|
struct cgraph_node *to = NULL, *what;
|
|
|
|
if (e->callee->inline_decl)
|
|
cgraph_redirect_edge_callee (e, cgraph_node (e->callee->inline_decl));
|
|
|
|
gcc_assert (e->inline_failed);
|
|
e->inline_failed = NULL;
|
|
|
|
if (!e->callee->global.inlined && flag_unit_at_a_time)
|
|
DECL_POSSIBLY_INLINED (e->callee->decl) = true;
|
|
e->callee->global.inlined = true;
|
|
|
|
cgraph_clone_inlined_nodes (e, true, update_original);
|
|
|
|
what = e->callee;
|
|
|
|
/* Now update size of caller and all functions caller is inlined into. */
|
|
for (;e && !e->inline_failed; e = e->caller->callers)
|
|
{
|
|
old_insns = e->caller->global.insns;
|
|
new_insns = cgraph_estimate_size_after_inlining (1, e->caller,
|
|
what);
|
|
gcc_assert (new_insns >= 0);
|
|
to = e->caller;
|
|
to->global.insns = new_insns;
|
|
}
|
|
gcc_assert (what->global.inlined_to == to);
|
|
if (new_insns > old_insns)
|
|
overall_insns += new_insns - old_insns;
|
|
ncalls_inlined++;
|
|
}
|
|
|
|
/* Mark all calls of EDGE->CALLEE inlined into EDGE->CALLER.
|
|
Return following unredirected edge in the list of callers
|
|
of EDGE->CALLEE */
|
|
|
|
static struct cgraph_edge *
|
|
cgraph_mark_inline (struct cgraph_edge *edge)
|
|
{
|
|
struct cgraph_node *to = edge->caller;
|
|
struct cgraph_node *what = edge->callee;
|
|
struct cgraph_edge *e, *next;
|
|
int times = 0;
|
|
|
|
/* Look for all calls, mark them inline and clone recursively
|
|
all inlined functions. */
|
|
for (e = what->callers; e; e = next)
|
|
{
|
|
next = e->next_caller;
|
|
if (e->caller == to && e->inline_failed)
|
|
{
|
|
cgraph_mark_inline_edge (e, true);
|
|
if (e == edge)
|
|
edge = next;
|
|
times++;
|
|
}
|
|
}
|
|
gcc_assert (times);
|
|
return edge;
|
|
}
|
|
|
|
/* Estimate the growth caused by inlining NODE into all callees. */
|
|
|
|
static int
|
|
cgraph_estimate_growth (struct cgraph_node *node)
|
|
{
|
|
int growth = 0;
|
|
struct cgraph_edge *e;
|
|
if (node->global.estimated_growth != INT_MIN)
|
|
return node->global.estimated_growth;
|
|
|
|
for (e = node->callers; e; e = e->next_caller)
|
|
if (e->inline_failed)
|
|
growth += (cgraph_estimate_size_after_inlining (1, e->caller, node)
|
|
- e->caller->global.insns);
|
|
|
|
/* ??? Wrong for self recursive functions or cases where we decide to not
|
|
inline for different reasons, but it is not big deal as in that case
|
|
we will keep the body around, but we will also avoid some inlining. */
|
|
if (!node->needed && !DECL_EXTERNAL (node->decl))
|
|
growth -= node->global.insns;
|
|
|
|
node->global.estimated_growth = growth;
|
|
return growth;
|
|
}
|
|
|
|
/* Return false when inlining WHAT into TO is not good idea
|
|
as it would cause too large growth of function bodies.
|
|
When ONE_ONLY is true, assume that only one call site is going
|
|
to be inlined, otherwise figure out how many call sites in
|
|
TO calls WHAT and verify that all can be inlined.
|
|
*/
|
|
|
|
static bool
|
|
cgraph_check_inline_limits (struct cgraph_node *to, struct cgraph_node *what,
|
|
const char **reason, bool one_only)
|
|
{
|
|
int times = 0;
|
|
struct cgraph_edge *e;
|
|
int newsize;
|
|
int limit;
|
|
|
|
if (one_only)
|
|
times = 1;
|
|
else
|
|
for (e = to->callees; e; e = e->next_callee)
|
|
if (e->callee == what)
|
|
times++;
|
|
|
|
if (to->global.inlined_to)
|
|
to = to->global.inlined_to;
|
|
|
|
/* When inlining large function body called once into small function,
|
|
take the inlined function as base for limiting the growth. */
|
|
if (to->local.self_insns > what->local.self_insns)
|
|
limit = to->local.self_insns;
|
|
else
|
|
limit = what->local.self_insns;
|
|
|
|
limit += limit * PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH) / 100;
|
|
|
|
/* Check the size after inlining against the function limits. But allow
|
|
the function to shrink if it went over the limits by forced inlining. */
|
|
newsize = cgraph_estimate_size_after_inlining (times, to, what);
|
|
if (newsize >= to->global.insns
|
|
&& newsize > PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS)
|
|
&& newsize > limit)
|
|
{
|
|
if (reason)
|
|
*reason = N_("--param large-function-growth limit reached");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Return true when function N is small enough to be inlined. */
|
|
|
|
bool
|
|
cgraph_default_inline_p (struct cgraph_node *n, const char **reason)
|
|
{
|
|
tree decl = n->decl;
|
|
|
|
if (n->inline_decl)
|
|
decl = n->inline_decl;
|
|
if (!DECL_INLINE (decl))
|
|
{
|
|
if (reason)
|
|
*reason = N_("function not inlinable");
|
|
return false;
|
|
}
|
|
|
|
if (!DECL_STRUCT_FUNCTION (decl)->cfg)
|
|
{
|
|
if (reason)
|
|
*reason = N_("function body not available");
|
|
return false;
|
|
}
|
|
|
|
if (DECL_DECLARED_INLINE_P (decl))
|
|
{
|
|
if (n->global.insns >= MAX_INLINE_INSNS_SINGLE)
|
|
{
|
|
if (reason)
|
|
*reason = N_("--param max-inline-insns-single limit reached");
|
|
return false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (n->global.insns >= MAX_INLINE_INSNS_AUTO)
|
|
{
|
|
if (reason)
|
|
*reason = N_("--param max-inline-insns-auto limit reached");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Return true when inlining WHAT would create recursive inlining.
|
|
We call recursive inlining all cases where same function appears more than
|
|
once in the single recursion nest path in the inline graph. */
|
|
|
|
static bool
|
|
cgraph_recursive_inlining_p (struct cgraph_node *to,
|
|
struct cgraph_node *what,
|
|
const char **reason)
|
|
{
|
|
bool recursive;
|
|
if (to->global.inlined_to)
|
|
recursive = what->decl == to->global.inlined_to->decl;
|
|
else
|
|
recursive = what->decl == to->decl;
|
|
/* Marking recursive function inline has sane semantic and thus we should
|
|
not warn on it. */
|
|
if (recursive && reason)
|
|
*reason = (what->local.disregard_inline_limits
|
|
? N_("recursive inlining") : "");
|
|
return recursive;
|
|
}
|
|
|
|
/* Return true if the call can be hot. */
|
|
static bool
|
|
cgraph_maybe_hot_edge_p (struct cgraph_edge *edge)
|
|
{
|
|
if (profile_info && flag_branch_probabilities
|
|
&& (edge->count
|
|
<= profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/* A cost model driving the inlining heuristics in a way so the edges with
|
|
smallest badness are inlined first. After each inlining is performed
|
|
the costs of all caller edges of nodes affected are recomputed so the
|
|
metrics may accurately depend on values such as number of inlinable callers
|
|
of the function or function body size.
|
|
|
|
With profiling we use number of executions of each edge to drive the cost.
|
|
We also should distinguish hot and cold calls where the cold calls are
|
|
inlined into only when code size is overall improved.
|
|
*/
|
|
|
|
static int
|
|
cgraph_edge_badness (struct cgraph_edge *edge)
|
|
{
|
|
if (max_count)
|
|
{
|
|
int growth =
|
|
cgraph_estimate_size_after_inlining (1, edge->caller, edge->callee);
|
|
growth -= edge->caller->global.insns;
|
|
|
|
/* Always prefer inlining saving code size. */
|
|
if (growth <= 0)
|
|
return INT_MIN - growth;
|
|
return ((int)((double)edge->count * INT_MIN / max_count)) / growth;
|
|
}
|
|
else
|
|
{
|
|
int nest = MIN (edge->loop_nest, 8);
|
|
int badness = cgraph_estimate_growth (edge->callee) * 256;
|
|
|
|
/* Decrease badness if call is nested. */
|
|
if (badness > 0)
|
|
badness >>= nest;
|
|
else
|
|
badness <<= nest;
|
|
|
|
/* Make recursive inlining happen always after other inlining is done. */
|
|
if (cgraph_recursive_inlining_p (edge->caller, edge->callee, NULL))
|
|
return badness + 1;
|
|
else
|
|
return badness;
|
|
}
|
|
}
|
|
|
|
/* Recompute heap nodes for each of caller edge. */
|
|
|
|
static void
|
|
update_caller_keys (fibheap_t heap, struct cgraph_node *node,
|
|
bitmap updated_nodes)
|
|
{
|
|
struct cgraph_edge *edge;
|
|
const char *failed_reason;
|
|
|
|
if (!node->local.inlinable || node->local.disregard_inline_limits
|
|
|| node->global.inlined_to)
|
|
return;
|
|
if (bitmap_bit_p (updated_nodes, node->uid))
|
|
return;
|
|
bitmap_set_bit (updated_nodes, node->uid);
|
|
node->global.estimated_growth = INT_MIN;
|
|
|
|
if (!node->local.inlinable)
|
|
return;
|
|
/* Prune out edges we won't inline into anymore. */
|
|
if (!cgraph_default_inline_p (node, &failed_reason))
|
|
{
|
|
for (edge = node->callers; edge; edge = edge->next_caller)
|
|
if (edge->aux)
|
|
{
|
|
fibheap_delete_node (heap, edge->aux);
|
|
edge->aux = NULL;
|
|
if (edge->inline_failed)
|
|
edge->inline_failed = failed_reason;
|
|
}
|
|
return;
|
|
}
|
|
|
|
for (edge = node->callers; edge; edge = edge->next_caller)
|
|
if (edge->inline_failed)
|
|
{
|
|
int badness = cgraph_edge_badness (edge);
|
|
if (edge->aux)
|
|
{
|
|
fibnode_t n = edge->aux;
|
|
gcc_assert (n->data == edge);
|
|
if (n->key == badness)
|
|
continue;
|
|
|
|
/* fibheap_replace_key only increase the keys. */
|
|
if (fibheap_replace_key (heap, n, badness))
|
|
continue;
|
|
fibheap_delete_node (heap, edge->aux);
|
|
}
|
|
edge->aux = fibheap_insert (heap, badness, edge);
|
|
}
|
|
}
|
|
|
|
/* Recompute heap nodes for each of caller edges of each of callees. */
|
|
|
|
static void
|
|
update_callee_keys (fibheap_t heap, struct cgraph_node *node,
|
|
bitmap updated_nodes)
|
|
{
|
|
struct cgraph_edge *e;
|
|
node->global.estimated_growth = INT_MIN;
|
|
|
|
for (e = node->callees; e; e = e->next_callee)
|
|
if (e->inline_failed)
|
|
update_caller_keys (heap, e->callee, updated_nodes);
|
|
else if (!e->inline_failed)
|
|
update_callee_keys (heap, e->callee, updated_nodes);
|
|
}
|
|
|
|
/* Enqueue all recursive calls from NODE into priority queue depending on
|
|
how likely we want to recursively inline the call. */
|
|
|
|
static void
|
|
lookup_recursive_calls (struct cgraph_node *node, struct cgraph_node *where,
|
|
fibheap_t heap)
|
|
{
|
|
static int priority;
|
|
struct cgraph_edge *e;
|
|
for (e = where->callees; e; e = e->next_callee)
|
|
if (e->callee == node)
|
|
{
|
|
/* When profile feedback is available, prioritize by expected number
|
|
of calls. Without profile feedback we maintain simple queue
|
|
to order candidates via recursive depths. */
|
|
fibheap_insert (heap,
|
|
!max_count ? priority++
|
|
: -(e->count / ((max_count + (1<<24) - 1) / (1<<24))),
|
|
e);
|
|
}
|
|
for (e = where->callees; e; e = e->next_callee)
|
|
if (!e->inline_failed)
|
|
lookup_recursive_calls (node, e->callee, heap);
|
|
}
|
|
|
|
/* Find callgraph nodes closing a circle in the graph. The
|
|
resulting hashtab can be used to avoid walking the circles.
|
|
Uses the cgraph nodes ->aux field which needs to be zero
|
|
before and will be zero after operation. */
|
|
|
|
static void
|
|
cgraph_find_cycles (struct cgraph_node *node, htab_t cycles)
|
|
{
|
|
struct cgraph_edge *e;
|
|
|
|
if (node->aux)
|
|
{
|
|
void **slot;
|
|
slot = htab_find_slot (cycles, node, INSERT);
|
|
if (!*slot)
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, "Cycle contains %s\n", cgraph_node_name (node));
|
|
*slot = node;
|
|
}
|
|
return;
|
|
}
|
|
|
|
node->aux = node;
|
|
for (e = node->callees; e; e = e->next_callee)
|
|
cgraph_find_cycles (e->callee, cycles);
|
|
node->aux = 0;
|
|
}
|
|
|
|
/* Flatten the cgraph node. We have to be careful in recursing
|
|
as to not run endlessly in circles of the callgraph.
|
|
We do so by using a hashtab of cycle entering nodes as generated
|
|
by cgraph_find_cycles. */
|
|
|
|
static void
|
|
cgraph_flatten_node (struct cgraph_node *node, htab_t cycles)
|
|
{
|
|
struct cgraph_edge *e;
|
|
|
|
for (e = node->callees; e; e = e->next_callee)
|
|
{
|
|
/* Inline call, if possible, and recurse. Be sure we are not
|
|
entering callgraph circles here. */
|
|
if (e->inline_failed
|
|
&& e->callee->local.inlinable
|
|
&& !cgraph_recursive_inlining_p (node, e->callee,
|
|
&e->inline_failed)
|
|
&& !htab_find (cycles, e->callee))
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, " inlining %s", cgraph_node_name (e->callee));
|
|
cgraph_mark_inline_edge (e, true);
|
|
cgraph_flatten_node (e->callee, cycles);
|
|
}
|
|
else if (dump_file)
|
|
fprintf (dump_file, " !inlining %s", cgraph_node_name (e->callee));
|
|
}
|
|
}
|
|
|
|
/* Decide on recursive inlining: in the case function has recursive calls,
|
|
inline until body size reaches given argument. */
|
|
|
|
static bool
|
|
cgraph_decide_recursive_inlining (struct cgraph_node *node)
|
|
{
|
|
int limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO);
|
|
int max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH_AUTO);
|
|
int probability = PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY);
|
|
fibheap_t heap;
|
|
struct cgraph_edge *e;
|
|
struct cgraph_node *master_clone, *next;
|
|
int depth = 0;
|
|
int n = 0;
|
|
|
|
if (DECL_DECLARED_INLINE_P (node->decl))
|
|
{
|
|
limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE);
|
|
max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH);
|
|
}
|
|
|
|
/* Make sure that function is small enough to be considered for inlining. */
|
|
if (!max_depth
|
|
|| cgraph_estimate_size_after_inlining (1, node, node) >= limit)
|
|
return false;
|
|
heap = fibheap_new ();
|
|
lookup_recursive_calls (node, node, heap);
|
|
if (fibheap_empty (heap))
|
|
{
|
|
fibheap_delete (heap);
|
|
return false;
|
|
}
|
|
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
" Performing recursive inlining on %s\n",
|
|
cgraph_node_name (node));
|
|
|
|
/* We need original clone to copy around. */
|
|
master_clone = cgraph_clone_node (node, node->count, 1, false);
|
|
master_clone->needed = true;
|
|
for (e = master_clone->callees; e; e = e->next_callee)
|
|
if (!e->inline_failed)
|
|
cgraph_clone_inlined_nodes (e, true, false);
|
|
|
|
/* Do the inlining and update list of recursive call during process. */
|
|
while (!fibheap_empty (heap)
|
|
&& (cgraph_estimate_size_after_inlining (1, node, master_clone)
|
|
<= limit))
|
|
{
|
|
struct cgraph_edge *curr = fibheap_extract_min (heap);
|
|
struct cgraph_node *cnode;
|
|
|
|
depth = 1;
|
|
for (cnode = curr->caller;
|
|
cnode->global.inlined_to; cnode = cnode->callers->caller)
|
|
if (node->decl == curr->callee->decl)
|
|
depth++;
|
|
if (depth > max_depth)
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
" maxmal depth reached\n");
|
|
continue;
|
|
}
|
|
|
|
if (max_count)
|
|
{
|
|
if (!cgraph_maybe_hot_edge_p (curr))
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, " Not inlining cold call\n");
|
|
continue;
|
|
}
|
|
if (curr->count * 100 / node->count < probability)
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
" Probability of edge is too small\n");
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file,
|
|
" Inlining call of depth %i", depth);
|
|
if (node->count)
|
|
{
|
|
fprintf (dump_file, " called approx. %.2f times per call",
|
|
(double)curr->count / node->count);
|
|
}
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
cgraph_redirect_edge_callee (curr, master_clone);
|
|
cgraph_mark_inline_edge (curr, false);
|
|
lookup_recursive_calls (node, curr->callee, heap);
|
|
n++;
|
|
}
|
|
if (!fibheap_empty (heap) && dump_file)
|
|
fprintf (dump_file, " Recursive inlining growth limit met.\n");
|
|
|
|
fibheap_delete (heap);
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
"\n Inlined %i times, body grown from %i to %i insns\n", n,
|
|
master_clone->global.insns, node->global.insns);
|
|
|
|
/* Remove master clone we used for inlining. We rely that clones inlined
|
|
into master clone gets queued just before master clone so we don't
|
|
need recursion. */
|
|
for (node = cgraph_nodes; node != master_clone;
|
|
node = next)
|
|
{
|
|
next = node->next;
|
|
if (node->global.inlined_to == master_clone)
|
|
cgraph_remove_node (node);
|
|
}
|
|
cgraph_remove_node (master_clone);
|
|
/* FIXME: Recursive inlining actually reduces number of calls of the
|
|
function. At this place we should probably walk the function and
|
|
inline clones and compensate the counts accordingly. This probably
|
|
doesn't matter much in practice. */
|
|
return n > 0;
|
|
}
|
|
|
|
/* Set inline_failed for all callers of given function to REASON. */
|
|
|
|
static void
|
|
cgraph_set_inline_failed (struct cgraph_node *node, const char *reason)
|
|
{
|
|
struct cgraph_edge *e;
|
|
|
|
if (dump_file)
|
|
fprintf (dump_file, "Inlining failed: %s\n", reason);
|
|
for (e = node->callers; e; e = e->next_caller)
|
|
if (e->inline_failed)
|
|
e->inline_failed = reason;
|
|
}
|
|
|
|
/* We use greedy algorithm for inlining of small functions:
|
|
All inline candidates are put into prioritized heap based on estimated
|
|
growth of the overall number of instructions and then update the estimates.
|
|
|
|
INLINED and INLINED_CALEES are just pointers to arrays large enough
|
|
to be passed to cgraph_inlined_into and cgraph_inlined_callees. */
|
|
|
|
static void
|
|
cgraph_decide_inlining_of_small_functions (void)
|
|
{
|
|
struct cgraph_node *node;
|
|
struct cgraph_edge *edge;
|
|
const char *failed_reason;
|
|
fibheap_t heap = fibheap_new ();
|
|
bitmap updated_nodes = BITMAP_ALLOC (NULL);
|
|
|
|
if (dump_file)
|
|
fprintf (dump_file, "\nDeciding on smaller functions:\n");
|
|
|
|
/* Put all inline candidates into the heap. */
|
|
|
|
for (node = cgraph_nodes; node; node = node->next)
|
|
{
|
|
if (!node->local.inlinable || !node->callers
|
|
|| node->local.disregard_inline_limits)
|
|
continue;
|
|
if (dump_file)
|
|
fprintf (dump_file, "Considering inline candidate %s.\n", cgraph_node_name (node));
|
|
|
|
node->global.estimated_growth = INT_MIN;
|
|
if (!cgraph_default_inline_p (node, &failed_reason))
|
|
{
|
|
cgraph_set_inline_failed (node, failed_reason);
|
|
continue;
|
|
}
|
|
|
|
for (edge = node->callers; edge; edge = edge->next_caller)
|
|
if (edge->inline_failed)
|
|
{
|
|
gcc_assert (!edge->aux);
|
|
edge->aux = fibheap_insert (heap, cgraph_edge_badness (edge), edge);
|
|
}
|
|
}
|
|
while (overall_insns <= max_insns && (edge = fibheap_extract_min (heap)))
|
|
{
|
|
int old_insns = overall_insns;
|
|
struct cgraph_node *where;
|
|
int growth =
|
|
cgraph_estimate_size_after_inlining (1, edge->caller, edge->callee);
|
|
|
|
growth -= edge->caller->global.insns;
|
|
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file,
|
|
"\nConsidering %s with %i insns\n",
|
|
cgraph_node_name (edge->callee),
|
|
edge->callee->global.insns);
|
|
fprintf (dump_file,
|
|
" to be inlined into %s\n"
|
|
" Estimated growth after inlined into all callees is %+i insns.\n"
|
|
" Estimated badness is %i.\n",
|
|
cgraph_node_name (edge->caller),
|
|
cgraph_estimate_growth (edge->callee),
|
|
cgraph_edge_badness (edge));
|
|
if (edge->count)
|
|
fprintf (dump_file," Called "HOST_WIDEST_INT_PRINT_DEC"x\n", edge->count);
|
|
}
|
|
gcc_assert (edge->aux);
|
|
edge->aux = NULL;
|
|
if (!edge->inline_failed)
|
|
continue;
|
|
|
|
/* When not having profile info ready we don't weight by any way the
|
|
position of call in procedure itself. This means if call of
|
|
function A from function B seems profitable to inline, the recursive
|
|
call of function A in inline copy of A in B will look profitable too
|
|
and we end up inlining until reaching maximal function growth. This
|
|
is not good idea so prohibit the recursive inlining.
|
|
|
|
??? When the frequencies are taken into account we might not need this
|
|
restriction. */
|
|
if (!max_count)
|
|
{
|
|
where = edge->caller;
|
|
while (where->global.inlined_to)
|
|
{
|
|
if (where->decl == edge->callee->decl)
|
|
break;
|
|
where = where->callers->caller;
|
|
}
|
|
if (where->global.inlined_to)
|
|
{
|
|
edge->inline_failed
|
|
= (edge->callee->local.disregard_inline_limits ? N_("recursive inlining") : "");
|
|
if (dump_file)
|
|
fprintf (dump_file, " inline_failed:Recursive inlining performed only for function itself.\n");
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (!cgraph_maybe_hot_edge_p (edge) && growth > 0)
|
|
{
|
|
if (!cgraph_recursive_inlining_p (edge->caller, edge->callee,
|
|
&edge->inline_failed))
|
|
{
|
|
edge->inline_failed =
|
|
N_("call is unlikely");
|
|
if (dump_file)
|
|
fprintf (dump_file, " inline_failed:%s.\n", edge->inline_failed);
|
|
}
|
|
continue;
|
|
}
|
|
if (!cgraph_default_inline_p (edge->callee, &edge->inline_failed))
|
|
{
|
|
if (!cgraph_recursive_inlining_p (edge->caller, edge->callee,
|
|
&edge->inline_failed))
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, " inline_failed:%s.\n", edge->inline_failed);
|
|
}
|
|
continue;
|
|
}
|
|
if (cgraph_recursive_inlining_p (edge->caller, edge->callee,
|
|
&edge->inline_failed))
|
|
{
|
|
where = edge->caller;
|
|
if (where->global.inlined_to)
|
|
where = where->global.inlined_to;
|
|
if (!cgraph_decide_recursive_inlining (where))
|
|
continue;
|
|
update_callee_keys (heap, where, updated_nodes);
|
|
}
|
|
else
|
|
{
|
|
struct cgraph_node *callee;
|
|
if (!cgraph_check_inline_limits (edge->caller, edge->callee,
|
|
&edge->inline_failed, true))
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, " Not inlining into %s:%s.\n",
|
|
cgraph_node_name (edge->caller), edge->inline_failed);
|
|
continue;
|
|
}
|
|
callee = edge->callee;
|
|
cgraph_mark_inline_edge (edge, true);
|
|
update_callee_keys (heap, callee, updated_nodes);
|
|
}
|
|
where = edge->caller;
|
|
if (where->global.inlined_to)
|
|
where = where->global.inlined_to;
|
|
|
|
/* Our profitability metric can depend on local properties
|
|
such as number of inlinable calls and size of the function body.
|
|
After inlining these properties might change for the function we
|
|
inlined into (since it's body size changed) and for the functions
|
|
called by function we inlined (since number of it inlinable callers
|
|
might change). */
|
|
update_caller_keys (heap, where, updated_nodes);
|
|
bitmap_clear (updated_nodes);
|
|
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file,
|
|
" Inlined into %s which now has %i insns,"
|
|
"net change of %+i insns.\n",
|
|
cgraph_node_name (edge->caller),
|
|
edge->caller->global.insns,
|
|
overall_insns - old_insns);
|
|
}
|
|
}
|
|
while ((edge = fibheap_extract_min (heap)) != NULL)
|
|
{
|
|
gcc_assert (edge->aux);
|
|
edge->aux = NULL;
|
|
if (!edge->callee->local.disregard_inline_limits && edge->inline_failed
|
|
&& !cgraph_recursive_inlining_p (edge->caller, edge->callee,
|
|
&edge->inline_failed))
|
|
edge->inline_failed = N_("--param inline-unit-growth limit reached");
|
|
}
|
|
fibheap_delete (heap);
|
|
BITMAP_FREE (updated_nodes);
|
|
}
|
|
|
|
/* Decide on the inlining. We do so in the topological order to avoid
|
|
expenses on updating data structures. */
|
|
|
|
static unsigned int
|
|
cgraph_decide_inlining (void)
|
|
{
|
|
struct cgraph_node *node;
|
|
int nnodes;
|
|
struct cgraph_node **order =
|
|
XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
|
|
int old_insns = 0;
|
|
int i;
|
|
|
|
timevar_push (TV_INLINE_HEURISTICS);
|
|
max_count = 0;
|
|
for (node = cgraph_nodes; node; node = node->next)
|
|
if (node->analyzed && (node->needed || node->reachable))
|
|
{
|
|
struct cgraph_edge *e;
|
|
|
|
/* At the moment, no IPA passes change function bodies before inlining.
|
|
Save some time by not recomputing function body sizes if early inlining
|
|
already did so. */
|
|
if (!flag_early_inlining)
|
|
node->local.self_insns = node->global.insns
|
|
= estimate_num_insns (node->decl);
|
|
|
|
initial_insns += node->local.self_insns;
|
|
gcc_assert (node->local.self_insns == node->global.insns);
|
|
for (e = node->callees; e; e = e->next_callee)
|
|
if (max_count < e->count)
|
|
max_count = e->count;
|
|
}
|
|
overall_insns = initial_insns;
|
|
gcc_assert (!max_count || (profile_info && flag_branch_probabilities));
|
|
|
|
max_insns = overall_insns;
|
|
if (max_insns < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
|
|
max_insns = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);
|
|
|
|
max_insns = ((HOST_WIDEST_INT) max_insns
|
|
* (100 + PARAM_VALUE (PARAM_INLINE_UNIT_GROWTH)) / 100);
|
|
|
|
nnodes = cgraph_postorder (order);
|
|
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
"\nDeciding on inlining. Starting with %i insns.\n",
|
|
initial_insns);
|
|
|
|
for (node = cgraph_nodes; node; node = node->next)
|
|
node->aux = 0;
|
|
|
|
if (dump_file)
|
|
fprintf (dump_file, "\nInlining always_inline functions:\n");
|
|
|
|
/* In the first pass mark all always_inline edges. Do this with a priority
|
|
so none of our later choices will make this impossible. */
|
|
for (i = nnodes - 1; i >= 0; i--)
|
|
{
|
|
struct cgraph_edge *e, *next;
|
|
|
|
node = order[i];
|
|
|
|
/* Handle nodes to be flattened, but don't update overall unit size. */
|
|
if (lookup_attribute ("flatten", DECL_ATTRIBUTES (node->decl)) != NULL)
|
|
{
|
|
int old_overall_insns = overall_insns;
|
|
htab_t cycles;
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
"Flattening %s\n", cgraph_node_name (node));
|
|
cycles = htab_create (7, htab_hash_pointer, htab_eq_pointer, NULL);
|
|
cgraph_find_cycles (node, cycles);
|
|
cgraph_flatten_node (node, cycles);
|
|
htab_delete (cycles);
|
|
overall_insns = old_overall_insns;
|
|
/* We don't need to consider always_inline functions inside the flattened
|
|
function anymore. */
|
|
continue;
|
|
}
|
|
|
|
if (!node->local.disregard_inline_limits)
|
|
continue;
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
"\nConsidering %s %i insns (always inline)\n",
|
|
cgraph_node_name (node), node->global.insns);
|
|
old_insns = overall_insns;
|
|
for (e = node->callers; e; e = next)
|
|
{
|
|
next = e->next_caller;
|
|
if (!e->inline_failed)
|
|
continue;
|
|
if (cgraph_recursive_inlining_p (e->caller, e->callee,
|
|
&e->inline_failed))
|
|
continue;
|
|
cgraph_mark_inline_edge (e, true);
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
" Inlined into %s which now has %i insns.\n",
|
|
cgraph_node_name (e->caller),
|
|
e->caller->global.insns);
|
|
}
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
" Inlined for a net change of %+i insns.\n",
|
|
overall_insns - old_insns);
|
|
}
|
|
|
|
if (!flag_really_no_inline)
|
|
cgraph_decide_inlining_of_small_functions ();
|
|
|
|
if (!flag_really_no_inline
|
|
&& flag_inline_functions_called_once)
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, "\nDeciding on functions called once:\n");
|
|
|
|
/* And finally decide what functions are called once. */
|
|
|
|
for (i = nnodes - 1; i >= 0; i--)
|
|
{
|
|
node = order[i];
|
|
|
|
if (node->callers && !node->callers->next_caller && !node->needed
|
|
&& node->local.inlinable && node->callers->inline_failed
|
|
&& !DECL_EXTERNAL (node->decl) && !DECL_COMDAT (node->decl))
|
|
{
|
|
bool ok = true;
|
|
struct cgraph_node *node1;
|
|
|
|
/* Verify that we won't duplicate the caller. */
|
|
for (node1 = node->callers->caller;
|
|
node1->callers && !node1->callers->inline_failed
|
|
&& ok; node1 = node1->callers->caller)
|
|
if (node1->callers->next_caller || node1->needed)
|
|
ok = false;
|
|
if (ok)
|
|
{
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file,
|
|
"\nConsidering %s %i insns.\n",
|
|
cgraph_node_name (node), node->global.insns);
|
|
fprintf (dump_file,
|
|
" Called once from %s %i insns.\n",
|
|
cgraph_node_name (node->callers->caller),
|
|
node->callers->caller->global.insns);
|
|
}
|
|
|
|
old_insns = overall_insns;
|
|
|
|
if (cgraph_check_inline_limits (node->callers->caller, node,
|
|
NULL, false))
|
|
{
|
|
cgraph_mark_inline (node->callers);
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
" Inlined into %s which now has %i insns"
|
|
" for a net change of %+i insns.\n",
|
|
cgraph_node_name (node->callers->caller),
|
|
node->callers->caller->global.insns,
|
|
overall_insns - old_insns);
|
|
}
|
|
else
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
" Inline limit reached, not inlined.\n");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
"\nInlined %i calls, eliminated %i functions, "
|
|
"%i insns turned to %i insns.\n\n",
|
|
ncalls_inlined, nfunctions_inlined, initial_insns,
|
|
overall_insns);
|
|
free (order);
|
|
timevar_pop (TV_INLINE_HEURISTICS);
|
|
return 0;
|
|
}
|
|
|
|
/* Decide on the inlining. We do so in the topological order to avoid
|
|
expenses on updating data structures. */
|
|
|
|
bool
|
|
cgraph_decide_inlining_incrementally (struct cgraph_node *node, bool early)
|
|
{
|
|
struct cgraph_edge *e;
|
|
bool inlined = false;
|
|
const char *failed_reason;
|
|
|
|
/* First of all look for always inline functions. */
|
|
for (e = node->callees; e; e = e->next_callee)
|
|
if (e->callee->local.disregard_inline_limits
|
|
&& e->inline_failed
|
|
&& !cgraph_recursive_inlining_p (node, e->callee, &e->inline_failed)
|
|
/* ??? It is possible that renaming variable removed the function body
|
|
in duplicate_decls. See gcc.c-torture/compile/20011119-2.c */
|
|
&& (DECL_SAVED_TREE (e->callee->decl) || e->callee->inline_decl))
|
|
{
|
|
if (dump_file && early)
|
|
{
|
|
fprintf (dump_file, " Early inlining %s",
|
|
cgraph_node_name (e->callee));
|
|
fprintf (dump_file, " into %s\n", cgraph_node_name (node));
|
|
}
|
|
cgraph_mark_inline (e);
|
|
inlined = true;
|
|
}
|
|
|
|
/* Now do the automatic inlining. */
|
|
if (!flag_really_no_inline)
|
|
for (e = node->callees; e; e = e->next_callee)
|
|
if (e->callee->local.inlinable
|
|
&& e->inline_failed
|
|
&& !e->callee->local.disregard_inline_limits
|
|
&& !cgraph_recursive_inlining_p (node, e->callee, &e->inline_failed)
|
|
&& (!early
|
|
|| (cgraph_estimate_size_after_inlining (1, e->caller, e->callee)
|
|
<= e->caller->global.insns))
|
|
&& cgraph_check_inline_limits (node, e->callee, &e->inline_failed,
|
|
false)
|
|
&& (DECL_SAVED_TREE (e->callee->decl) || e->callee->inline_decl))
|
|
{
|
|
if (cgraph_default_inline_p (e->callee, &failed_reason))
|
|
{
|
|
if (dump_file && early)
|
|
{
|
|
fprintf (dump_file, " Early inlining %s",
|
|
cgraph_node_name (e->callee));
|
|
fprintf (dump_file, " into %s\n", cgraph_node_name (node));
|
|
}
|
|
cgraph_mark_inline (e);
|
|
inlined = true;
|
|
}
|
|
else if (!early)
|
|
e->inline_failed = failed_reason;
|
|
}
|
|
if (early && inlined)
|
|
{
|
|
push_cfun (DECL_STRUCT_FUNCTION (node->decl));
|
|
tree_register_cfg_hooks ();
|
|
current_function_decl = node->decl;
|
|
optimize_inline_calls (current_function_decl);
|
|
node->local.self_insns = node->global.insns;
|
|
current_function_decl = NULL;
|
|
pop_cfun ();
|
|
}
|
|
return inlined;
|
|
}
|
|
|
|
/* When inlining shall be performed. */
|
|
static bool
|
|
cgraph_gate_inlining (void)
|
|
{
|
|
return flag_inline_trees;
|
|
}
|
|
|
|
struct tree_opt_pass pass_ipa_inline =
|
|
{
|
|
"inline", /* name */
|
|
cgraph_gate_inlining, /* gate */
|
|
cgraph_decide_inlining, /* execute */
|
|
NULL, /* sub */
|
|
NULL, /* next */
|
|
0, /* static_pass_number */
|
|
TV_INTEGRATION, /* tv_id */
|
|
0, /* properties_required */
|
|
PROP_cfg, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
0, /* todo_flags_start */
|
|
TODO_dump_cgraph | TODO_dump_func, /* todo_flags_finish */
|
|
0 /* letter */
|
|
};
|
|
|
|
/* Because inlining might remove no-longer reachable nodes, we need to
|
|
keep the array visible to garbage collector to avoid reading collected
|
|
out nodes. */
|
|
static int nnodes;
|
|
static GTY ((length ("nnodes"))) struct cgraph_node **order;
|
|
|
|
/* Do inlining of small functions. Doing so early helps profiling and other
|
|
passes to be somewhat more effective and avoids some code duplication in
|
|
later real inlining pass for testcases with very many function calls. */
|
|
static unsigned int
|
|
cgraph_early_inlining (void)
|
|
{
|
|
struct cgraph_node *node;
|
|
int i;
|
|
|
|
if (sorrycount || errorcount)
|
|
return 0;
|
|
#ifdef ENABLE_CHECKING
|
|
for (node = cgraph_nodes; node; node = node->next)
|
|
gcc_assert (!node->aux);
|
|
#endif
|
|
|
|
order = ggc_alloc (sizeof (*order) * cgraph_n_nodes);
|
|
nnodes = cgraph_postorder (order);
|
|
for (i = nnodes - 1; i >= 0; i--)
|
|
{
|
|
node = order[i];
|
|
if (node->analyzed && (node->needed || node->reachable))
|
|
node->local.self_insns = node->global.insns
|
|
= estimate_num_insns (node->decl);
|
|
}
|
|
for (i = nnodes - 1; i >= 0; i--)
|
|
{
|
|
node = order[i];
|
|
if (node->analyzed && node->local.inlinable
|
|
&& (node->needed || node->reachable)
|
|
&& node->callers)
|
|
{
|
|
if (cgraph_decide_inlining_incrementally (node, true))
|
|
ggc_collect ();
|
|
}
|
|
}
|
|
cgraph_remove_unreachable_nodes (true, dump_file);
|
|
#ifdef ENABLE_CHECKING
|
|
for (node = cgraph_nodes; node; node = node->next)
|
|
gcc_assert (!node->global.inlined_to);
|
|
#endif
|
|
ggc_free (order);
|
|
order = NULL;
|
|
nnodes = 0;
|
|
return 0;
|
|
}
|
|
|
|
/* When inlining shall be performed. */
|
|
static bool
|
|
cgraph_gate_early_inlining (void)
|
|
{
|
|
return flag_inline_trees && flag_early_inlining;
|
|
}
|
|
|
|
struct tree_opt_pass pass_early_ipa_inline =
|
|
{
|
|
"einline", /* name */
|
|
cgraph_gate_early_inlining, /* gate */
|
|
cgraph_early_inlining, /* execute */
|
|
NULL, /* sub */
|
|
NULL, /* next */
|
|
0, /* static_pass_number */
|
|
TV_INTEGRATION, /* tv_id */
|
|
0, /* properties_required */
|
|
PROP_cfg, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
0, /* todo_flags_start */
|
|
TODO_dump_cgraph | TODO_dump_func, /* todo_flags_finish */
|
|
0 /* letter */
|
|
};
|
|
|
|
#include "gt-ipa-inline.h"
|