freebsd-dev/sys/dev/random/randomdev.c
Conrad Meyer d0d71d818c random(4): Generalize algorithm-independent APIs
At a basic level, remove assumptions about the underlying algorithm (such as
output block size and reseeding requirements) from the algorithm-independent
logic in randomdev.c.  Chacha20 does not have many of the restrictions that
AES-ICM does as a PRF (Pseudo-Random Function), because it has a cipher
block size of 512 bits.  The motivation is that by generalizing the API,
Chacha is not penalized by the limitations of AES.

In READ_RANDOM_UIO, first attempt to NOWAIT allocate a large enough buffer
for the entire user request, or the maximal input we'll accept between
signal checking, whichever is smaller.  The idea is that the implementation
of any randomdev algorithm is then free to divide up large requests in
whatever fashion it sees fit.

As part of this, two responsibilities from the "algorithm-generic" randomdev
code are pushed down into the Fortuna ra_read implementation (and any other
future or out-of-tree ra_read implementations):

  1. If an algorithm needs to rekey every N bytes, it is responsible for
  handling that in ra_read(). (I.e., Fortuna's 1MB rekey interval for AES
  block generation.)

  2. If an algorithm uses a block cipher that doesn't tolerate partial-block
  requests (again, e.g., AES), it is also responsible for handling that in
  ra_read().

Several APIs are changed from u_int buffer length to the more canonical
size_t.  Several APIs are changed from taking a blockcount to a bytecount,
to permit PRFs like Chacha20 to directly generate quantities of output that
are not multiples of RANDOM_BLOCKSIZE (AES block size).

The Fortuna algorithm is changed to NOT rekey every 1MiB when in Chacha20
mode (kern.random.use_chacha20_cipher="1").  This is explicitly supported by
the math in FS&K §9.4 (Ferguson, Schneier, and Kohno; "Cryptography
Engineering"), as well as by their conclusion: "If we had a block cipher
with a 256-bit [or greater] block size, then the collisions would not
have been an issue at all."

For now, continue to break up reads into PAGE_SIZE chunks, as they were
before.  So, no functional change, mostly.

Reviewed by:	markm
Approved by:	secteam(delphij)
Differential Revision:	https://reviews.freebsd.org/D20312
2019-06-17 15:09:12 +00:00

504 lines
14 KiB
C

/*-
* Copyright (c) 2017 Oliver Pinter
* Copyright (c) 2000-2015 Mark R V Murray
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer
* in this position and unchanged.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/fcntl.h>
#include <sys/filio.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/lock.h>
#include <sys/module.h>
#include <sys/malloc.h>
#include <sys/poll.h>
#include <sys/proc.h>
#include <sys/random.h>
#include <sys/sbuf.h>
#include <sys/selinfo.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/uio.h>
#include <sys/unistd.h>
#include <crypto/rijndael/rijndael-api-fst.h>
#include <crypto/sha2/sha256.h>
#include <dev/random/hash.h>
#include <dev/random/randomdev.h>
#include <dev/random/random_harvestq.h>
#define RANDOM_UNIT 0
#if defined(RANDOM_LOADABLE)
#define READ_RANDOM_UIO _read_random_uio
#define READ_RANDOM _read_random
#define IS_RANDOM_SEEDED _is_random_seeded
static int READ_RANDOM_UIO(struct uio *, bool);
static void READ_RANDOM(void *, u_int);
static bool IS_RANDOM_SEEDED(void);
#else
#define READ_RANDOM_UIO read_random_uio
#define READ_RANDOM read_random
#define IS_RANDOM_SEEDED is_random_seeded
#endif
static d_read_t randomdev_read;
static d_write_t randomdev_write;
static d_poll_t randomdev_poll;
static d_ioctl_t randomdev_ioctl;
static struct cdevsw random_cdevsw = {
.d_name = "random",
.d_version = D_VERSION,
.d_read = randomdev_read,
.d_write = randomdev_write,
.d_poll = randomdev_poll,
.d_ioctl = randomdev_ioctl,
};
/* For use with make_dev(9)/destroy_dev(9). */
static struct cdev *random_dev;
static void
random_alg_context_ra_init_alg(void *data)
{
p_random_alg_context = &random_alg_context;
p_random_alg_context->ra_init_alg(data);
#if defined(RANDOM_LOADABLE)
random_infra_init(READ_RANDOM_UIO, READ_RANDOM, IS_RANDOM_SEEDED);
#endif
}
static void
random_alg_context_ra_deinit_alg(void *data)
{
#if defined(RANDOM_LOADABLE)
random_infra_uninit();
#endif
p_random_alg_context->ra_deinit_alg(data);
p_random_alg_context = NULL;
}
SYSINIT(random_device, SI_SUB_RANDOM, SI_ORDER_THIRD, random_alg_context_ra_init_alg, NULL);
SYSUNINIT(random_device, SI_SUB_RANDOM, SI_ORDER_THIRD, random_alg_context_ra_deinit_alg, NULL);
static struct selinfo rsel;
/*
* This is the read uio(9) interface for random(4).
*/
/* ARGSUSED */
static int
randomdev_read(struct cdev *dev __unused, struct uio *uio, int flags)
{
return (READ_RANDOM_UIO(uio, (flags & O_NONBLOCK) != 0));
}
/*
* If the random device is not seeded, blocks until it is seeded.
*
* Returns zero when the random device is seeded.
*
* If the 'interruptible' parameter is true, and the device is unseeded, this
* routine may be interrupted. If interrupted, it will return either ERESTART
* or EINTR.
*/
#define SEEDWAIT_INTERRUPTIBLE true
#define SEEDWAIT_UNINTERRUPTIBLE false
static int
randomdev_wait_until_seeded(bool interruptible)
{
int error, spamcount, slpflags;
slpflags = interruptible ? PCATCH : 0;
error = 0;
spamcount = 0;
while (!p_random_alg_context->ra_seeded()) {
/* keep tapping away at the pre-read until we seed/unblock. */
p_random_alg_context->ra_pre_read();
/* Only bother the console every 10 seconds or so */
if (spamcount == 0)
printf("random: %s unblock wait\n", __func__);
spamcount = (spamcount + 1) % 100;
error = tsleep(&random_alg_context, slpflags, "randseed",
hz / 10);
if (error == ERESTART || error == EINTR) {
KASSERT(interruptible,
("unexpected wake of non-interruptible sleep"));
break;
}
/* Squash tsleep timeout condition */
if (error == EWOULDBLOCK)
error = 0;
KASSERT(error == 0, ("unexpected tsleep error %d", error));
}
return (error);
}
int
READ_RANDOM_UIO(struct uio *uio, bool nonblock)
{
/* 16 MiB takes about 0.08 s CPU time on my 2017 AMD Zen CPU */
#define SIGCHK_PERIOD (16 * 1024 * 1024)
const size_t sigchk_period = SIGCHK_PERIOD;
CTASSERT(SIGCHK_PERIOD % PAGE_SIZE == 0);
#undef SIGCHK_PERIOD
uint8_t *random_buf;
size_t total_read, read_len;
ssize_t bufsize;
int error;
KASSERT(uio->uio_rw == UIO_READ, ("%s: bogus write", __func__));
KASSERT(uio->uio_resid >= 0, ("%s: bogus negative resid", __func__));
p_random_alg_context->ra_pre_read();
error = 0;
/* (Un)Blocking logic */
if (!p_random_alg_context->ra_seeded()) {
if (nonblock)
error = EWOULDBLOCK;
else
error = randomdev_wait_until_seeded(
SEEDWAIT_INTERRUPTIBLE);
}
if (error != 0)
return (error);
read_rate_increment(howmany(uio->uio_resid + 1, sizeof(uint32_t)));
total_read = 0;
/* Easy to deal with the trivial 0 byte case. */
if (__predict_false(uio->uio_resid == 0))
return (0);
/*
* If memory is plentiful, use maximally sized requests to avoid
* per-call algorithm overhead. But fall back to a single page
* allocation if the full request isn't immediately available.
*/
bufsize = MIN(sigchk_period, (size_t)uio->uio_resid);
random_buf = malloc(bufsize, M_ENTROPY, M_NOWAIT);
if (random_buf == NULL) {
bufsize = PAGE_SIZE;
random_buf = malloc(bufsize, M_ENTROPY, M_WAITOK);
}
error = 0;
while (uio->uio_resid > 0 && error == 0) {
read_len = MIN((size_t)uio->uio_resid, bufsize);
p_random_alg_context->ra_read(random_buf, read_len);
/*
* uiomove() may yield the CPU before each 'read_len' bytes (up
* to bufsize) are copied out.
*/
error = uiomove(random_buf, read_len, uio);
total_read += read_len;
/*
* Poll for signals every few MBs to avoid very long
* uninterruptible syscalls.
*/
if (error == 0 && uio->uio_resid != 0 &&
total_read % sigchk_period == 0) {
error = tsleep_sbt(&random_alg_context, PCATCH,
"randrd", SBT_1NS, 0, C_HARDCLOCK);
/* Squash tsleep timeout condition */
if (error == EWOULDBLOCK)
error = 0;
}
}
/*
* Short reads due to signal interrupt should not indicate error.
* Instead, the uio will reflect that the read was shorter than
* requested.
*/
if (error == ERESTART || error == EINTR)
error = 0;
explicit_bzero(random_buf, bufsize);
free(random_buf, M_ENTROPY);
return (error);
}
/*-
* Kernel API version of read_random(). This is similar to read_random_uio(),
* except it doesn't interface with uio(9). It cannot assumed that random_buf
* is a multiple of RANDOM_BLOCKSIZE bytes.
*
* If the tunable 'kern.random.initial_seeding.bypass_before_seeding' is set
* non-zero, silently fail to emit random data (matching the pre-r346250
* behavior). If read_random is called prior to seeding and bypassed because
* of this tunable, the condition is reported in the read-only sysctl
* 'kern.random.initial_seeding.read_random_bypassed_before_seeding'.
*/
void
READ_RANDOM(void *random_buf, u_int len)
{
KASSERT(random_buf != NULL, ("No suitable random buffer in %s", __func__));
p_random_alg_context->ra_pre_read();
if (len == 0)
return;
/* (Un)Blocking logic */
if (__predict_false(!p_random_alg_context->ra_seeded())) {
if (random_bypass_before_seeding) {
if (!read_random_bypassed_before_seeding) {
if (!random_bypass_disable_warnings)
printf("read_random: WARNING: bypassing"
" request for random data because "
"the random device is not yet "
"seeded and the knob "
"'bypass_before_seeding' was "
"enabled.\n");
read_random_bypassed_before_seeding = true;
}
/* Avoid potentially leaking stack garbage */
memset(random_buf, 0, len);
return;
}
(void)randomdev_wait_until_seeded(SEEDWAIT_UNINTERRUPTIBLE);
}
read_rate_increment(roundup2(len, sizeof(uint32_t)));
p_random_alg_context->ra_read(random_buf, len);
}
bool
IS_RANDOM_SEEDED(void)
{
return (p_random_alg_context->ra_seeded());
}
static __inline void
randomdev_accumulate(uint8_t *buf, u_int count)
{
static u_int destination = 0;
static struct harvest_event event;
static struct randomdev_hash hash;
static uint32_t entropy_data[RANDOM_KEYSIZE_WORDS];
uint32_t timestamp;
int i;
/* Extra timing here is helpful to scrape scheduler jitter entropy */
randomdev_hash_init(&hash);
timestamp = (uint32_t)get_cyclecount();
randomdev_hash_iterate(&hash, &timestamp, sizeof(timestamp));
randomdev_hash_iterate(&hash, buf, count);
timestamp = (uint32_t)get_cyclecount();
randomdev_hash_iterate(&hash, &timestamp, sizeof(timestamp));
randomdev_hash_finish(&hash, entropy_data);
for (i = 0; i < RANDOM_KEYSIZE_WORDS; i += sizeof(event.he_entropy)/sizeof(event.he_entropy[0])) {
event.he_somecounter = (uint32_t)get_cyclecount();
event.he_size = sizeof(event.he_entropy);
event.he_source = RANDOM_CACHED;
event.he_destination = destination++; /* Harmless cheating */
memcpy(event.he_entropy, entropy_data + i, sizeof(event.he_entropy));
p_random_alg_context->ra_event_processor(&event);
}
explicit_bzero(&event, sizeof(event));
explicit_bzero(entropy_data, sizeof(entropy_data));
}
/* ARGSUSED */
static int
randomdev_write(struct cdev *dev __unused, struct uio *uio, int flags __unused)
{
uint8_t *random_buf;
int c, error = 0;
ssize_t nbytes;
random_buf = malloc(PAGE_SIZE, M_ENTROPY, M_WAITOK);
nbytes = uio->uio_resid;
while (uio->uio_resid > 0 && error == 0) {
c = MIN(uio->uio_resid, PAGE_SIZE);
error = uiomove(random_buf, c, uio);
if (error)
break;
randomdev_accumulate(random_buf, c);
tsleep(&random_alg_context, 0, "randwr", hz/10);
}
if (nbytes != uio->uio_resid && (error == ERESTART || error == EINTR))
/* Partial write, not error. */
error = 0;
free(random_buf, M_ENTROPY);
return (error);
}
/* ARGSUSED */
static int
randomdev_poll(struct cdev *dev __unused, int events, struct thread *td __unused)
{
if (events & (POLLIN | POLLRDNORM)) {
if (p_random_alg_context->ra_seeded())
events &= (POLLIN | POLLRDNORM);
else
selrecord(td, &rsel);
}
return (events);
}
/* This will be called by the entropy processor when it seeds itself and becomes secure */
void
randomdev_unblock(void)
{
selwakeuppri(&rsel, PUSER);
wakeup(&random_alg_context);
printf("random: unblocking device.\n");
/* Do random(9) a favour while we are about it. */
(void)atomic_cmpset_int(&arc4rand_iniseed_state, ARC4_ENTR_NONE, ARC4_ENTR_HAVE);
}
/* ARGSUSED */
static int
randomdev_ioctl(struct cdev *dev __unused, u_long cmd, caddr_t addr __unused,
int flags __unused, struct thread *td __unused)
{
int error = 0;
switch (cmd) {
/* Really handled in upper layer */
case FIOASYNC:
case FIONBIO:
break;
default:
error = ENOTTY;
}
return (error);
}
void
random_source_register(struct random_source *rsource)
{
struct random_sources *rrs;
KASSERT(rsource != NULL, ("invalid input to %s", __func__));
rrs = malloc(sizeof(*rrs), M_ENTROPY, M_WAITOK);
rrs->rrs_source = rsource;
random_harvest_register_source(rsource->rs_source);
printf("random: registering fast source %s\n", rsource->rs_ident);
LIST_INSERT_HEAD(&source_list, rrs, rrs_entries);
}
void
random_source_deregister(struct random_source *rsource)
{
struct random_sources *rrs = NULL;
KASSERT(rsource != NULL, ("invalid input to %s", __func__));
random_harvest_deregister_source(rsource->rs_source);
LIST_FOREACH(rrs, &source_list, rrs_entries)
if (rrs->rrs_source == rsource) {
LIST_REMOVE(rrs, rrs_entries);
break;
}
if (rrs != NULL)
free(rrs, M_ENTROPY);
}
static int
random_source_handler(SYSCTL_HANDLER_ARGS)
{
struct random_sources *rrs;
struct sbuf sbuf;
int error, count;
sbuf_new_for_sysctl(&sbuf, NULL, 64, req);
count = 0;
LIST_FOREACH(rrs, &source_list, rrs_entries) {
sbuf_cat(&sbuf, (count++ ? ",'" : "'"));
sbuf_cat(&sbuf, rrs->rrs_source->rs_ident);
sbuf_cat(&sbuf, "'");
}
error = sbuf_finish(&sbuf);
sbuf_delete(&sbuf);
return (error);
}
SYSCTL_PROC(_kern_random, OID_AUTO, random_sources, CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
NULL, 0, random_source_handler, "A",
"List of active fast entropy sources.");
/* ARGSUSED */
static int
randomdev_modevent(module_t mod __unused, int type, void *data __unused)
{
int error = 0;
switch (type) {
case MOD_LOAD:
printf("random: entropy device external interface\n");
random_dev = make_dev_credf(MAKEDEV_ETERNAL_KLD, &random_cdevsw,
RANDOM_UNIT, NULL, UID_ROOT, GID_WHEEL, 0644, "random");
make_dev_alias(random_dev, "urandom"); /* compatibility */
break;
case MOD_UNLOAD:
destroy_dev(random_dev);
break;
case MOD_SHUTDOWN:
break;
default:
error = EOPNOTSUPP;
break;
}
return (error);
}
static moduledata_t randomdev_mod = {
"random_device",
randomdev_modevent,
0
};
DECLARE_MODULE(random_device, randomdev_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
MODULE_VERSION(random_device, 1);
MODULE_DEPEND(random_device, crypto, 1, 1, 1);
MODULE_DEPEND(random_device, random_harvestq, 1, 1, 1);