freebsd-dev/stand/efi/loader/main.c
Warner Losh 8ac2d6f5d6 Read in and parse /efi/freebsd/loader.env from the boot device's
partition as if it were on the command line.

Fetch FreeBSD-LoaderEnv UEFI enviornment variable. If set, read in
loader environment variables from it. Otherwise read in
/efi/freebsd/loader.env. Both are read relative to the device
loader.efi loaded from (they aren't full UEFI device paths)

Next fetch FreeBSD-NextLoaderEnv UEFI environment variable. If
present, read the file it points to in as above and delete the UEFI
environment variable so it only happens once.

This lets one set environment variables in the bootloader.
Unfortunately, we don't have all the mechanisms in place to parse the
file, nor do we have the magic pattern matching in place that
loader.conf has. Variables are of the form foo=bar. No quotes are
supported, so spaces aren't allowed, for example. Also, variables like
foo_load=yes are intercepted when we parse the loader.conf file and
things are done based on that. Since those aren't done here, variables
that cause an action to happen won't work.

Reviewed by: bcran
Differential Revision: https://reviews.freebsd.org/D20016
2019-04-29 05:02:25 +00:00

1528 lines
41 KiB
C

/*-
* Copyright (c) 2008-2010 Rui Paulo
* Copyright (c) 2006 Marcel Moolenaar
* All rights reserved.
*
* Copyright (c) 2016-2019 Netflix, Inc. written by M. Warner Losh
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <stand.h>
#include <sys/disk.h>
#include <sys/param.h>
#include <sys/reboot.h>
#include <sys/boot.h>
#include <stdint.h>
#include <string.h>
#include <setjmp.h>
#include <disk.h>
#include <efi.h>
#include <efilib.h>
#include <efichar.h>
#include <uuid.h>
#include <bootstrap.h>
#include <smbios.h>
#include "efizfs.h"
#include "loader_efi.h"
struct arch_switch archsw; /* MI/MD interface boundary */
EFI_GUID acpi = ACPI_TABLE_GUID;
EFI_GUID acpi20 = ACPI_20_TABLE_GUID;
EFI_GUID devid = DEVICE_PATH_PROTOCOL;
EFI_GUID imgid = LOADED_IMAGE_PROTOCOL;
EFI_GUID mps = MPS_TABLE_GUID;
EFI_GUID netid = EFI_SIMPLE_NETWORK_PROTOCOL;
EFI_GUID smbios = SMBIOS_TABLE_GUID;
EFI_GUID smbios3 = SMBIOS3_TABLE_GUID;
EFI_GUID dxe = DXE_SERVICES_TABLE_GUID;
EFI_GUID hoblist = HOB_LIST_TABLE_GUID;
EFI_GUID lzmadecomp = LZMA_DECOMPRESSION_GUID;
EFI_GUID mpcore = ARM_MP_CORE_INFO_TABLE_GUID;
EFI_GUID esrt = ESRT_TABLE_GUID;
EFI_GUID memtype = MEMORY_TYPE_INFORMATION_TABLE_GUID;
EFI_GUID debugimg = DEBUG_IMAGE_INFO_TABLE_GUID;
EFI_GUID fdtdtb = FDT_TABLE_GUID;
EFI_GUID inputid = SIMPLE_TEXT_INPUT_PROTOCOL;
/*
* Number of seconds to wait for a keystroke before exiting with failure
* in the event no currdev is found. -2 means always break, -1 means
* never break, 0 means poll once and then reboot, > 0 means wait for
* that many seconds. "fail_timeout" can be set in the environment as
* well.
*/
static int fail_timeout = 5;
/*
* Current boot variable
*/
UINT16 boot_current;
/*
* Image that we booted from.
*/
EFI_LOADED_IMAGE *boot_img;
static bool
has_keyboard(void)
{
EFI_STATUS status;
EFI_DEVICE_PATH *path;
EFI_HANDLE *hin, *hin_end, *walker;
UINTN sz;
bool retval = false;
/*
* Find all the handles that support the SIMPLE_TEXT_INPUT_PROTOCOL and
* do the typical dance to get the right sized buffer.
*/
sz = 0;
hin = NULL;
status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz, 0);
if (status == EFI_BUFFER_TOO_SMALL) {
hin = (EFI_HANDLE *)malloc(sz);
status = BS->LocateHandle(ByProtocol, &inputid, 0, &sz,
hin);
if (EFI_ERROR(status))
free(hin);
}
if (EFI_ERROR(status))
return retval;
/*
* Look at each of the handles. If it supports the device path protocol,
* use it to get the device path for this handle. Then see if that
* device path matches either the USB device path for keyboards or the
* legacy device path for keyboards.
*/
hin_end = &hin[sz / sizeof(*hin)];
for (walker = hin; walker < hin_end; walker++) {
status = BS->HandleProtocol(*walker, &devid, (VOID **)&path);
if (EFI_ERROR(status))
continue;
while (!IsDevicePathEnd(path)) {
/*
* Check for the ACPI keyboard node. All PNP3xx nodes
* are keyboards of different flavors. Note: It is
* unclear of there's always a keyboard node when
* there's a keyboard controller, or if there's only one
* when a keyboard is detected at boot.
*/
if (DevicePathType(path) == ACPI_DEVICE_PATH &&
(DevicePathSubType(path) == ACPI_DP ||
DevicePathSubType(path) == ACPI_EXTENDED_DP)) {
ACPI_HID_DEVICE_PATH *acpi;
acpi = (ACPI_HID_DEVICE_PATH *)(void *)path;
if ((EISA_ID_TO_NUM(acpi->HID) & 0xff00) == 0x300 &&
(acpi->HID & 0xffff) == PNP_EISA_ID_CONST) {
retval = true;
goto out;
}
/*
* Check for USB keyboard node, if present. Unlike a
* PS/2 keyboard, these definitely only appear when
* connected to the system.
*/
} else if (DevicePathType(path) == MESSAGING_DEVICE_PATH &&
DevicePathSubType(path) == MSG_USB_CLASS_DP) {
USB_CLASS_DEVICE_PATH *usb;
usb = (USB_CLASS_DEVICE_PATH *)(void *)path;
if (usb->DeviceClass == 3 && /* HID */
usb->DeviceSubClass == 1 && /* Boot devices */
usb->DeviceProtocol == 1) { /* Boot keyboards */
retval = true;
goto out;
}
}
path = NextDevicePathNode(path);
}
}
out:
free(hin);
return retval;
}
static void
set_currdev(const char *devname)
{
env_setenv("currdev", EV_VOLATILE, devname, efi_setcurrdev, env_nounset);
env_setenv("loaddev", EV_VOLATILE, devname, env_noset, env_nounset);
}
static void
set_currdev_devdesc(struct devdesc *currdev)
{
const char *devname;
devname = efi_fmtdev(currdev);
printf("Setting currdev to %s\n", devname);
set_currdev(devname);
}
static void
set_currdev_devsw(struct devsw *dev, int unit)
{
struct devdesc currdev;
currdev.d_dev = dev;
currdev.d_unit = unit;
set_currdev_devdesc(&currdev);
}
static void
set_currdev_pdinfo(pdinfo_t *dp)
{
/*
* Disks are special: they have partitions. if the parent
* pointer is non-null, we're a partition not a full disk
* and we need to adjust currdev appropriately.
*/
if (dp->pd_devsw->dv_type == DEVT_DISK) {
struct disk_devdesc currdev;
currdev.dd.d_dev = dp->pd_devsw;
if (dp->pd_parent == NULL) {
currdev.dd.d_unit = dp->pd_unit;
currdev.d_slice = D_SLICENONE;
currdev.d_partition = D_PARTNONE;
} else {
currdev.dd.d_unit = dp->pd_parent->pd_unit;
currdev.d_slice = dp->pd_unit;
currdev.d_partition = D_PARTISGPT; /* XXX Assumes GPT */
}
set_currdev_devdesc((struct devdesc *)&currdev);
} else {
set_currdev_devsw(dp->pd_devsw, dp->pd_unit);
}
}
static bool
sanity_check_currdev(void)
{
struct stat st;
return (stat("/boot/defaults/loader.conf", &st) == 0 ||
stat("/boot/kernel/kernel", &st) == 0);
}
#ifdef EFI_ZFS_BOOT
static bool
probe_zfs_currdev(uint64_t guid)
{
char *devname;
struct zfs_devdesc currdev;
currdev.dd.d_dev = &zfs_dev;
currdev.dd.d_unit = 0;
currdev.pool_guid = guid;
currdev.root_guid = 0;
set_currdev_devdesc((struct devdesc *)&currdev);
devname = efi_fmtdev(&currdev);
init_zfs_bootenv(devname);
return (sanity_check_currdev());
}
#endif
static bool
try_as_currdev(pdinfo_t *hd, pdinfo_t *pp)
{
uint64_t guid;
#ifdef EFI_ZFS_BOOT
/*
* If there's a zpool on this device, try it as a ZFS
* filesystem, which has somewhat different setup than all
* other types of fs due to imperfect loader integration.
* This all stems from ZFS being both a device (zpool) and
* a filesystem, plus the boot env feature.
*/
if (efizfs_get_guid_by_handle(pp->pd_handle, &guid))
return (probe_zfs_currdev(guid));
#endif
/*
* All other filesystems just need the pdinfo
* initialized in the standard way.
*/
set_currdev_pdinfo(pp);
return (sanity_check_currdev());
}
/*
* Sometimes we get filenames that are all upper case
* and/or have backslashes in them. Filter all this out
* if it looks like we need to do so.
*/
static void
fix_dosisms(char *p)
{
while (*p) {
if (isupper(*p))
*p = tolower(*p);
else if (*p == '\\')
*p = '/';
p++;
}
}
#define SIZE(dp, edp) (size_t)((intptr_t)(void *)edp - (intptr_t)(void *)dp)
enum { BOOT_INFO_OK = 0, BAD_CHOICE = 1, NOT_SPECIFIC = 2 };
static int
match_boot_info(char *boot_info, size_t bisz)
{
uint32_t attr;
uint16_t fplen;
size_t len;
char *walker, *ep;
EFI_DEVICE_PATH *dp, *edp, *first_dp, *last_dp;
pdinfo_t *pp;
CHAR16 *descr;
char *kernel = NULL;
FILEPATH_DEVICE_PATH *fp;
struct stat st;
CHAR16 *text;
/*
* FreeBSD encodes it's boot loading path into the boot loader
* BootXXXX variable. We look for the last one in the path
* and use that to load the kernel. However, if we only fine
* one DEVICE_PATH, then there's nothing specific and we should
* fall back.
*
* In an ideal world, we'd look at the image handle we were
* passed, match up with the loader we are and then return the
* next one in the path. This would be most flexible and cover
* many chain booting scenarios where you need to use this
* boot loader to get to the next boot loader. However, that
* doesn't work. We rarely have the path to the image booted
* (just the device) so we can't count on that. So, we do the
* enxt best thing, we look through the device path(s) passed
* in the BootXXXX varaible. If there's only one, we return
* NOT_SPECIFIC. Otherwise, we look at the last one and try to
* load that. If we can, we return BOOT_INFO_OK. Otherwise we
* return BAD_CHOICE for the caller to sort out.
*/
if (bisz < sizeof(attr) + sizeof(fplen) + sizeof(CHAR16))
return NOT_SPECIFIC;
walker = boot_info;
ep = walker + bisz;
memcpy(&attr, walker, sizeof(attr));
walker += sizeof(attr);
memcpy(&fplen, walker, sizeof(fplen));
walker += sizeof(fplen);
descr = (CHAR16 *)(intptr_t)walker;
len = ucs2len(descr);
walker += (len + 1) * sizeof(CHAR16);
last_dp = first_dp = dp = (EFI_DEVICE_PATH *)walker;
edp = (EFI_DEVICE_PATH *)(walker + fplen);
if ((char *)edp > ep)
return NOT_SPECIFIC;
while (dp < edp && SIZE(dp, edp) > sizeof(EFI_DEVICE_PATH)) {
text = efi_devpath_name(dp);
if (text != NULL) {
printf(" BootInfo Path: %S\n", text);
efi_free_devpath_name(text);
}
last_dp = dp;
dp = (EFI_DEVICE_PATH *)((char *)dp + efi_devpath_length(dp));
}
/*
* If there's only one item in the list, then nothing was
* specified. Or if the last path doesn't have a media
* path in it. Those show up as various VenHw() nodes
* which are basically opaque to us. Don't count those
* as something specifc.
*/
if (last_dp == first_dp) {
printf("Ignoring Boot%04x: Only one DP found\n", boot_current);
return NOT_SPECIFIC;
}
if (efi_devpath_to_media_path(last_dp) == NULL) {
printf("Ignoring Boot%04x: No Media Path\n", boot_current);
return NOT_SPECIFIC;
}
/*
* OK. At this point we either have a good path or a bad one.
* Let's check.
*/
pp = efiblk_get_pdinfo_by_device_path(last_dp);
if (pp == NULL) {
printf("Ignoring Boot%04x: Device Path not found\n", boot_current);
return BAD_CHOICE;
}
set_currdev_pdinfo(pp);
if (!sanity_check_currdev()) {
printf("Ignoring Boot%04x: sanity check failed\n", boot_current);
return BAD_CHOICE;
}
/*
* OK. We've found a device that matches, next we need to check the last
* component of the path. If it's a file, then we set the default kernel
* to that. Otherwise, just use this as the default root.
*
* Reminder: we're running very early, before we've parsed the defaults
* file, so we may need to have a hack override.
*/
dp = efi_devpath_last_node(last_dp);
if (DevicePathType(dp) != MEDIA_DEVICE_PATH ||
DevicePathSubType(dp) != MEDIA_FILEPATH_DP) {
printf("Using Boot%04x for root partition\n", boot_current);
return (BOOT_INFO_OK); /* use currdir, default kernel */
}
fp = (FILEPATH_DEVICE_PATH *)dp;
ucs2_to_utf8(fp->PathName, &kernel);
if (kernel == NULL) {
printf("Not using Boot%04x: can't decode kernel\n", boot_current);
return (BAD_CHOICE);
}
if (*kernel == '\\' || isupper(*kernel))
fix_dosisms(kernel);
if (stat(kernel, &st) != 0) {
free(kernel);
printf("Not using Boot%04x: can't find %s\n", boot_current,
kernel);
return (BAD_CHOICE);
}
setenv("kernel", kernel, 1);
free(kernel);
text = efi_devpath_name(last_dp);
if (text) {
printf("Using Boot%04x %S + %s\n", boot_current, text,
kernel);
efi_free_devpath_name(text);
}
return (BOOT_INFO_OK);
}
/*
* Look at the passed-in boot_info, if any. If we find it then we need
* to see if we can find ourselves in the boot chain. If we can, and
* there's another specified thing to boot next, assume that the file
* is loaded from / and use that for the root filesystem. If can't
* find the specified thing, we must fail the boot. If we're last on
* the list, then we fallback to looking for the first available /
* candidate (ZFS, if there's a bootable zpool, otherwise a UFS
* partition that has either /boot/defaults/loader.conf on it or
* /boot/kernel/kernel (the default kernel) that we can use.
*
* We always fail if we can't find the right thing. However, as
* a concession to buggy UEFI implementations, like u-boot, if
* we have determined that the host is violating the UEFI boot
* manager protocol, we'll signal the rest of the program that
* a drop to the OK boot loader prompt is possible.
*/
static int
find_currdev(bool do_bootmgr, bool is_last,
char *boot_info, size_t boot_info_sz)
{
pdinfo_t *dp, *pp;
EFI_DEVICE_PATH *devpath, *copy;
EFI_HANDLE h;
CHAR16 *text;
struct devsw *dev;
int unit;
uint64_t extra;
int rv;
char *rootdev;
/*
* First choice: if rootdev is already set, use that, even if
* it's wrong.
*/
rootdev = getenv("rootdev");
if (rootdev != NULL) {
printf("Setting currdev to configured rootdev %s\n", rootdev);
set_currdev(rootdev);
return (0);
}
/*
* Second choice: If we can find out image boot_info, and there's
* a follow-on boot image in that boot_info, use that. In this
* case root will be the partition specified in that image and
* we'll load the kernel specified by the file path. Should there
* not be a filepath, we use the default. This filepath overrides
* loader.conf.
*/
if (do_bootmgr) {
rv = match_boot_info(boot_info, boot_info_sz);
switch (rv) {
case BOOT_INFO_OK: /* We found it */
return (0);
case BAD_CHOICE: /* specified file not found -> error */
/* XXX do we want to have an escape hatch for last in boot order? */
return (ENOENT);
} /* Nothing specified, try normal match */
}
#ifdef EFI_ZFS_BOOT
/*
* Did efi_zfs_probe() detect the boot pool? If so, use the zpool
* it found, if it's sane. ZFS is the only thing that looks for
* disks and pools to boot. This may change in the future, however,
* if we allow specifying which pool to boot from via UEFI variables
* rather than the bootenv stuff that FreeBSD uses today.
*/
if (pool_guid != 0) {
printf("Trying ZFS pool\n");
if (probe_zfs_currdev(pool_guid))
return (0);
}
#endif /* EFI_ZFS_BOOT */
/*
* Try to find the block device by its handle based on the
* image we're booting. If we can't find a sane partition,
* search all the other partitions of the disk. We do not
* search other disks because it's a violation of the UEFI
* boot protocol to do so. We fail and let UEFI go on to
* the next candidate.
*/
dp = efiblk_get_pdinfo_by_handle(boot_img->DeviceHandle);
if (dp != NULL) {
text = efi_devpath_name(dp->pd_devpath);
if (text != NULL) {
printf("Trying ESP: %S\n", text);
efi_free_devpath_name(text);
}
set_currdev_pdinfo(dp);
if (sanity_check_currdev())
return (0);
if (dp->pd_parent != NULL) {
pdinfo_t *espdp = dp;
dp = dp->pd_parent;
STAILQ_FOREACH(pp, &dp->pd_part, pd_link) {
/* Already tried the ESP */
if (espdp == pp)
continue;
/*
* Roll up the ZFS special case
* for those partitions that have
* zpools on them.
*/
text = efi_devpath_name(pp->pd_devpath);
if (text != NULL) {
printf("Trying: %S\n", text);
efi_free_devpath_name(text);
}
if (try_as_currdev(dp, pp))
return (0);
}
}
}
/*
* Try the device handle from our loaded image first. If that
* fails, use the device path from the loaded image and see if
* any of the nodes in that path match one of the enumerated
* handles. Currently, this handle list is only for netboot.
*/
if (efi_handle_lookup(boot_img->DeviceHandle, &dev, &unit, &extra) == 0) {
set_currdev_devsw(dev, unit);
if (sanity_check_currdev())
return (0);
}
copy = NULL;
devpath = efi_lookup_image_devpath(IH);
while (devpath != NULL) {
h = efi_devpath_handle(devpath);
if (h == NULL)
break;
free(copy);
copy = NULL;
if (efi_handle_lookup(h, &dev, &unit, &extra) == 0) {
set_currdev_devsw(dev, unit);
if (sanity_check_currdev())
return (0);
}
devpath = efi_lookup_devpath(h);
if (devpath != NULL) {
copy = efi_devpath_trim(devpath);
devpath = copy;
}
}
free(copy);
return (ENOENT);
}
static bool
interactive_interrupt(const char *msg)
{
time_t now, then, last;
last = 0;
now = then = getsecs();
printf("%s\n", msg);
if (fail_timeout == -2) /* Always break to OK */
return (true);
if (fail_timeout == -1) /* Never break to OK */
return (false);
do {
if (last != now) {
printf("press any key to interrupt reboot in %d seconds\r",
fail_timeout - (int)(now - then));
last = now;
}
/* XXX no pause or timeout wait for char */
if (ischar())
return (true);
now = getsecs();
} while (now - then < fail_timeout);
return (false);
}
static int
parse_args(int argc, CHAR16 *argv[])
{
int i, j, howto;
bool vargood;
char var[128];
/*
* Parse the args to set the console settings, etc
* boot1.efi passes these in, if it can read /boot.config or /boot/config
* or iPXE may be setup to pass these in. Or the optional argument in the
* boot environment was used to pass these arguments in (in which case
* neither /boot.config nor /boot/config are consulted).
*
* Loop through the args, and for each one that contains an '=' that is
* not the first character, add it to the environment. This allows
* loader and kernel env vars to be passed on the command line. Convert
* args from UCS-2 to ASCII (16 to 8 bit) as they are copied (though this
* method is flawed for non-ASCII characters).
*/
howto = 0;
for (i = 1; i < argc; i++) {
cpy16to8(argv[i], var, sizeof(var));
howto |= boot_parse_arg(var);
}
return (howto);
}
static void
setenv_int(const char *key, int val)
{
char buf[20];
snprintf(buf, sizeof(buf), "%d", val);
setenv(key, buf, 1);
}
/*
* Parse ConOut (the list of consoles active) and see if we can find a
* serial port and/or a video port. It would be nice to also walk the
* ACPI name space to map the UID for the serial port to a port. The
* latter is especially hard.
*/
static int
parse_uefi_con_out(void)
{
int how, rv;
int vid_seen = 0, com_seen = 0, seen = 0;
size_t sz;
char buf[4096], *ep;
EFI_DEVICE_PATH *node;
ACPI_HID_DEVICE_PATH *acpi;
UART_DEVICE_PATH *uart;
bool pci_pending;
how = 0;
sz = sizeof(buf);
rv = efi_global_getenv("ConOut", buf, &sz);
if (rv != EFI_SUCCESS)
goto out;
ep = buf + sz;
node = (EFI_DEVICE_PATH *)buf;
while ((char *)node < ep) {
pci_pending = false;
if (DevicePathType(node) == ACPI_DEVICE_PATH &&
DevicePathSubType(node) == ACPI_DP) {
/* Check for Serial node */
acpi = (void *)node;
if (EISA_ID_TO_NUM(acpi->HID) == 0x501) {
setenv_int("efi_8250_uid", acpi->UID);
com_seen = ++seen;
}
} else if (DevicePathType(node) == MESSAGING_DEVICE_PATH &&
DevicePathSubType(node) == MSG_UART_DP) {
uart = (void *)node;
setenv_int("efi_com_speed", uart->BaudRate);
} else if (DevicePathType(node) == ACPI_DEVICE_PATH &&
DevicePathSubType(node) == ACPI_ADR_DP) {
/* Check for AcpiAdr() Node for video */
vid_seen = ++seen;
} else if (DevicePathType(node) == HARDWARE_DEVICE_PATH &&
DevicePathSubType(node) == HW_PCI_DP) {
/*
* Note, vmware fusion has a funky console device
* PciRoot(0x0)/Pci(0xf,0x0)
* which we can only detect at the end since we also
* have to cope with:
* PciRoot(0x0)/Pci(0x1f,0x0)/Serial(0x1)
* so only match it if it's last.
*/
pci_pending = true;
}
node = NextDevicePathNode(node); /* Skip the end node */
}
if (pci_pending && vid_seen == 0)
vid_seen = ++seen;
/*
* Truth table for RB_MULTIPLE | RB_SERIAL
* Value Result
* 0 Use only video console
* RB_SERIAL Use only serial console
* RB_MULTIPLE Use both video and serial console
* (but video is primary so gets rc messages)
* both Use both video and serial console
* (but serial is primary so gets rc messages)
*
* Try to honor this as best we can. If only one of serial / video
* found, then use that. Otherwise, use the first one we found.
* This also implies if we found nothing, default to video.
*/
how = 0;
if (vid_seen && com_seen) {
how |= RB_MULTIPLE;
if (com_seen < vid_seen)
how |= RB_SERIAL;
} else if (com_seen)
how |= RB_SERIAL;
out:
return (how);
}
void
parse_loader_efi_config(EFI_HANDLE h, const char *env_fn)
{
pdinfo_t *dp;
struct stat st;
int fd = -1;
char *env = NULL;
dp = efiblk_get_pdinfo_by_handle(h);
if (dp == NULL)
return;
set_currdev_pdinfo(dp);
if (stat(env_fn, &st) != 0)
return;
fd = open(env_fn, O_RDONLY);
if (fd == -1)
return;
env = malloc(st.st_size + 1);
if (env == NULL)
goto out;
if (read(fd, env, st.st_size) != st.st_size)
goto out;
env[st.st_size] = '\0';
boot_parse_cmdline(env);
out:
free(env);
close(fd);
}
static void
read_loader_env(const char *name, char *def_fn, bool once)
{
UINTN len;
char *fn, *freeme = NULL;
len = 0;
fn = def_fn;
if (efi_freebsd_getenv(name, NULL, &len) == EFI_BUFFER_TOO_SMALL) {
freeme = fn = malloc(len + 1);
if (fn != NULL) {
if (efi_freebsd_getenv(name, fn, &len) != EFI_SUCCESS) {
free(fn);
fn = NULL;
printf(
"Can't fetch FreeBSD::%s we know is there\n", name);
} else {
/*
* if tagged as 'once' delete the env variable so we
* only use it once.
*/
if (once)
efi_freebsd_delenv(name);
/*
* We malloced 1 more than len above, then redid the call.
* so now we have room at the end of the string to NUL terminate
* it here, even if the typical idium would have '- 1' here to
* not overflow. len should be the same on return both times.
*/
fn[len] = '\0';
}
} else {
printf(
"Can't allocate %d bytes to fetch FreeBSD::%s env var\n",
len, name);
}
}
if (fn) {
printf(" Reading loader env vars from %s\n", fn);
parse_loader_efi_config(boot_img->DeviceHandle, fn);
}
}
EFI_STATUS
main(int argc, CHAR16 *argv[])
{
EFI_GUID *guid;
int howto, i, uhowto;
UINTN k;
bool has_kbd, is_last;
char *s;
EFI_DEVICE_PATH *imgpath;
CHAR16 *text;
EFI_STATUS rv;
size_t sz, bosz = 0, bisz = 0;
UINT16 boot_order[100];
char boot_info[4096];
char buf[32];
bool uefi_boot_mgr;
archsw.arch_autoload = efi_autoload;
archsw.arch_getdev = efi_getdev;
archsw.arch_copyin = efi_copyin;
archsw.arch_copyout = efi_copyout;
archsw.arch_readin = efi_readin;
archsw.arch_zfs_probe = efi_zfs_probe;
/* Get our loaded image protocol interface structure. */
BS->HandleProtocol(IH, &imgid, (VOID**)&boot_img);
/*
* Chicken-and-egg problem; we want to have console output early, but
* some console attributes may depend on reading from eg. the boot
* device, which we can't do yet. We can use printf() etc. once this is
* done. So, we set it to the efi console, then call console init. This
* gets us printf early, but also primes the pump for all future console
* changes to take effect, regardless of where they come from.
*/
setenv("console", "efi", 1);
cons_probe();
/* Init the time source */
efi_time_init();
/*
* Initialise the block cache. Set the upper limit.
*/
bcache_init(32768, 512);
/*
* Scan the BLOCK IO MEDIA handles then
* march through the device switch probing for things.
*/
i = efipart_inithandles();
if (i != 0 && i != ENOENT) {
printf("efipart_inithandles failed with ERRNO %d, expect "
"failures\n", i);
}
for (i = 0; devsw[i] != NULL; i++)
if (devsw[i]->dv_init != NULL)
(devsw[i]->dv_init)();
/*
* Detect console settings two different ways: one via the command
* args (eg -h) or via the UEFI ConOut variable.
*/
has_kbd = has_keyboard();
howto = parse_args(argc, argv);
if (!has_kbd && (howto & RB_PROBE))
howto |= RB_SERIAL | RB_MULTIPLE;
howto &= ~RB_PROBE;
uhowto = parse_uefi_con_out();
/*
* Scan the BLOCK IO MEDIA handles then
* march through the device switch probing for things.
*/
i = efipart_inithandles();
if (i != 0 && i != ENOENT) {
printf("efipart_inithandles failed with ERRNO %d, expect "
"failures\n", i);
}
for (i = 0; devsw[i] != NULL; i++)
if (devsw[i]->dv_init != NULL)
(devsw[i]->dv_init)();
/*
* Read additional environment variables from the boot device's
* "LoaderEnv" file. Any boot loader environment variable may be set
* there, which are subtly different than loader.conf variables. Only
* the 'simple' ones may be set so things like foo_load="YES" won't work
* for two reasons. First, the parser is simplistic and doesn't grok
* quotes. Second, because the variables that cause an action to happen
* are parsed by the lua, 4th or whatever code that's not yet
* loaded. This is relative to the root directory when loader.efi is
* loaded off the UFS root drive (when chain booted), or from the ESP
* when directly loaded by the BIOS.
*
* We also read in NextLoaderEnv if it was specified. This allows next boot
* functionality to be implemented and to override anything in LoaderEnv.
*/
read_loader_env("LoaderEnv", "/efi/freebsd/loader.env", false);
read_loader_env("NextLoaderEnv", NULL, true);
/*
* We now have two notions of console. howto should be viewed as
* overrides. If console is already set, don't set it again.
*/
#define VIDEO_ONLY 0
#define SERIAL_ONLY RB_SERIAL
#define VID_SER_BOTH RB_MULTIPLE
#define SER_VID_BOTH (RB_SERIAL | RB_MULTIPLE)
#define CON_MASK (RB_SERIAL | RB_MULTIPLE)
if (strcmp(getenv("console"), "efi") == 0) {
if ((howto & CON_MASK) == 0) {
/* No override, uhowto is controlling and efi cons is perfect */
howto = howto | (uhowto & CON_MASK);
} else if ((howto & CON_MASK) == (uhowto & CON_MASK)) {
/* override matches what UEFI told us, efi console is perfect */
} else if ((uhowto & (CON_MASK)) != 0) {
/*
* We detected a serial console on ConOut. All possible
* overrides include serial. We can't really override what efi
* gives us, so we use it knowing it's the best choice.
*/
/* Do nothing */
} else {
/*
* We detected some kind of serial in the override, but ConOut
* has no serial, so we have to sort out which case it really is.
*/
switch (howto & CON_MASK) {
case SERIAL_ONLY:
setenv("console", "comconsole", 1);
break;
case VID_SER_BOTH:
setenv("console", "efi comconsole", 1);
break;
case SER_VID_BOTH:
setenv("console", "comconsole efi", 1);
break;
/* case VIDEO_ONLY can't happen -- it's the first if above */
}
}
}
/*
* howto is set now how we want to export the flags to the kernel, so
* set the env based on it.
*/
boot_howto_to_env(howto);
if (efi_copy_init()) {
printf("failed to allocate staging area\n");
return (EFI_BUFFER_TOO_SMALL);
}
if ((s = getenv("fail_timeout")) != NULL)
fail_timeout = strtol(s, NULL, 10);
printf("%s\n", bootprog_info);
printf(" Command line arguments:");
for (i = 0; i < argc; i++)
printf(" %S", argv[i]);
printf("\n");
printf(" EFI version: %d.%02d\n", ST->Hdr.Revision >> 16,
ST->Hdr.Revision & 0xffff);
printf(" EFI Firmware: %S (rev %d.%02d)\n", ST->FirmwareVendor,
ST->FirmwareRevision >> 16, ST->FirmwareRevision & 0xffff);
printf(" Console: %s (%#x)\n", getenv("console"), howto);
/* Determine the devpath of our image so we can prefer it. */
text = efi_devpath_name(boot_img->FilePath);
if (text != NULL) {
printf(" Load Path: %S\n", text);
efi_setenv_freebsd_wcs("LoaderPath", text);
efi_free_devpath_name(text);
}
rv = BS->HandleProtocol(boot_img->DeviceHandle, &devid, (void **)&imgpath);
if (rv == EFI_SUCCESS) {
text = efi_devpath_name(imgpath);
if (text != NULL) {
printf(" Load Device: %S\n", text);
efi_setenv_freebsd_wcs("LoaderDev", text);
efi_free_devpath_name(text);
}
}
uefi_boot_mgr = true;
boot_current = 0;
sz = sizeof(boot_current);
rv = efi_global_getenv("BootCurrent", &boot_current, &sz);
if (rv == EFI_SUCCESS)
printf(" BootCurrent: %04x\n", boot_current);
else {
boot_current = 0xffff;
uefi_boot_mgr = false;
}
sz = sizeof(boot_order);
rv = efi_global_getenv("BootOrder", &boot_order, &sz);
if (rv == EFI_SUCCESS) {
printf(" BootOrder:");
for (i = 0; i < sz / sizeof(boot_order[0]); i++)
printf(" %04x%s", boot_order[i],
boot_order[i] == boot_current ? "[*]" : "");
printf("\n");
is_last = boot_order[(sz / sizeof(boot_order[0])) - 1] == boot_current;
bosz = sz;
} else if (uefi_boot_mgr) {
/*
* u-boot doesn't set BootOrder, but otherwise participates in the
* boot manager protocol. So we fake it here and don't consider it
* a failure.
*/
bosz = sizeof(boot_order[0]);
boot_order[0] = boot_current;
is_last = true;
}
/*
* Next, find the boot info structure the UEFI boot manager is
* supposed to setup. We need this so we can walk through it to
* find where we are in the booting process and what to try to
* boot next.
*/
if (uefi_boot_mgr) {
snprintf(buf, sizeof(buf), "Boot%04X", boot_current);
sz = sizeof(boot_info);
rv = efi_global_getenv(buf, &boot_info, &sz);
if (rv == EFI_SUCCESS)
bisz = sz;
else
uefi_boot_mgr = false;
}
/*
* Disable the watchdog timer. By default the boot manager sets
* the timer to 5 minutes before invoking a boot option. If we
* want to return to the boot manager, we have to disable the
* watchdog timer and since we're an interactive program, we don't
* want to wait until the user types "quit". The timer may have
* fired by then. We don't care if this fails. It does not prevent
* normal functioning in any way...
*/
BS->SetWatchdogTimer(0, 0, 0, NULL);
/*
* Initialize the trusted/forbidden certificates from UEFI.
* They will be later used to verify the manifest(s),
* which should contain hashes of verified files.
* This needs to be initialized before any configuration files
* are loaded.
*/
#ifdef EFI_SECUREBOOT
ve_efi_init();
#endif
/*
* Try and find a good currdev based on the image that was booted.
* It might be desirable here to have a short pause to allow falling
* through to the boot loader instead of returning instantly to follow
* the boot protocol and also allow an escape hatch for users wishing
* to try something different.
*/
if (find_currdev(uefi_boot_mgr, is_last, boot_info, bisz) != 0)
if (!interactive_interrupt("Failed to find bootable partition"))
return (EFI_NOT_FOUND);
efi_init_environment();
#if !defined(__arm__)
for (k = 0; k < ST->NumberOfTableEntries; k++) {
guid = &ST->ConfigurationTable[k].VendorGuid;
if (!memcmp(guid, &smbios, sizeof(EFI_GUID))) {
char buf[40];
snprintf(buf, sizeof(buf), "%p",
ST->ConfigurationTable[k].VendorTable);
setenv("hint.smbios.0.mem", buf, 1);
smbios_detect(ST->ConfigurationTable[k].VendorTable);
break;
}
}
#endif
interact(); /* doesn't return */
return (EFI_SUCCESS); /* keep compiler happy */
}
COMMAND_SET(poweroff, "poweroff", "power off the system", command_poweroff);
static int
command_poweroff(int argc __unused, char *argv[] __unused)
{
int i;
for (i = 0; devsw[i] != NULL; ++i)
if (devsw[i]->dv_cleanup != NULL)
(devsw[i]->dv_cleanup)();
RS->ResetSystem(EfiResetShutdown, EFI_SUCCESS, 0, NULL);
/* NOTREACHED */
return (CMD_ERROR);
}
COMMAND_SET(reboot, "reboot", "reboot the system", command_reboot);
static int
command_reboot(int argc, char *argv[])
{
int i;
for (i = 0; devsw[i] != NULL; ++i)
if (devsw[i]->dv_cleanup != NULL)
(devsw[i]->dv_cleanup)();
RS->ResetSystem(EfiResetCold, EFI_SUCCESS, 0, NULL);
/* NOTREACHED */
return (CMD_ERROR);
}
COMMAND_SET(quit, "quit", "exit the loader", command_quit);
static int
command_quit(int argc, char *argv[])
{
exit(0);
return (CMD_OK);
}
COMMAND_SET(memmap, "memmap", "print memory map", command_memmap);
static int
command_memmap(int argc __unused, char *argv[] __unused)
{
UINTN sz;
EFI_MEMORY_DESCRIPTOR *map, *p;
UINTN key, dsz;
UINT32 dver;
EFI_STATUS status;
int i, ndesc;
char line[80];
sz = 0;
status = BS->GetMemoryMap(&sz, 0, &key, &dsz, &dver);
if (status != EFI_BUFFER_TOO_SMALL) {
printf("Can't determine memory map size\n");
return (CMD_ERROR);
}
map = malloc(sz);
status = BS->GetMemoryMap(&sz, map, &key, &dsz, &dver);
if (EFI_ERROR(status)) {
printf("Can't read memory map\n");
return (CMD_ERROR);
}
ndesc = sz / dsz;
snprintf(line, sizeof(line), "%23s %12s %12s %8s %4s\n",
"Type", "Physical", "Virtual", "#Pages", "Attr");
pager_open();
if (pager_output(line)) {
pager_close();
return (CMD_OK);
}
for (i = 0, p = map; i < ndesc;
i++, p = NextMemoryDescriptor(p, dsz)) {
snprintf(line, sizeof(line), "%23s %012jx %012jx %08jx ",
efi_memory_type(p->Type), (uintmax_t)p->PhysicalStart,
(uintmax_t)p->VirtualStart, (uintmax_t)p->NumberOfPages);
if (pager_output(line))
break;
if (p->Attribute & EFI_MEMORY_UC)
printf("UC ");
if (p->Attribute & EFI_MEMORY_WC)
printf("WC ");
if (p->Attribute & EFI_MEMORY_WT)
printf("WT ");
if (p->Attribute & EFI_MEMORY_WB)
printf("WB ");
if (p->Attribute & EFI_MEMORY_UCE)
printf("UCE ");
if (p->Attribute & EFI_MEMORY_WP)
printf("WP ");
if (p->Attribute & EFI_MEMORY_RP)
printf("RP ");
if (p->Attribute & EFI_MEMORY_XP)
printf("XP ");
if (p->Attribute & EFI_MEMORY_NV)
printf("NV ");
if (p->Attribute & EFI_MEMORY_MORE_RELIABLE)
printf("MR ");
if (p->Attribute & EFI_MEMORY_RO)
printf("RO ");
if (pager_output("\n"))
break;
}
pager_close();
return (CMD_OK);
}
COMMAND_SET(configuration, "configuration", "print configuration tables",
command_configuration);
static int
command_configuration(int argc, char *argv[])
{
UINTN i;
char *name;
printf("NumberOfTableEntries=%lu\n",
(unsigned long)ST->NumberOfTableEntries);
for (i = 0; i < ST->NumberOfTableEntries; i++) {
EFI_GUID *guid;
printf(" ");
guid = &ST->ConfigurationTable[i].VendorGuid;
if (efi_guid_to_name(guid, &name) == true) {
printf(name);
free(name);
} else {
printf("Error while translating UUID to name");
}
printf(" at %p\n", ST->ConfigurationTable[i].VendorTable);
}
return (CMD_OK);
}
COMMAND_SET(mode, "mode", "change or display EFI text modes", command_mode);
static int
command_mode(int argc, char *argv[])
{
UINTN cols, rows;
unsigned int mode;
int i;
char *cp;
char rowenv[8];
EFI_STATUS status;
SIMPLE_TEXT_OUTPUT_INTERFACE *conout;
extern void HO(void);
conout = ST->ConOut;
if (argc > 1) {
mode = strtol(argv[1], &cp, 0);
if (cp[0] != '\0') {
printf("Invalid mode\n");
return (CMD_ERROR);
}
status = conout->QueryMode(conout, mode, &cols, &rows);
if (EFI_ERROR(status)) {
printf("invalid mode %d\n", mode);
return (CMD_ERROR);
}
status = conout->SetMode(conout, mode);
if (EFI_ERROR(status)) {
printf("couldn't set mode %d\n", mode);
return (CMD_ERROR);
}
sprintf(rowenv, "%u", (unsigned)rows);
setenv("LINES", rowenv, 1);
HO(); /* set cursor */
return (CMD_OK);
}
printf("Current mode: %d\n", conout->Mode->Mode);
for (i = 0; i <= conout->Mode->MaxMode; i++) {
status = conout->QueryMode(conout, i, &cols, &rows);
if (EFI_ERROR(status))
continue;
printf("Mode %d: %u columns, %u rows\n", i, (unsigned)cols,
(unsigned)rows);
}
if (i != 0)
printf("Select a mode with the command \"mode <number>\"\n");
return (CMD_OK);
}
COMMAND_SET(lsefi, "lsefi", "list EFI handles", command_lsefi);
static int
command_lsefi(int argc __unused, char *argv[] __unused)
{
char *name;
EFI_HANDLE *buffer = NULL;
EFI_HANDLE handle;
UINTN bufsz = 0, i, j;
EFI_STATUS status;
int ret = 0;
status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer);
if (status != EFI_BUFFER_TOO_SMALL) {
snprintf(command_errbuf, sizeof (command_errbuf),
"unexpected error: %lld", (long long)status);
return (CMD_ERROR);
}
if ((buffer = malloc(bufsz)) == NULL) {
sprintf(command_errbuf, "out of memory");
return (CMD_ERROR);
}
status = BS->LocateHandle(AllHandles, NULL, NULL, &bufsz, buffer);
if (EFI_ERROR(status)) {
free(buffer);
snprintf(command_errbuf, sizeof (command_errbuf),
"LocateHandle() error: %lld", (long long)status);
return (CMD_ERROR);
}
pager_open();
for (i = 0; i < (bufsz / sizeof (EFI_HANDLE)); i++) {
UINTN nproto = 0;
EFI_GUID **protocols = NULL;
handle = buffer[i];
printf("Handle %p", handle);
if (pager_output("\n"))
break;
/* device path */
status = BS->ProtocolsPerHandle(handle, &protocols, &nproto);
if (EFI_ERROR(status)) {
snprintf(command_errbuf, sizeof (command_errbuf),
"ProtocolsPerHandle() error: %lld",
(long long)status);
continue;
}
for (j = 0; j < nproto; j++) {
if (efi_guid_to_name(protocols[j], &name) == true) {
printf(" %s", name);
free(name);
} else {
printf("Error while translating UUID to name");
}
if ((ret = pager_output("\n")) != 0)
break;
}
BS->FreePool(protocols);
if (ret != 0)
break;
}
pager_close();
free(buffer);
return (CMD_OK);
}
#ifdef LOADER_FDT_SUPPORT
extern int command_fdt_internal(int argc, char *argv[]);
/*
* Since proper fdt command handling function is defined in fdt_loader_cmd.c,
* and declaring it as extern is in contradiction with COMMAND_SET() macro
* (which uses static pointer), we're defining wrapper function, which
* calls the proper fdt handling routine.
*/
static int
command_fdt(int argc, char *argv[])
{
return (command_fdt_internal(argc, argv));
}
COMMAND_SET(fdt, "fdt", "flattened device tree handling", command_fdt);
#endif
/*
* Chain load another efi loader.
*/
static int
command_chain(int argc, char *argv[])
{
EFI_GUID LoadedImageGUID = LOADED_IMAGE_PROTOCOL;
EFI_HANDLE loaderhandle;
EFI_LOADED_IMAGE *loaded_image;
EFI_STATUS status;
struct stat st;
struct devdesc *dev;
char *name, *path;
void *buf;
int fd;
if (argc < 2) {
command_errmsg = "wrong number of arguments";
return (CMD_ERROR);
}
name = argv[1];
if ((fd = open(name, O_RDONLY)) < 0) {
command_errmsg = "no such file";
return (CMD_ERROR);
}
if (fstat(fd, &st) < -1) {
command_errmsg = "stat failed";
close(fd);
return (CMD_ERROR);
}
status = BS->AllocatePool(EfiLoaderCode, (UINTN)st.st_size, &buf);
if (status != EFI_SUCCESS) {
command_errmsg = "failed to allocate buffer";
close(fd);
return (CMD_ERROR);
}
if (read(fd, buf, st.st_size) != st.st_size) {
command_errmsg = "error while reading the file";
(void)BS->FreePool(buf);
close(fd);
return (CMD_ERROR);
}
close(fd);
status = BS->LoadImage(FALSE, IH, NULL, buf, st.st_size, &loaderhandle);
(void)BS->FreePool(buf);
if (status != EFI_SUCCESS) {
command_errmsg = "LoadImage failed";
return (CMD_ERROR);
}
status = BS->HandleProtocol(loaderhandle, &LoadedImageGUID,
(void **)&loaded_image);
if (argc > 2) {
int i, len = 0;
CHAR16 *argp;
for (i = 2; i < argc; i++)
len += strlen(argv[i]) + 1;
len *= sizeof (*argp);
loaded_image->LoadOptions = argp = malloc (len);
loaded_image->LoadOptionsSize = len;
for (i = 2; i < argc; i++) {
char *ptr = argv[i];
while (*ptr)
*(argp++) = *(ptr++);
*(argp++) = ' ';
}
*(--argv) = 0;
}
if (efi_getdev((void **)&dev, name, (const char **)&path) == 0) {
#ifdef EFI_ZFS_BOOT
struct zfs_devdesc *z_dev;
#endif
struct disk_devdesc *d_dev;
pdinfo_t *hd, *pd;
switch (dev->d_dev->dv_type) {
#ifdef EFI_ZFS_BOOT
case DEVT_ZFS:
z_dev = (struct zfs_devdesc *)dev;
loaded_image->DeviceHandle =
efizfs_get_handle_by_guid(z_dev->pool_guid);
break;
#endif
case DEVT_NET:
loaded_image->DeviceHandle =
efi_find_handle(dev->d_dev, dev->d_unit);
break;
default:
hd = efiblk_get_pdinfo(dev);
if (STAILQ_EMPTY(&hd->pd_part)) {
loaded_image->DeviceHandle = hd->pd_handle;
break;
}
d_dev = (struct disk_devdesc *)dev;
STAILQ_FOREACH(pd, &hd->pd_part, pd_link) {
/*
* d_partition should be 255
*/
if (pd->pd_unit == (uint32_t)d_dev->d_slice) {
loaded_image->DeviceHandle =
pd->pd_handle;
break;
}
}
break;
}
}
dev_cleanup();
status = BS->StartImage(loaderhandle, NULL, NULL);
if (status != EFI_SUCCESS) {
command_errmsg = "StartImage failed";
free(loaded_image->LoadOptions);
loaded_image->LoadOptions = NULL;
status = BS->UnloadImage(loaded_image);
return (CMD_ERROR);
}
return (CMD_ERROR); /* not reached */
}
COMMAND_SET(chain, "chain", "chain load file", command_chain);