freebsd-dev/sys/vm/vm_page.c
Matthew Dillon 060282de8a The hash table used to be a table of doubly-link list headers ( two
pointers per entry ).  The table has been changed to a singly linked
    list of vm_page_t pointers.  The table has been doubled in size, but
    the entries only take half the space so a net-zero change in memory use.

    The hash function has been changed, hopefully for the better.  The
    combination of the larger hash table size of changed function should
    keep the chain length down to a reasonable number (0-3, average 1).

    vm_object->page_hint has been removed.  This 'optimization' was not
    only never needed, but costs as much as a hash chain link to implement.
    While having page_hint in vm_object might result in better locality
    of reference, the cost is not worth the space in vm_object or the
    extra instructions in my view.

    vm_page_alloc*() functions have been inlined and call a generalized
    non-inlined vm_page_alloc_toq() which combines the standard alloc
    and zero-page alloc functions together, reducing code size and the L1
    cache footprint.  Some reordering has been done... not much.  The
    delinking code should be faster ( because unlinking a doubly-linked list
    requires four memory ops and unlinking a singly linked list only requires
    two ), and we get a hash consistancy check for free.

    vm_page_rename() now automatically sets the page's dirty bits.

    vm_page_alloc() does not try to manually inline freeing a cache page.
    Instead, it now properly calls vm_page_free(m) ... vm_page_free() is
    really too complex to manually inline.

    vm_await(), supporting asleep(), has been added.
1999-01-21 10:01:49 +00:00

1957 lines
45 KiB
C

/*
* Copyright (c) 1991 Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* The Mach Operating System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91
* $Id: vm_page.c,v 1.117 1999/01/21 08:29:12 dillon Exp $
*/
/*
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
* All rights reserved.
*
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/*
* Resident memory management module.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/vmmeter.h>
#include <sys/vnode.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_prot.h>
#include <sys/lock.h>
#include <vm/vm_kern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
#include <vm/vm_pager.h>
#include <vm/vm_extern.h>
static void vm_page_queue_init __P((void));
static vm_page_t vm_page_select_free __P((vm_object_t object,
vm_pindex_t pindex, int prefqueue));
static vm_page_t vm_page_select_cache __P((vm_object_t, vm_pindex_t));
/*
* Associated with page of user-allocatable memory is a
* page structure.
*/
static struct vm_page **vm_page_buckets; /* Array of buckets */
static int vm_page_bucket_count; /* How big is array? */
static int vm_page_hash_mask; /* Mask for hash function */
static volatile int vm_page_bucket_generation;
struct pglist vm_page_queue_free[PQ_L2_SIZE] = {0};
struct pglist vm_page_queue_zero[PQ_L2_SIZE] = {0};
struct pglist vm_page_queue_active = {0};
struct pglist vm_page_queue_inactive = {0};
struct pglist vm_page_queue_cache[PQ_L2_SIZE] = {0};
static int no_queue=0;
struct vpgqueues vm_page_queues[PQ_COUNT] = {0};
static int pqcnt[PQ_COUNT] = {0};
static void
vm_page_queue_init(void) {
int i;
vm_page_queues[PQ_NONE].pl = NULL;
vm_page_queues[PQ_NONE].cnt = &no_queue;
for(i=0;i<PQ_L2_SIZE;i++) {
vm_page_queues[PQ_FREE+i].pl = &vm_page_queue_free[i];
vm_page_queues[PQ_FREE+i].cnt = &cnt.v_free_count;
}
for(i=0;i<PQ_L2_SIZE;i++) {
vm_page_queues[PQ_ZERO+i].pl = &vm_page_queue_zero[i];
vm_page_queues[PQ_ZERO+i].cnt = &cnt.v_free_count;
}
vm_page_queues[PQ_INACTIVE].pl = &vm_page_queue_inactive;
vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
vm_page_queues[PQ_ACTIVE].pl = &vm_page_queue_active;
vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
for(i=0;i<PQ_L2_SIZE;i++) {
vm_page_queues[PQ_CACHE+i].pl = &vm_page_queue_cache[i];
vm_page_queues[PQ_CACHE+i].cnt = &cnt.v_cache_count;
}
for(i=0;i<PQ_COUNT;i++) {
if (vm_page_queues[i].pl) {
TAILQ_INIT(vm_page_queues[i].pl);
} else if (i != 0) {
panic("vm_page_queue_init: queue %d is null", i);
}
vm_page_queues[i].lcnt = &pqcnt[i];
}
}
vm_page_t vm_page_array = 0;
static int vm_page_array_size = 0;
long first_page = 0;
static long last_page;
static vm_size_t page_mask;
static int page_shift;
int vm_page_zero_count = 0;
/*
* map of contiguous valid DEV_BSIZE chunks in a page
* (this list is valid for page sizes upto 16*DEV_BSIZE)
*/
static u_short vm_page_dev_bsize_chunks[] = {
0x0, 0x1, 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f, 0xff,
0x1ff, 0x3ff, 0x7ff, 0xfff, 0x1fff, 0x3fff, 0x7fff, 0xffff
};
static __inline int vm_page_hash __P((vm_object_t object, vm_pindex_t pindex));
static void vm_page_free_wakeup __P((void));
/*
* vm_set_page_size:
*
* Sets the page size, perhaps based upon the memory
* size. Must be called before any use of page-size
* dependent functions.
*
* Sets page_shift and page_mask from cnt.v_page_size.
*/
void
vm_set_page_size()
{
if (cnt.v_page_size == 0)
cnt.v_page_size = DEFAULT_PAGE_SIZE;
page_mask = cnt.v_page_size - 1;
if ((page_mask & cnt.v_page_size) != 0)
panic("vm_set_page_size: page size not a power of two");
for (page_shift = 0;; page_shift++)
if ((1 << page_shift) == cnt.v_page_size)
break;
}
/*
* vm_page_startup:
*
* Initializes the resident memory module.
*
* Allocates memory for the page cells, and
* for the object/offset-to-page hash table headers.
* Each page cell is initialized and placed on the free list.
*/
vm_offset_t
vm_page_startup(starta, enda, vaddr)
register vm_offset_t starta;
vm_offset_t enda;
register vm_offset_t vaddr;
{
register vm_offset_t mapped;
register vm_page_t m;
register struct vm_page **bucket;
vm_size_t npages, page_range;
register vm_offset_t new_start;
int i;
vm_offset_t pa;
int nblocks;
vm_offset_t first_managed_page;
/* the biggest memory array is the second group of pages */
vm_offset_t start;
vm_offset_t biggestone, biggestsize;
vm_offset_t total;
total = 0;
biggestsize = 0;
biggestone = 0;
nblocks = 0;
vaddr = round_page(vaddr);
for (i = 0; phys_avail[i + 1]; i += 2) {
phys_avail[i] = round_page(phys_avail[i]);
phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
}
for (i = 0; phys_avail[i + 1]; i += 2) {
int size = phys_avail[i + 1] - phys_avail[i];
if (size > biggestsize) {
biggestone = i;
biggestsize = size;
}
++nblocks;
total += size;
}
start = phys_avail[biggestone];
/*
* Initialize the queue headers for the free queue, the active queue
* and the inactive queue.
*/
vm_page_queue_init();
/*
* Allocate (and initialize) the hash table buckets.
*
* The number of buckets MUST BE a power of 2, and the actual value is
* the next power of 2 greater than the number of physical pages in
* the system.
*
* We make the hash table approximately 2x the number of pages to
* reduce the chain length. This is about the same size using the
* singly-linked list as the 1x hash table we were using before
* using TAILQ but the chain length will be smaller.
*
* Note: This computation can be tweaked if desired.
*/
vm_page_buckets = (struct vm_page **)vaddr;
bucket = vm_page_buckets;
if (vm_page_bucket_count == 0) {
vm_page_bucket_count = 1;
while (vm_page_bucket_count < atop(total))
vm_page_bucket_count <<= 1;
}
vm_page_bucket_count <<= 1;
vm_page_hash_mask = vm_page_bucket_count - 1;
/*
* Validate these addresses.
*/
new_start = start + vm_page_bucket_count * sizeof(struct vm_page *);
new_start = round_page(new_start);
mapped = round_page(vaddr);
vaddr = pmap_map(mapped, start, new_start,
VM_PROT_READ | VM_PROT_WRITE);
start = new_start;
vaddr = round_page(vaddr);
bzero((caddr_t) mapped, vaddr - mapped);
for (i = 0; i < vm_page_bucket_count; i++) {
*bucket = NULL;
bucket++;
}
/*
* Compute the number of pages of memory that will be available for
* use (taking into account the overhead of a page structure per
* page).
*/
first_page = phys_avail[0] / PAGE_SIZE;
last_page = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
page_range = last_page - (phys_avail[0] / PAGE_SIZE);
npages = (total - (page_range * sizeof(struct vm_page)) -
(start - phys_avail[biggestone])) / PAGE_SIZE;
/*
* Initialize the mem entry structures now, and put them in the free
* queue.
*/
vm_page_array = (vm_page_t) vaddr;
mapped = vaddr;
/*
* Validate these addresses.
*/
new_start = round_page(start + page_range * sizeof(struct vm_page));
mapped = pmap_map(mapped, start, new_start,
VM_PROT_READ | VM_PROT_WRITE);
start = new_start;
first_managed_page = start / PAGE_SIZE;
/*
* Clear all of the page structures
*/
bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
vm_page_array_size = page_range;
cnt.v_page_count = 0;
cnt.v_free_count = 0;
for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
if (i == biggestone)
pa = ptoa(first_managed_page);
else
pa = phys_avail[i];
while (pa < phys_avail[i + 1] && npages-- > 0) {
++cnt.v_page_count;
++cnt.v_free_count;
m = PHYS_TO_VM_PAGE(pa);
m->phys_addr = pa;
m->flags = 0;
m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
m->queue = m->pc + PQ_FREE;
TAILQ_INSERT_TAIL(vm_page_queues[m->queue].pl, m, pageq);
++(*vm_page_queues[m->queue].lcnt);
pa += PAGE_SIZE;
}
}
return (mapped);
}
/*
* vm_page_hash:
*
* Distributes the object/offset key pair among hash buckets.
*
* NOTE: This macro depends on vm_page_bucket_count being a power of 2.
* This routine may not block.
*
* We try to randomize the hash based on the object to spread the pages
* out in the hash table without it costing us too much.
*/
static __inline int
vm_page_hash(object, pindex)
vm_object_t object;
vm_pindex_t pindex;
{
int i = ((uintptr_t)object + pindex) ^ object->hash_rand;
return(i & vm_page_hash_mask);
}
/*
* vm_page_insert: [ internal use only ]
*
* Inserts the given mem entry into the object and object list.
*
* The pagetables are not updated but will presumably fault the page
* in if necessary, or if a kernel page the caller will at some point
* enter the page into the kernel's pmap. We are not allowed to block
* here so we *can't* do this anyway.
*
* The object and page must be locked, and must be splhigh.
* This routine may not block.
*/
void
vm_page_insert(m, object, pindex)
register vm_page_t m;
register vm_object_t object;
register vm_pindex_t pindex;
{
register struct vm_page **bucket;
if (m->object != NULL)
panic("vm_page_insert: already inserted");
/*
* Record the object/offset pair in this page
*/
m->object = object;
m->pindex = pindex;
/*
* Insert it into the object_object/offset hash table
*/
bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
m->hnext = *bucket;
*bucket = m;
vm_page_bucket_generation++;
/*
* Now link into the object's list of backed pages.
*/
TAILQ_INSERT_TAIL(&object->memq, m, listq);
#if 0
m->object->page_hint = m;
#endif
m->object->generation++;
if (m->wire_count)
object->wire_count++;
if ((m->queue - m->pc) == PQ_CACHE)
object->cache_count++;
/*
* show that the object has one more resident page.
*/
object->resident_page_count++;
}
/*
* vm_page_remove:
* NOTE: used by device pager as well -wfj
*
* Removes the given mem entry from the object/offset-page
* table and the object page list, but do not invalidate/terminate
* the backing store.
*
* The object and page must be locked, and at splhigh.
* The underlying pmap entry (if any) is NOT removed here.
* This routine may not block.
*/
vm_object_t
vm_page_remove(m)
vm_page_t m;
{
register struct vm_page **bucket;
vm_object_t object;
if (m->object == NULL)
return(NULL);
#if !defined(MAX_PERF)
if ((m->flags & PG_BUSY) == 0) {
panic("vm_page_remove: page not busy");
}
#endif
/*
* Basically destroy the page.
*/
vm_page_wakeup(m);
object = m->object;
if (m->wire_count)
object->wire_count--;
if ((m->queue - m->pc) == PQ_CACHE)
object->cache_count--;
/*
* Remove from the object_object/offset hash table. The object
* must be on the hash queue, we will panic if it isn't
*
* Note: we must NULL-out m->hnext to prevent loops in detached
* buffers with vm_page_lookup().
*/
bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)];
while (*bucket != m) {
#if !defined(MAX_PERF)
if (*bucket == NULL)
panic("vm_page_remove(): page not found in hash");
#endif
bucket = &(*bucket)->hnext;
}
*bucket = m->hnext;
m->hnext = NULL;
vm_page_bucket_generation++;
/*
* Now remove from the object's list of backed pages.
*/
TAILQ_REMOVE(&object->memq, m, listq);
/*
* And show that the object has one fewer resident page.
*/
object->resident_page_count--;
object->generation++;
m->object = NULL;
return(object);
}
/*
* vm_page_lookup:
*
* Returns the page associated with the object/offset
* pair specified; if none is found, NULL is returned.
*
* NOTE: the code below does not lock. It will operate properly if
* an interrupt makes a change, but the generation algorithm will not
* operate properly in an SMP environment where both cpu's are able to run
* kernel code simultaniously.
*
* The object must be locked. No side effects.
* This routine may not block.
* This is a critical path routine
*/
vm_page_t
vm_page_lookup(object, pindex)
register vm_object_t object;
register vm_pindex_t pindex;
{
register vm_page_t m;
register struct vm_page **bucket;
int generation;
/*
* Search the hash table for this object/offset pair
*/
#if 0
if (object->page_hint && (object->page_hint->pindex == pindex) &&
(object->page_hint->object == object))
return object->page_hint;
#endif
retry:
generation = vm_page_bucket_generation;
bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
for (m = *bucket; m != NULL; m = m->hnext) {
if ((m->object == object) && (m->pindex == pindex)) {
if (vm_page_bucket_generation != generation)
goto retry;
#if 0
m->object->page_hint = m;
#endif
return (m);
}
}
if (vm_page_bucket_generation != generation)
goto retry;
return (NULL);
}
/*
* vm_page_rename:
*
* Move the given memory entry from its
* current object to the specified target object/offset.
*
* The object must be locked.
* This routine may not block.
*
* Note: this routine will raise itself to splvm(), the caller need not.
*
* Note: swap associated with the page must be invalidated by the move. We
* have to do this for several reasons: (1) we aren't freeing the
* page, (2) we are dirtying the page, (3) the VM system is probably
* moving the page from object A to B, and will then later move
* the backing store from A to B and we can't have a conflict.
*
* Note: we *always* dirty the page. It is necessary both for the
* fact that we moved it, and because we may be invalidating
* swap.
*/
void
vm_page_rename(m, new_object, new_pindex)
register vm_page_t m;
register vm_object_t new_object;
vm_pindex_t new_pindex;
{
int s;
s = splvm();
vm_page_remove(m);
vm_page_insert(m, new_object, new_pindex);
m->dirty = VM_PAGE_BITS_ALL;
splx(s);
}
/*
* vm_page_unqueue_nowakeup:
*
* vm_page_unqueue() without any wakeup
*
* This routine must be called at splhigh().
* This routine may not block.
*/
void
vm_page_unqueue_nowakeup(m)
vm_page_t m;
{
int queue = m->queue;
struct vpgqueues *pq;
if (queue != PQ_NONE) {
pq = &vm_page_queues[queue];
m->queue = PQ_NONE;
TAILQ_REMOVE(pq->pl, m, pageq);
(*pq->cnt)--;
(*pq->lcnt)--;
if ((queue - m->pc) == PQ_CACHE) {
if (m->object)
m->object->cache_count--;
}
}
}
/*
* vm_page_unqueue:
*
* Remove a page from its queue.
*
* This routine must be called at splhigh().
* This routine may not block.
*/
void
vm_page_unqueue(m)
vm_page_t m;
{
int queue = m->queue;
struct vpgqueues *pq;
if (queue != PQ_NONE) {
m->queue = PQ_NONE;
pq = &vm_page_queues[queue];
TAILQ_REMOVE(pq->pl, m, pageq);
(*pq->cnt)--;
(*pq->lcnt)--;
if ((queue - m->pc) == PQ_CACHE) {
if ((cnt.v_cache_count + cnt.v_free_count) <
(cnt.v_free_reserved + cnt.v_cache_min))
pagedaemon_wakeup();
if (m->object)
m->object->cache_count--;
}
}
}
/*
* vm_page_list_find:
*
* Find a page on the specified queue with color optimization.
*
* The page coloring optimization attempts to locate a page
* that does not overload other nearby pages in the object in
* the cpu's L1 or L2 caches. We need this optmization because
* cpu caches tend to be physical caches, while object spaces tend
* to be virtual.
*
* This routine must be called at splvm().
* This routine may not block.
*/
vm_page_t
vm_page_list_find(basequeue, index)
int basequeue, index;
{
#if PQ_L2_SIZE > 1
int i,j;
vm_page_t m;
int hindex;
struct vpgqueues *pq;
pq = &vm_page_queues[basequeue];
m = TAILQ_FIRST(pq[index].pl);
if (m)
return m;
for(j = 0; j < PQ_L1_SIZE; j++) {
int ij;
for(i = (PQ_L2_SIZE / 2) - PQ_L1_SIZE;
(ij = i + j) > 0;
i -= PQ_L1_SIZE) {
hindex = index + ij;
if (hindex >= PQ_L2_SIZE)
hindex -= PQ_L2_SIZE;
if (m = TAILQ_FIRST(pq[hindex].pl))
return m;
hindex = index - ij;
if (hindex < 0)
hindex += PQ_L2_SIZE;
if (m = TAILQ_FIRST(pq[hindex].pl))
return m;
}
}
hindex = index + PQ_L2_SIZE / 2;
if (hindex >= PQ_L2_SIZE)
hindex -= PQ_L2_SIZE;
m = TAILQ_FIRST(pq[hindex].pl);
if (m)
return m;
return NULL;
#else
return TAILQ_FIRST(vm_page_queues[basequeue].pl);
#endif
}
/*
* vm_page_select:
*
* Find a page on the specified queue with color optimization.
*
* This routine must be called at splvm().
* This routine may not block.
*/
vm_page_t
vm_page_select(object, pindex, basequeue)
vm_object_t object;
vm_pindex_t pindex;
int basequeue;
{
#if PQ_L2_SIZE > 1
int index;
index = (pindex + object->pg_color) & PQ_L2_MASK;
return vm_page_list_find(basequeue, index);
#else
return TAILQ_FIRST(vm_page_queues[basequeue].pl);
#endif
}
/*
* vm_page_select_cache:
*
* Find a page on the cache queue with color optimization. As pages
* might be found, but not applicable, they are deactivated. This
* keeps us from using potentially busy cached pages.
*
* This routine must be called at splvm().
* This routine may not block.
*/
vm_page_t
vm_page_select_cache(object, pindex)
vm_object_t object;
vm_pindex_t pindex;
{
vm_page_t m;
while (TRUE) {
#if PQ_L2_SIZE > 1
int index;
index = (pindex + object->pg_color) & PQ_L2_MASK;
m = vm_page_list_find(PQ_CACHE, index);
#else
m = TAILQ_FIRST(vm_page_queues[PQ_CACHE].pl);
#endif
if (m && ((m->flags & PG_BUSY) || m->busy ||
m->hold_count || m->wire_count)) {
vm_page_deactivate(m);
continue;
}
return m;
}
}
/*
* vm_page_select_free:
*
* Find a free or zero page, with specified preference.
*
* This routine must be called at splvm().
* This routine may not block.
*/
static vm_page_t
vm_page_select_free(object, pindex, prefqueue)
vm_object_t object;
vm_pindex_t pindex;
int prefqueue;
{
#if PQ_L2_SIZE > 1
int i,j;
int index, hindex;
#endif
vm_page_t m;
#if 0
vm_page_t mh;
#endif
int oqueuediff;
struct vpgqueues *pq;
if (prefqueue == PQ_ZERO)
oqueuediff = PQ_FREE - PQ_ZERO;
else
oqueuediff = PQ_ZERO - PQ_FREE;
#if 0
if (mh = object->page_hint) {
if (mh->pindex == (pindex - 1)) {
if ((mh->flags & PG_FICTITIOUS) == 0) {
if ((mh < &vm_page_array[cnt.v_page_count-1]) &&
(mh >= &vm_page_array[0])) {
int queue;
m = mh + 1;
if (VM_PAGE_TO_PHYS(m) == (VM_PAGE_TO_PHYS(mh) + PAGE_SIZE)) {
queue = m->queue - m->pc;
if (queue == PQ_FREE || queue == PQ_ZERO) {
return m;
}
}
}
}
}
}
#endif
pq = &vm_page_queues[prefqueue];
#if PQ_L2_SIZE > 1
index = (pindex + object->pg_color) & PQ_L2_MASK;
if (m = TAILQ_FIRST(pq[index].pl))
return m;
if (m = TAILQ_FIRST(pq[index + oqueuediff].pl))
return m;
for(j = 0; j < PQ_L1_SIZE; j++) {
int ij;
for(i = (PQ_L2_SIZE / 2) - PQ_L1_SIZE;
(ij = i + j) >= 0;
i -= PQ_L1_SIZE) {
hindex = index + ij;
if (hindex >= PQ_L2_SIZE)
hindex -= PQ_L2_SIZE;
if (m = TAILQ_FIRST(pq[hindex].pl))
return m;
if (m = TAILQ_FIRST(pq[hindex + oqueuediff].pl))
return m;
hindex = index - ij;
if (hindex < 0)
hindex += PQ_L2_SIZE;
if (m = TAILQ_FIRST(pq[hindex].pl))
return m;
if (m = TAILQ_FIRST(pq[hindex + oqueuediff].pl))
return m;
}
}
hindex = index + PQ_L2_SIZE / 2;
if (hindex >= PQ_L2_SIZE)
hindex -= PQ_L2_SIZE;
if (m = TAILQ_FIRST(pq[hindex].pl))
return m;
if (m = TAILQ_FIRST(pq[hindex+oqueuediff].pl))
return m;
#else
if (m = TAILQ_FIRST(pq[0].pl))
return m;
else
return TAILQ_FIRST(pq[oqueuediff].pl);
#endif
return NULL;
}
/*
* vm_page_alloc:
*
* Allocate and return a memory cell associated
* with this VM object/offset pair.
*
* page_req classes:
* VM_ALLOC_NORMAL normal process request
* VM_ALLOC_SYSTEM system *really* needs a page
* VM_ALLOC_INTERRUPT interrupt time request
* VM_ALLOC_ZERO zero page
*
* Object must be locked.
* This routine may not block.
*
* Additional special handling is required when called from an
* interrupt (VM_ALLOC_INTERRUPT). We are not allowed to mess with
* the page cache in this case.
*
* vm_page_alloc()
*/
vm_page_t
vm_page_alloc(object, pindex, page_req)
vm_object_t object;
vm_pindex_t pindex;
int page_req;
{
register vm_page_t m = NULL;
struct vpgqueues *pq;
vm_object_t oldobject;
int queue, qtype;
int s;
KASSERT(!vm_page_lookup(object, pindex),
("vm_page_alloc: page already allocated"));
/*
* The pager is allowed to eat deeper into the free page list.
*/
if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
page_req = VM_ALLOC_SYSTEM;
};
s = splvm();
loop:
switch (page_req) {
case VM_ALLOC_NORMAL:
if (cnt.v_free_count >= cnt.v_free_reserved) {
m = vm_page_select_free(object, pindex, PQ_FREE);
KASSERT(m != NULL, ("vm_page_alloc(NORMAL): missing page on free queue\n"));
} else {
m = vm_page_select_cache(object, pindex);
if (m == NULL) {
splx(s);
#if defined(DIAGNOSTIC)
if (cnt.v_cache_count > 0)
printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
#endif
vm_pageout_deficit++;
pagedaemon_wakeup();
return (NULL);
}
}
break;
case VM_ALLOC_ZERO:
if (cnt.v_free_count >= cnt.v_free_reserved) {
m = vm_page_select_free(object, pindex, PQ_ZERO);
KASSERT(m != NULL, ("vm_page_alloc(ZERO): missing page on free queue\n"));
} else {
m = vm_page_select_cache(object, pindex);
if (m == NULL) {
splx(s);
#if defined(DIAGNOSTIC)
if (cnt.v_cache_count > 0)
printf("vm_page_alloc(ZERO): missing pages on cache queue: %d\n", cnt.v_cache_count);
#endif
vm_pageout_deficit++;
pagedaemon_wakeup();
return (NULL);
}
}
break;
case VM_ALLOC_SYSTEM:
if ((cnt.v_free_count >= cnt.v_free_reserved) ||
((cnt.v_cache_count == 0) &&
(cnt.v_free_count >= cnt.v_interrupt_free_min))) {
m = vm_page_select_free(object, pindex, PQ_FREE);
KASSERT(m != NULL, ("vm_page_alloc(SYSTEM): missing page on free queue\n"));
} else {
m = vm_page_select_cache(object, pindex);
if (m == NULL) {
splx(s);
#if defined(DIAGNOSTIC)
if (cnt.v_cache_count > 0)
printf("vm_page_alloc(SYSTEM): missing pages on cache queue: %d\n", cnt.v_cache_count);
#endif
vm_pageout_deficit++;
pagedaemon_wakeup();
return (NULL);
}
}
break;
case VM_ALLOC_INTERRUPT:
if (cnt.v_free_count > 0) {
m = vm_page_select_free(object, pindex, PQ_FREE);
KASSERT(m != NULL, ("vm_page_alloc(INTERRUPT): missing page on free queue\n"));
} else {
splx(s);
vm_pageout_deficit++;
pagedaemon_wakeup();
return (NULL);
}
break;
default:
m = NULL;
#if !defined(MAX_PERF)
panic("vm_page_alloc: invalid allocation class");
#endif
}
queue = m->queue;
qtype = queue - m->pc;
/*
* Cache pages must be formally freed (and doubly so with the
* new pagerops functions). We free the page and try again.
*
* This also has the side effect of ensuring that the minfreepage
* wall is held more tightly verses the old code.
*/
if (qtype == PQ_CACHE) {
#if !defined(MAX_PERF)
if (m->dirty)
panic("found dirty cache page %p", m);
#endif
vm_page_busy(m);
vm_page_protect(m, VM_PROT_NONE);
vm_page_free(m);
goto loop;
}
pq = &vm_page_queues[queue];
TAILQ_REMOVE(pq->pl, m, pageq);
(*pq->cnt)--;
(*pq->lcnt)--;
oldobject = NULL;
if (qtype == PQ_ZERO) {
vm_page_zero_count--;
m->flags = PG_ZERO | PG_BUSY;
} else {
m->flags = PG_BUSY;
}
m->wire_count = 0;
m->hold_count = 0;
m->act_count = 0;
m->busy = 0;
m->valid = 0;
m->dirty = 0;
m->queue = PQ_NONE;
/*
* vm_page_insert() is safe prior to the splx(). Note also that
* inserting a page here does not insert it into the pmap (which
* could cause us to block allocating memory). We cannot block
* anywhere.
*/
vm_page_insert(m, object, pindex);
/*
* Don't wakeup too often - wakeup the pageout daemon when
* we would be nearly out of memory.
*/
if (((cnt.v_free_count + cnt.v_cache_count) <
(cnt.v_free_reserved + cnt.v_cache_min)) ||
(cnt.v_free_count < cnt.v_pageout_free_min))
pagedaemon_wakeup();
#if 0
/*
* (code removed - was previously a manual breakout of the act of
* freeing a page from cache. We now just call vm_page_free() on
* a cache page an loop so this code no longer needs to be here)
*/
if ((qtype == PQ_CACHE) &&
((page_req == VM_ALLOC_NORMAL) || (page_req == VM_ALLOC_ZERO)) &&
oldobject && (oldobject->type == OBJT_VNODE) &&
((oldobject->flags & OBJ_DEAD) == 0)) {
struct vnode *vp;
vp = (struct vnode *) oldobject->handle;
if (vp && VSHOULDFREE(vp)) {
if ((vp->v_flag & (VFREE|VTBFREE|VDOOMED)) == 0) {
TAILQ_INSERT_TAIL(&vnode_tobefree_list, vp, v_freelist);
vp->v_flag |= VTBFREE;
}
}
}
#endif
splx(s);
return (m);
}
/*
* vm_wait: (also see VM_WAIT macro)
*
* Block until free pages are available for allocation
*/
void
vm_wait()
{
int s;
s = splvm();
if (curproc == pageproc) {
vm_pageout_pages_needed = 1;
tsleep(&vm_pageout_pages_needed, PSWP, "vmwait", 0);
} else {
if (!vm_pages_needed) {
vm_pages_needed++;
wakeup(&vm_pages_needed);
}
tsleep(&cnt.v_free_count, PVM, "vmwait", 0);
}
splx(s);
}
/*
* vm_await: (also see VM_AWAIT macro)
*
* asleep on an event that will signal when free pages are available
* for allocation.
*/
void
vm_await()
{
int s;
s = splvm();
if (curproc == pageproc) {
vm_pageout_pages_needed = 1;
asleep(&vm_pageout_pages_needed, PSWP, "vmwait", 0);
} else {
if (!vm_pages_needed) {
vm_pages_needed++;
wakeup(&vm_pages_needed);
}
asleep(&cnt.v_free_count, PVM, "vmwait", 0);
}
splx(s);
}
#if 0
/*
* vm_page_sleep:
*
* Block until page is no longer busy.
*/
int
vm_page_sleep(vm_page_t m, char *msg, char *busy) {
int slept = 0;
if ((busy && *busy) || (m->flags & PG_BUSY)) {
int s;
s = splvm();
if ((busy && *busy) || (m->flags & PG_BUSY)) {
vm_page_flag_set(m, PG_WANTED);
tsleep(m, PVM, msg, 0);
slept = 1;
}
splx(s);
}
return slept;
}
#endif
#if 0
/*
* vm_page_asleep:
*
* Similar to vm_page_sleep(), but does not block. Returns 0 if
* the page is not busy, or 1 if the page is busy.
*
* This routine has the side effect of calling asleep() if the page
* was busy (1 returned).
*/
int
vm_page_asleep(vm_page_t m, char *msg, char *busy) {
int slept = 0;
if ((busy && *busy) || (m->flags & PG_BUSY)) {
int s;
s = splvm();
if ((busy && *busy) || (m->flags & PG_BUSY)) {
vm_page_flag_set(m, PG_WANTED);
asleep(m, PVM, msg, 0);
slept = 1;
}
splx(s);
}
return slept;
}
#endif
/*
* vm_page_activate:
*
* Put the specified page on the active list (if appropriate).
*
* The page queues must be locked.
* This routine may not block.
*/
void
vm_page_activate(m)
register vm_page_t m;
{
int s;
s = splvm();
if (m->queue != PQ_ACTIVE) {
if ((m->queue - m->pc) == PQ_CACHE)
cnt.v_reactivated++;
vm_page_unqueue(m);
if (m->wire_count == 0) {
m->queue = PQ_ACTIVE;
++(*vm_page_queues[PQ_ACTIVE].lcnt);
TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
if (m->act_count < ACT_INIT)
m->act_count = ACT_INIT;
cnt.v_active_count++;
}
} else {
if (m->act_count < ACT_INIT)
m->act_count = ACT_INIT;
}
splx(s);
}
/*
* helper routine for vm_page_free and vm_page_free_zero.
*
* This routine may not block.
*/
static __inline void
vm_page_free_wakeup()
{
/*
* if pageout daemon needs pages, then tell it that there are
* some free.
*/
if (vm_pageout_pages_needed) {
wakeup(&vm_pageout_pages_needed);
vm_pageout_pages_needed = 0;
}
/*
* wakeup processes that are waiting on memory if we hit a
* high water mark. And wakeup scheduler process if we have
* lots of memory. this process will swapin processes.
*/
if (vm_pages_needed &&
((cnt.v_free_count + cnt.v_cache_count) >= cnt.v_free_min)) {
wakeup(&cnt.v_free_count);
vm_pages_needed = 0;
}
}
/*
* vm_page_free_toq:
*
* Returns the given page to the PQ_FREE or PQ_ZERO list,
* disassociating it with any VM object.
*
* Object and page must be locked prior to entry.
* This routine may not block.
*/
void
vm_page_free_toq(vm_page_t m, int queue)
{
int s;
struct vpgqueues *pq;
vm_object_t object = m->object;
s = splvm();
cnt.v_tfree++;
#if !defined(MAX_PERF)
if (m->busy || ((m->queue - m->pc) == PQ_FREE) ||
(m->hold_count != 0)) {
printf(
"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
(u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
m->hold_count);
if ((m->queue - m->pc) == PQ_FREE)
panic("vm_page_free: freeing free page");
else
panic("vm_page_free: freeing busy page");
}
#endif
/*
* unqueue, then remove page. Note that we cannot destroy
* the page here because we do not want to call the pager's
* callback routine until after we've put the page on the
* appropriate free queue.
*/
vm_page_unqueue_nowakeup(m);
vm_page_remove(m);
/*
* If fictitious remove object association and
* return, otherwise delay object association removal.
*/
if ((m->flags & PG_FICTITIOUS) != 0) {
splx(s);
return;
}
m->valid = 0;
if (m->wire_count != 0) {
#if !defined(MAX_PERF)
if (m->wire_count > 1) {
panic("vm_page_free: invalid wire count (%d), pindex: 0x%x",
m->wire_count, m->pindex);
}
#endif
printf("vm_page_free: freeing wired page\n");
m->wire_count = 0;
if (m->object)
m->object->wire_count--;
cnt.v_wire_count--;
}
/*
* If we've exhausted the object's resident pages we want to free
* it up.
*/
if (object &&
(object->type == OBJT_VNODE) &&
((object->flags & OBJ_DEAD) == 0)
) {
struct vnode *vp = (struct vnode *)object->handle;
if (vp && VSHOULDFREE(vp)) {
if ((vp->v_flag & (VTBFREE|VDOOMED|VFREE)) == 0) {
TAILQ_INSERT_TAIL(&vnode_tobefree_list, vp, v_freelist);
vp->v_flag |= VTBFREE;
}
}
}
#ifdef __alpha__
pmap_page_is_free(m);
#endif
m->queue = queue + m->pc;
pq = &vm_page_queues[m->queue];
++(*pq->lcnt);
++(*pq->cnt);
if (queue == PQ_ZERO) {
TAILQ_INSERT_HEAD(pq->pl, m, pageq);
++vm_page_zero_count;
} else {
/*
* If the pageout process is grabbing the page, it is likely
* that the page is NOT in the cache. It is more likely that
* the page will be partially in the cache if it is being
* explicitly freed.
*/
if (curproc == pageproc) {
TAILQ_INSERT_TAIL(pq->pl, m, pageq);
} else {
TAILQ_INSERT_HEAD(pq->pl, m, pageq);
}
}
vm_page_free_wakeup();
splx(s);
}
/*
* vm_page_wire:
*
* Mark this page as wired down by yet
* another map, removing it from paging queues
* as necessary.
*
* The page queues must be locked.
* This routine may not block.
*/
void
vm_page_wire(m)
register vm_page_t m;
{
int s;
s = splvm();
if (m->wire_count == 0) {
vm_page_unqueue(m);
cnt.v_wire_count++;
if (m->object)
m->object->wire_count++;
}
m->wire_count++;
splx(s);
(*vm_page_queues[PQ_NONE].lcnt)++;
vm_page_flag_set(m, PG_MAPPED);
}
/*
* vm_page_unwire:
*
* Release one wiring of this page, potentially
* enabling it to be paged again.
*
* Many pages placed on the inactive queue should actually go
* into the cache, but it is difficult to figure out which. What
* we do instead, if the inactive target is well met, is to put
* clean pages at the head of the inactive queue instead of the tail.
* This will cause them to be moved to the cache more quickly and
* if not actively re-referenced, freed more quickly. If we just
* stick these pages at the end of the inactive queue, heavy filesystem
* meta-data accesses can cause an unnecessary paging load on memory bound
* processes. This optimization causes one-time-use metadata to be
* reused more quickly.
*
* The page queues must be locked.
* This routine may not block.
*/
void
vm_page_unwire(m, activate)
register vm_page_t m;
int activate;
{
int s;
s = splvm();
if (m->wire_count > 0) {
m->wire_count--;
if (m->wire_count == 0) {
if (m->object)
m->object->wire_count--;
cnt.v_wire_count--;
if (activate) {
TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
m->queue = PQ_ACTIVE;
(*vm_page_queues[PQ_ACTIVE].lcnt)++;
cnt.v_active_count++;
} else {
TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
m->queue = PQ_INACTIVE;
(*vm_page_queues[PQ_INACTIVE].lcnt)++;
cnt.v_inactive_count++;
}
}
} else {
#if !defined(MAX_PERF)
panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
#endif
}
splx(s);
}
/*
* Move the specified page to the inactive queue. If the page has
* any associated swap, the swap is deallocated.
*
* This routine may not block.
*/
void
vm_page_deactivate(m)
register vm_page_t m;
{
int s;
/*
* Ignore if already inactive.
*/
if (m->queue == PQ_INACTIVE)
return;
s = splvm();
if (m->wire_count == 0) {
if ((m->queue - m->pc) == PQ_CACHE)
cnt.v_reactivated++;
vm_page_unqueue(m);
TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
m->queue = PQ_INACTIVE;
++(*vm_page_queues[PQ_INACTIVE].lcnt);
cnt.v_inactive_count++;
}
splx(s);
}
/*
* vm_page_cache
*
* Put the specified page onto the page cache queue (if appropriate).
*
* This routine may not block.
*/
void
vm_page_cache(m)
register vm_page_t m;
{
int s;
#if !defined(MAX_PERF)
if ((m->flags & PG_BUSY) || m->busy || m->wire_count) {
printf("vm_page_cache: attempting to cache busy page\n");
return;
}
#endif
if ((m->queue - m->pc) == PQ_CACHE)
return;
vm_page_protect(m, VM_PROT_NONE);
#if !defined(MAX_PERF)
if (m->dirty != 0) {
panic("vm_page_cache: caching a dirty page, pindex: %d", m->pindex);
}
#endif
s = splvm();
vm_page_unqueue_nowakeup(m);
m->queue = PQ_CACHE + m->pc;
(*vm_page_queues[m->queue].lcnt)++;
TAILQ_INSERT_TAIL(vm_page_queues[m->queue].pl, m, pageq);
cnt.v_cache_count++;
m->object->cache_count++;
vm_page_free_wakeup();
splx(s);
}
/*
* Grab a page, waiting until we are waken up due to the page
* changing state. We keep on waiting, if the page continues
* to be in the object. If the page doesn't exist, allocate it.
*
* This routine may block.
*/
vm_page_t
vm_page_grab(object, pindex, allocflags)
vm_object_t object;
vm_pindex_t pindex;
int allocflags;
{
vm_page_t m;
int s, generation;
retrylookup:
if ((m = vm_page_lookup(object, pindex)) != NULL) {
if (m->busy || (m->flags & PG_BUSY)) {
generation = object->generation;
s = splvm();
while ((object->generation == generation) &&
(m->busy || (m->flags & PG_BUSY))) {
vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
tsleep(m, PVM, "pgrbwt", 0);
if ((allocflags & VM_ALLOC_RETRY) == 0) {
splx(s);
return NULL;
}
}
splx(s);
goto retrylookup;
} else {
vm_page_busy(m);
return m;
}
}
m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
if (m == NULL) {
VM_WAIT;
if ((allocflags & VM_ALLOC_RETRY) == 0)
return NULL;
goto retrylookup;
}
return m;
}
/*
* mapping function for valid bits or for dirty bits in
* a page. May not block.
*/
__inline int
vm_page_bits(int base, int size)
{
u_short chunk;
if ((base == 0) && (size >= PAGE_SIZE))
return VM_PAGE_BITS_ALL;
size = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
base &= PAGE_MASK;
if (size > PAGE_SIZE - base) {
size = PAGE_SIZE - base;
}
base = base / DEV_BSIZE;
chunk = vm_page_dev_bsize_chunks[size / DEV_BSIZE];
return (chunk << base) & VM_PAGE_BITS_ALL;
}
/*
* set a page valid and clean. May not block.
*/
void
vm_page_set_validclean(m, base, size)
vm_page_t m;
int base;
int size;
{
int pagebits = vm_page_bits(base, size);
m->valid |= pagebits;
m->dirty &= ~pagebits;
if( base == 0 && size == PAGE_SIZE)
pmap_clear_modify(VM_PAGE_TO_PHYS(m));
}
/*
* set a page (partially) invalid. May not block.
*/
void
vm_page_set_invalid(m, base, size)
vm_page_t m;
int base;
int size;
{
int bits;
m->valid &= ~(bits = vm_page_bits(base, size));
if (m->valid == 0)
m->dirty &= ~bits;
m->object->generation++;
}
/*
* is (partial) page valid? May not block.
*/
int
vm_page_is_valid(m, base, size)
vm_page_t m;
int base;
int size;
{
int bits = vm_page_bits(base, size);
if (m->valid && ((m->valid & bits) == bits))
return 1;
else
return 0;
}
/*
* update dirty bits from pmap/mmu. May not block.
*/
void
vm_page_test_dirty(m)
vm_page_t m;
{
if ((m->dirty != VM_PAGE_BITS_ALL) &&
pmap_is_modified(VM_PAGE_TO_PHYS(m))) {
m->dirty = VM_PAGE_BITS_ALL;
}
}
/*
* This interface is for merging with malloc() someday.
* Even if we never implement compaction so that contiguous allocation
* works after initialization time, malloc()'s data structures are good
* for statistics and for allocations of less than a page.
*/
void *
contigmalloc1(size, type, flags, low, high, alignment, boundary, map)
unsigned long size; /* should be size_t here and for malloc() */
struct malloc_type *type;
int flags;
unsigned long low;
unsigned long high;
unsigned long alignment;
unsigned long boundary;
vm_map_t map;
{
int i, s, start;
vm_offset_t addr, phys, tmp_addr;
int pass;
vm_page_t pga = vm_page_array;
size = round_page(size);
#if !defined(MAX_PERF)
if (size == 0)
panic("contigmalloc1: size must not be 0");
if ((alignment & (alignment - 1)) != 0)
panic("contigmalloc1: alignment must be a power of 2");
if ((boundary & (boundary - 1)) != 0)
panic("contigmalloc1: boundary must be a power of 2");
#endif
start = 0;
for (pass = 0; pass <= 1; pass++) {
s = splvm();
again:
/*
* Find first page in array that is free, within range, aligned, and
* such that the boundary won't be crossed.
*/
for (i = start; i < cnt.v_page_count; i++) {
int pqtype;
phys = VM_PAGE_TO_PHYS(&pga[i]);
pqtype = pga[i].queue - pga[i].pc;
if (((pqtype == PQ_ZERO) || (pqtype == PQ_FREE) || (pqtype == PQ_CACHE)) &&
(phys >= low) && (phys < high) &&
((phys & (alignment - 1)) == 0) &&
(((phys ^ (phys + size - 1)) & ~(boundary - 1)) == 0))
break;
}
/*
* If the above failed or we will exceed the upper bound, fail.
*/
if ((i == cnt.v_page_count) ||
((VM_PAGE_TO_PHYS(&pga[i]) + size) > high)) {
vm_page_t m, next;
again1:
for (m = TAILQ_FIRST(&vm_page_queue_inactive);
m != NULL;
m = next) {
if (m->queue != PQ_INACTIVE) {
break;
}
next = TAILQ_NEXT(m, pageq);
if (vm_page_sleep_busy(m, TRUE, "vpctw0"))
goto again1;
vm_page_test_dirty(m);
if (m->dirty) {
if (m->object->type == OBJT_VNODE) {
vn_lock(m->object->handle, LK_EXCLUSIVE | LK_RETRY, curproc);
vm_object_page_clean(m->object, 0, 0, OBJPC_SYNC);
VOP_UNLOCK(m->object->handle, 0, curproc);
goto again1;
} else if (m->object->type == OBJT_SWAP ||
m->object->type == OBJT_DEFAULT) {
vm_pageout_flush(&m, 1, 0);
goto again1;
}
}
if ((m->dirty == 0) && (m->busy == 0) && (m->hold_count == 0))
vm_page_cache(m);
}
for (m = TAILQ_FIRST(&vm_page_queue_active);
m != NULL;
m = next) {
if (m->queue != PQ_ACTIVE) {
break;
}
next = TAILQ_NEXT(m, pageq);
if (vm_page_sleep_busy(m, TRUE, "vpctw1"))
goto again1;
vm_page_test_dirty(m);
if (m->dirty) {
if (m->object->type == OBJT_VNODE) {
vn_lock(m->object->handle, LK_EXCLUSIVE | LK_RETRY, curproc);
vm_object_page_clean(m->object, 0, 0, OBJPC_SYNC);
VOP_UNLOCK(m->object->handle, 0, curproc);
goto again1;
} else if (m->object->type == OBJT_SWAP ||
m->object->type == OBJT_DEFAULT) {
vm_pageout_flush(&m, 1, 0);
goto again1;
}
}
if ((m->dirty == 0) && (m->busy == 0) && (m->hold_count == 0))
vm_page_cache(m);
}
splx(s);
continue;
}
start = i;
/*
* Check successive pages for contiguous and free.
*/
for (i = start + 1; i < (start + size / PAGE_SIZE); i++) {
int pqtype;
pqtype = pga[i].queue - pga[i].pc;
if ((VM_PAGE_TO_PHYS(&pga[i]) !=
(VM_PAGE_TO_PHYS(&pga[i - 1]) + PAGE_SIZE)) ||
((pqtype != PQ_ZERO) && (pqtype != PQ_FREE) && (pqtype != PQ_CACHE))) {
start++;
goto again;
}
}
for (i = start; i < (start + size / PAGE_SIZE); i++) {
int pqtype;
vm_page_t m = &pga[i];
pqtype = m->queue - m->pc;
if (pqtype == PQ_CACHE) {
vm_page_busy(m);
vm_page_free(m);
}
TAILQ_REMOVE(vm_page_queues[m->queue].pl, m, pageq);
(*vm_page_queues[m->queue].lcnt)--;
cnt.v_free_count--;
m->valid = VM_PAGE_BITS_ALL;
m->flags = 0;
m->dirty = 0;
m->wire_count = 0;
m->busy = 0;
m->queue = PQ_NONE;
m->object = NULL;
vm_page_wire(m);
}
/*
* We've found a contiguous chunk that meets are requirements.
* Allocate kernel VM, unfree and assign the physical pages to it and
* return kernel VM pointer.
*/
tmp_addr = addr = kmem_alloc_pageable(map, size);
if (addr == 0) {
/*
* XXX We almost never run out of kernel virtual
* space, so we don't make the allocated memory
* above available.
*/
splx(s);
return (NULL);
}
for (i = start; i < (start + size / PAGE_SIZE); i++) {
vm_page_t m = &pga[i];
vm_page_insert(m, kernel_object,
OFF_TO_IDX(tmp_addr - VM_MIN_KERNEL_ADDRESS));
pmap_kenter(tmp_addr, VM_PAGE_TO_PHYS(m));
tmp_addr += PAGE_SIZE;
}
splx(s);
return ((void *)addr);
}
return NULL;
}
void *
contigmalloc(size, type, flags, low, high, alignment, boundary)
unsigned long size; /* should be size_t here and for malloc() */
struct malloc_type *type;
int flags;
unsigned long low;
unsigned long high;
unsigned long alignment;
unsigned long boundary;
{
return contigmalloc1(size, type, flags, low, high, alignment, boundary,
kernel_map);
}
vm_offset_t
vm_page_alloc_contig(size, low, high, alignment)
vm_offset_t size;
vm_offset_t low;
vm_offset_t high;
vm_offset_t alignment;
{
return ((vm_offset_t)contigmalloc1(size, M_DEVBUF, M_NOWAIT, low, high,
alignment, 0ul, kernel_map));
}
#include "opt_ddb.h"
#ifdef DDB
#include <sys/kernel.h>
#include <ddb/ddb.h>
DB_SHOW_COMMAND(page, vm_page_print_page_info)
{
db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
}
DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
{
int i;
db_printf("PQ_FREE:");
for(i=0;i<PQ_L2_SIZE;i++) {
db_printf(" %d", *vm_page_queues[PQ_FREE + i].lcnt);
}
db_printf("\n");
db_printf("PQ_CACHE:");
for(i=0;i<PQ_L2_SIZE;i++) {
db_printf(" %d", *vm_page_queues[PQ_CACHE + i].lcnt);
}
db_printf("\n");
db_printf("PQ_ZERO:");
for(i=0;i<PQ_L2_SIZE;i++) {
db_printf(" %d", *vm_page_queues[PQ_ZERO + i].lcnt);
}
db_printf("\n");
db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
*vm_page_queues[PQ_ACTIVE].lcnt,
*vm_page_queues[PQ_INACTIVE].lcnt);
}
#endif /* DDB */