freebsd-dev/sys/dev/twe/twe_freebsd.c
Robert Watson 5bb84bc84b Normalize a significant number of kernel malloc type names:
- Prefer '_' to ' ', as it results in more easily parsed results in
  memory monitoring tools such as vmstat.

- Remove punctuation that is incompatible with using memory type names
  as file names, such as '/' characters.

- Disambiguate some collisions by adding subsystem prefixes to some
  memory types.

- Generally prefer lower case to upper case.

- If the same type is defined in multiple architecture directories,
  attempt to use the same name in additional cases.

Not all instances were caught in this change, so more work is required to
finish this conversion.  Similar changes are required for UMA zone names.
2005-10-31 15:41:29 +00:00

1160 lines
33 KiB
C

/*-
* Copyright (c) 2000 Michael Smith
* Copyright (c) 2003 Paul Saab
* Copyright (c) 2003 Vinod Kashyap
* Copyright (c) 2000 BSDi
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* FreeBSD-specific code.
*/
#include <dev/twe/twe_compat.h>
#include <dev/twe/twereg.h>
#include <dev/twe/tweio.h>
#include <dev/twe/twevar.h>
#include <dev/twe/twe_tables.h>
#include <vm/vm.h>
static devclass_t twe_devclass;
#ifdef TWE_DEBUG
static u_int32_t twed_bio_in;
#define TWED_BIO_IN twed_bio_in++
static u_int32_t twed_bio_out;
#define TWED_BIO_OUT twed_bio_out++
#else
#define TWED_BIO_IN
#define TWED_BIO_OUT
#endif
static void twe_setup_data_dmamap(void *arg, bus_dma_segment_t *segs, int nsegments, int error);
static void twe_setup_request_dmamap(void *arg, bus_dma_segment_t *segs, int nsegments, int error);
/********************************************************************************
********************************************************************************
Control device interface
********************************************************************************
********************************************************************************/
static d_open_t twe_open;
static d_close_t twe_close;
static d_ioctl_t twe_ioctl_wrapper;
static struct cdevsw twe_cdevsw = {
.d_version = D_VERSION,
.d_flags = D_NEEDGIANT,
.d_open = twe_open,
.d_close = twe_close,
.d_ioctl = twe_ioctl_wrapper,
.d_name = "twe",
};
/********************************************************************************
* Accept an open operation on the control device.
*/
static int
twe_open(struct cdev *dev, int flags, int fmt, d_thread_t *td)
{
int unit = minor(dev);
struct twe_softc *sc = devclass_get_softc(twe_devclass, unit);
sc->twe_state |= TWE_STATE_OPEN;
return(0);
}
/********************************************************************************
* Accept the last close on the control device.
*/
static int
twe_close(struct cdev *dev, int flags, int fmt, d_thread_t *td)
{
int unit = minor(dev);
struct twe_softc *sc = devclass_get_softc(twe_devclass, unit);
sc->twe_state &= ~TWE_STATE_OPEN;
return (0);
}
/********************************************************************************
* Handle controller-specific control operations.
*/
static int
twe_ioctl_wrapper(struct cdev *dev, u_long cmd, caddr_t addr, int32_t flag, d_thread_t *td)
{
struct twe_softc *sc = (struct twe_softc *)dev->si_drv1;
return(twe_ioctl(sc, cmd, addr));
}
/********************************************************************************
********************************************************************************
PCI device interface
********************************************************************************
********************************************************************************/
static int twe_probe(device_t dev);
static int twe_attach(device_t dev);
static void twe_free(struct twe_softc *sc);
static int twe_detach(device_t dev);
static int twe_shutdown(device_t dev);
static int twe_suspend(device_t dev);
static int twe_resume(device_t dev);
static void twe_pci_intr(void *arg);
static void twe_intrhook(void *arg);
static device_method_t twe_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, twe_probe),
DEVMETHOD(device_attach, twe_attach),
DEVMETHOD(device_detach, twe_detach),
DEVMETHOD(device_shutdown, twe_shutdown),
DEVMETHOD(device_suspend, twe_suspend),
DEVMETHOD(device_resume, twe_resume),
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
{ 0, 0 }
};
static driver_t twe_pci_driver = {
"twe",
twe_methods,
sizeof(struct twe_softc)
};
DRIVER_MODULE(twe, pci, twe_pci_driver, twe_devclass, 0, 0);
/********************************************************************************
* Match a 3ware Escalade ATA RAID controller.
*/
static int
twe_probe(device_t dev)
{
debug_called(4);
if ((pci_get_vendor(dev) == TWE_VENDOR_ID) &&
((pci_get_device(dev) == TWE_DEVICE_ID) ||
(pci_get_device(dev) == TWE_DEVICE_ID_ASIC))) {
device_set_desc_copy(dev, TWE_DEVICE_NAME ". Driver version " TWE_DRIVER_VERSION_STRING);
return(BUS_PROBE_DEFAULT);
}
return(ENXIO);
}
/********************************************************************************
* Allocate resources, initialise the controller.
*/
static int
twe_attach(device_t dev)
{
struct twe_softc *sc;
int rid, error;
u_int32_t command;
debug_called(4);
/*
* Initialise the softc structure.
*/
sc = device_get_softc(dev);
sc->twe_dev = dev;
sysctl_ctx_init(&sc->sysctl_ctx);
sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
device_get_nameunit(dev), CTLFLAG_RD, 0, "");
if (sc->sysctl_tree == NULL) {
twe_printf(sc, "cannot add sysctl tree node\n");
return (ENXIO);
}
SYSCTL_ADD_STRING(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
OID_AUTO, "driver_version", CTLFLAG_RD, TWE_DRIVER_VERSION_STRING, 0,
"TWE driver version");
/*
* Make sure we are going to be able to talk to this board.
*/
command = pci_read_config(dev, PCIR_COMMAND, 2);
if ((command & PCIM_CMD_PORTEN) == 0) {
twe_printf(sc, "register window not available\n");
return(ENXIO);
}
/*
* Force the busmaster enable bit on, in case the BIOS forgot.
*/
command |= PCIM_CMD_BUSMASTEREN;
pci_write_config(dev, PCIR_COMMAND, command, 2);
/*
* Allocate the PCI register window.
*/
rid = TWE_IO_CONFIG_REG;
if ((sc->twe_io = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
RF_ACTIVE)) == NULL) {
twe_printf(sc, "can't allocate register window\n");
twe_free(sc);
return(ENXIO);
}
sc->twe_btag = rman_get_bustag(sc->twe_io);
sc->twe_bhandle = rman_get_bushandle(sc->twe_io);
/*
* Allocate the parent bus DMA tag appropriate for PCI.
*/
if (bus_dma_tag_create(NULL, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MAXBSIZE, TWE_MAX_SGL_LENGTH, /* maxsize, nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockarg */
&sc->twe_parent_dmat)) {
twe_printf(sc, "can't allocate parent DMA tag\n");
twe_free(sc);
return(ENOMEM);
}
/*
* Allocate and connect our interrupt.
*/
rid = 0;
if ((sc->twe_irq = bus_alloc_resource_any(sc->twe_dev, SYS_RES_IRQ,
&rid, RF_SHAREABLE | RF_ACTIVE)) == NULL) {
twe_printf(sc, "can't allocate interrupt\n");
twe_free(sc);
return(ENXIO);
}
if (bus_setup_intr(sc->twe_dev, sc->twe_irq, INTR_TYPE_BIO | INTR_ENTROPY, twe_pci_intr, sc, &sc->twe_intr)) {
twe_printf(sc, "can't set up interrupt\n");
twe_free(sc);
return(ENXIO);
}
/*
* Create DMA tag for mapping command's into controller-addressable space.
*/
if (bus_dma_tag_create(sc->twe_parent_dmat, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
sizeof(TWE_Command) *
TWE_Q_LENGTH, 1, /* maxsize, nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockarg */
&sc->twe_cmd_dmat)) {
twe_printf(sc, "can't allocate data buffer DMA tag\n");
twe_free(sc);
return(ENOMEM);
}
/*
* Allocate memory and make it available for DMA.
*/
if (bus_dmamem_alloc(sc->twe_cmd_dmat, (void **)&sc->twe_cmd,
BUS_DMA_NOWAIT, &sc->twe_cmdmap)) {
twe_printf(sc, "can't allocate command memory\n");
return(ENOMEM);
}
bus_dmamap_load(sc->twe_cmd_dmat, sc->twe_cmdmap, sc->twe_cmd,
sizeof(TWE_Command) * TWE_Q_LENGTH,
twe_setup_request_dmamap, sc, 0);
bzero(sc->twe_cmd, sizeof(TWE_Command) * TWE_Q_LENGTH);
/*
* Create DMA tag for mapping objects into controller-addressable space.
*/
if (bus_dma_tag_create(sc->twe_parent_dmat, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MAXBSIZE, TWE_MAX_SGL_LENGTH,/* maxsize, nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
busdma_lock_mutex, /* lockfunc */
&Giant, /* lockarg */
&sc->twe_buffer_dmat)) {
twe_printf(sc, "can't allocate data buffer DMA tag\n");
twe_free(sc);
return(ENOMEM);
}
/*
* Create DMA tag for mapping objects into controller-addressable space.
*/
if (bus_dma_tag_create(sc->twe_parent_dmat, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MAXBSIZE, 1, /* maxsize, nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockarg */
&sc->twe_immediate_dmat)) {
twe_printf(sc, "can't allocate data buffer DMA tag\n");
twe_free(sc);
return(ENOMEM);
}
/*
* Allocate memory for requests which cannot sleep or support continuation.
*/
if (bus_dmamem_alloc(sc->twe_immediate_dmat, (void **)&sc->twe_immediate,
BUS_DMA_NOWAIT, &sc->twe_immediate_map)) {
twe_printf(sc, "can't allocate memory for immediate requests\n");
return(ENOMEM);
}
/*
* Initialise the controller and driver core.
*/
if ((error = twe_setup(sc))) {
twe_free(sc);
return(error);
}
/*
* Print some information about the controller and configuration.
*/
twe_describe_controller(sc);
/*
* Create the control device.
*/
sc->twe_dev_t = make_dev(&twe_cdevsw, device_get_unit(sc->twe_dev), UID_ROOT, GID_OPERATOR,
S_IRUSR | S_IWUSR, "twe%d", device_get_unit(sc->twe_dev));
sc->twe_dev_t->si_drv1 = sc;
/*
* Schedule ourselves to bring the controller up once interrupts are available.
* This isn't strictly necessary, since we disable interrupts while probing the
* controller, but it is more in keeping with common practice for other disk
* devices.
*/
sc->twe_ich.ich_func = twe_intrhook;
sc->twe_ich.ich_arg = sc;
if (config_intrhook_establish(&sc->twe_ich) != 0) {
twe_printf(sc, "can't establish configuration hook\n");
twe_free(sc);
return(ENXIO);
}
return(0);
}
/********************************************************************************
* Free all of the resources associated with (sc).
*
* Should not be called if the controller is active.
*/
static void
twe_free(struct twe_softc *sc)
{
struct twe_request *tr;
debug_called(4);
/* throw away any command buffers */
while ((tr = twe_dequeue_free(sc)) != NULL)
twe_free_request(tr);
if (sc->twe_cmd != NULL) {
bus_dmamap_unload(sc->twe_cmd_dmat, sc->twe_cmdmap);
bus_dmamem_free(sc->twe_cmd_dmat, sc->twe_cmd, sc->twe_cmdmap);
}
if (sc->twe_immediate != NULL) {
bus_dmamap_unload(sc->twe_immediate_dmat, sc->twe_immediate_map);
bus_dmamem_free(sc->twe_immediate_dmat, sc->twe_immediate,
sc->twe_immediate_map);
}
if (sc->twe_immediate_dmat)
bus_dma_tag_destroy(sc->twe_immediate_dmat);
/* destroy the data-transfer DMA tag */
if (sc->twe_buffer_dmat)
bus_dma_tag_destroy(sc->twe_buffer_dmat);
/* disconnect the interrupt handler */
if (sc->twe_intr)
bus_teardown_intr(sc->twe_dev, sc->twe_irq, sc->twe_intr);
if (sc->twe_irq != NULL)
bus_release_resource(sc->twe_dev, SYS_RES_IRQ, 0, sc->twe_irq);
/* destroy the parent DMA tag */
if (sc->twe_parent_dmat)
bus_dma_tag_destroy(sc->twe_parent_dmat);
/* release the register window mapping */
if (sc->twe_io != NULL)
bus_release_resource(sc->twe_dev, SYS_RES_IOPORT, TWE_IO_CONFIG_REG, sc->twe_io);
/* destroy control device */
if (sc->twe_dev_t != (struct cdev *)NULL)
destroy_dev(sc->twe_dev_t);
sysctl_ctx_free(&sc->sysctl_ctx);
}
/********************************************************************************
* Disconnect from the controller completely, in preparation for unload.
*/
static int
twe_detach(device_t dev)
{
struct twe_softc *sc = device_get_softc(dev);
int s, error;
debug_called(4);
error = EBUSY;
s = splbio();
if (sc->twe_state & TWE_STATE_OPEN)
goto out;
/*
* Shut the controller down.
*/
if (twe_shutdown(dev))
goto out;
twe_free(sc);
error = 0;
out:
splx(s);
return(error);
}
/********************************************************************************
* Bring the controller down to a dormant state and detach all child devices.
*
* Note that we can assume that the bioq on the controller is empty, as we won't
* allow shutdown if any device is open.
*/
static int
twe_shutdown(device_t dev)
{
struct twe_softc *sc = device_get_softc(dev);
int i, s, error = 0;
debug_called(4);
s = splbio();
/*
* Delete all our child devices.
*/
for (i = 0; i < TWE_MAX_UNITS; i++) {
if (sc->twe_drive[i].td_disk != 0) {
if ((error = twe_detach_drive(sc, i)) != 0)
goto out;
}
}
/*
* Bring the controller down.
*/
twe_deinit(sc);
out:
splx(s);
return(error);
}
/********************************************************************************
* Bring the controller to a quiescent state, ready for system suspend.
*/
static int
twe_suspend(device_t dev)
{
struct twe_softc *sc = device_get_softc(dev);
int s;
debug_called(4);
s = splbio();
sc->twe_state |= TWE_STATE_SUSPEND;
twe_disable_interrupts(sc);
splx(s);
return(0);
}
/********************************************************************************
* Bring the controller back to a state ready for operation.
*/
static int
twe_resume(device_t dev)
{
struct twe_softc *sc = device_get_softc(dev);
debug_called(4);
sc->twe_state &= ~TWE_STATE_SUSPEND;
twe_enable_interrupts(sc);
return(0);
}
/*******************************************************************************
* Take an interrupt, or be poked by other code to look for interrupt-worthy
* status.
*/
static void
twe_pci_intr(void *arg)
{
twe_intr((struct twe_softc *)arg);
}
/********************************************************************************
* Delayed-startup hook
*/
static void
twe_intrhook(void *arg)
{
struct twe_softc *sc = (struct twe_softc *)arg;
/* pull ourselves off the intrhook chain */
config_intrhook_disestablish(&sc->twe_ich);
/* call core startup routine */
twe_init(sc);
}
/********************************************************************************
* Given a detected drive, attach it to the bio interface.
*
* This is called from twe_add_unit.
*/
int
twe_attach_drive(struct twe_softc *sc, struct twe_drive *dr)
{
char buf[80];
int error;
dr->td_disk = device_add_child(sc->twe_dev, NULL, -1);
if (dr->td_disk == NULL) {
twe_printf(sc, "Cannot add unit\n");
return (EIO);
}
device_set_ivars(dr->td_disk, dr);
/*
* XXX It would make sense to test the online/initialising bits, but they seem to be
* always set...
*/
sprintf(buf, "Unit %d, %s, %s",
dr->td_twe_unit,
twe_describe_code(twe_table_unittype, dr->td_type),
twe_describe_code(twe_table_unitstate, dr->td_state & TWE_PARAM_UNITSTATUS_MASK));
device_set_desc_copy(dr->td_disk, buf);
if ((error = bus_generic_attach(sc->twe_dev)) != 0) {
twe_printf(sc, "Cannot attach unit to controller. error = %d\n", error);
return (EIO);
}
return (0);
}
/********************************************************************************
* Detach the specified unit if it exsists
*
* This is called from twe_del_unit.
*/
int
twe_detach_drive(struct twe_softc *sc, int unit)
{
int error = 0;
if ((error = device_delete_child(sc->twe_dev, sc->twe_drive[unit].td_disk)) != 0) {
twe_printf(sc, "failed to delete unit %d\n", unit);
return(error);
}
bzero(&sc->twe_drive[unit], sizeof(sc->twe_drive[unit]));
return(error);
}
/********************************************************************************
* Clear a PCI parity error.
*/
void
twe_clear_pci_parity_error(struct twe_softc *sc)
{
TWE_CONTROL(sc, TWE_CONTROL_CLEAR_PARITY_ERROR);
pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PARITY_ERROR, 2);
}
/********************************************************************************
* Clear a PCI abort.
*/
void
twe_clear_pci_abort(struct twe_softc *sc)
{
TWE_CONTROL(sc, TWE_CONTROL_CLEAR_PCI_ABORT);
pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PCI_ABORT, 2);
}
/********************************************************************************
********************************************************************************
Disk device
********************************************************************************
********************************************************************************/
/*
* Disk device softc
*/
struct twed_softc
{
device_t twed_dev;
struct twe_softc *twed_controller; /* parent device softc */
struct twe_drive *twed_drive; /* drive data in parent softc */
struct disk *twed_disk; /* generic disk handle */
};
/*
* Disk device bus interface
*/
static int twed_probe(device_t dev);
static int twed_attach(device_t dev);
static int twed_detach(device_t dev);
static device_method_t twed_methods[] = {
DEVMETHOD(device_probe, twed_probe),
DEVMETHOD(device_attach, twed_attach),
DEVMETHOD(device_detach, twed_detach),
{ 0, 0 }
};
static driver_t twed_driver = {
"twed",
twed_methods,
sizeof(struct twed_softc)
};
static devclass_t twed_devclass;
DRIVER_MODULE(twed, twe, twed_driver, twed_devclass, 0, 0);
/*
* Disk device control interface.
*/
#ifdef FREEBSD_4
static int disks_registered = 0;
#endif
/********************************************************************************
* Handle open from generic layer.
*
* Note that this is typically only called by the diskslice code, and not
* for opens on subdevices (eg. slices, partitions).
*/
static int
twed_open(struct disk *dp)
{
struct twed_softc *sc = (struct twed_softc *)dp->d_drv1;
debug_called(4);
if (sc == NULL)
return (ENXIO);
/* check that the controller is up and running */
if (sc->twed_controller->twe_state & TWE_STATE_SHUTDOWN)
return(ENXIO);
return (0);
}
/********************************************************************************
* Handle an I/O request.
*/
static void
twed_strategy(twe_bio *bp)
{
struct twed_softc *sc = (struct twed_softc *)TWE_BIO_SOFTC(bp);
debug_called(4);
bp->bio_driver1 = &sc->twed_drive->td_twe_unit;
TWED_BIO_IN;
/* bogus disk? */
if (sc == NULL || sc->twed_drive->td_disk == NULL) {
TWE_BIO_SET_ERROR(bp, EINVAL);
printf("twe: bio for invalid disk!\n");
TWE_BIO_DONE(bp);
TWED_BIO_OUT;
return;
}
/* perform accounting */
TWE_BIO_STATS_START(bp);
/* queue the bio on the controller */
twe_enqueue_bio(sc->twed_controller, bp);
/* poke the controller to start I/O */
twe_startio(sc->twed_controller);
return;
}
/********************************************************************************
* System crashdump support
*/
static int
twed_dump(void *arg, void *virtual, vm_offset_t physical, off_t offset, size_t length)
{
struct twed_softc *twed_sc;
struct twe_softc *twe_sc;
int error;
struct disk *dp;
dp = arg;
twed_sc = (struct twed_softc *)dp->d_drv1;
if (twed_sc == NULL)
return(ENXIO);
twe_sc = (struct twe_softc *)twed_sc->twed_controller;
if (length > 0) {
if ((error = twe_dump_blocks(twe_sc, twed_sc->twed_drive->td_twe_unit, offset / TWE_BLOCK_SIZE, virtual, length / TWE_BLOCK_SIZE)) != 0)
return(error);
}
return(0);
}
/********************************************************************************
* Handle completion of an I/O request.
*/
void
twed_intr(twe_bio *bp)
{
debug_called(4);
/* if no error, transfer completed */
if (!TWE_BIO_HAS_ERROR(bp))
TWE_BIO_RESID(bp) = 0;
TWE_BIO_STATS_END(bp);
TWE_BIO_DONE(bp);
TWED_BIO_OUT;
}
/********************************************************************************
* Default probe stub.
*/
static int
twed_probe(device_t dev)
{
return (0);
}
/********************************************************************************
* Attach a unit to the controller.
*/
static int
twed_attach(device_t dev)
{
struct twed_softc *sc;
device_t parent;
debug_called(4);
/* initialise our softc */
sc = device_get_softc(dev);
parent = device_get_parent(dev);
sc->twed_controller = (struct twe_softc *)device_get_softc(parent);
sc->twed_drive = device_get_ivars(dev);
sc->twed_dev = dev;
/* report the drive */
twed_printf(sc, "%uMB (%u sectors)\n",
sc->twed_drive->td_size / ((1024 * 1024) / TWE_BLOCK_SIZE),
sc->twed_drive->td_size);
/* attach a generic disk device to ourselves */
sc->twed_drive->td_sys_unit = device_get_unit(dev);
sc->twed_disk = disk_alloc();
sc->twed_disk->d_open = twed_open;
sc->twed_disk->d_strategy = twed_strategy;
sc->twed_disk->d_dump = (dumper_t *)twed_dump;
sc->twed_disk->d_name = "twed";
sc->twed_disk->d_drv1 = sc;
sc->twed_disk->d_maxsize = (TWE_MAX_SGL_LENGTH - 1) * PAGE_SIZE;
sc->twed_disk->d_sectorsize = TWE_BLOCK_SIZE;
sc->twed_disk->d_mediasize = TWE_BLOCK_SIZE * (off_t)sc->twed_drive->td_size;
sc->twed_disk->d_fwsectors = sc->twed_drive->td_sectors;
sc->twed_disk->d_fwheads = sc->twed_drive->td_heads;
sc->twed_disk->d_unit = sc->twed_drive->td_sys_unit;
sc->twed_disk->d_flags = DISKFLAG_NEEDSGIANT;
disk_create(sc->twed_disk, DISK_VERSION);
#ifdef FREEBSD_4
disks_registered++;
#endif
/* set the maximum I/O size to the theoretical maximum allowed by the S/G list size */
return (0);
}
/********************************************************************************
* Disconnect ourselves from the system.
*/
static int
twed_detach(device_t dev)
{
struct twed_softc *sc = (struct twed_softc *)device_get_softc(dev);
debug_called(4);
if (sc->twed_disk->d_flags & DISKFLAG_OPEN)
return(EBUSY);
disk_destroy(sc->twed_disk);
#ifdef FREEBSD_4
if (--disks_registered == 0)
cdevsw_remove(&tweddisk_cdevsw);
#endif
return(0);
}
/********************************************************************************
********************************************************************************
Misc
********************************************************************************
********************************************************************************/
/********************************************************************************
* Allocate a command buffer
*/
MALLOC_DEFINE(TWE_MALLOC_CLASS, "twe_commands", "twe commands");
struct twe_request *
twe_allocate_request(struct twe_softc *sc, int tag)
{
struct twe_request *tr;
if ((tr = malloc(sizeof(struct twe_request), TWE_MALLOC_CLASS, M_WAITOK)) == NULL) {
twe_printf(sc, "unable to allocate memory for tag %d\n", tag);
return(NULL);
}
bzero(tr, sizeof(*tr));
tr->tr_sc = sc;
tr->tr_tag = tag;
if (bus_dmamap_create(sc->twe_buffer_dmat, 0, &tr->tr_dmamap)) {
twe_free_request(tr);
twe_printf(sc, "unable to allocate dmamap for tag %d\n", tag);
return(NULL);
}
return(tr);
}
/********************************************************************************
* Permanently discard a command buffer.
*/
void
twe_free_request(struct twe_request *tr)
{
struct twe_softc *sc = tr->tr_sc;
debug_called(4);
bus_dmamap_destroy(sc->twe_buffer_dmat, tr->tr_dmamap);
free(tr, TWE_MALLOC_CLASS);
}
/********************************************************************************
* Map/unmap (tr)'s command and data in the controller's addressable space.
*
* These routines ensure that the data which the controller is going to try to
* access is actually visible to the controller, in a machine-independant
* fashion. Due to a hardware limitation, I/O buffers must be 512-byte aligned
* and we take care of that here as well.
*/
static void
twe_fillin_sgl(TWE_SG_Entry *sgl, bus_dma_segment_t *segs, int nsegments, int max_sgl)
{
int i;
for (i = 0; i < nsegments; i++) {
sgl[i].address = segs[i].ds_addr;
sgl[i].length = segs[i].ds_len;
}
for (; i < max_sgl; i++) { /* XXX necessary? */
sgl[i].address = 0;
sgl[i].length = 0;
}
}
static void
twe_setup_data_dmamap(void *arg, bus_dma_segment_t *segs, int nsegments, int error)
{
struct twe_request *tr = (struct twe_request *)arg;
struct twe_softc *sc = tr->tr_sc;
TWE_Command *cmd = TWE_FIND_COMMAND(tr);
debug_called(4);
if (tr->tr_flags & TWE_CMD_MAPPED)
panic("already mapped command");
tr->tr_flags |= TWE_CMD_MAPPED;
if (tr->tr_flags & TWE_CMD_IN_PROGRESS)
sc->twe_state &= ~TWE_STATE_FRZN;
/* save base of first segment in command (applicable if there only one segment) */
tr->tr_dataphys = segs[0].ds_addr;
/* correct command size for s/g list size */
cmd->generic.size += 2 * nsegments;
/*
* Due to the fact that parameter and I/O commands have the scatter/gather list in
* different places, we need to determine which sort of command this actually is
* before we can populate it correctly.
*/
switch(cmd->generic.opcode) {
case TWE_OP_GET_PARAM:
case TWE_OP_SET_PARAM:
cmd->generic.sgl_offset = 2;
twe_fillin_sgl(&cmd->param.sgl[0], segs, nsegments, TWE_MAX_SGL_LENGTH);
break;
case TWE_OP_READ:
case TWE_OP_WRITE:
cmd->generic.sgl_offset = 3;
twe_fillin_sgl(&cmd->io.sgl[0], segs, nsegments, TWE_MAX_SGL_LENGTH);
break;
case TWE_OP_ATA_PASSTHROUGH:
cmd->generic.sgl_offset = 5;
twe_fillin_sgl(&cmd->ata.sgl[0], segs, nsegments, TWE_MAX_ATA_SGL_LENGTH);
break;
default:
/*
* Fall back to what the linux driver does.
* Do this because the API may send an opcode
* the driver knows nothing about and this will
* at least stop PCIABRT's from hosing us.
*/
switch (cmd->generic.sgl_offset) {
case 2:
twe_fillin_sgl(&cmd->param.sgl[0], segs, nsegments, TWE_MAX_SGL_LENGTH);
break;
case 3:
twe_fillin_sgl(&cmd->io.sgl[0], segs, nsegments, TWE_MAX_SGL_LENGTH);
break;
case 5:
twe_fillin_sgl(&cmd->ata.sgl[0], segs, nsegments, TWE_MAX_ATA_SGL_LENGTH);
break;
}
}
if (tr->tr_flags & TWE_CMD_DATAIN) {
if (tr->tr_flags & TWE_CMD_IMMEDIATE) {
bus_dmamap_sync(sc->twe_immediate_dmat, sc->twe_immediate_map,
BUS_DMASYNC_PREREAD);
} else {
bus_dmamap_sync(sc->twe_buffer_dmat, tr->tr_dmamap,
BUS_DMASYNC_PREREAD);
}
}
if (tr->tr_flags & TWE_CMD_DATAOUT) {
/*
* if we're using an alignment buffer, and we're writing data
* copy the real data out
*/
if (tr->tr_flags & TWE_CMD_ALIGNBUF)
bcopy(tr->tr_realdata, tr->tr_data, tr->tr_length);
if (tr->tr_flags & TWE_CMD_IMMEDIATE) {
bus_dmamap_sync(sc->twe_immediate_dmat, sc->twe_immediate_map,
BUS_DMASYNC_PREWRITE);
} else {
bus_dmamap_sync(sc->twe_buffer_dmat, tr->tr_dmamap,
BUS_DMASYNC_PREWRITE);
}
}
if (twe_start(tr) == EBUSY) {
tr->tr_sc->twe_state |= TWE_STATE_CTLR_BUSY;
twe_requeue_ready(tr);
}
}
static void
twe_setup_request_dmamap(void *arg, bus_dma_segment_t *segs, int nsegments, int error)
{
struct twe_softc *sc = (struct twe_softc *)arg;
debug_called(4);
/* command can't cross a page boundary */
sc->twe_cmdphys = segs[0].ds_addr;
}
int
twe_map_request(struct twe_request *tr)
{
struct twe_softc *sc = tr->tr_sc;
int error = 0;
debug_called(4);
if (sc->twe_state & (TWE_STATE_CTLR_BUSY | TWE_STATE_FRZN)) {
twe_requeue_ready(tr);
return (EBUSY);
}
bus_dmamap_sync(sc->twe_cmd_dmat, sc->twe_cmdmap, BUS_DMASYNC_PREWRITE);
/*
* If the command involves data, map that too.
*/
if (tr->tr_data != NULL && ((tr->tr_flags & TWE_CMD_MAPPED) == 0)) {
/*
* Data must be 64-byte aligned; allocate a fixup buffer if it's not.
*/
if (((vm_offset_t)tr->tr_data % TWE_ALIGNMENT) != 0) {
tr->tr_realdata = tr->tr_data; /* save pointer to 'real' data */
tr->tr_flags |= TWE_CMD_ALIGNBUF;
tr->tr_data = malloc(tr->tr_length, TWE_MALLOC_CLASS, M_NOWAIT);
if (tr->tr_data == NULL) {
twe_printf(sc, "%s: malloc failed\n", __func__);
tr->tr_data = tr->tr_realdata; /* restore original data pointer */
return(ENOMEM);
}
}
/*
* Map the data buffer into bus space and build the s/g list.
*/
if (tr->tr_flags & TWE_CMD_IMMEDIATE) {
error = bus_dmamap_load(sc->twe_immediate_dmat, sc->twe_immediate_map, sc->twe_immediate,
tr->tr_length, twe_setup_data_dmamap, tr, BUS_DMA_NOWAIT);
} else {
error = bus_dmamap_load(sc->twe_buffer_dmat, tr->tr_dmamap, tr->tr_data, tr->tr_length,
twe_setup_data_dmamap, tr, 0);
}
if (error == EINPROGRESS) {
tr->tr_flags |= TWE_CMD_IN_PROGRESS;
sc->twe_state |= TWE_STATE_FRZN;
error = 0;
}
} else
if ((error = twe_start(tr)) == EBUSY) {
sc->twe_state |= TWE_STATE_CTLR_BUSY;
twe_requeue_ready(tr);
}
return(error);
}
void
twe_unmap_request(struct twe_request *tr)
{
struct twe_softc *sc = tr->tr_sc;
debug_called(4);
bus_dmamap_sync(sc->twe_cmd_dmat, sc->twe_cmdmap, BUS_DMASYNC_POSTWRITE);
/*
* If the command involved data, unmap that too.
*/
if (tr->tr_data != NULL) {
if (tr->tr_flags & TWE_CMD_DATAIN) {
if (tr->tr_flags & TWE_CMD_IMMEDIATE) {
bus_dmamap_sync(sc->twe_immediate_dmat, sc->twe_immediate_map,
BUS_DMASYNC_POSTREAD);
} else {
bus_dmamap_sync(sc->twe_buffer_dmat, tr->tr_dmamap,
BUS_DMASYNC_POSTREAD);
}
/* if we're using an alignment buffer, and we're reading data, copy the real data in */
if (tr->tr_flags & TWE_CMD_ALIGNBUF)
bcopy(tr->tr_data, tr->tr_realdata, tr->tr_length);
}
if (tr->tr_flags & TWE_CMD_DATAOUT) {
if (tr->tr_flags & TWE_CMD_IMMEDIATE) {
bus_dmamap_sync(sc->twe_immediate_dmat, sc->twe_immediate_map,
BUS_DMASYNC_POSTWRITE);
} else {
bus_dmamap_sync(sc->twe_buffer_dmat, tr->tr_dmamap,
BUS_DMASYNC_POSTWRITE);
}
}
if (tr->tr_flags & TWE_CMD_IMMEDIATE) {
bus_dmamap_unload(sc->twe_immediate_dmat, sc->twe_immediate_map);
} else {
bus_dmamap_unload(sc->twe_buffer_dmat, tr->tr_dmamap);
}
}
/* free alignment buffer if it was used */
if (tr->tr_flags & TWE_CMD_ALIGNBUF) {
free(tr->tr_data, TWE_MALLOC_CLASS);
tr->tr_data = tr->tr_realdata; /* restore 'real' data pointer */
}
}
#ifdef TWE_DEBUG
void twe_report(void);
/********************************************************************************
* Print current controller status, call from DDB.
*/
void
twe_report(void)
{
struct twe_softc *sc;
int i, s;
s = splbio();
for (i = 0; (sc = devclass_get_softc(twe_devclass, i)) != NULL; i++)
twe_print_controller(sc);
printf("twed: total bio count in %u out %u\n", twed_bio_in, twed_bio_out);
splx(s);
}
#endif