freebsd-dev/sys/dev/virtio/network/if_vtnet.c
Gleb Smirnoff c3322cb91c Include necessary headers that now are available due to pollution
via if_var.h.

Sponsored by:	Netflix
Sponsored by:	Nginx, Inc.
2013-10-28 07:29:16 +00:00

3806 lines
92 KiB
C

/*-
* Copyright (c) 2011, Bryan Venteicher <bryanv@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* Driver for VirtIO network devices. */
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/eventhandler.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <sys/random.h>
#include <sys/sglist.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/taskqueue.h>
#include <sys/smp.h>
#include <machine/smp.h>
#include <vm/uma.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/if_media.h>
#include <net/if_vlan_var.h>
#include <net/bpf.h>
#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet6/ip6_var.h>
#include <netinet/udp.h>
#include <netinet/tcp.h>
#include <netinet/sctp.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/virtio/virtio.h>
#include <dev/virtio/virtqueue.h>
#include <dev/virtio/network/virtio_net.h>
#include <dev/virtio/network/if_vtnetvar.h>
#include "virtio_if.h"
#include "opt_inet.h"
#include "opt_inet6.h"
static int vtnet_modevent(module_t, int, void *);
static int vtnet_probe(device_t);
static int vtnet_attach(device_t);
static int vtnet_detach(device_t);
static int vtnet_suspend(device_t);
static int vtnet_resume(device_t);
static int vtnet_shutdown(device_t);
static int vtnet_attach_completed(device_t);
static int vtnet_config_change(device_t);
static void vtnet_negotiate_features(struct vtnet_softc *);
static void vtnet_setup_features(struct vtnet_softc *);
static int vtnet_init_rxq(struct vtnet_softc *, int);
static int vtnet_init_txq(struct vtnet_softc *, int);
static int vtnet_alloc_rxtx_queues(struct vtnet_softc *);
static void vtnet_free_rxtx_queues(struct vtnet_softc *);
static int vtnet_alloc_rx_filters(struct vtnet_softc *);
static void vtnet_free_rx_filters(struct vtnet_softc *);
static int vtnet_alloc_virtqueues(struct vtnet_softc *);
static int vtnet_setup_interface(struct vtnet_softc *);
static int vtnet_change_mtu(struct vtnet_softc *, int);
static int vtnet_ioctl(struct ifnet *, u_long, caddr_t);
static int vtnet_rxq_populate(struct vtnet_rxq *);
static void vtnet_rxq_free_mbufs(struct vtnet_rxq *);
static struct mbuf *
vtnet_rx_alloc_buf(struct vtnet_softc *, int , struct mbuf **);
static int vtnet_rxq_replace_lro_nomgr_buf(struct vtnet_rxq *,
struct mbuf *, int);
static int vtnet_rxq_replace_buf(struct vtnet_rxq *, struct mbuf *, int);
static int vtnet_rxq_enqueue_buf(struct vtnet_rxq *, struct mbuf *);
static int vtnet_rxq_new_buf(struct vtnet_rxq *);
static int vtnet_rxq_csum(struct vtnet_rxq *, struct mbuf *,
struct virtio_net_hdr *);
static void vtnet_rxq_discard_merged_bufs(struct vtnet_rxq *, int);
static void vtnet_rxq_discard_buf(struct vtnet_rxq *, struct mbuf *);
static int vtnet_rxq_merged_eof(struct vtnet_rxq *, struct mbuf *, int);
static void vtnet_rxq_input(struct vtnet_rxq *, struct mbuf *,
struct virtio_net_hdr *);
static int vtnet_rxq_eof(struct vtnet_rxq *);
static void vtnet_rx_vq_intr(void *);
static void vtnet_rxq_tq_intr(void *, int);
static void vtnet_txq_free_mbufs(struct vtnet_txq *);
static int vtnet_txq_offload_ctx(struct vtnet_txq *, struct mbuf *,
int *, int *, int *);
static int vtnet_txq_offload_tso(struct vtnet_txq *, struct mbuf *, int,
int, struct virtio_net_hdr *);
static struct mbuf *
vtnet_txq_offload(struct vtnet_txq *, struct mbuf *,
struct virtio_net_hdr *);
static int vtnet_txq_enqueue_buf(struct vtnet_txq *, struct mbuf **,
struct vtnet_tx_header *);
static int vtnet_txq_encap(struct vtnet_txq *, struct mbuf **);
#ifdef VTNET_LEGACY_TX
static void vtnet_start_locked(struct vtnet_txq *, struct ifnet *);
static void vtnet_start(struct ifnet *);
#else
static int vtnet_txq_mq_start_locked(struct vtnet_txq *, struct mbuf *);
static int vtnet_txq_mq_start(struct ifnet *, struct mbuf *);
static void vtnet_txq_tq_deferred(void *, int);
#endif
static void vtnet_txq_tq_intr(void *, int);
static void vtnet_txq_eof(struct vtnet_txq *);
static void vtnet_tx_vq_intr(void *);
static void vtnet_tx_start_all(struct vtnet_softc *);
#ifndef VTNET_LEGACY_TX
static void vtnet_qflush(struct ifnet *);
#endif
static int vtnet_watchdog(struct vtnet_txq *);
static void vtnet_rxq_accum_stats(struct vtnet_rxq *,
struct vtnet_rxq_stats *);
static void vtnet_txq_accum_stats(struct vtnet_txq *,
struct vtnet_txq_stats *);
static void vtnet_accumulate_stats(struct vtnet_softc *);
static void vtnet_tick(void *);
static void vtnet_start_taskqueues(struct vtnet_softc *);
static void vtnet_free_taskqueues(struct vtnet_softc *);
static void vtnet_drain_taskqueues(struct vtnet_softc *);
static void vtnet_drain_rxtx_queues(struct vtnet_softc *);
static void vtnet_stop_rendezvous(struct vtnet_softc *);
static void vtnet_stop(struct vtnet_softc *);
static int vtnet_virtio_reinit(struct vtnet_softc *);
static void vtnet_init_rx_filters(struct vtnet_softc *);
static int vtnet_init_rx_queues(struct vtnet_softc *);
static int vtnet_init_tx_queues(struct vtnet_softc *);
static int vtnet_init_rxtx_queues(struct vtnet_softc *);
static void vtnet_set_active_vq_pairs(struct vtnet_softc *);
static int vtnet_reinit(struct vtnet_softc *);
static void vtnet_init_locked(struct vtnet_softc *);
static void vtnet_init(void *);
static void vtnet_free_ctrl_vq(struct vtnet_softc *);
static void vtnet_exec_ctrl_cmd(struct vtnet_softc *, void *,
struct sglist *, int, int);
static int vtnet_ctrl_mac_cmd(struct vtnet_softc *, uint8_t *);
static int vtnet_ctrl_mq_cmd(struct vtnet_softc *, uint16_t);
static int vtnet_ctrl_rx_cmd(struct vtnet_softc *, int, int);
static int vtnet_set_promisc(struct vtnet_softc *, int);
static int vtnet_set_allmulti(struct vtnet_softc *, int);
static void vtnet_attach_disable_promisc(struct vtnet_softc *);
static void vtnet_rx_filter(struct vtnet_softc *);
static void vtnet_rx_filter_mac(struct vtnet_softc *);
static int vtnet_exec_vlan_filter(struct vtnet_softc *, int, uint16_t);
static void vtnet_rx_filter_vlan(struct vtnet_softc *);
static void vtnet_update_vlan_filter(struct vtnet_softc *, int, uint16_t);
static void vtnet_register_vlan(void *, struct ifnet *, uint16_t);
static void vtnet_unregister_vlan(void *, struct ifnet *, uint16_t);
static int vtnet_is_link_up(struct vtnet_softc *);
static void vtnet_update_link_status(struct vtnet_softc *);
static int vtnet_ifmedia_upd(struct ifnet *);
static void vtnet_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static void vtnet_get_hwaddr(struct vtnet_softc *);
static void vtnet_set_hwaddr(struct vtnet_softc *);
static void vtnet_vlan_tag_remove(struct mbuf *);
static void vtnet_setup_rxq_sysctl(struct sysctl_ctx_list *,
struct sysctl_oid_list *, struct vtnet_rxq *);
static void vtnet_setup_txq_sysctl(struct sysctl_ctx_list *,
struct sysctl_oid_list *, struct vtnet_txq *);
static void vtnet_setup_queue_sysctl(struct vtnet_softc *);
static void vtnet_setup_sysctl(struct vtnet_softc *);
static int vtnet_rxq_enable_intr(struct vtnet_rxq *);
static void vtnet_rxq_disable_intr(struct vtnet_rxq *);
static int vtnet_txq_enable_intr(struct vtnet_txq *);
static void vtnet_txq_disable_intr(struct vtnet_txq *);
static void vtnet_enable_rx_interrupts(struct vtnet_softc *);
static void vtnet_enable_tx_interrupts(struct vtnet_softc *);
static void vtnet_enable_interrupts(struct vtnet_softc *);
static void vtnet_disable_rx_interrupts(struct vtnet_softc *);
static void vtnet_disable_tx_interrupts(struct vtnet_softc *);
static void vtnet_disable_interrupts(struct vtnet_softc *);
static int vtnet_tunable_int(struct vtnet_softc *, const char *, int);
/* Tunables. */
static int vtnet_csum_disable = 0;
TUNABLE_INT("hw.vtnet.csum_disable", &vtnet_csum_disable);
static int vtnet_tso_disable = 0;
TUNABLE_INT("hw.vtnet.tso_disable", &vtnet_tso_disable);
static int vtnet_lro_disable = 0;
TUNABLE_INT("hw.vtnet.lro_disable", &vtnet_lro_disable);
static int vtnet_mq_disable = 0;
TUNABLE_INT("hw.vtnet.mq_disable", &vtnet_mq_disable);
static int vtnet_mq_max_pairs = 0;
TUNABLE_INT("hw.vtnet.mq_max_pairs", &vtnet_mq_max_pairs);
static int vtnet_rx_process_limit = 512;
TUNABLE_INT("hw.vtnet.rx_process_limit", &vtnet_rx_process_limit);
/*
* Reducing the number of transmit completed interrupts can improve
* performance. To do so, the define below keeps the Tx vq interrupt
* disabled and adds calls to vtnet_txeof() in the start and watchdog
* paths. The price to pay for this is the m_free'ing of transmitted
* mbufs may be delayed until the watchdog fires.
*
* BMV: Reintroduce this later as a run-time option, if it makes
* sense after the EVENT_IDX feature is supported.
*
* #define VTNET_TX_INTR_MODERATION
*/
static uma_zone_t vtnet_tx_header_zone;
static struct virtio_feature_desc vtnet_feature_desc[] = {
{ VIRTIO_NET_F_CSUM, "TxChecksum" },
{ VIRTIO_NET_F_GUEST_CSUM, "RxChecksum" },
{ VIRTIO_NET_F_MAC, "MacAddress" },
{ VIRTIO_NET_F_GSO, "TxAllGSO" },
{ VIRTIO_NET_F_GUEST_TSO4, "RxTSOv4" },
{ VIRTIO_NET_F_GUEST_TSO6, "RxTSOv6" },
{ VIRTIO_NET_F_GUEST_ECN, "RxECN" },
{ VIRTIO_NET_F_GUEST_UFO, "RxUFO" },
{ VIRTIO_NET_F_HOST_TSO4, "TxTSOv4" },
{ VIRTIO_NET_F_HOST_TSO6, "TxTSOv6" },
{ VIRTIO_NET_F_HOST_ECN, "TxTSOECN" },
{ VIRTIO_NET_F_HOST_UFO, "TxUFO" },
{ VIRTIO_NET_F_MRG_RXBUF, "MrgRxBuf" },
{ VIRTIO_NET_F_STATUS, "Status" },
{ VIRTIO_NET_F_CTRL_VQ, "ControlVq" },
{ VIRTIO_NET_F_CTRL_RX, "RxMode" },
{ VIRTIO_NET_F_CTRL_VLAN, "VLanFilter" },
{ VIRTIO_NET_F_CTRL_RX_EXTRA, "RxModeExtra" },
{ VIRTIO_NET_F_GUEST_ANNOUNCE, "GuestAnnounce" },
{ VIRTIO_NET_F_MQ, "Multiqueue" },
{ VIRTIO_NET_F_CTRL_MAC_ADDR, "SetMacAddress" },
{ 0, NULL }
};
static device_method_t vtnet_methods[] = {
/* Device methods. */
DEVMETHOD(device_probe, vtnet_probe),
DEVMETHOD(device_attach, vtnet_attach),
DEVMETHOD(device_detach, vtnet_detach),
DEVMETHOD(device_suspend, vtnet_suspend),
DEVMETHOD(device_resume, vtnet_resume),
DEVMETHOD(device_shutdown, vtnet_shutdown),
/* VirtIO methods. */
DEVMETHOD(virtio_attach_completed, vtnet_attach_completed),
DEVMETHOD(virtio_config_change, vtnet_config_change),
DEVMETHOD_END
};
static driver_t vtnet_driver = {
"vtnet",
vtnet_methods,
sizeof(struct vtnet_softc)
};
static devclass_t vtnet_devclass;
DRIVER_MODULE(vtnet, virtio_pci, vtnet_driver, vtnet_devclass,
vtnet_modevent, 0);
MODULE_VERSION(vtnet, 1);
MODULE_DEPEND(vtnet, virtio, 1, 1, 1);
static int
vtnet_modevent(module_t mod, int type, void *unused)
{
int error;
error = 0;
switch (type) {
case MOD_LOAD:
vtnet_tx_header_zone = uma_zcreate("vtnet_tx_hdr",
sizeof(struct vtnet_tx_header),
NULL, NULL, NULL, NULL, 0, 0);
break;
case MOD_QUIESCE:
case MOD_UNLOAD:
if (uma_zone_get_cur(vtnet_tx_header_zone) > 0)
error = EBUSY;
else if (type == MOD_UNLOAD) {
uma_zdestroy(vtnet_tx_header_zone);
vtnet_tx_header_zone = NULL;
}
break;
case MOD_SHUTDOWN:
break;
default:
error = EOPNOTSUPP;
break;
}
return (error);
}
static int
vtnet_probe(device_t dev)
{
if (virtio_get_device_type(dev) != VIRTIO_ID_NETWORK)
return (ENXIO);
device_set_desc(dev, "VirtIO Networking Adapter");
return (BUS_PROBE_DEFAULT);
}
static int
vtnet_attach(device_t dev)
{
struct vtnet_softc *sc;
int error;
sc = device_get_softc(dev);
sc->vtnet_dev = dev;
/* Register our feature descriptions. */
virtio_set_feature_desc(dev, vtnet_feature_desc);
VTNET_CORE_LOCK_INIT(sc);
callout_init_mtx(&sc->vtnet_tick_ch, VTNET_CORE_MTX(sc), 0);
vtnet_setup_sysctl(sc);
vtnet_setup_features(sc);
error = vtnet_alloc_rx_filters(sc);
if (error) {
device_printf(dev, "cannot allocate Rx filters\n");
goto fail;
}
error = vtnet_alloc_rxtx_queues(sc);
if (error) {
device_printf(dev, "cannot allocate queues\n");
goto fail;
}
error = vtnet_alloc_virtqueues(sc);
if (error) {
device_printf(dev, "cannot allocate virtqueues\n");
goto fail;
}
error = vtnet_setup_interface(sc);
if (error) {
device_printf(dev, "cannot setup interface\n");
goto fail;
}
error = virtio_setup_intr(dev, INTR_TYPE_NET);
if (error) {
device_printf(dev, "cannot setup virtqueue interrupts\n");
/* BMV: This will crash if during boot! */
ether_ifdetach(sc->vtnet_ifp);
goto fail;
}
vtnet_start_taskqueues(sc);
fail:
if (error)
vtnet_detach(dev);
return (error);
}
static int
vtnet_detach(device_t dev)
{
struct vtnet_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
ifp = sc->vtnet_ifp;
if (device_is_attached(dev)) {
VTNET_CORE_LOCK(sc);
vtnet_stop(sc);
VTNET_CORE_UNLOCK(sc);
callout_drain(&sc->vtnet_tick_ch);
vtnet_drain_taskqueues(sc);
ether_ifdetach(ifp);
}
vtnet_free_taskqueues(sc);
if (sc->vtnet_vlan_attach != NULL) {
EVENTHANDLER_DEREGISTER(vlan_config, sc->vtnet_vlan_attach);
sc->vtnet_vlan_attach = NULL;
}
if (sc->vtnet_vlan_detach != NULL) {
EVENTHANDLER_DEREGISTER(vlan_unconfg, sc->vtnet_vlan_detach);
sc->vtnet_vlan_detach = NULL;
}
ifmedia_removeall(&sc->vtnet_media);
if (ifp != NULL) {
if_free(ifp);
sc->vtnet_ifp = NULL;
}
vtnet_free_rxtx_queues(sc);
vtnet_free_rx_filters(sc);
if (sc->vtnet_ctrl_vq != NULL)
vtnet_free_ctrl_vq(sc);
VTNET_CORE_LOCK_DESTROY(sc);
return (0);
}
static int
vtnet_suspend(device_t dev)
{
struct vtnet_softc *sc;
sc = device_get_softc(dev);
VTNET_CORE_LOCK(sc);
vtnet_stop(sc);
sc->vtnet_flags |= VTNET_FLAG_SUSPENDED;
VTNET_CORE_UNLOCK(sc);
return (0);
}
static int
vtnet_resume(device_t dev)
{
struct vtnet_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
ifp = sc->vtnet_ifp;
VTNET_CORE_LOCK(sc);
if (ifp->if_flags & IFF_UP)
vtnet_init_locked(sc);
sc->vtnet_flags &= ~VTNET_FLAG_SUSPENDED;
VTNET_CORE_UNLOCK(sc);
return (0);
}
static int
vtnet_shutdown(device_t dev)
{
/*
* Suspend already does all of what we need to
* do here; we just never expect to be resumed.
*/
return (vtnet_suspend(dev));
}
static int
vtnet_attach_completed(device_t dev)
{
vtnet_attach_disable_promisc(device_get_softc(dev));
return (0);
}
static int
vtnet_config_change(device_t dev)
{
struct vtnet_softc *sc;
sc = device_get_softc(dev);
VTNET_CORE_LOCK(sc);
vtnet_update_link_status(sc);
if (sc->vtnet_link_active != 0)
vtnet_tx_start_all(sc);
VTNET_CORE_UNLOCK(sc);
return (0);
}
static void
vtnet_negotiate_features(struct vtnet_softc *sc)
{
device_t dev;
uint64_t mask, features;
dev = sc->vtnet_dev;
mask = 0;
/*
* TSO and LRO are only available when their corresponding checksum
* offload feature is also negotiated.
*/
if (vtnet_tunable_int(sc, "csum_disable", vtnet_csum_disable)) {
mask |= VIRTIO_NET_F_CSUM | VIRTIO_NET_F_GUEST_CSUM;
mask |= VTNET_TSO_FEATURES | VTNET_LRO_FEATURES;
}
if (vtnet_tunable_int(sc, "tso_disable", vtnet_tso_disable))
mask |= VTNET_TSO_FEATURES;
if (vtnet_tunable_int(sc, "lro_disable", vtnet_lro_disable))
mask |= VTNET_LRO_FEATURES;
if (vtnet_tunable_int(sc, "mq_disable", vtnet_mq_disable))
mask |= VIRTIO_NET_F_MQ;
#ifdef VTNET_LEGACY_TX
mask |= VIRTIO_NET_F_MQ;
#endif
features = VTNET_FEATURES & ~mask;
sc->vtnet_features = virtio_negotiate_features(dev, features);
if (virtio_with_feature(dev, VTNET_LRO_FEATURES) == 0)
return;
if (virtio_with_feature(dev, VIRTIO_NET_F_MRG_RXBUF))
return;
/*
* LRO without mergeable buffers requires special care. This is not
* ideal because every receive buffer must be large enough to hold
* the maximum TCP packet, the Ethernet header, and the header. This
* requires up to 34 descriptors with MCLBYTES clusters. If we do
* not have indirect descriptors, LRO is disabled since the virtqueue
* will not contain very many receive buffers.
*/
if (virtio_with_feature(dev, VIRTIO_RING_F_INDIRECT_DESC) == 0) {
device_printf(dev,
"LRO disabled due to both mergeable buffers and indirect "
"descriptors not negotiated\n");
features &= ~VTNET_LRO_FEATURES;
sc->vtnet_features = virtio_negotiate_features(dev, features);
} else
sc->vtnet_flags |= VTNET_FLAG_LRO_NOMRG;
}
static void
vtnet_setup_features(struct vtnet_softc *sc)
{
device_t dev;
int max_pairs, max;
dev = sc->vtnet_dev;
vtnet_negotiate_features(sc);
if (virtio_with_feature(dev, VIRTIO_RING_F_EVENT_IDX))
sc->vtnet_flags |= VTNET_FLAG_EVENT_IDX;
if (virtio_with_feature(dev, VIRTIO_NET_F_MAC)) {
/* This feature should always be negotiated. */
sc->vtnet_flags |= VTNET_FLAG_MAC;
}
if (virtio_with_feature(dev, VIRTIO_NET_F_MRG_RXBUF)) {
sc->vtnet_flags |= VTNET_FLAG_MRG_RXBUFS;
sc->vtnet_hdr_size = sizeof(struct virtio_net_hdr_mrg_rxbuf);
} else
sc->vtnet_hdr_size = sizeof(struct virtio_net_hdr);
if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_VQ)) {
sc->vtnet_flags |= VTNET_FLAG_CTRL_VQ;
if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_RX))
sc->vtnet_flags |= VTNET_FLAG_CTRL_RX;
if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_VLAN))
sc->vtnet_flags |= VTNET_FLAG_VLAN_FILTER;
if (virtio_with_feature(dev, VIRTIO_NET_F_CTRL_MAC_ADDR))
sc->vtnet_flags |= VTNET_FLAG_CTRL_MAC;
}
if (virtio_with_feature(dev, VIRTIO_NET_F_MQ) &&
sc->vtnet_flags & VTNET_FLAG_CTRL_VQ) {
max_pairs = virtio_read_dev_config_2(dev,
offsetof(struct virtio_net_config, max_virtqueue_pairs));
if (max_pairs < VIRTIO_NET_CTRL_MQ_VQ_PAIRS_MIN ||
max_pairs > VIRTIO_NET_CTRL_MQ_VQ_PAIRS_MAX)
max_pairs = 1;
} else
max_pairs = 1;
if (max_pairs > 1) {
/*
* Limit the maximum number of queue pairs to the number of
* CPUs or the configured maximum. The actual number of
* queues that get used may be less.
*/
max = vtnet_tunable_int(sc, "mq_max_pairs", vtnet_mq_max_pairs);
if (max > 0 && max_pairs > max)
max_pairs = max;
if (max_pairs > mp_ncpus)
max_pairs = mp_ncpus;
if (max_pairs > VTNET_MAX_QUEUE_PAIRS)
max_pairs = VTNET_MAX_QUEUE_PAIRS;
if (max_pairs > 1)
sc->vtnet_flags |= VTNET_FLAG_MULTIQ;
}
sc->vtnet_max_vq_pairs = max_pairs;
}
static int
vtnet_init_rxq(struct vtnet_softc *sc, int id)
{
struct vtnet_rxq *rxq;
rxq = &sc->vtnet_rxqs[id];
snprintf(rxq->vtnrx_name, sizeof(rxq->vtnrx_name), "%s-rx%d",
device_get_nameunit(sc->vtnet_dev), id);
mtx_init(&rxq->vtnrx_mtx, rxq->vtnrx_name, NULL, MTX_DEF);
rxq->vtnrx_sc = sc;
rxq->vtnrx_id = id;
TASK_INIT(&rxq->vtnrx_intrtask, 0, vtnet_rxq_tq_intr, rxq);
rxq->vtnrx_tq = taskqueue_create(rxq->vtnrx_name, M_NOWAIT,
taskqueue_thread_enqueue, &rxq->vtnrx_tq);
return (rxq->vtnrx_tq == NULL ? ENOMEM : 0);
}
static int
vtnet_init_txq(struct vtnet_softc *sc, int id)
{
struct vtnet_txq *txq;
txq = &sc->vtnet_txqs[id];
snprintf(txq->vtntx_name, sizeof(txq->vtntx_name), "%s-tx%d",
device_get_nameunit(sc->vtnet_dev), id);
mtx_init(&txq->vtntx_mtx, txq->vtntx_name, NULL, MTX_DEF);
txq->vtntx_sc = sc;
txq->vtntx_id = id;
#ifndef VTNET_LEGACY_TX
txq->vtntx_br = buf_ring_alloc(VTNET_DEFAULT_BUFRING_SIZE, M_DEVBUF,
M_NOWAIT, &txq->vtntx_mtx);
if (txq->vtntx_br == NULL)
return (ENOMEM);
TASK_INIT(&txq->vtntx_defrtask, 0, vtnet_txq_tq_deferred, txq);
#endif
TASK_INIT(&txq->vtntx_intrtask, 0, vtnet_txq_tq_intr, txq);
txq->vtntx_tq = taskqueue_create(txq->vtntx_name, M_NOWAIT,
taskqueue_thread_enqueue, &txq->vtntx_tq);
if (txq->vtntx_tq == NULL)
return (ENOMEM);
return (0);
}
static int
vtnet_alloc_rxtx_queues(struct vtnet_softc *sc)
{
int i, npairs, error;
npairs = sc->vtnet_max_vq_pairs;
sc->vtnet_rxqs = malloc(sizeof(struct vtnet_rxq) * npairs, M_DEVBUF,
M_NOWAIT | M_ZERO);
sc->vtnet_txqs = malloc(sizeof(struct vtnet_txq) * npairs, M_DEVBUF,
M_NOWAIT | M_ZERO);
if (sc->vtnet_rxqs == NULL || sc->vtnet_txqs == NULL)
return (ENOMEM);
for (i = 0; i < npairs; i++) {
error = vtnet_init_rxq(sc, i);
if (error)
return (error);
error = vtnet_init_txq(sc, i);
if (error)
return (error);
}
vtnet_setup_queue_sysctl(sc);
return (0);
}
static void
vtnet_destroy_rxq(struct vtnet_rxq *rxq)
{
rxq->vtnrx_sc = NULL;
rxq->vtnrx_id = -1;
if (mtx_initialized(&rxq->vtnrx_mtx) != 0)
mtx_destroy(&rxq->vtnrx_mtx);
}
static void
vtnet_destroy_txq(struct vtnet_txq *txq)
{
txq->vtntx_sc = NULL;
txq->vtntx_id = -1;
#ifndef VTNET_LEGACY_TX
if (txq->vtntx_br != NULL) {
buf_ring_free(txq->vtntx_br, M_DEVBUF);
txq->vtntx_br = NULL;
}
#endif
if (mtx_initialized(&txq->vtntx_mtx) != 0)
mtx_destroy(&txq->vtntx_mtx);
}
static void
vtnet_free_rxtx_queues(struct vtnet_softc *sc)
{
int i;
if (sc->vtnet_rxqs != NULL) {
for (i = 0; i < sc->vtnet_max_vq_pairs; i++)
vtnet_destroy_rxq(&sc->vtnet_rxqs[i]);
free(sc->vtnet_rxqs, M_DEVBUF);
sc->vtnet_rxqs = NULL;
}
if (sc->vtnet_txqs != NULL) {
for (i = 0; i < sc->vtnet_max_vq_pairs; i++)
vtnet_destroy_txq(&sc->vtnet_txqs[i]);
free(sc->vtnet_txqs, M_DEVBUF);
sc->vtnet_txqs = NULL;
}
}
static int
vtnet_alloc_rx_filters(struct vtnet_softc *sc)
{
if (sc->vtnet_flags & VTNET_FLAG_CTRL_RX) {
sc->vtnet_mac_filter = malloc(sizeof(struct vtnet_mac_filter),
M_DEVBUF, M_NOWAIT | M_ZERO);
if (sc->vtnet_mac_filter == NULL)
return (ENOMEM);
}
if (sc->vtnet_flags & VTNET_FLAG_VLAN_FILTER) {
sc->vtnet_vlan_filter = malloc(sizeof(uint32_t) *
VTNET_VLAN_FILTER_NWORDS, M_DEVBUF, M_NOWAIT | M_ZERO);
if (sc->vtnet_vlan_filter == NULL)
return (ENOMEM);
}
return (0);
}
static void
vtnet_free_rx_filters(struct vtnet_softc *sc)
{
if (sc->vtnet_mac_filter != NULL) {
free(sc->vtnet_mac_filter, M_DEVBUF);
sc->vtnet_mac_filter = NULL;
}
if (sc->vtnet_vlan_filter != NULL) {
free(sc->vtnet_vlan_filter, M_DEVBUF);
sc->vtnet_vlan_filter = NULL;
}
}
static int
vtnet_alloc_virtqueues(struct vtnet_softc *sc)
{
device_t dev;
struct vq_alloc_info *info;
struct vtnet_rxq *rxq;
struct vtnet_txq *txq;
int i, idx, flags, nvqs, rxsegs, error;
dev = sc->vtnet_dev;
flags = 0;
/*
* Indirect descriptors are not needed for the Rx virtqueue when
* mergeable buffers are negotiated. The header is placed inline
* with the data, not in a separate descriptor, and mbuf clusters
* are always physically contiguous.
*/
if (sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS)
rxsegs = 0;
else if (sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG)
rxsegs = VTNET_MAX_RX_SEGS;
else
rxsegs = VTNET_MIN_RX_SEGS;
nvqs = sc->vtnet_max_vq_pairs * 2;
if (sc->vtnet_flags & VTNET_FLAG_CTRL_VQ)
nvqs++;
info = malloc(sizeof(struct vq_alloc_info) * nvqs , M_TEMP, M_NOWAIT);
if (info == NULL)
return (ENOMEM);
for (i = 0, idx = 0; i < sc->vtnet_max_vq_pairs; i++, idx+=2) {
rxq = &sc->vtnet_rxqs[i];
VQ_ALLOC_INFO_INIT(&info[idx], rxsegs,
vtnet_rx_vq_intr, rxq, &rxq->vtnrx_vq,
"%s-%d rx", device_get_nameunit(dev), rxq->vtnrx_id);
txq = &sc->vtnet_txqs[i];
VQ_ALLOC_INFO_INIT(&info[idx+1], VTNET_MAX_TX_SEGS,
vtnet_tx_vq_intr, txq, &txq->vtntx_vq,
"%s-%d tx", device_get_nameunit(dev), txq->vtntx_id);
}
if (sc->vtnet_flags & VTNET_FLAG_CTRL_VQ) {
VQ_ALLOC_INFO_INIT(&info[idx], 0, NULL, NULL,
&sc->vtnet_ctrl_vq, "%s ctrl", device_get_nameunit(dev));
}
/*
* Enable interrupt binding if this is multiqueue. This only matters
* when per-vq MSIX is available.
*/
if (sc->vtnet_flags & VTNET_FLAG_MULTIQ)
flags |= 0;
error = virtio_alloc_virtqueues(dev, flags, nvqs, info);
free(info, M_TEMP);
return (error);
}
static int
vtnet_setup_interface(struct vtnet_softc *sc)
{
device_t dev;
struct ifnet *ifp;
int limit;
dev = sc->vtnet_dev;
ifp = sc->vtnet_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "cannot allocate ifnet structure\n");
return (ENOSPC);
}
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
if_initbaudrate(ifp, IF_Gbps(10)); /* Approx. */
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = vtnet_init;
ifp->if_ioctl = vtnet_ioctl;
#ifndef VTNET_LEGACY_TX
ifp->if_transmit = vtnet_txq_mq_start;
ifp->if_qflush = vtnet_qflush;
#else
struct virtqueue *vq = sc->vtnet_txqs[0].vtntx_vq;
ifp->if_start = vtnet_start;
IFQ_SET_MAXLEN(&ifp->if_snd, virtqueue_size(vq) - 1);
ifp->if_snd.ifq_drv_maxlen = virtqueue_size(vq) - 1;
IFQ_SET_READY(&ifp->if_snd);
#endif
ifmedia_init(&sc->vtnet_media, IFM_IMASK, vtnet_ifmedia_upd,
vtnet_ifmedia_sts);
ifmedia_add(&sc->vtnet_media, VTNET_MEDIATYPE, 0, NULL);
ifmedia_set(&sc->vtnet_media, VTNET_MEDIATYPE);
/* Read (or generate) the MAC address for the adapter. */
vtnet_get_hwaddr(sc);
ether_ifattach(ifp, sc->vtnet_hwaddr);
if (virtio_with_feature(dev, VIRTIO_NET_F_STATUS))
ifp->if_capabilities |= IFCAP_LINKSTATE;
/* Tell the upper layer(s) we support long frames. */
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
ifp->if_capabilities |= IFCAP_JUMBO_MTU | IFCAP_VLAN_MTU;
if (virtio_with_feature(dev, VIRTIO_NET_F_CSUM)) {
ifp->if_capabilities |= IFCAP_TXCSUM | IFCAP_TXCSUM_IPV6;
if (virtio_with_feature(dev, VIRTIO_NET_F_GSO)) {
ifp->if_capabilities |= IFCAP_TSO4 | IFCAP_TSO6;
sc->vtnet_flags |= VTNET_FLAG_TSO_ECN;
} else {
if (virtio_with_feature(dev, VIRTIO_NET_F_HOST_TSO4))
ifp->if_capabilities |= IFCAP_TSO4;
if (virtio_with_feature(dev, VIRTIO_NET_F_HOST_TSO6))
ifp->if_capabilities |= IFCAP_TSO6;
if (virtio_with_feature(dev, VIRTIO_NET_F_HOST_ECN))
sc->vtnet_flags |= VTNET_FLAG_TSO_ECN;
}
if (ifp->if_capabilities & IFCAP_TSO)
ifp->if_capabilities |= IFCAP_VLAN_HWTSO;
}
if (virtio_with_feature(dev, VIRTIO_NET_F_GUEST_CSUM))
ifp->if_capabilities |= IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6;
if (ifp->if_capabilities & IFCAP_HWCSUM) {
/*
* VirtIO does not support VLAN tagging, but we can fake
* it by inserting and removing the 802.1Q header during
* transmit and receive. We are then able to do checksum
* offloading of VLAN frames.
*/
ifp->if_capabilities |=
IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
}
ifp->if_capenable = ifp->if_capabilities;
/*
* Capabilities after here are not enabled by default.
*/
if (ifp->if_capabilities & IFCAP_RXCSUM) {
if (virtio_with_feature(dev, VIRTIO_NET_F_GUEST_TSO4) ||
virtio_with_feature(dev, VIRTIO_NET_F_GUEST_TSO6))
ifp->if_capabilities |= IFCAP_LRO;
}
if (sc->vtnet_flags & VTNET_FLAG_VLAN_FILTER) {
ifp->if_capabilities |= IFCAP_VLAN_HWFILTER;
sc->vtnet_vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
vtnet_register_vlan, sc, EVENTHANDLER_PRI_FIRST);
sc->vtnet_vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig,
vtnet_unregister_vlan, sc, EVENTHANDLER_PRI_FIRST);
}
limit = vtnet_tunable_int(sc, "rx_process_limit",
vtnet_rx_process_limit);
if (limit < 0)
limit = INT_MAX;
sc->vtnet_rx_process_limit = limit;
return (0);
}
static int
vtnet_change_mtu(struct vtnet_softc *sc, int new_mtu)
{
struct ifnet *ifp;
int frame_size, clsize;
ifp = sc->vtnet_ifp;
if (new_mtu < ETHERMIN || new_mtu > VTNET_MAX_MTU)
return (EINVAL);
frame_size = sc->vtnet_hdr_size + sizeof(struct ether_vlan_header) +
new_mtu;
/*
* Based on the new MTU (and hence frame size) determine which
* cluster size is most appropriate for the receive queues.
*/
if (frame_size <= MCLBYTES) {
clsize = MCLBYTES;
} else if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) {
/* Avoid going past 9K jumbos. */
if (frame_size > MJUM9BYTES)
return (EINVAL);
clsize = MJUM9BYTES;
} else
clsize = MJUMPAGESIZE;
ifp->if_mtu = new_mtu;
sc->vtnet_rx_new_clsize = clsize;
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
vtnet_init_locked(sc);
}
return (0);
}
static int
vtnet_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct vtnet_softc *sc;
struct ifreq *ifr;
int reinit, mask, error;
sc = ifp->if_softc;
ifr = (struct ifreq *) data;
error = 0;
switch (cmd) {
case SIOCSIFMTU:
if (ifp->if_mtu != ifr->ifr_mtu) {
VTNET_CORE_LOCK(sc);
error = vtnet_change_mtu(sc, ifr->ifr_mtu);
VTNET_CORE_UNLOCK(sc);
}
break;
case SIOCSIFFLAGS:
VTNET_CORE_LOCK(sc);
if ((ifp->if_flags & IFF_UP) == 0) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
vtnet_stop(sc);
} else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
if ((ifp->if_flags ^ sc->vtnet_if_flags) &
(IFF_PROMISC | IFF_ALLMULTI)) {
if (sc->vtnet_flags & VTNET_FLAG_CTRL_RX)
vtnet_rx_filter(sc);
else
error = ENOTSUP;
}
} else
vtnet_init_locked(sc);
if (error == 0)
sc->vtnet_if_flags = ifp->if_flags;
VTNET_CORE_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if ((sc->vtnet_flags & VTNET_FLAG_CTRL_RX) == 0)
break;
VTNET_CORE_LOCK(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
vtnet_rx_filter_mac(sc);
VTNET_CORE_UNLOCK(sc);
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->vtnet_media, cmd);
break;
case SIOCSIFCAP:
VTNET_CORE_LOCK(sc);
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
if (mask & IFCAP_TXCSUM)
ifp->if_capenable ^= IFCAP_TXCSUM;
if (mask & IFCAP_TXCSUM_IPV6)
ifp->if_capenable ^= IFCAP_TXCSUM_IPV6;
if (mask & IFCAP_TSO4)
ifp->if_capenable ^= IFCAP_TSO4;
if (mask & IFCAP_TSO6)
ifp->if_capenable ^= IFCAP_TSO6;
if (mask & (IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6 | IFCAP_LRO |
IFCAP_VLAN_HWFILTER)) {
/* These Rx features require us to renegotiate. */
reinit = 1;
if (mask & IFCAP_RXCSUM)
ifp->if_capenable ^= IFCAP_RXCSUM;
if (mask & IFCAP_RXCSUM_IPV6)
ifp->if_capenable ^= IFCAP_RXCSUM_IPV6;
if (mask & IFCAP_LRO)
ifp->if_capenable ^= IFCAP_LRO;
if (mask & IFCAP_VLAN_HWFILTER)
ifp->if_capenable ^= IFCAP_VLAN_HWFILTER;
} else
reinit = 0;
if (mask & IFCAP_VLAN_HWTSO)
ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
if (mask & IFCAP_VLAN_HWTAGGING)
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
if (reinit && (ifp->if_drv_flags & IFF_DRV_RUNNING)) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
vtnet_init_locked(sc);
}
VTNET_CORE_UNLOCK(sc);
VLAN_CAPABILITIES(ifp);
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
VTNET_CORE_LOCK_ASSERT_NOTOWNED(sc);
return (error);
}
static int
vtnet_rxq_populate(struct vtnet_rxq *rxq)
{
struct virtqueue *vq;
int nbufs, error;
vq = rxq->vtnrx_vq;
error = ENOSPC;
for (nbufs = 0; !virtqueue_full(vq); nbufs++) {
error = vtnet_rxq_new_buf(rxq);
if (error)
break;
}
if (nbufs > 0) {
virtqueue_notify(vq);
/*
* EMSGSIZE signifies the virtqueue did not have enough
* entries available to hold the last mbuf. This is not
* an error.
*/
if (error == EMSGSIZE)
error = 0;
}
return (error);
}
static void
vtnet_rxq_free_mbufs(struct vtnet_rxq *rxq)
{
struct virtqueue *vq;
struct mbuf *m;
int last;
vq = rxq->vtnrx_vq;
last = 0;
while ((m = virtqueue_drain(vq, &last)) != NULL)
m_freem(m);
KASSERT(virtqueue_empty(vq),
("%s: mbufs remaining in rx queue %p", __func__, rxq));
}
static struct mbuf *
vtnet_rx_alloc_buf(struct vtnet_softc *sc, int nbufs, struct mbuf **m_tailp)
{
struct mbuf *m_head, *m_tail, *m;
int i, clsize;
clsize = sc->vtnet_rx_clsize;
KASSERT(nbufs == 1 || sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG,
("%s: chained mbuf %d request without LRO_NOMRG", __func__, nbufs));
m_head = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, clsize);
if (m_head == NULL)
goto fail;
m_head->m_len = clsize;
m_tail = m_head;
/* Allocate the rest of the chain. */
for (i = 1; i < nbufs; i++) {
m = m_getjcl(M_NOWAIT, MT_DATA, 0, clsize);
if (m == NULL)
goto fail;
m->m_len = clsize;
m_tail->m_next = m;
m_tail = m;
}
if (m_tailp != NULL)
*m_tailp = m_tail;
return (m_head);
fail:
sc->vtnet_stats.mbuf_alloc_failed++;
m_freem(m_head);
return (NULL);
}
/*
* Slow path for when LRO without mergeable buffers is negotiated.
*/
static int
vtnet_rxq_replace_lro_nomgr_buf(struct vtnet_rxq *rxq, struct mbuf *m0,
int len0)
{
struct vtnet_softc *sc;
struct mbuf *m, *m_prev;
struct mbuf *m_new, *m_tail;
int len, clsize, nreplace, error;
sc = rxq->vtnrx_sc;
clsize = sc->vtnet_rx_clsize;
m_prev = NULL;
m_tail = NULL;
nreplace = 0;
m = m0;
len = len0;
/*
* Since these mbuf chains are so large, we avoid allocating an
* entire replacement chain if possible. When the received frame
* did not consume the entire chain, the unused mbufs are moved
* to the replacement chain.
*/
while (len > 0) {
/*
* Something is seriously wrong if we received a frame
* larger than the chain. Drop it.
*/
if (m == NULL) {
sc->vtnet_stats.rx_frame_too_large++;
return (EMSGSIZE);
}
/* We always allocate the same cluster size. */
KASSERT(m->m_len == clsize,
("%s: mbuf size %d is not the cluster size %d",
__func__, m->m_len, clsize));
m->m_len = MIN(m->m_len, len);
len -= m->m_len;
m_prev = m;
m = m->m_next;
nreplace++;
}
KASSERT(nreplace <= sc->vtnet_rx_nmbufs,
("%s: too many replacement mbufs %d max %d", __func__, nreplace,
sc->vtnet_rx_nmbufs));
m_new = vtnet_rx_alloc_buf(sc, nreplace, &m_tail);
if (m_new == NULL) {
m_prev->m_len = clsize;
return (ENOBUFS);
}
/*
* Move any unused mbufs from the received chain onto the end
* of the new chain.
*/
if (m_prev->m_next != NULL) {
m_tail->m_next = m_prev->m_next;
m_prev->m_next = NULL;
}
error = vtnet_rxq_enqueue_buf(rxq, m_new);
if (error) {
/*
* BAD! We could not enqueue the replacement mbuf chain. We
* must restore the m0 chain to the original state if it was
* modified so we can subsequently discard it.
*
* NOTE: The replacement is suppose to be an identical copy
* to the one just dequeued so this is an unexpected error.
*/
sc->vtnet_stats.rx_enq_replacement_failed++;
if (m_tail->m_next != NULL) {
m_prev->m_next = m_tail->m_next;
m_tail->m_next = NULL;
}
m_prev->m_len = clsize;
m_freem(m_new);
}
return (error);
}
static int
vtnet_rxq_replace_buf(struct vtnet_rxq *rxq, struct mbuf *m, int len)
{
struct vtnet_softc *sc;
struct mbuf *m_new;
int error;
sc = rxq->vtnrx_sc;
KASSERT(sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG || m->m_next == NULL,
("%s: chained mbuf without LRO_NOMRG", __func__));
if (m->m_next == NULL) {
/* Fast-path for the common case of just one mbuf. */
if (m->m_len < len)
return (EINVAL);
m_new = vtnet_rx_alloc_buf(sc, 1, NULL);
if (m_new == NULL)
return (ENOBUFS);
error = vtnet_rxq_enqueue_buf(rxq, m_new);
if (error) {
/*
* The new mbuf is suppose to be an identical
* copy of the one just dequeued so this is an
* unexpected error.
*/
m_freem(m_new);
sc->vtnet_stats.rx_enq_replacement_failed++;
} else
m->m_len = len;
} else
error = vtnet_rxq_replace_lro_nomgr_buf(rxq, m, len);
return (error);
}
static int
vtnet_rxq_enqueue_buf(struct vtnet_rxq *rxq, struct mbuf *m)
{
struct sglist sg;
struct sglist_seg segs[VTNET_MAX_RX_SEGS];
struct vtnet_softc *sc;
struct vtnet_rx_header *rxhdr;
uint8_t *mdata;
int offset, error;
sc = rxq->vtnrx_sc;
mdata = mtod(m, uint8_t *);
VTNET_RXQ_LOCK_ASSERT(rxq);
KASSERT(sc->vtnet_flags & VTNET_FLAG_LRO_NOMRG || m->m_next == NULL,
("%s: chained mbuf without LRO_NOMRG", __func__));
KASSERT(m->m_len == sc->vtnet_rx_clsize,
("%s: unexpected cluster size %d/%d", __func__, m->m_len,
sc->vtnet_rx_clsize));
sglist_init(&sg, VTNET_MAX_RX_SEGS, segs);
if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) {
MPASS(sc->vtnet_hdr_size == sizeof(struct virtio_net_hdr));
rxhdr = (struct vtnet_rx_header *) mdata;
sglist_append(&sg, &rxhdr->vrh_hdr, sc->vtnet_hdr_size);
offset = sizeof(struct vtnet_rx_header);
} else
offset = 0;
sglist_append(&sg, mdata + offset, m->m_len - offset);
if (m->m_next != NULL) {
error = sglist_append_mbuf(&sg, m->m_next);
MPASS(error == 0);
}
error = virtqueue_enqueue(rxq->vtnrx_vq, m, &sg, 0, sg.sg_nseg);
return (error);
}
static int
vtnet_rxq_new_buf(struct vtnet_rxq *rxq)
{
struct vtnet_softc *sc;
struct mbuf *m;
int error;
sc = rxq->vtnrx_sc;
m = vtnet_rx_alloc_buf(sc, sc->vtnet_rx_nmbufs, NULL);
if (m == NULL)
return (ENOBUFS);
error = vtnet_rxq_enqueue_buf(rxq, m);
if (error)
m_freem(m);
return (error);
}
/*
* Use the checksum offset in the VirtIO header to set the
* correct CSUM_* flags.
*/
static int
vtnet_rxq_csum_by_offset(struct vtnet_rxq *rxq, struct mbuf *m,
uint16_t eth_type, int ip_start, struct virtio_net_hdr *hdr)
{
struct vtnet_softc *sc;
#if defined(INET) || defined(INET6)
int offset = hdr->csum_start + hdr->csum_offset;
#endif
sc = rxq->vtnrx_sc;
/* Only do a basic sanity check on the offset. */
switch (eth_type) {
#if defined(INET)
case ETHERTYPE_IP:
if (__predict_false(offset < ip_start + sizeof(struct ip)))
return (1);
break;
#endif
#if defined(INET6)
case ETHERTYPE_IPV6:
if (__predict_false(offset < ip_start + sizeof(struct ip6_hdr)))
return (1);
break;
#endif
default:
sc->vtnet_stats.rx_csum_bad_ethtype++;
return (1);
}
/*
* Use the offset to determine the appropriate CSUM_* flags. This is
* a bit dirty, but we can get by with it since the checksum offsets
* happen to be different. We assume the host host does not do IPv4
* header checksum offloading.
*/
switch (hdr->csum_offset) {
case offsetof(struct udphdr, uh_sum):
case offsetof(struct tcphdr, th_sum):
m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xFFFF;
break;
case offsetof(struct sctphdr, checksum):
m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
break;
default:
sc->vtnet_stats.rx_csum_bad_offset++;
return (1);
}
return (0);
}
static int
vtnet_rxq_csum_by_parse(struct vtnet_rxq *rxq, struct mbuf *m,
uint16_t eth_type, int ip_start, struct virtio_net_hdr *hdr)
{
struct vtnet_softc *sc;
int offset, proto;
sc = rxq->vtnrx_sc;
switch (eth_type) {
#if defined(INET)
case ETHERTYPE_IP: {
struct ip *ip;
if (__predict_false(m->m_len < ip_start + sizeof(struct ip)))
return (1);
ip = (struct ip *)(m->m_data + ip_start);
proto = ip->ip_p;
offset = ip_start + (ip->ip_hl << 2);
break;
}
#endif
#if defined(INET6)
case ETHERTYPE_IPV6:
if (__predict_false(m->m_len < ip_start +
sizeof(struct ip6_hdr)))
return (1);
offset = ip6_lasthdr(m, ip_start, IPPROTO_IPV6, &proto);
if (__predict_false(offset < 0))
return (1);
break;
#endif
default:
sc->vtnet_stats.rx_csum_bad_ethtype++;
return (1);
}
switch (proto) {
case IPPROTO_TCP:
if (__predict_false(m->m_len < offset + sizeof(struct tcphdr)))
return (1);
m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xFFFF;
break;
case IPPROTO_UDP:
if (__predict_false(m->m_len < offset + sizeof(struct udphdr)))
return (1);
m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xFFFF;
break;
case IPPROTO_SCTP:
if (__predict_false(m->m_len < offset + sizeof(struct sctphdr)))
return (1);
m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
break;
default:
/*
* For the remaining protocols, FreeBSD does not support
* checksum offloading, so the checksum will be recomputed.
*/
#if 0
if_printf(sc->vtnet_ifp, "cksum offload of unsupported "
"protocol eth_type=%#x proto=%d csum_start=%d "
"csum_offset=%d\n", __func__, eth_type, proto,
hdr->csum_start, hdr->csum_offset);
#endif
break;
}
return (0);
}
/*
* Set the appropriate CSUM_* flags. Unfortunately, the information
* provided is not directly useful to us. The VirtIO header gives the
* offset of the checksum, which is all Linux needs, but this is not
* how FreeBSD does things. We are forced to peek inside the packet
* a bit.
*
* It would be nice if VirtIO gave us the L4 protocol or if FreeBSD
* could accept the offsets and let the stack figure it out.
*/
static int
vtnet_rxq_csum(struct vtnet_rxq *rxq, struct mbuf *m,
struct virtio_net_hdr *hdr)
{
struct ether_header *eh;
struct ether_vlan_header *evh;
uint16_t eth_type;
int offset, error;
eh = mtod(m, struct ether_header *);
eth_type = ntohs(eh->ether_type);
if (eth_type == ETHERTYPE_VLAN) {
/* BMV: We should handle nested VLAN tags too. */
evh = mtod(m, struct ether_vlan_header *);
eth_type = ntohs(evh->evl_proto);
offset = sizeof(struct ether_vlan_header);
} else
offset = sizeof(struct ether_header);
if (hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)
error = vtnet_rxq_csum_by_offset(rxq, m, eth_type, offset, hdr);
else
error = vtnet_rxq_csum_by_parse(rxq, m, eth_type, offset, hdr);
return (error);
}
static void
vtnet_rxq_discard_merged_bufs(struct vtnet_rxq *rxq, int nbufs)
{
struct mbuf *m;
while (--nbufs > 0) {
m = virtqueue_dequeue(rxq->vtnrx_vq, NULL);
if (m == NULL)
break;
vtnet_rxq_discard_buf(rxq, m);
}
}
static void
vtnet_rxq_discard_buf(struct vtnet_rxq *rxq, struct mbuf *m)
{
int error;
/*
* Requeue the discarded mbuf. This should always be successful
* since it was just dequeued.
*/
error = vtnet_rxq_enqueue_buf(rxq, m);
KASSERT(error == 0,
("%s: cannot requeue discarded mbuf %d", __func__, error));
}
static int
vtnet_rxq_merged_eof(struct vtnet_rxq *rxq, struct mbuf *m_head, int nbufs)
{
struct vtnet_softc *sc;
struct ifnet *ifp;
struct virtqueue *vq;
struct mbuf *m, *m_tail;
int len;
sc = rxq->vtnrx_sc;
vq = rxq->vtnrx_vq;
ifp = sc->vtnet_ifp;
m_tail = m_head;
while (--nbufs > 0) {
m = virtqueue_dequeue(vq, &len);
if (m == NULL) {
rxq->vtnrx_stats.vrxs_ierrors++;
goto fail;
}
if (vtnet_rxq_new_buf(rxq) != 0) {
rxq->vtnrx_stats.vrxs_iqdrops++;
vtnet_rxq_discard_buf(rxq, m);
if (nbufs > 1)
vtnet_rxq_discard_merged_bufs(rxq, nbufs);
goto fail;
}
if (m->m_len < len)
len = m->m_len;
m->m_len = len;
m->m_flags &= ~M_PKTHDR;
m_head->m_pkthdr.len += len;
m_tail->m_next = m;
m_tail = m;
}
return (0);
fail:
sc->vtnet_stats.rx_mergeable_failed++;
m_freem(m_head);
return (1);
}
static void
vtnet_rxq_input(struct vtnet_rxq *rxq, struct mbuf *m,
struct virtio_net_hdr *hdr)
{
struct vtnet_softc *sc;
struct ifnet *ifp;
struct ether_header *eh;
sc = rxq->vtnrx_sc;
ifp = sc->vtnet_ifp;
if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
eh = mtod(m, struct ether_header *);
if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
vtnet_vlan_tag_remove(m);
/*
* With the 802.1Q header removed, update the
* checksum starting location accordingly.
*/
if (hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)
hdr->csum_start -= ETHER_VLAN_ENCAP_LEN;
}
}
m->m_pkthdr.flowid = rxq->vtnrx_id;
m->m_flags |= M_FLOWID;
/*
* BMV: FreeBSD does not have the UNNECESSARY and PARTIAL checksum
* distinction that Linux does. Need to reevaluate if performing
* offloading for the NEEDS_CSUM case is really appropriate.
*/
if (hdr->flags & (VIRTIO_NET_HDR_F_NEEDS_CSUM |
VIRTIO_NET_HDR_F_DATA_VALID)) {
if (vtnet_rxq_csum(rxq, m, hdr) == 0)
rxq->vtnrx_stats.vrxs_csum++;
else
rxq->vtnrx_stats.vrxs_csum_failed++;
}
rxq->vtnrx_stats.vrxs_ipackets++;
rxq->vtnrx_stats.vrxs_ibytes += m->m_pkthdr.len;
VTNET_RXQ_UNLOCK(rxq);
(*ifp->if_input)(ifp, m);
VTNET_RXQ_LOCK(rxq);
}
static int
vtnet_rxq_eof(struct vtnet_rxq *rxq)
{
struct virtio_net_hdr lhdr, *hdr;
struct vtnet_softc *sc;
struct ifnet *ifp;
struct virtqueue *vq;
struct mbuf *m;
struct virtio_net_hdr_mrg_rxbuf *mhdr;
int len, deq, nbufs, adjsz, count;
sc = rxq->vtnrx_sc;
vq = rxq->vtnrx_vq;
ifp = sc->vtnet_ifp;
hdr = &lhdr;
deq = 0;
count = sc->vtnet_rx_process_limit;
VTNET_RXQ_LOCK_ASSERT(rxq);
while (count-- > 0) {
m = virtqueue_dequeue(vq, &len);
if (m == NULL)
break;
deq++;
if (len < sc->vtnet_hdr_size + ETHER_HDR_LEN) {
rxq->vtnrx_stats.vrxs_ierrors++;
vtnet_rxq_discard_buf(rxq, m);
continue;
}
if ((sc->vtnet_flags & VTNET_FLAG_MRG_RXBUFS) == 0) {
nbufs = 1;
adjsz = sizeof(struct vtnet_rx_header);
/*
* Account for our pad inserted between the header
* and the actual start of the frame.
*/
len += VTNET_RX_HEADER_PAD;
} else {
mhdr = mtod(m, struct virtio_net_hdr_mrg_rxbuf *);
nbufs = mhdr->num_buffers;
adjsz = sizeof(struct virtio_net_hdr_mrg_rxbuf);
}
if (vtnet_rxq_replace_buf(rxq, m, len) != 0) {
rxq->vtnrx_stats.vrxs_iqdrops++;
vtnet_rxq_discard_buf(rxq, m);
if (nbufs > 1)
vtnet_rxq_discard_merged_bufs(rxq, nbufs);
continue;
}
m->m_pkthdr.len = len;
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.csum_flags = 0;
if (nbufs > 1) {
/* Dequeue the rest of chain. */
if (vtnet_rxq_merged_eof(rxq, m, nbufs) != 0)
continue;
}
/*
* Save copy of header before we strip it. For both mergeable
* and non-mergeable, the header is at the beginning of the
* mbuf data. We no longer need num_buffers, so always use a
* regular header.
*
* BMV: Is this memcpy() expensive? We know the mbuf data is
* still valid even after the m_adj().
*/
memcpy(hdr, mtod(m, void *), sizeof(struct virtio_net_hdr));
m_adj(m, adjsz);
vtnet_rxq_input(rxq, m, hdr);
/* Must recheck after dropping the Rx lock. */
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
break;
}
if (deq > 0)
virtqueue_notify(vq);
return (count > 0 ? 0 : EAGAIN);
}
static void
vtnet_rx_vq_intr(void *xrxq)
{
struct vtnet_softc *sc;
struct vtnet_rxq *rxq;
struct ifnet *ifp;
int tries, more;
rxq = xrxq;
sc = rxq->vtnrx_sc;
ifp = sc->vtnet_ifp;
tries = 0;
if (__predict_false(rxq->vtnrx_id >= sc->vtnet_act_vq_pairs)) {
/*
* Ignore this interrupt. Either this is a spurious interrupt
* or multiqueue without per-VQ MSIX so every queue needs to
* be polled (a brain dead configuration we could try harder
* to avoid).
*/
vtnet_rxq_disable_intr(rxq);
return;
}
again:
VTNET_RXQ_LOCK(rxq);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
VTNET_RXQ_UNLOCK(rxq);
return;
}
more = vtnet_rxq_eof(rxq);
if (more || vtnet_rxq_enable_intr(rxq) != 0) {
if (!more)
vtnet_rxq_disable_intr(rxq);
/*
* This is an occasional condition or race (when !more),
* so retry a few times before scheduling the taskqueue.
*/
rxq->vtnrx_stats.vrxs_rescheduled++;
VTNET_RXQ_UNLOCK(rxq);
if (tries++ < VTNET_INTR_DISABLE_RETRIES)
goto again;
taskqueue_enqueue(rxq->vtnrx_tq, &rxq->vtnrx_intrtask);
} else
VTNET_RXQ_UNLOCK(rxq);
}
static void
vtnet_rxq_tq_intr(void *xrxq, int pending)
{
struct vtnet_softc *sc;
struct vtnet_rxq *rxq;
struct ifnet *ifp;
int more;
rxq = xrxq;
sc = rxq->vtnrx_sc;
ifp = sc->vtnet_ifp;
VTNET_RXQ_LOCK(rxq);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
VTNET_RXQ_UNLOCK(rxq);
return;
}
more = vtnet_rxq_eof(rxq);
if (more || vtnet_rxq_enable_intr(rxq) != 0) {
if (!more)
vtnet_rxq_disable_intr(rxq);
rxq->vtnrx_stats.vrxs_rescheduled++;
taskqueue_enqueue(rxq->vtnrx_tq, &rxq->vtnrx_intrtask);
}
VTNET_RXQ_UNLOCK(rxq);
}
static void
vtnet_txq_free_mbufs(struct vtnet_txq *txq)
{
struct virtqueue *vq;
struct vtnet_tx_header *txhdr;
int last;
vq = txq->vtntx_vq;
last = 0;
while ((txhdr = virtqueue_drain(vq, &last)) != NULL) {
m_freem(txhdr->vth_mbuf);
uma_zfree(vtnet_tx_header_zone, txhdr);
}
KASSERT(virtqueue_empty(vq),
("%s: mbufs remaining in tx queue %p", __func__, txq));
}
/*
* BMV: Much of this can go away once we finally have offsets in
* the mbuf packet header. Bug andre@.
*/
static int
vtnet_txq_offload_ctx(struct vtnet_txq *txq, struct mbuf *m,
int *etype, int *proto, int *start)
{
struct vtnet_softc *sc;
struct ether_vlan_header *evh;
int offset;
sc = txq->vtntx_sc;
evh = mtod(m, struct ether_vlan_header *);
if (evh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
/* BMV: We should handle nested VLAN tags too. */
*etype = ntohs(evh->evl_proto);
offset = sizeof(struct ether_vlan_header);
} else {
*etype = ntohs(evh->evl_encap_proto);
offset = sizeof(struct ether_header);
}
switch (*etype) {
#if defined(INET)
case ETHERTYPE_IP: {
struct ip *ip, iphdr;
if (__predict_false(m->m_len < offset + sizeof(struct ip))) {
m_copydata(m, offset, sizeof(struct ip),
(caddr_t) &iphdr);
ip = &iphdr;
} else
ip = (struct ip *)(m->m_data + offset);
*proto = ip->ip_p;
*start = offset + (ip->ip_hl << 2);
break;
}
#endif
#if defined(INET6)
case ETHERTYPE_IPV6:
*proto = -1;
*start = ip6_lasthdr(m, offset, IPPROTO_IPV6, proto);
/* Assert the network stack sent us a valid packet. */
KASSERT(*start > offset,
("%s: mbuf %p start %d offset %d proto %d", __func__, m,
*start, offset, *proto));
break;
#endif
default:
sc->vtnet_stats.tx_csum_bad_ethtype++;
return (EINVAL);
}
return (0);
}
static int
vtnet_txq_offload_tso(struct vtnet_txq *txq, struct mbuf *m, int eth_type,
int offset, struct virtio_net_hdr *hdr)
{
static struct timeval lastecn;
static int curecn;
struct vtnet_softc *sc;
struct tcphdr *tcp, tcphdr;
sc = txq->vtntx_sc;
if (__predict_false(m->m_len < offset + sizeof(struct tcphdr))) {
m_copydata(m, offset, sizeof(struct tcphdr), (caddr_t) &tcphdr);
tcp = &tcphdr;
} else
tcp = (struct tcphdr *)(m->m_data + offset);
hdr->hdr_len = offset + (tcp->th_off << 2);
hdr->gso_size = m->m_pkthdr.tso_segsz;
hdr->gso_type = eth_type == ETHERTYPE_IP ? VIRTIO_NET_HDR_GSO_TCPV4 :
VIRTIO_NET_HDR_GSO_TCPV6;
if (tcp->th_flags & TH_CWR) {
/*
* Drop if VIRTIO_NET_F_HOST_ECN was not negotiated. In FreeBSD,
* ECN support is not on a per-interface basis, but globally via
* the net.inet.tcp.ecn.enable sysctl knob. The default is off.
*/
if ((sc->vtnet_flags & VTNET_FLAG_TSO_ECN) == 0) {
if (ppsratecheck(&lastecn, &curecn, 1))
if_printf(sc->vtnet_ifp,
"TSO with ECN not negotiated with host\n");
return (ENOTSUP);
}
hdr->gso_type |= VIRTIO_NET_HDR_GSO_ECN;
}
txq->vtntx_stats.vtxs_tso++;
return (0);
}
static struct mbuf *
vtnet_txq_offload(struct vtnet_txq *txq, struct mbuf *m,
struct virtio_net_hdr *hdr)
{
struct vtnet_softc *sc;
int flags, etype, csum_start, proto, error;
sc = txq->vtntx_sc;
flags = m->m_pkthdr.csum_flags;
error = vtnet_txq_offload_ctx(txq, m, &etype, &proto, &csum_start);
if (error)
goto drop;
if ((etype == ETHERTYPE_IP && flags & VTNET_CSUM_OFFLOAD) ||
(etype == ETHERTYPE_IPV6 && flags & VTNET_CSUM_OFFLOAD_IPV6)) {
/*
* We could compare the IP protocol vs the CSUM_ flag too,
* but that really should not be necessary.
*/
hdr->flags |= VIRTIO_NET_HDR_F_NEEDS_CSUM;
hdr->csum_start = csum_start;
hdr->csum_offset = m->m_pkthdr.csum_data;
txq->vtntx_stats.vtxs_csum++;
}
if (flags & CSUM_TSO) {
if (__predict_false(proto != IPPROTO_TCP)) {
/* Likely failed to correctly parse the mbuf. */
sc->vtnet_stats.tx_tso_not_tcp++;
goto drop;
}
KASSERT(hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM,
("%s: mbuf %p TSO without checksum offload", __func__, m));
error = vtnet_txq_offload_tso(txq, m, etype, csum_start, hdr);
if (error)
goto drop;
}
return (m);
drop:
m_freem(m);
return (NULL);
}
static int
vtnet_txq_enqueue_buf(struct vtnet_txq *txq, struct mbuf **m_head,
struct vtnet_tx_header *txhdr)
{
struct sglist sg;
struct sglist_seg segs[VTNET_MAX_TX_SEGS];
struct vtnet_softc *sc;
struct virtqueue *vq;
struct mbuf *m;
int collapsed, error;
vq = txq->vtntx_vq;
sc = txq->vtntx_sc;
m = *m_head;
collapsed = 0;
sglist_init(&sg, VTNET_MAX_TX_SEGS, segs);
error = sglist_append(&sg, &txhdr->vth_uhdr, sc->vtnet_hdr_size);
KASSERT(error == 0 && sg.sg_nseg == 1,
("%s: error %d adding header to sglist", __func__, error));
again:
error = sglist_append_mbuf(&sg, m);
if (error) {
if (collapsed)
goto fail;
m = m_collapse(m, M_NOWAIT, VTNET_MAX_TX_SEGS - 1);
if (m == NULL)
goto fail;
*m_head = m;
collapsed = 1;
txq->vtntx_stats.vtxs_collapsed++;
goto again;
}
txhdr->vth_mbuf = m;
error = virtqueue_enqueue(vq, txhdr, &sg, sg.sg_nseg, 0);
return (error);
fail:
m_freem(*m_head);
*m_head = NULL;
return (ENOBUFS);
}
static int
vtnet_txq_encap(struct vtnet_txq *txq, struct mbuf **m_head)
{
struct vtnet_softc *sc;
struct vtnet_tx_header *txhdr;
struct virtio_net_hdr *hdr;
struct mbuf *m;
int error;
sc = txq->vtntx_sc;
m = *m_head;
M_ASSERTPKTHDR(m);
txhdr = uma_zalloc(vtnet_tx_header_zone, M_NOWAIT | M_ZERO);
if (txhdr == NULL) {
m_freem(m);
*m_head = NULL;
return (ENOMEM);
}
/*
* Always use the non-mergeable header, regardless if the feature
* was negotiated. For transmit, num_buffers is always zero. The
* vtnet_hdr_size is used to enqueue the correct header size.
*/
hdr = &txhdr->vth_uhdr.hdr;
if (m->m_flags & M_VLANTAG) {
m = ether_vlanencap(m, m->m_pkthdr.ether_vtag);
if ((*m_head = m) == NULL) {
error = ENOBUFS;
goto fail;
}
m->m_flags &= ~M_VLANTAG;
}
if (m->m_pkthdr.csum_flags & VTNET_CSUM_ALL_OFFLOAD) {
m = vtnet_txq_offload(txq, m, hdr);
if ((*m_head = m) == NULL) {
error = ENOBUFS;
goto fail;
}
}
error = vtnet_txq_enqueue_buf(txq, m_head, txhdr);
if (error == 0)
return (0);
fail:
uma_zfree(vtnet_tx_header_zone, txhdr);
return (error);
}
#ifdef VTNET_LEGACY_TX
static void
vtnet_start_locked(struct vtnet_txq *txq, struct ifnet *ifp)
{
struct vtnet_softc *sc;
struct virtqueue *vq;
struct mbuf *m0;
int enq;
sc = txq->vtntx_sc;
vq = txq->vtntx_vq;
enq = 0;
VTNET_TXQ_LOCK_ASSERT(txq);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
sc->vtnet_link_active == 0)
return;
vtnet_txq_eof(txq);
while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
if (virtqueue_full(vq))
break;
IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
if (m0 == NULL)
break;
if (vtnet_txq_encap(txq, &m0) != 0) {
if (m0 != NULL)
IFQ_DRV_PREPEND(&ifp->if_snd, m0);
break;
}
enq++;
ETHER_BPF_MTAP(ifp, m0);
}
if (enq > 0) {
virtqueue_notify(vq);
txq->vtntx_watchdog = VTNET_TX_TIMEOUT;
}
}
static void
vtnet_start(struct ifnet *ifp)
{
struct vtnet_softc *sc;
struct vtnet_txq *txq;
sc = ifp->if_softc;
txq = &sc->vtnet_txqs[0];
VTNET_TXQ_LOCK(txq);
vtnet_start_locked(txq, ifp);
VTNET_TXQ_UNLOCK(txq);
}
#else /* !VTNET_LEGACY_TX */
static int
vtnet_txq_mq_start_locked(struct vtnet_txq *txq, struct mbuf *m)
{
struct vtnet_softc *sc;
struct virtqueue *vq;
struct buf_ring *br;
struct ifnet *ifp;
int enq, error;
sc = txq->vtntx_sc;
vq = txq->vtntx_vq;
br = txq->vtntx_br;
ifp = sc->vtnet_ifp;
enq = 0;
error = 0;
VTNET_TXQ_LOCK_ASSERT(txq);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
sc->vtnet_link_active == 0) {
if (m != NULL)
error = drbr_enqueue(ifp, br, m);
return (error);
}
if (m != NULL) {
error = drbr_enqueue(ifp, br, m);
if (error)
return (error);
}
vtnet_txq_eof(txq);
while ((m = drbr_peek(ifp, br)) != NULL) {
error = vtnet_txq_encap(txq, &m);
if (error) {
if (m != NULL)
drbr_putback(ifp, br, m);
else
drbr_advance(ifp, br);
break;
}
drbr_advance(ifp, br);
enq++;
ETHER_BPF_MTAP(ifp, m);
}
if (enq > 0) {
virtqueue_notify(vq);
txq->vtntx_watchdog = VTNET_TX_TIMEOUT;
}
return (error);
}
static int
vtnet_txq_mq_start(struct ifnet *ifp, struct mbuf *m)
{
struct vtnet_softc *sc;
struct vtnet_txq *txq;
int i, npairs, error;
sc = ifp->if_softc;
npairs = sc->vtnet_act_vq_pairs;
if (m->m_flags & M_FLOWID)
i = m->m_pkthdr.flowid % npairs;
else
i = curcpu % npairs;
txq = &sc->vtnet_txqs[i];
if (VTNET_TXQ_TRYLOCK(txq) != 0) {
error = vtnet_txq_mq_start_locked(txq, m);
VTNET_TXQ_UNLOCK(txq);
} else {
error = drbr_enqueue(ifp, txq->vtntx_br, m);
taskqueue_enqueue(txq->vtntx_tq, &txq->vtntx_defrtask);
}
return (error);
}
static void
vtnet_txq_tq_deferred(void *xtxq, int pending)
{
struct vtnet_softc *sc;
struct vtnet_txq *txq;
txq = xtxq;
sc = txq->vtntx_sc;
VTNET_TXQ_LOCK(txq);
if (!drbr_empty(sc->vtnet_ifp, txq->vtntx_br))
vtnet_txq_mq_start_locked(txq, NULL);
VTNET_TXQ_UNLOCK(txq);
}
#endif /* VTNET_LEGACY_TX */
static void
vtnet_txq_tq_intr(void *xtxq, int pending)
{
struct vtnet_softc *sc;
struct vtnet_txq *txq;
struct ifnet *ifp;
txq = xtxq;
sc = txq->vtntx_sc;
ifp = sc->vtnet_ifp;
VTNET_TXQ_LOCK(txq);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
VTNET_TXQ_UNLOCK(txq);
return;
}
vtnet_txq_eof(txq);
#ifdef VTNET_LEGACY_TX
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
vtnet_start_locked(txq, ifp);
#else
if (!drbr_empty(ifp, txq->vtntx_br))
vtnet_txq_mq_start_locked(txq, NULL);
#endif
if (vtnet_txq_enable_intr(txq) != 0) {
vtnet_txq_disable_intr(txq);
txq->vtntx_stats.vtxs_rescheduled++;
taskqueue_enqueue(txq->vtntx_tq, &txq->vtntx_intrtask);
}
VTNET_TXQ_UNLOCK(txq);
}
static void
vtnet_txq_eof(struct vtnet_txq *txq)
{
struct virtqueue *vq;
struct vtnet_tx_header *txhdr;
struct mbuf *m;
vq = txq->vtntx_vq;
VTNET_TXQ_LOCK_ASSERT(txq);
while ((txhdr = virtqueue_dequeue(vq, NULL)) != NULL) {
m = txhdr->vth_mbuf;
txq->vtntx_stats.vtxs_opackets++;
txq->vtntx_stats.vtxs_obytes += m->m_pkthdr.len;
if (m->m_flags & M_MCAST)
txq->vtntx_stats.vtxs_omcasts++;
m_freem(m);
uma_zfree(vtnet_tx_header_zone, txhdr);
}
if (virtqueue_empty(vq))
txq->vtntx_watchdog = 0;
}
static void
vtnet_tx_vq_intr(void *xtxq)
{
struct vtnet_softc *sc;
struct vtnet_txq *txq;
struct ifnet *ifp;
int tries;
txq = xtxq;
sc = txq->vtntx_sc;
ifp = sc->vtnet_ifp;
tries = 0;
if (__predict_false(txq->vtntx_id >= sc->vtnet_act_vq_pairs)) {
/*
* Ignore this interrupt. Either this is a spurious interrupt
* or multiqueue without per-VQ MSIX so every queue needs to
* be polled (a brain dead configuration we could try harder
* to avoid).
*/
vtnet_txq_disable_intr(txq);
return;
}
again:
VTNET_TXQ_LOCK(txq);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
VTNET_TXQ_UNLOCK(txq);
return;
}
vtnet_txq_eof(txq);
#ifdef VTNET_LEGACY_TX
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
vtnet_start_locked(txq, ifp);
#else
if (!drbr_empty(ifp, txq->vtntx_br))
vtnet_txq_mq_start_locked(txq, NULL);
#endif
if (vtnet_txq_enable_intr(txq) != 0) {
vtnet_txq_disable_intr(txq);
/*
* This is an occasional race, so retry a few times
* before scheduling the taskqueue.
*/
VTNET_TXQ_UNLOCK(txq);
if (tries++ < VTNET_INTR_DISABLE_RETRIES)
goto again;
txq->vtntx_stats.vtxs_rescheduled++;
taskqueue_enqueue(txq->vtntx_tq, &txq->vtntx_intrtask);
} else
VTNET_TXQ_UNLOCK(txq);
}
static void
vtnet_tx_start_all(struct vtnet_softc *sc)
{
struct ifnet *ifp;
struct vtnet_txq *txq;
int i;
ifp = sc->vtnet_ifp;
VTNET_CORE_LOCK_ASSERT(sc);
for (i = 0; i < sc->vtnet_act_vq_pairs; i++) {
txq = &sc->vtnet_txqs[i];
VTNET_TXQ_LOCK(txq);
#ifdef VTNET_LEGACY_TX
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
vtnet_start_locked(txq, ifp);
#else
if (!drbr_empty(ifp, txq->vtntx_br))
vtnet_txq_mq_start_locked(txq, NULL);
#endif
VTNET_TXQ_UNLOCK(txq);
}
}
#ifndef VTNET_LEGACY_TX
static void
vtnet_qflush(struct ifnet *ifp)
{
struct vtnet_softc *sc;
struct vtnet_txq *txq;
struct mbuf *m;
int i;
sc = ifp->if_softc;
for (i = 0; i < sc->vtnet_act_vq_pairs; i++) {
txq = &sc->vtnet_txqs[i];
VTNET_TXQ_LOCK(txq);
while ((m = buf_ring_dequeue_sc(txq->vtntx_br)) != NULL)
m_freem(m);
VTNET_TXQ_UNLOCK(txq);
}
if_qflush(ifp);
}
#endif
static int
vtnet_watchdog(struct vtnet_txq *txq)
{
struct vtnet_softc *sc;
sc = txq->vtntx_sc;
VTNET_TXQ_LOCK(txq);
if (sc->vtnet_flags & VTNET_FLAG_EVENT_IDX)
vtnet_txq_eof(txq);
if (txq->vtntx_watchdog == 0 || --txq->vtntx_watchdog) {
VTNET_TXQ_UNLOCK(txq);
return (0);
}
VTNET_TXQ_UNLOCK(txq);
if_printf(sc->vtnet_ifp, "watchdog timeout on queue %d\n",
txq->vtntx_id);
return (1);
}
static void
vtnet_rxq_accum_stats(struct vtnet_rxq *rxq, struct vtnet_rxq_stats *accum)
{
struct vtnet_rxq_stats *st;
st = &rxq->vtnrx_stats;
accum->vrxs_ipackets += st->vrxs_ipackets;
accum->vrxs_ibytes += st->vrxs_ibytes;
accum->vrxs_iqdrops += st->vrxs_iqdrops;
accum->vrxs_csum += st->vrxs_csum;
accum->vrxs_csum_failed += st->vrxs_csum_failed;
accum->vrxs_rescheduled += st->vrxs_rescheduled;
}
static void
vtnet_txq_accum_stats(struct vtnet_txq *txq, struct vtnet_txq_stats *accum)
{
struct vtnet_txq_stats *st;
st = &txq->vtntx_stats;
accum->vtxs_opackets += st->vtxs_opackets;
accum->vtxs_obytes += st->vtxs_obytes;
accum->vtxs_csum += st->vtxs_csum;
accum->vtxs_tso += st->vtxs_tso;
accum->vtxs_collapsed += st->vtxs_collapsed;
accum->vtxs_rescheduled += st->vtxs_rescheduled;
}
static void
vtnet_accumulate_stats(struct vtnet_softc *sc)
{
struct ifnet *ifp;
struct vtnet_statistics *st;
struct vtnet_rxq_stats rxaccum;
struct vtnet_txq_stats txaccum;
int i;
ifp = sc->vtnet_ifp;
st = &sc->vtnet_stats;
bzero(&rxaccum, sizeof(struct vtnet_rxq_stats));
bzero(&txaccum, sizeof(struct vtnet_txq_stats));
for (i = 0; i < sc->vtnet_max_vq_pairs; i++) {
vtnet_rxq_accum_stats(&sc->vtnet_rxqs[i], &rxaccum);
vtnet_txq_accum_stats(&sc->vtnet_txqs[i], &txaccum);
}
st->rx_csum_offloaded = rxaccum.vrxs_csum;
st->rx_csum_failed = rxaccum.vrxs_csum_failed;
st->rx_task_rescheduled = rxaccum.vrxs_rescheduled;
st->tx_csum_offloaded = txaccum.vtxs_csum;
st->tx_tso_offloaded = txaccum.vtxs_tso;
st->tx_task_rescheduled = txaccum.vtxs_rescheduled;
/*
* With the exception of if_ierrors, these ifnet statistics are
* only updated in the driver, so just set them to our accumulated
* values. if_ierrors is updated in ether_input() for malformed
* frames that we should have already discarded.
*/
ifp->if_ipackets = rxaccum.vrxs_ipackets;
ifp->if_iqdrops = rxaccum.vrxs_iqdrops;
ifp->if_ierrors = rxaccum.vrxs_ierrors;
ifp->if_opackets = txaccum.vtxs_opackets;
#ifndef VTNET_LEGACY_TX
ifp->if_obytes = txaccum.vtxs_obytes;
ifp->if_omcasts = txaccum.vtxs_omcasts;
#endif
}
static void
vtnet_tick(void *xsc)
{
struct vtnet_softc *sc;
struct ifnet *ifp;
int i, timedout;
sc = xsc;
ifp = sc->vtnet_ifp;
timedout = 0;
VTNET_CORE_LOCK_ASSERT(sc);
vtnet_accumulate_stats(sc);
for (i = 0; i < sc->vtnet_act_vq_pairs; i++)
timedout |= vtnet_watchdog(&sc->vtnet_txqs[i]);
if (timedout != 0) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
vtnet_init_locked(sc);
} else
callout_schedule(&sc->vtnet_tick_ch, hz);
}
static void
vtnet_start_taskqueues(struct vtnet_softc *sc)
{
device_t dev;
struct vtnet_rxq *rxq;
struct vtnet_txq *txq;
int i, error;
dev = sc->vtnet_dev;
/*
* Errors here are very difficult to recover from - we cannot
* easily fail because, if this is during boot, we will hang
* when freeing any successfully started taskqueues because
* the scheduler isn't up yet.
*
* Most drivers just ignore the return value - it only fails
* with ENOMEM so an error is not likely.
*/
for (i = 0; i < sc->vtnet_max_vq_pairs; i++) {
rxq = &sc->vtnet_rxqs[i];
error = taskqueue_start_threads(&rxq->vtnrx_tq, 1, PI_NET,
"%s rxq %d", device_get_nameunit(dev), rxq->vtnrx_id);
if (error) {
device_printf(dev, "failed to start rx taskq %d\n",
rxq->vtnrx_id);
}
txq = &sc->vtnet_txqs[i];
error = taskqueue_start_threads(&txq->vtntx_tq, 1, PI_NET,
"%s txq %d", device_get_nameunit(dev), txq->vtntx_id);
if (error) {
device_printf(dev, "failed to start tx taskq %d\n",
txq->vtntx_id);
}
}
}
static void
vtnet_free_taskqueues(struct vtnet_softc *sc)
{
struct vtnet_rxq *rxq;
struct vtnet_txq *txq;
int i;
for (i = 0; i < sc->vtnet_max_vq_pairs; i++) {
rxq = &sc->vtnet_rxqs[i];
if (rxq->vtnrx_tq != NULL) {
taskqueue_free(rxq->vtnrx_tq);
rxq->vtnrx_vq = NULL;
}
txq = &sc->vtnet_txqs[i];
if (txq->vtntx_tq != NULL) {
taskqueue_free(txq->vtntx_tq);
txq->vtntx_tq = NULL;
}
}
}
static void
vtnet_drain_taskqueues(struct vtnet_softc *sc)
{
struct vtnet_rxq *rxq;
struct vtnet_txq *txq;
int i;
for (i = 0; i < sc->vtnet_max_vq_pairs; i++) {
rxq = &sc->vtnet_rxqs[i];
if (rxq->vtnrx_tq != NULL)
taskqueue_drain(rxq->vtnrx_tq, &rxq->vtnrx_intrtask);
txq = &sc->vtnet_txqs[i];
if (txq->vtntx_tq != NULL) {
taskqueue_drain(txq->vtntx_tq, &txq->vtntx_intrtask);
#ifndef VTNET_LEGACY_TX
taskqueue_drain(txq->vtntx_tq, &txq->vtntx_defrtask);
#endif
}
}
}
static void
vtnet_drain_rxtx_queues(struct vtnet_softc *sc)
{
struct vtnet_rxq *rxq;
struct vtnet_txq *txq;
int i;
for (i = 0; i < sc->vtnet_act_vq_pairs; i++) {
rxq = &sc->vtnet_rxqs[i];
vtnet_rxq_free_mbufs(rxq);
txq = &sc->vtnet_txqs[i];
vtnet_txq_free_mbufs(txq);
}
}
static void
vtnet_stop_rendezvous(struct vtnet_softc *sc)
{
struct vtnet_rxq *rxq;
struct vtnet_txq *txq;
int i;
/*
* Lock and unlock the per-queue mutex so we known the stop
* state is visible. Doing only the active queues should be
* sufficient, but it does not cost much extra to do all the
* queues. Note we hold the core mutex here too.
*/
for (i = 0; i < sc->vtnet_max_vq_pairs; i++) {
rxq = &sc->vtnet_rxqs[i];
VTNET_RXQ_LOCK(rxq);
VTNET_RXQ_UNLOCK(rxq);
txq = &sc->vtnet_txqs[i];
VTNET_TXQ_LOCK(txq);
VTNET_TXQ_UNLOCK(txq);
}
}
static void
vtnet_stop(struct vtnet_softc *sc)
{
device_t dev;
struct ifnet *ifp;
dev = sc->vtnet_dev;
ifp = sc->vtnet_ifp;
VTNET_CORE_LOCK_ASSERT(sc);
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
sc->vtnet_link_active = 0;
callout_stop(&sc->vtnet_tick_ch);
/* Only advisory. */
vtnet_disable_interrupts(sc);
/*
* Stop the host adapter. This resets it to the pre-initialized
* state. It will not generate any interrupts until after it is
* reinitialized.
*/
virtio_stop(dev);
vtnet_stop_rendezvous(sc);
/* Free any mbufs left in the virtqueues. */
vtnet_drain_rxtx_queues(sc);
}
static int
vtnet_virtio_reinit(struct vtnet_softc *sc)
{
device_t dev;
struct ifnet *ifp;
uint64_t features;
int mask, error;
dev = sc->vtnet_dev;
ifp = sc->vtnet_ifp;
features = sc->vtnet_features;
mask = 0;
#if defined(INET)
mask |= IFCAP_RXCSUM;
#endif
#if defined (INET6)
mask |= IFCAP_RXCSUM_IPV6;
#endif
/*
* Re-negotiate with the host, removing any disabled receive
* features. Transmit features are disabled only on our side
* via if_capenable and if_hwassist.
*/
if (ifp->if_capabilities & mask) {
/*
* We require both IPv4 and IPv6 offloading to be enabled
* in order to negotiated it: VirtIO does not distinguish
* between the two.
*/
if ((ifp->if_capenable & mask) != mask)
features &= ~VIRTIO_NET_F_GUEST_CSUM;
}
if (ifp->if_capabilities & IFCAP_LRO) {
if ((ifp->if_capenable & IFCAP_LRO) == 0)
features &= ~VTNET_LRO_FEATURES;
}
if (ifp->if_capabilities & IFCAP_VLAN_HWFILTER) {
if ((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0)
features &= ~VIRTIO_NET_F_CTRL_VLAN;
}
error = virtio_reinit(dev, features);
if (error)
device_printf(dev, "virtio reinit error %d\n", error);
return (error);
}
static void
vtnet_init_rx_filters(struct vtnet_softc *sc)
{
struct ifnet *ifp;
ifp = sc->vtnet_ifp;
if (sc->vtnet_flags & VTNET_FLAG_CTRL_RX) {
/* Restore promiscuous and all-multicast modes. */
vtnet_rx_filter(sc);
/* Restore filtered MAC addresses. */
vtnet_rx_filter_mac(sc);
}
if (ifp->if_capenable & IFCAP_VLAN_HWFILTER)
vtnet_rx_filter_vlan(sc);
}
static int
vtnet_init_rx_queues(struct vtnet_softc *sc)
{
device_t dev;
struct vtnet_rxq *rxq;
int i, clsize, error;
dev = sc->vtnet_dev;
/*
* Use the new cluster size if one has been set (via a MTU
* change). Otherwise, use the standard 2K clusters.
*
* BMV: It might make sense to use page sized clusters as
* the default (depending on the features negotiated).
*/
if (sc->vtnet_rx_new_clsize != 0) {
clsize = sc->vtnet_rx_new_clsize;
sc->vtnet_rx_new_clsize = 0;
} else
clsize = MCLBYTES;
sc->vtnet_rx_clsize = clsize;
sc->vtnet_rx_nmbufs = VTNET_NEEDED_RX_MBUFS(sc, clsize);
/* The first segment is reserved for the header. */
KASSERT(sc->vtnet_rx_nmbufs < VTNET_MAX_RX_SEGS,
("%s: too many rx mbufs %d", __func__, sc->vtnet_rx_nmbufs));
for (i = 0; i < sc->vtnet_act_vq_pairs; i++) {
rxq = &sc->vtnet_rxqs[i];
/* Hold the lock to satisfy asserts. */
VTNET_RXQ_LOCK(rxq);
error = vtnet_rxq_populate(rxq);
VTNET_RXQ_UNLOCK(rxq);
if (error) {
device_printf(dev,
"cannot allocate mbufs for Rx queue %d\n", i);
return (error);
}
}
return (0);
}
static int
vtnet_init_tx_queues(struct vtnet_softc *sc)
{
struct vtnet_txq *txq;
int i;
for (i = 0; i < sc->vtnet_act_vq_pairs; i++) {
txq = &sc->vtnet_txqs[i];
txq->vtntx_watchdog = 0;
}
return (0);
}
static int
vtnet_init_rxtx_queues(struct vtnet_softc *sc)
{
int error;
error = vtnet_init_rx_queues(sc);
if (error)
return (error);
error = vtnet_init_tx_queues(sc);
if (error)
return (error);
return (0);
}
static void
vtnet_set_active_vq_pairs(struct vtnet_softc *sc)
{
device_t dev;
int npairs;
dev = sc->vtnet_dev;
if ((sc->vtnet_flags & VTNET_FLAG_MULTIQ) == 0) {
MPASS(sc->vtnet_max_vq_pairs == 1);
sc->vtnet_act_vq_pairs = 1;
return;
}
/* BMV: Just use the maximum configured for now. */
npairs = sc->vtnet_max_vq_pairs;
if (vtnet_ctrl_mq_cmd(sc, npairs) != 0) {
device_printf(dev,
"cannot set active queue pairs to %d\n", npairs);
npairs = 1;
}
sc->vtnet_act_vq_pairs = npairs;
}
static int
vtnet_reinit(struct vtnet_softc *sc)
{
device_t dev;
struct ifnet *ifp;
int error;
dev = sc->vtnet_dev;
ifp = sc->vtnet_ifp;
/* Use the current MAC address. */
bcopy(IF_LLADDR(ifp), sc->vtnet_hwaddr, ETHER_ADDR_LEN);
vtnet_set_hwaddr(sc);
vtnet_set_active_vq_pairs(sc);
ifp->if_hwassist = 0;
if (ifp->if_capenable & IFCAP_TXCSUM)
ifp->if_hwassist |= VTNET_CSUM_OFFLOAD;
if (ifp->if_capenable & IFCAP_TXCSUM_IPV6)
ifp->if_hwassist |= VTNET_CSUM_OFFLOAD_IPV6;
if (ifp->if_capenable & IFCAP_TSO4)
ifp->if_hwassist |= CSUM_TSO;
if (ifp->if_capenable & IFCAP_TSO6)
ifp->if_hwassist |= CSUM_TSO; /* No CSUM_TSO_IPV6. */
if (sc->vtnet_flags & VTNET_FLAG_CTRL_VQ)
vtnet_init_rx_filters(sc);
error = vtnet_init_rxtx_queues(sc);
if (error)
return (error);
vtnet_enable_interrupts(sc);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
return (0);
}
static void
vtnet_init_locked(struct vtnet_softc *sc)
{
device_t dev;
struct ifnet *ifp;
dev = sc->vtnet_dev;
ifp = sc->vtnet_ifp;
VTNET_CORE_LOCK_ASSERT(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
return;
vtnet_stop(sc);
/* Reinitialize with the host. */
if (vtnet_virtio_reinit(sc) != 0)
goto fail;
if (vtnet_reinit(sc) != 0)
goto fail;
virtio_reinit_complete(dev);
vtnet_update_link_status(sc);
callout_reset(&sc->vtnet_tick_ch, hz, vtnet_tick, sc);
return;
fail:
vtnet_stop(sc);
}
static void
vtnet_init(void *xsc)
{
struct vtnet_softc *sc;
sc = xsc;
VTNET_CORE_LOCK(sc);
vtnet_init_locked(sc);
VTNET_CORE_UNLOCK(sc);
}
static void
vtnet_free_ctrl_vq(struct vtnet_softc *sc)
{
struct virtqueue *vq;
vq = sc->vtnet_ctrl_vq;
/*
* The control virtqueue is only polled and therefore it should
* already be empty.
*/
KASSERT(virtqueue_empty(vq),
("%s: ctrl vq %p not empty", __func__, vq));
}
static void
vtnet_exec_ctrl_cmd(struct vtnet_softc *sc, void *cookie,
struct sglist *sg, int readable, int writable)
{
struct virtqueue *vq;
vq = sc->vtnet_ctrl_vq;
VTNET_CORE_LOCK_ASSERT(sc);
KASSERT(sc->vtnet_flags & VTNET_FLAG_CTRL_VQ,
("%s: CTRL_VQ feature not negotiated", __func__));
if (!virtqueue_empty(vq))
return;
if (virtqueue_enqueue(vq, cookie, sg, readable, writable) != 0)
return;
/*
* Poll for the response, but the command is likely already
* done when we return from the notify.
*/
virtqueue_notify(vq);
virtqueue_poll(vq, NULL);
}
static int
vtnet_ctrl_mac_cmd(struct vtnet_softc *sc, uint8_t *hwaddr)
{
struct virtio_net_ctrl_hdr hdr;
struct sglist_seg segs[3];
struct sglist sg;
uint8_t ack;
int error;
hdr.class = VIRTIO_NET_CTRL_MAC;
hdr.cmd = VIRTIO_NET_CTRL_MAC_ADDR_SET;
ack = VIRTIO_NET_ERR;
sglist_init(&sg, 3, segs);
error = 0;
error |= sglist_append(&sg, &hdr, sizeof(struct virtio_net_ctrl_hdr));
error |= sglist_append(&sg, hwaddr, ETHER_ADDR_LEN);
error |= sglist_append(&sg, &ack, sizeof(uint8_t));
KASSERT(error == 0 && sg.sg_nseg == 3,
("%s: error %d adding set MAC msg to sglist", __func__, error));
vtnet_exec_ctrl_cmd(sc, &ack, &sg, sg.sg_nseg - 1, 1);
return (ack == VIRTIO_NET_OK ? 0 : EIO);
}
static int
vtnet_ctrl_mq_cmd(struct vtnet_softc *sc, uint16_t npairs)
{
struct sglist_seg segs[3];
struct sglist sg;
struct {
struct virtio_net_ctrl_hdr hdr;
uint8_t pad1;
struct virtio_net_ctrl_mq mq;
uint8_t pad2;
uint8_t ack;
} s;
int error;
s.hdr.class = VIRTIO_NET_CTRL_MQ;
s.hdr.cmd = VIRTIO_NET_CTRL_MQ_VQ_PAIRS_SET;
s.mq.virtqueue_pairs = npairs;
s.ack = VIRTIO_NET_ERR;
sglist_init(&sg, 3, segs);
error = 0;
error |= sglist_append(&sg, &s.hdr, sizeof(struct virtio_net_ctrl_hdr));
error |= sglist_append(&sg, &s.mq, sizeof(struct virtio_net_ctrl_mq));
error |= sglist_append(&sg, &s.ack, sizeof(uint8_t));
KASSERT(error == 0 && sg.sg_nseg == 3,
("%s: error %d adding MQ message to sglist", __func__, error));
vtnet_exec_ctrl_cmd(sc, &s.ack, &sg, sg.sg_nseg - 1, 1);
return (s.ack == VIRTIO_NET_OK ? 0 : EIO);
}
static int
vtnet_ctrl_rx_cmd(struct vtnet_softc *sc, int cmd, int on)
{
struct sglist_seg segs[3];
struct sglist sg;
struct {
struct virtio_net_ctrl_hdr hdr;
uint8_t pad1;
uint8_t onoff;
uint8_t pad2;
uint8_t ack;
} s;
int error;
KASSERT(sc->vtnet_flags & VTNET_FLAG_CTRL_RX,
("%s: CTRL_RX feature not negotiated", __func__));
s.hdr.class = VIRTIO_NET_CTRL_RX;
s.hdr.cmd = cmd;
s.onoff = !!on;
s.ack = VIRTIO_NET_ERR;
sglist_init(&sg, 3, segs);
error = 0;
error |= sglist_append(&sg, &s.hdr, sizeof(struct virtio_net_ctrl_hdr));
error |= sglist_append(&sg, &s.onoff, sizeof(uint8_t));
error |= sglist_append(&sg, &s.ack, sizeof(uint8_t));
KASSERT(error == 0 && sg.sg_nseg == 3,
("%s: error %d adding Rx message to sglist", __func__, error));
vtnet_exec_ctrl_cmd(sc, &s.ack, &sg, sg.sg_nseg - 1, 1);
return (s.ack == VIRTIO_NET_OK ? 0 : EIO);
}
static int
vtnet_set_promisc(struct vtnet_softc *sc, int on)
{
return (vtnet_ctrl_rx_cmd(sc, VIRTIO_NET_CTRL_RX_PROMISC, on));
}
static int
vtnet_set_allmulti(struct vtnet_softc *sc, int on)
{
return (vtnet_ctrl_rx_cmd(sc, VIRTIO_NET_CTRL_RX_ALLMULTI, on));
}
/*
* The device defaults to promiscuous mode for backwards compatibility.
* Turn it off at attach time if possible.
*/
static void
vtnet_attach_disable_promisc(struct vtnet_softc *sc)
{
struct ifnet *ifp;
ifp = sc->vtnet_ifp;
VTNET_CORE_LOCK(sc);
if ((sc->vtnet_flags & VTNET_FLAG_CTRL_RX) == 0) {
ifp->if_flags |= IFF_PROMISC;
} else if (vtnet_set_promisc(sc, 0) != 0) {
ifp->if_flags |= IFF_PROMISC;
device_printf(sc->vtnet_dev,
"cannot disable default promiscuous mode\n");
}
VTNET_CORE_UNLOCK(sc);
}
static void
vtnet_rx_filter(struct vtnet_softc *sc)
{
device_t dev;
struct ifnet *ifp;
dev = sc->vtnet_dev;
ifp = sc->vtnet_ifp;
VTNET_CORE_LOCK_ASSERT(sc);
if (vtnet_set_promisc(sc, ifp->if_flags & IFF_PROMISC) != 0)
device_printf(dev, "cannot %s promiscuous mode\n",
ifp->if_flags & IFF_PROMISC ? "enable" : "disable");
if (vtnet_set_allmulti(sc, ifp->if_flags & IFF_ALLMULTI) != 0)
device_printf(dev, "cannot %s all-multicast mode\n",
ifp->if_flags & IFF_ALLMULTI ? "enable" : "disable");
}
static void
vtnet_rx_filter_mac(struct vtnet_softc *sc)
{
struct virtio_net_ctrl_hdr hdr;
struct vtnet_mac_filter *filter;
struct sglist_seg segs[4];
struct sglist sg;
struct ifnet *ifp;
struct ifaddr *ifa;
struct ifmultiaddr *ifma;
int ucnt, mcnt, promisc, allmulti, error;
uint8_t ack;
ifp = sc->vtnet_ifp;
filter = sc->vtnet_mac_filter;
ucnt = 0;
mcnt = 0;
promisc = 0;
allmulti = 0;
VTNET_CORE_LOCK_ASSERT(sc);
KASSERT(sc->vtnet_flags & VTNET_FLAG_CTRL_RX,
("%s: CTRL_RX feature not negotiated", __func__));
/* Unicast MAC addresses: */
if_addr_rlock(ifp);
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
if (ifa->ifa_addr->sa_family != AF_LINK)
continue;
else if (memcmp(LLADDR((struct sockaddr_dl *)ifa->ifa_addr),
sc->vtnet_hwaddr, ETHER_ADDR_LEN) == 0)
continue;
else if (ucnt == VTNET_MAX_MAC_ENTRIES) {
promisc = 1;
break;
}
bcopy(LLADDR((struct sockaddr_dl *)ifa->ifa_addr),
&filter->vmf_unicast.macs[ucnt], ETHER_ADDR_LEN);
ucnt++;
}
if_addr_runlock(ifp);
if (promisc != 0) {
filter->vmf_unicast.nentries = 0;
if_printf(ifp, "more than %d MAC addresses assigned, "
"falling back to promiscuous mode\n",
VTNET_MAX_MAC_ENTRIES);
} else
filter->vmf_unicast.nentries = ucnt;
/* Multicast MAC addresses: */
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
else if (mcnt == VTNET_MAX_MAC_ENTRIES) {
allmulti = 1;
break;
}
bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
&filter->vmf_multicast.macs[mcnt], ETHER_ADDR_LEN);
mcnt++;
}
if_maddr_runlock(ifp);
if (allmulti != 0) {
filter->vmf_multicast.nentries = 0;
if_printf(ifp, "more than %d multicast MAC addresses "
"assigned, falling back to all-multicast mode\n",
VTNET_MAX_MAC_ENTRIES);
} else
filter->vmf_multicast.nentries = mcnt;
if (promisc != 0 && allmulti != 0)
goto out;
hdr.class = VIRTIO_NET_CTRL_MAC;
hdr.cmd = VIRTIO_NET_CTRL_MAC_TABLE_SET;
ack = VIRTIO_NET_ERR;
sglist_init(&sg, 4, segs);
error = 0;
error |= sglist_append(&sg, &hdr, sizeof(struct virtio_net_ctrl_hdr));
error |= sglist_append(&sg, &filter->vmf_unicast,
sizeof(uint32_t) + filter->vmf_unicast.nentries * ETHER_ADDR_LEN);
error |= sglist_append(&sg, &filter->vmf_multicast,
sizeof(uint32_t) + filter->vmf_multicast.nentries * ETHER_ADDR_LEN);
error |= sglist_append(&sg, &ack, sizeof(uint8_t));
KASSERT(error == 0 && sg.sg_nseg == 4,
("%s: error %d adding MAC filter msg to sglist", __func__, error));
vtnet_exec_ctrl_cmd(sc, &ack, &sg, sg.sg_nseg - 1, 1);
if (ack != VIRTIO_NET_OK)
if_printf(ifp, "error setting host MAC filter table\n");
out:
if (promisc != 0 && vtnet_set_promisc(sc, 1) != 0)
if_printf(ifp, "cannot enable promiscuous mode\n");
if (allmulti != 0 && vtnet_set_allmulti(sc, 1) != 0)
if_printf(ifp, "cannot enable all-multicast mode\n");
}
static int
vtnet_exec_vlan_filter(struct vtnet_softc *sc, int add, uint16_t tag)
{
struct sglist_seg segs[3];
struct sglist sg;
struct {
struct virtio_net_ctrl_hdr hdr;
uint8_t pad1;
uint16_t tag;
uint8_t pad2;
uint8_t ack;
} s;
int error;
s.hdr.class = VIRTIO_NET_CTRL_VLAN;
s.hdr.cmd = add ? VIRTIO_NET_CTRL_VLAN_ADD : VIRTIO_NET_CTRL_VLAN_DEL;
s.tag = tag;
s.ack = VIRTIO_NET_ERR;
sglist_init(&sg, 3, segs);
error = 0;
error |= sglist_append(&sg, &s.hdr, sizeof(struct virtio_net_ctrl_hdr));
error |= sglist_append(&sg, &s.tag, sizeof(uint16_t));
error |= sglist_append(&sg, &s.ack, sizeof(uint8_t));
KASSERT(error == 0 && sg.sg_nseg == 3,
("%s: error %d adding VLAN message to sglist", __func__, error));
vtnet_exec_ctrl_cmd(sc, &s.ack, &sg, sg.sg_nseg - 1, 1);
return (s.ack == VIRTIO_NET_OK ? 0 : EIO);
}
static void
vtnet_rx_filter_vlan(struct vtnet_softc *sc)
{
uint32_t w;
uint16_t tag;
int i, bit;
VTNET_CORE_LOCK_ASSERT(sc);
KASSERT(sc->vtnet_flags & VTNET_FLAG_VLAN_FILTER,
("%s: VLAN_FILTER feature not negotiated", __func__));
/* Enable the filter for each configured VLAN. */
for (i = 0; i < VTNET_VLAN_FILTER_NWORDS; i++) {
w = sc->vtnet_vlan_filter[i];
while ((bit = ffs(w) - 1) != -1) {
w &= ~(1 << bit);
tag = sizeof(w) * CHAR_BIT * i + bit;
if (vtnet_exec_vlan_filter(sc, 1, tag) != 0) {
device_printf(sc->vtnet_dev,
"cannot enable VLAN %d filter\n", tag);
}
}
}
}
static void
vtnet_update_vlan_filter(struct vtnet_softc *sc, int add, uint16_t tag)
{
struct ifnet *ifp;
int idx, bit;
ifp = sc->vtnet_ifp;
idx = (tag >> 5) & 0x7F;
bit = tag & 0x1F;
if (tag == 0 || tag > 4095)
return;
VTNET_CORE_LOCK(sc);
if (add)
sc->vtnet_vlan_filter[idx] |= (1 << bit);
else
sc->vtnet_vlan_filter[idx] &= ~(1 << bit);
if (ifp->if_capenable & IFCAP_VLAN_HWFILTER &&
vtnet_exec_vlan_filter(sc, add, tag) != 0) {
device_printf(sc->vtnet_dev,
"cannot %s VLAN %d %s the host filter table\n",
add ? "add" : "remove", tag, add ? "to" : "from");
}
VTNET_CORE_UNLOCK(sc);
}
static void
vtnet_register_vlan(void *arg, struct ifnet *ifp, uint16_t tag)
{
if (ifp->if_softc != arg)
return;
vtnet_update_vlan_filter(arg, 1, tag);
}
static void
vtnet_unregister_vlan(void *arg, struct ifnet *ifp, uint16_t tag)
{
if (ifp->if_softc != arg)
return;
vtnet_update_vlan_filter(arg, 0, tag);
}
static int
vtnet_is_link_up(struct vtnet_softc *sc)
{
device_t dev;
struct ifnet *ifp;
uint16_t status;
dev = sc->vtnet_dev;
ifp = sc->vtnet_ifp;
if ((ifp->if_capabilities & IFCAP_LINKSTATE) == 0)
status = VIRTIO_NET_S_LINK_UP;
else
status = virtio_read_dev_config_2(dev,
offsetof(struct virtio_net_config, status));
return ((status & VIRTIO_NET_S_LINK_UP) != 0);
}
static void
vtnet_update_link_status(struct vtnet_softc *sc)
{
struct ifnet *ifp;
int link;
ifp = sc->vtnet_ifp;
VTNET_CORE_LOCK_ASSERT(sc);
link = vtnet_is_link_up(sc);
/* Notify if the link status has changed. */
if (link != 0 && sc->vtnet_link_active == 0) {
sc->vtnet_link_active = 1;
if_link_state_change(ifp, LINK_STATE_UP);
} else if (link == 0 && sc->vtnet_link_active != 0) {
sc->vtnet_link_active = 0;
if_link_state_change(ifp, LINK_STATE_DOWN);
}
}
static int
vtnet_ifmedia_upd(struct ifnet *ifp)
{
struct vtnet_softc *sc;
struct ifmedia *ifm;
sc = ifp->if_softc;
ifm = &sc->vtnet_media;
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
return (EINVAL);
return (0);
}
static void
vtnet_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct vtnet_softc *sc;
sc = ifp->if_softc;
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
VTNET_CORE_LOCK(sc);
if (vtnet_is_link_up(sc) != 0) {
ifmr->ifm_status |= IFM_ACTIVE;
ifmr->ifm_active |= VTNET_MEDIATYPE;
} else
ifmr->ifm_active |= IFM_NONE;
VTNET_CORE_UNLOCK(sc);
}
static void
vtnet_set_hwaddr(struct vtnet_softc *sc)
{
device_t dev;
dev = sc->vtnet_dev;
if (sc->vtnet_flags & VTNET_FLAG_CTRL_MAC) {
if (vtnet_ctrl_mac_cmd(sc, sc->vtnet_hwaddr) != 0)
device_printf(dev, "unable to set MAC address\n");
} else if (sc->vtnet_flags & VTNET_FLAG_MAC) {
virtio_write_device_config(dev,
offsetof(struct virtio_net_config, mac),
sc->vtnet_hwaddr, ETHER_ADDR_LEN);
}
}
static void
vtnet_get_hwaddr(struct vtnet_softc *sc)
{
device_t dev;
dev = sc->vtnet_dev;
if ((sc->vtnet_flags & VTNET_FLAG_MAC) == 0) {
/*
* Generate a random locally administered unicast address.
*
* It would be nice to generate the same MAC address across
* reboots, but it seems all the hosts currently available
* support the MAC feature, so this isn't too important.
*/
sc->vtnet_hwaddr[0] = 0xB2;
arc4rand(&sc->vtnet_hwaddr[1], ETHER_ADDR_LEN - 1, 0);
vtnet_set_hwaddr(sc);
return;
}
virtio_read_device_config(dev, offsetof(struct virtio_net_config, mac),
sc->vtnet_hwaddr, ETHER_ADDR_LEN);
}
static void
vtnet_vlan_tag_remove(struct mbuf *m)
{
struct ether_vlan_header *evh;
evh = mtod(m, struct ether_vlan_header *);
m->m_pkthdr.ether_vtag = ntohs(evh->evl_tag);
m->m_flags |= M_VLANTAG;
/* Strip the 802.1Q header. */
bcopy((char *) evh, (char *) evh + ETHER_VLAN_ENCAP_LEN,
ETHER_HDR_LEN - ETHER_TYPE_LEN);
m_adj(m, ETHER_VLAN_ENCAP_LEN);
}
static void
vtnet_setup_rxq_sysctl(struct sysctl_ctx_list *ctx,
struct sysctl_oid_list *child, struct vtnet_rxq *rxq)
{
struct sysctl_oid *node;
struct sysctl_oid_list *list;
struct vtnet_rxq_stats *stats;
char namebuf[16];
snprintf(namebuf, sizeof(namebuf), "rxq%d", rxq->vtnrx_id);
node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
CTLFLAG_RD, NULL, "Receive Queue");
list = SYSCTL_CHILDREN(node);
stats = &rxq->vtnrx_stats;
SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "ipackets", CTLFLAG_RD,
&stats->vrxs_ipackets, "Receive packets");
SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "ibytes", CTLFLAG_RD,
&stats->vrxs_ibytes, "Receive bytes");
SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "iqdrops", CTLFLAG_RD,
&stats->vrxs_iqdrops, "Receive drops");
SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "ierrors", CTLFLAG_RD,
&stats->vrxs_ierrors, "Receive errors");
SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "csum", CTLFLAG_RD,
&stats->vrxs_csum, "Receive checksum offloaded");
SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "csum_failed", CTLFLAG_RD,
&stats->vrxs_csum_failed, "Receive checksum offload failed");
SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "rescheduled", CTLFLAG_RD,
&stats->vrxs_rescheduled,
"Receive interrupt handler rescheduled");
}
static void
vtnet_setup_txq_sysctl(struct sysctl_ctx_list *ctx,
struct sysctl_oid_list *child, struct vtnet_txq *txq)
{
struct sysctl_oid *node;
struct sysctl_oid_list *list;
struct vtnet_txq_stats *stats;
char namebuf[16];
snprintf(namebuf, sizeof(namebuf), "txq%d", txq->vtntx_id);
node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
CTLFLAG_RD, NULL, "Transmit Queue");
list = SYSCTL_CHILDREN(node);
stats = &txq->vtntx_stats;
SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "opackets", CTLFLAG_RD,
&stats->vtxs_opackets, "Transmit packets");
SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "obytes", CTLFLAG_RD,
&stats->vtxs_obytes, "Transmit bytes");
SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "omcasts", CTLFLAG_RD,
&stats->vtxs_omcasts, "Transmit multicasts");
SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "csum", CTLFLAG_RD,
&stats->vtxs_csum, "Transmit checksum offloaded");
SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "tso", CTLFLAG_RD,
&stats->vtxs_tso, "Transmit segmentation offloaded");
SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "collapsed", CTLFLAG_RD,
&stats->vtxs_collapsed, "Transmit mbufs collapsed");
SYSCTL_ADD_UQUAD(ctx, list, OID_AUTO, "rescheduled", CTLFLAG_RD,
&stats->vtxs_rescheduled,
"Transmit interrupt handler rescheduled");
}
static void
vtnet_setup_queue_sysctl(struct vtnet_softc *sc)
{
device_t dev;
struct sysctl_ctx_list *ctx;
struct sysctl_oid *tree;
struct sysctl_oid_list *child;
int i;
dev = sc->vtnet_dev;
ctx = device_get_sysctl_ctx(dev);
tree = device_get_sysctl_tree(dev);
child = SYSCTL_CHILDREN(tree);
for (i = 0; i < sc->vtnet_max_vq_pairs; i++) {
vtnet_setup_rxq_sysctl(ctx, child, &sc->vtnet_rxqs[i]);
vtnet_setup_txq_sysctl(ctx, child, &sc->vtnet_txqs[i]);
}
}
static void
vtnet_setup_stat_sysctl(struct sysctl_ctx_list *ctx,
struct sysctl_oid_list *child, struct vtnet_softc *sc)
{
struct vtnet_statistics *stats;
stats = &sc->vtnet_stats;
SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "mbuf_alloc_failed",
CTLFLAG_RD, &stats->mbuf_alloc_failed,
"Mbuf cluster allocation failures");
SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_frame_too_large",
CTLFLAG_RD, &stats->rx_frame_too_large,
"Received frame larger than the mbuf chain");
SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_enq_replacement_failed",
CTLFLAG_RD, &stats->rx_enq_replacement_failed,
"Enqueuing the replacement receive mbuf failed");
SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_mergeable_failed",
CTLFLAG_RD, &stats->rx_mergeable_failed,
"Mergeable buffers receive failures");
SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_bad_ethtype",
CTLFLAG_RD, &stats->rx_csum_bad_ethtype,
"Received checksum offloaded buffer with unsupported "
"Ethernet type");
SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_bad_ipproto",
CTLFLAG_RD, &stats->rx_csum_bad_ipproto,
"Received checksum offloaded buffer with incorrect IP protocol");
SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_bad_offset",
CTLFLAG_RD, &stats->rx_csum_bad_offset,
"Received checksum offloaded buffer with incorrect offset");
SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_bad_proto",
CTLFLAG_RD, &stats->rx_csum_bad_proto,
"Received checksum offloaded buffer with incorrect protocol");
SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_failed",
CTLFLAG_RD, &stats->rx_csum_failed,
"Received buffer checksum offload failed");
SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_csum_offloaded",
CTLFLAG_RD, &stats->rx_csum_offloaded,
"Received buffer checksum offload succeeded");
SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_task_rescheduled",
CTLFLAG_RD, &stats->rx_task_rescheduled,
"Times the receive interrupt task rescheduled itself");
SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_csum_bad_ethtype",
CTLFLAG_RD, &stats->tx_csum_bad_ethtype,
"Aborted transmit of checksum offloaded buffer with unknown "
"Ethernet type");
SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_tso_bad_ethtype",
CTLFLAG_RD, &stats->tx_tso_bad_ethtype,
"Aborted transmit of TSO buffer with unknown Ethernet type");
SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_tso_not_tcp",
CTLFLAG_RD, &stats->tx_tso_not_tcp,
"Aborted transmit of TSO buffer with non TCP protocol");
SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_csum_offloaded",
CTLFLAG_RD, &stats->tx_csum_offloaded,
"Offloaded checksum of transmitted buffer");
SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_tso_offloaded",
CTLFLAG_RD, &stats->tx_tso_offloaded,
"Segmentation offload of transmitted buffer");
SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_task_rescheduled",
CTLFLAG_RD, &stats->tx_task_rescheduled,
"Times the transmit interrupt task rescheduled itself");
}
static void
vtnet_setup_sysctl(struct vtnet_softc *sc)
{
device_t dev;
struct sysctl_ctx_list *ctx;
struct sysctl_oid *tree;
struct sysctl_oid_list *child;
dev = sc->vtnet_dev;
ctx = device_get_sysctl_ctx(dev);
tree = device_get_sysctl_tree(dev);
child = SYSCTL_CHILDREN(tree);
SYSCTL_ADD_INT(ctx, child, OID_AUTO, "max_vq_pairs",
CTLFLAG_RD, &sc->vtnet_max_vq_pairs, 0,
"Maximum number of supported virtqueue pairs");
SYSCTL_ADD_INT(ctx, child, OID_AUTO, "act_vq_pairs",
CTLFLAG_RD, &sc->vtnet_act_vq_pairs, 0,
"Number of active virtqueue pairs");
vtnet_setup_stat_sysctl(ctx, child, sc);
}
static int
vtnet_rxq_enable_intr(struct vtnet_rxq *rxq)
{
return (virtqueue_enable_intr(rxq->vtnrx_vq));
}
static void
vtnet_rxq_disable_intr(struct vtnet_rxq *rxq)
{
virtqueue_disable_intr(rxq->vtnrx_vq);
}
static int
vtnet_txq_enable_intr(struct vtnet_txq *txq)
{
return (virtqueue_postpone_intr(txq->vtntx_vq, VQ_POSTPONE_LONG));
}
static void
vtnet_txq_disable_intr(struct vtnet_txq *txq)
{
virtqueue_disable_intr(txq->vtntx_vq);
}
static void
vtnet_enable_rx_interrupts(struct vtnet_softc *sc)
{
int i;
for (i = 0; i < sc->vtnet_act_vq_pairs; i++)
vtnet_rxq_enable_intr(&sc->vtnet_rxqs[i]);
}
static void
vtnet_enable_tx_interrupts(struct vtnet_softc *sc)
{
int i;
for (i = 0; i < sc->vtnet_act_vq_pairs; i++)
vtnet_txq_enable_intr(&sc->vtnet_txqs[i]);
}
static void
vtnet_enable_interrupts(struct vtnet_softc *sc)
{
vtnet_enable_rx_interrupts(sc);
vtnet_enable_tx_interrupts(sc);
}
static void
vtnet_disable_rx_interrupts(struct vtnet_softc *sc)
{
int i;
for (i = 0; i < sc->vtnet_act_vq_pairs; i++)
vtnet_rxq_disable_intr(&sc->vtnet_rxqs[i]);
}
static void
vtnet_disable_tx_interrupts(struct vtnet_softc *sc)
{
int i;
for (i = 0; i < sc->vtnet_act_vq_pairs; i++)
vtnet_txq_disable_intr(&sc->vtnet_txqs[i]);
}
static void
vtnet_disable_interrupts(struct vtnet_softc *sc)
{
vtnet_disable_rx_interrupts(sc);
vtnet_disable_tx_interrupts(sc);
}
static int
vtnet_tunable_int(struct vtnet_softc *sc, const char *knob, int def)
{
char path[64];
snprintf(path, sizeof(path),
"hw.vtnet.%d.%s", device_get_unit(sc->vtnet_dev), knob);
TUNABLE_INT_FETCH(path, &def);
return (def);
}