b815ff9a8f
ztest outputs a message when testing sync=always no matter what the verbosity level is. There is no point outputting this message for low verbosity levels. With this patch the message is only displayed at verbosity level 5 or above. The result is less output pollution. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #951
5856 lines
145 KiB
C
5856 lines
145 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2011 by Delphix. All rights reserved.
|
|
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
|
|
*/
|
|
|
|
/*
|
|
* The objective of this program is to provide a DMU/ZAP/SPA stress test
|
|
* that runs entirely in userland, is easy to use, and easy to extend.
|
|
*
|
|
* The overall design of the ztest program is as follows:
|
|
*
|
|
* (1) For each major functional area (e.g. adding vdevs to a pool,
|
|
* creating and destroying datasets, reading and writing objects, etc)
|
|
* we have a simple routine to test that functionality. These
|
|
* individual routines do not have to do anything "stressful".
|
|
*
|
|
* (2) We turn these simple functionality tests into a stress test by
|
|
* running them all in parallel, with as many threads as desired,
|
|
* and spread across as many datasets, objects, and vdevs as desired.
|
|
*
|
|
* (3) While all this is happening, we inject faults into the pool to
|
|
* verify that self-healing data really works.
|
|
*
|
|
* (4) Every time we open a dataset, we change its checksum and compression
|
|
* functions. Thus even individual objects vary from block to block
|
|
* in which checksum they use and whether they're compressed.
|
|
*
|
|
* (5) To verify that we never lose on-disk consistency after a crash,
|
|
* we run the entire test in a child of the main process.
|
|
* At random times, the child self-immolates with a SIGKILL.
|
|
* This is the software equivalent of pulling the power cord.
|
|
* The parent then runs the test again, using the existing
|
|
* storage pool, as many times as desired.
|
|
*
|
|
* (6) To verify that we don't have future leaks or temporal incursions,
|
|
* many of the functional tests record the transaction group number
|
|
* as part of their data. When reading old data, they verify that
|
|
* the transaction group number is less than the current, open txg.
|
|
* If you add a new test, please do this if applicable.
|
|
*
|
|
* (7) Threads are created with a reduced stack size, for sanity checking.
|
|
* Therefore, it's important not to allocate huge buffers on the stack.
|
|
*
|
|
* When run with no arguments, ztest runs for about five minutes and
|
|
* produces no output if successful. To get a little bit of information,
|
|
* specify -V. To get more information, specify -VV, and so on.
|
|
*
|
|
* To turn this into an overnight stress test, use -T to specify run time.
|
|
*
|
|
* You can ask more more vdevs [-v], datasets [-d], or threads [-t]
|
|
* to increase the pool capacity, fanout, and overall stress level.
|
|
*
|
|
* The -N(okill) option will suppress kills, so each child runs to completion.
|
|
* This can be useful when you're trying to distinguish temporal incursions
|
|
* from plain old race conditions.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/spa.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/txg.h>
|
|
#include <sys/dbuf.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/dmu_objset.h>
|
|
#include <sys/poll.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/time.h>
|
|
#include <sys/wait.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/zil.h>
|
|
#include <sys/zil_impl.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/vdev_file.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/metaslab_impl.h>
|
|
#include <sys/dsl_prop.h>
|
|
#include <sys/dsl_dataset.h>
|
|
#include <sys/dsl_scan.h>
|
|
#include <sys/zio_checksum.h>
|
|
#include <sys/refcount.h>
|
|
#include <stdio.h>
|
|
#include <stdio_ext.h>
|
|
#include <stdlib.h>
|
|
#include <unistd.h>
|
|
#include <signal.h>
|
|
#include <umem.h>
|
|
#include <dlfcn.h>
|
|
#include <ctype.h>
|
|
#include <math.h>
|
|
#include <sys/fs/zfs.h>
|
|
#include <libnvpair.h>
|
|
|
|
static char cmdname[] = "ztest";
|
|
static char *zopt_pool = cmdname;
|
|
|
|
static uint64_t zopt_vdevs = 5;
|
|
static uint64_t zopt_vdevtime;
|
|
static int zopt_ashift = SPA_MINBLOCKSHIFT;
|
|
static int zopt_mirrors = 2;
|
|
static int zopt_raidz = 4;
|
|
static int zopt_raidz_parity = 1;
|
|
static size_t zopt_vdev_size = SPA_MINDEVSIZE;
|
|
static int zopt_datasets = 7;
|
|
static int zopt_threads = 23;
|
|
static uint64_t zopt_passtime = 60; /* 60 seconds */
|
|
static uint64_t zopt_killrate = 70; /* 70% kill rate */
|
|
static int zopt_verbose = 0;
|
|
static int zopt_init = 1;
|
|
static char *zopt_dir = "/tmp";
|
|
static uint64_t zopt_time = 300; /* 5 minutes */
|
|
static uint64_t zopt_maxloops = 50; /* max loops during spa_freeze() */
|
|
|
|
#define BT_MAGIC 0x123456789abcdefULL
|
|
#define MAXFAULTS() (MAX(zs->zs_mirrors, 1) * (zopt_raidz_parity + 1) - 1)
|
|
|
|
enum ztest_io_type {
|
|
ZTEST_IO_WRITE_TAG,
|
|
ZTEST_IO_WRITE_PATTERN,
|
|
ZTEST_IO_WRITE_ZEROES,
|
|
ZTEST_IO_TRUNCATE,
|
|
ZTEST_IO_SETATTR,
|
|
ZTEST_IO_TYPES
|
|
};
|
|
|
|
typedef struct ztest_block_tag {
|
|
uint64_t bt_magic;
|
|
uint64_t bt_objset;
|
|
uint64_t bt_object;
|
|
uint64_t bt_offset;
|
|
uint64_t bt_gen;
|
|
uint64_t bt_txg;
|
|
uint64_t bt_crtxg;
|
|
} ztest_block_tag_t;
|
|
|
|
typedef struct bufwad {
|
|
uint64_t bw_index;
|
|
uint64_t bw_txg;
|
|
uint64_t bw_data;
|
|
} bufwad_t;
|
|
|
|
/*
|
|
* XXX -- fix zfs range locks to be generic so we can use them here.
|
|
*/
|
|
typedef enum {
|
|
RL_READER,
|
|
RL_WRITER,
|
|
RL_APPEND
|
|
} rl_type_t;
|
|
|
|
typedef struct rll {
|
|
void *rll_writer;
|
|
int rll_readers;
|
|
kmutex_t rll_lock;
|
|
kcondvar_t rll_cv;
|
|
} rll_t;
|
|
|
|
typedef struct rl {
|
|
uint64_t rl_object;
|
|
uint64_t rl_offset;
|
|
uint64_t rl_size;
|
|
rll_t *rl_lock;
|
|
} rl_t;
|
|
|
|
#define ZTEST_RANGE_LOCKS 64
|
|
#define ZTEST_OBJECT_LOCKS 64
|
|
|
|
/*
|
|
* Object descriptor. Used as a template for object lookup/create/remove.
|
|
*/
|
|
typedef struct ztest_od {
|
|
uint64_t od_dir;
|
|
uint64_t od_object;
|
|
dmu_object_type_t od_type;
|
|
dmu_object_type_t od_crtype;
|
|
uint64_t od_blocksize;
|
|
uint64_t od_crblocksize;
|
|
uint64_t od_gen;
|
|
uint64_t od_crgen;
|
|
char od_name[MAXNAMELEN];
|
|
} ztest_od_t;
|
|
|
|
/*
|
|
* Per-dataset state.
|
|
*/
|
|
typedef struct ztest_ds {
|
|
objset_t *zd_os;
|
|
krwlock_t zd_zilog_lock;
|
|
zilog_t *zd_zilog;
|
|
uint64_t zd_seq;
|
|
ztest_od_t *zd_od; /* debugging aid */
|
|
char zd_name[MAXNAMELEN];
|
|
kmutex_t zd_dirobj_lock;
|
|
rll_t zd_object_lock[ZTEST_OBJECT_LOCKS];
|
|
rll_t zd_range_lock[ZTEST_RANGE_LOCKS];
|
|
} ztest_ds_t;
|
|
|
|
/*
|
|
* Per-iteration state.
|
|
*/
|
|
typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
|
|
|
|
typedef struct ztest_info {
|
|
ztest_func_t *zi_func; /* test function */
|
|
uint64_t zi_iters; /* iterations per execution */
|
|
uint64_t *zi_interval; /* execute every <interval> seconds */
|
|
uint64_t zi_call_count; /* per-pass count */
|
|
uint64_t zi_call_time; /* per-pass time */
|
|
uint64_t zi_call_next; /* next time to call this function */
|
|
} ztest_info_t;
|
|
|
|
/*
|
|
* Note: these aren't static because we want dladdr() to work.
|
|
*/
|
|
ztest_func_t ztest_dmu_read_write;
|
|
ztest_func_t ztest_dmu_write_parallel;
|
|
ztest_func_t ztest_dmu_object_alloc_free;
|
|
ztest_func_t ztest_dmu_commit_callbacks;
|
|
ztest_func_t ztest_zap;
|
|
ztest_func_t ztest_zap_parallel;
|
|
ztest_func_t ztest_zil_commit;
|
|
ztest_func_t ztest_zil_remount;
|
|
ztest_func_t ztest_dmu_read_write_zcopy;
|
|
ztest_func_t ztest_dmu_objset_create_destroy;
|
|
ztest_func_t ztest_dmu_prealloc;
|
|
ztest_func_t ztest_fzap;
|
|
ztest_func_t ztest_dmu_snapshot_create_destroy;
|
|
ztest_func_t ztest_dsl_prop_get_set;
|
|
ztest_func_t ztest_spa_prop_get_set;
|
|
ztest_func_t ztest_spa_create_destroy;
|
|
ztest_func_t ztest_fault_inject;
|
|
ztest_func_t ztest_ddt_repair;
|
|
ztest_func_t ztest_dmu_snapshot_hold;
|
|
ztest_func_t ztest_spa_rename;
|
|
ztest_func_t ztest_scrub;
|
|
ztest_func_t ztest_dsl_dataset_promote_busy;
|
|
ztest_func_t ztest_vdev_attach_detach;
|
|
ztest_func_t ztest_vdev_LUN_growth;
|
|
ztest_func_t ztest_vdev_add_remove;
|
|
ztest_func_t ztest_vdev_aux_add_remove;
|
|
ztest_func_t ztest_split_pool;
|
|
ztest_func_t ztest_reguid;
|
|
|
|
uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */
|
|
uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */
|
|
uint64_t zopt_often = 1ULL * NANOSEC; /* every second */
|
|
uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */
|
|
uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */
|
|
|
|
ztest_info_t ztest_info[] = {
|
|
{ ztest_dmu_read_write, 1, &zopt_always },
|
|
{ ztest_dmu_write_parallel, 10, &zopt_always },
|
|
{ ztest_dmu_object_alloc_free, 1, &zopt_always },
|
|
{ ztest_dmu_commit_callbacks, 1, &zopt_always },
|
|
{ ztest_zap, 30, &zopt_always },
|
|
{ ztest_zap_parallel, 100, &zopt_always },
|
|
{ ztest_split_pool, 1, &zopt_always },
|
|
{ ztest_zil_commit, 1, &zopt_incessant },
|
|
{ ztest_zil_remount, 1, &zopt_sometimes },
|
|
{ ztest_dmu_read_write_zcopy, 1, &zopt_often },
|
|
{ ztest_dmu_objset_create_destroy, 1, &zopt_often },
|
|
{ ztest_dsl_prop_get_set, 1, &zopt_often },
|
|
{ ztest_spa_prop_get_set, 1, &zopt_sometimes },
|
|
#if 0
|
|
{ ztest_dmu_prealloc, 1, &zopt_sometimes },
|
|
#endif
|
|
{ ztest_fzap, 1, &zopt_sometimes },
|
|
{ ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes },
|
|
{ ztest_spa_create_destroy, 1, &zopt_sometimes },
|
|
{ ztest_fault_inject, 1, &zopt_sometimes },
|
|
{ ztest_ddt_repair, 1, &zopt_sometimes },
|
|
{ ztest_dmu_snapshot_hold, 1, &zopt_sometimes },
|
|
{ ztest_reguid, 1, &zopt_sometimes },
|
|
{ ztest_spa_rename, 1, &zopt_rarely },
|
|
{ ztest_scrub, 1, &zopt_rarely },
|
|
{ ztest_dsl_dataset_promote_busy, 1, &zopt_rarely },
|
|
{ ztest_vdev_attach_detach, 1, &zopt_rarely },
|
|
{ ztest_vdev_LUN_growth, 1, &zopt_rarely },
|
|
{ ztest_vdev_add_remove, 1, &zopt_vdevtime },
|
|
{ ztest_vdev_aux_add_remove, 1, &zopt_vdevtime },
|
|
};
|
|
|
|
#define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t))
|
|
|
|
/*
|
|
* The following struct is used to hold a list of uncalled commit callbacks.
|
|
* The callbacks are ordered by txg number.
|
|
*/
|
|
typedef struct ztest_cb_list {
|
|
kmutex_t zcl_callbacks_lock;
|
|
list_t zcl_callbacks;
|
|
} ztest_cb_list_t;
|
|
|
|
/*
|
|
* Stuff we need to share writably between parent and child.
|
|
*/
|
|
typedef struct ztest_shared {
|
|
char *zs_pool;
|
|
spa_t *zs_spa;
|
|
hrtime_t zs_proc_start;
|
|
hrtime_t zs_proc_stop;
|
|
hrtime_t zs_thread_start;
|
|
hrtime_t zs_thread_stop;
|
|
hrtime_t zs_thread_kill;
|
|
uint64_t zs_enospc_count;
|
|
uint64_t zs_vdev_next_leaf;
|
|
uint64_t zs_vdev_aux;
|
|
uint64_t zs_alloc;
|
|
uint64_t zs_space;
|
|
uint64_t zs_guid;
|
|
kmutex_t zs_vdev_lock;
|
|
krwlock_t zs_name_lock;
|
|
ztest_info_t zs_info[ZTEST_FUNCS];
|
|
uint64_t zs_splits;
|
|
uint64_t zs_mirrors;
|
|
ztest_ds_t zs_zd[];
|
|
} ztest_shared_t;
|
|
|
|
#define ID_PARALLEL -1ULL
|
|
|
|
static char ztest_dev_template[] = "%s/%s.%llua";
|
|
static char ztest_aux_template[] = "%s/%s.%s.%llu";
|
|
ztest_shared_t *ztest_shared;
|
|
uint64_t *ztest_seq;
|
|
|
|
static int ztest_random_fd;
|
|
static int ztest_dump_core = 1;
|
|
|
|
static boolean_t ztest_exiting;
|
|
|
|
/* Global commit callback list */
|
|
static ztest_cb_list_t zcl;
|
|
/* Commit cb delay */
|
|
static uint64_t zc_min_txg_delay = UINT64_MAX;
|
|
static int zc_cb_counter = 0;
|
|
|
|
/*
|
|
* Minimum number of commit callbacks that need to be registered for us to check
|
|
* whether the minimum txg delay is acceptable.
|
|
*/
|
|
#define ZTEST_COMMIT_CB_MIN_REG 100
|
|
|
|
/*
|
|
* If a number of txgs equal to this threshold have been created after a commit
|
|
* callback has been registered but not called, then we assume there is an
|
|
* implementation bug.
|
|
*/
|
|
#define ZTEST_COMMIT_CB_THRESH (TXG_CONCURRENT_STATES + 1000)
|
|
|
|
extern uint64_t metaslab_gang_bang;
|
|
extern uint64_t metaslab_df_alloc_threshold;
|
|
static uint64_t metaslab_sz;
|
|
|
|
enum ztest_object {
|
|
ZTEST_META_DNODE = 0,
|
|
ZTEST_DIROBJ,
|
|
ZTEST_OBJECTS
|
|
};
|
|
|
|
static void usage(boolean_t) __NORETURN;
|
|
|
|
/*
|
|
* These libumem hooks provide a reasonable set of defaults for the allocator's
|
|
* debugging facilities.
|
|
*/
|
|
const char *
|
|
_umem_debug_init(void)
|
|
{
|
|
return ("default,verbose"); /* $UMEM_DEBUG setting */
|
|
}
|
|
|
|
const char *
|
|
_umem_logging_init(void)
|
|
{
|
|
return ("fail,contents"); /* $UMEM_LOGGING setting */
|
|
}
|
|
|
|
#define FATAL_MSG_SZ 1024
|
|
|
|
char *fatal_msg;
|
|
|
|
static void
|
|
fatal(int do_perror, char *message, ...)
|
|
{
|
|
va_list args;
|
|
int save_errno = errno;
|
|
char *buf;
|
|
|
|
(void) fflush(stdout);
|
|
buf = umem_alloc(FATAL_MSG_SZ, UMEM_NOFAIL);
|
|
|
|
va_start(args, message);
|
|
(void) sprintf(buf, "ztest: ");
|
|
/* LINTED */
|
|
(void) vsprintf(buf + strlen(buf), message, args);
|
|
va_end(args);
|
|
if (do_perror) {
|
|
(void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
|
|
": %s", strerror(save_errno));
|
|
}
|
|
(void) fprintf(stderr, "%s\n", buf);
|
|
fatal_msg = buf; /* to ease debugging */
|
|
if (ztest_dump_core)
|
|
abort();
|
|
exit(3);
|
|
}
|
|
|
|
static int
|
|
str2shift(const char *buf)
|
|
{
|
|
const char *ends = "BKMGTPEZ";
|
|
int i;
|
|
|
|
if (buf[0] == '\0')
|
|
return (0);
|
|
for (i = 0; i < strlen(ends); i++) {
|
|
if (toupper(buf[0]) == ends[i])
|
|
break;
|
|
}
|
|
if (i == strlen(ends)) {
|
|
(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
|
|
buf);
|
|
usage(B_FALSE);
|
|
}
|
|
if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
|
|
return (10*i);
|
|
}
|
|
(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
|
|
usage(B_FALSE);
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
static uint64_t
|
|
nicenumtoull(const char *buf)
|
|
{
|
|
char *end;
|
|
uint64_t val;
|
|
|
|
val = strtoull(buf, &end, 0);
|
|
if (end == buf) {
|
|
(void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
|
|
usage(B_FALSE);
|
|
} else if (end[0] == '.') {
|
|
double fval = strtod(buf, &end);
|
|
fval *= pow(2, str2shift(end));
|
|
if (fval > UINT64_MAX) {
|
|
(void) fprintf(stderr, "ztest: value too large: %s\n",
|
|
buf);
|
|
usage(B_FALSE);
|
|
}
|
|
val = (uint64_t)fval;
|
|
} else {
|
|
int shift = str2shift(end);
|
|
if (shift >= 64 || (val << shift) >> shift != val) {
|
|
(void) fprintf(stderr, "ztest: value too large: %s\n",
|
|
buf);
|
|
usage(B_FALSE);
|
|
}
|
|
val <<= shift;
|
|
}
|
|
return (val);
|
|
}
|
|
|
|
static void
|
|
usage(boolean_t requested)
|
|
{
|
|
char nice_vdev_size[10];
|
|
char nice_gang_bang[10];
|
|
FILE *fp = requested ? stdout : stderr;
|
|
|
|
nicenum(zopt_vdev_size, nice_vdev_size);
|
|
nicenum(metaslab_gang_bang, nice_gang_bang);
|
|
|
|
(void) fprintf(fp, "Usage: %s\n"
|
|
"\t[-v vdevs (default: %llu)]\n"
|
|
"\t[-s size_of_each_vdev (default: %s)]\n"
|
|
"\t[-a alignment_shift (default: %d)] use 0 for random\n"
|
|
"\t[-m mirror_copies (default: %d)]\n"
|
|
"\t[-r raidz_disks (default: %d)]\n"
|
|
"\t[-R raidz_parity (default: %d)]\n"
|
|
"\t[-d datasets (default: %d)]\n"
|
|
"\t[-t threads (default: %d)]\n"
|
|
"\t[-g gang_block_threshold (default: %s)]\n"
|
|
"\t[-i init_count (default: %d)] initialize pool i times\n"
|
|
"\t[-k kill_percentage (default: %llu%%)]\n"
|
|
"\t[-p pool_name (default: %s)]\n"
|
|
"\t[-f dir (default: %s)] file directory for vdev files\n"
|
|
"\t[-V] verbose (use multiple times for ever more blather)\n"
|
|
"\t[-E] use existing pool instead of creating new one\n"
|
|
"\t[-T time (default: %llu sec)] total run time\n"
|
|
"\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n"
|
|
"\t[-P passtime (default: %llu sec)] time per pass\n"
|
|
"\t[-h] (print help)\n"
|
|
"",
|
|
cmdname,
|
|
(u_longlong_t)zopt_vdevs, /* -v */
|
|
nice_vdev_size, /* -s */
|
|
zopt_ashift, /* -a */
|
|
zopt_mirrors, /* -m */
|
|
zopt_raidz, /* -r */
|
|
zopt_raidz_parity, /* -R */
|
|
zopt_datasets, /* -d */
|
|
zopt_threads, /* -t */
|
|
nice_gang_bang, /* -g */
|
|
zopt_init, /* -i */
|
|
(u_longlong_t)zopt_killrate, /* -k */
|
|
zopt_pool, /* -p */
|
|
zopt_dir, /* -f */
|
|
(u_longlong_t)zopt_time, /* -T */
|
|
(u_longlong_t)zopt_maxloops, /* -F */
|
|
(u_longlong_t)zopt_passtime); /* -P */
|
|
exit(requested ? 0 : 1);
|
|
}
|
|
|
|
static void
|
|
process_options(int argc, char **argv)
|
|
{
|
|
int opt;
|
|
uint64_t value;
|
|
|
|
/* By default, test gang blocks for blocks 32K and greater */
|
|
metaslab_gang_bang = 32 << 10;
|
|
|
|
while ((opt = getopt(argc, argv,
|
|
"v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:")) != EOF) {
|
|
value = 0;
|
|
switch (opt) {
|
|
case 'v':
|
|
case 's':
|
|
case 'a':
|
|
case 'm':
|
|
case 'r':
|
|
case 'R':
|
|
case 'd':
|
|
case 't':
|
|
case 'g':
|
|
case 'i':
|
|
case 'k':
|
|
case 'T':
|
|
case 'P':
|
|
case 'F':
|
|
value = nicenumtoull(optarg);
|
|
}
|
|
switch (opt) {
|
|
case 'v':
|
|
zopt_vdevs = value;
|
|
break;
|
|
case 's':
|
|
zopt_vdev_size = MAX(SPA_MINDEVSIZE, value);
|
|
break;
|
|
case 'a':
|
|
zopt_ashift = value;
|
|
break;
|
|
case 'm':
|
|
zopt_mirrors = value;
|
|
break;
|
|
case 'r':
|
|
zopt_raidz = MAX(1, value);
|
|
break;
|
|
case 'R':
|
|
zopt_raidz_parity = MIN(MAX(value, 1), 3);
|
|
break;
|
|
case 'd':
|
|
zopt_datasets = MAX(1, value);
|
|
break;
|
|
case 't':
|
|
zopt_threads = MAX(1, value);
|
|
break;
|
|
case 'g':
|
|
metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, value);
|
|
break;
|
|
case 'i':
|
|
zopt_init = value;
|
|
break;
|
|
case 'k':
|
|
zopt_killrate = value;
|
|
break;
|
|
case 'p':
|
|
zopt_pool = strdup(optarg);
|
|
break;
|
|
case 'f':
|
|
zopt_dir = strdup(optarg);
|
|
break;
|
|
case 'V':
|
|
zopt_verbose++;
|
|
break;
|
|
case 'E':
|
|
zopt_init = 0;
|
|
break;
|
|
case 'T':
|
|
zopt_time = value;
|
|
break;
|
|
case 'P':
|
|
zopt_passtime = MAX(1, value);
|
|
break;
|
|
case 'F':
|
|
zopt_maxloops = MAX(1, value);
|
|
break;
|
|
case 'h':
|
|
usage(B_TRUE);
|
|
break;
|
|
case '?':
|
|
default:
|
|
usage(B_FALSE);
|
|
break;
|
|
}
|
|
}
|
|
|
|
zopt_raidz_parity = MIN(zopt_raidz_parity, zopt_raidz - 1);
|
|
|
|
zopt_vdevtime = (zopt_vdevs > 0 ? zopt_time * NANOSEC / zopt_vdevs :
|
|
UINT64_MAX >> 2);
|
|
}
|
|
|
|
static void
|
|
ztest_kill(ztest_shared_t *zs)
|
|
{
|
|
zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(zs->zs_spa));
|
|
zs->zs_space = metaslab_class_get_space(spa_normal_class(zs->zs_spa));
|
|
(void) kill(getpid(), SIGKILL);
|
|
}
|
|
|
|
static uint64_t
|
|
ztest_random(uint64_t range)
|
|
{
|
|
uint64_t r;
|
|
|
|
if (range == 0)
|
|
return (0);
|
|
|
|
if (read(ztest_random_fd, &r, sizeof (r)) != sizeof (r))
|
|
fatal(1, "short read from /dev/urandom");
|
|
|
|
return (r % range);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static void
|
|
ztest_record_enospc(const char *s)
|
|
{
|
|
ztest_shared->zs_enospc_count++;
|
|
}
|
|
|
|
static uint64_t
|
|
ztest_get_ashift(void)
|
|
{
|
|
if (zopt_ashift == 0)
|
|
return (SPA_MINBLOCKSHIFT + ztest_random(3));
|
|
return (zopt_ashift);
|
|
}
|
|
|
|
static nvlist_t *
|
|
make_vdev_file(char *path, char *aux, size_t size, uint64_t ashift)
|
|
{
|
|
char *pathbuf;
|
|
uint64_t vdev;
|
|
nvlist_t *file;
|
|
|
|
pathbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
|
|
|
|
if (ashift == 0)
|
|
ashift = ztest_get_ashift();
|
|
|
|
if (path == NULL) {
|
|
path = pathbuf;
|
|
|
|
if (aux != NULL) {
|
|
vdev = ztest_shared->zs_vdev_aux;
|
|
(void) sprintf(path, ztest_aux_template,
|
|
zopt_dir, zopt_pool, aux, vdev);
|
|
} else {
|
|
vdev = ztest_shared->zs_vdev_next_leaf++;
|
|
(void) sprintf(path, ztest_dev_template,
|
|
zopt_dir, zopt_pool, vdev);
|
|
}
|
|
}
|
|
|
|
if (size != 0) {
|
|
int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
|
|
if (fd == -1)
|
|
fatal(1, "can't open %s", path);
|
|
if (ftruncate(fd, size) != 0)
|
|
fatal(1, "can't ftruncate %s", path);
|
|
(void) close(fd);
|
|
}
|
|
|
|
VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0);
|
|
VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0);
|
|
VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0);
|
|
VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0);
|
|
umem_free(pathbuf, MAXPATHLEN);
|
|
|
|
return (file);
|
|
}
|
|
|
|
static nvlist_t *
|
|
make_vdev_raidz(char *path, char *aux, size_t size, uint64_t ashift, int r)
|
|
{
|
|
nvlist_t *raidz, **child;
|
|
int c;
|
|
|
|
if (r < 2)
|
|
return (make_vdev_file(path, aux, size, ashift));
|
|
child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
|
|
|
|
for (c = 0; c < r; c++)
|
|
child[c] = make_vdev_file(path, aux, size, ashift);
|
|
|
|
VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0);
|
|
VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE,
|
|
VDEV_TYPE_RAIDZ) == 0);
|
|
VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY,
|
|
zopt_raidz_parity) == 0);
|
|
VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN,
|
|
child, r) == 0);
|
|
|
|
for (c = 0; c < r; c++)
|
|
nvlist_free(child[c]);
|
|
|
|
umem_free(child, r * sizeof (nvlist_t *));
|
|
|
|
return (raidz);
|
|
}
|
|
|
|
static nvlist_t *
|
|
make_vdev_mirror(char *path, char *aux, size_t size, uint64_t ashift,
|
|
int r, int m)
|
|
{
|
|
nvlist_t *mirror, **child;
|
|
int c;
|
|
|
|
if (m < 1)
|
|
return (make_vdev_raidz(path, aux, size, ashift, r));
|
|
|
|
child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
|
|
|
|
for (c = 0; c < m; c++)
|
|
child[c] = make_vdev_raidz(path, aux, size, ashift, r);
|
|
|
|
VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0);
|
|
VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE,
|
|
VDEV_TYPE_MIRROR) == 0);
|
|
VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
|
|
child, m) == 0);
|
|
|
|
for (c = 0; c < m; c++)
|
|
nvlist_free(child[c]);
|
|
|
|
umem_free(child, m * sizeof (nvlist_t *));
|
|
|
|
return (mirror);
|
|
}
|
|
|
|
static nvlist_t *
|
|
make_vdev_root(char *path, char *aux, size_t size, uint64_t ashift,
|
|
int log, int r, int m, int t)
|
|
{
|
|
nvlist_t *root, **child;
|
|
int c;
|
|
|
|
ASSERT(t > 0);
|
|
|
|
child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
|
|
|
|
for (c = 0; c < t; c++) {
|
|
child[c] = make_vdev_mirror(path, aux, size, ashift, r, m);
|
|
VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
|
|
log) == 0);
|
|
}
|
|
|
|
VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0);
|
|
VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0);
|
|
VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
|
|
child, t) == 0);
|
|
|
|
for (c = 0; c < t; c++)
|
|
nvlist_free(child[c]);
|
|
|
|
umem_free(child, t * sizeof (nvlist_t *));
|
|
|
|
return (root);
|
|
}
|
|
|
|
static int
|
|
ztest_random_blocksize(void)
|
|
{
|
|
return (1 << (SPA_MINBLOCKSHIFT +
|
|
ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1)));
|
|
}
|
|
|
|
static int
|
|
ztest_random_ibshift(void)
|
|
{
|
|
return (DN_MIN_INDBLKSHIFT +
|
|
ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
|
|
}
|
|
|
|
static uint64_t
|
|
ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
|
|
{
|
|
uint64_t top;
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
vdev_t *tvd;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
|
|
|
|
do {
|
|
top = ztest_random(rvd->vdev_children);
|
|
tvd = rvd->vdev_child[top];
|
|
} while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) ||
|
|
tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
|
|
|
|
return (top);
|
|
}
|
|
|
|
static uint64_t
|
|
ztest_random_dsl_prop(zfs_prop_t prop)
|
|
{
|
|
uint64_t value;
|
|
|
|
do {
|
|
value = zfs_prop_random_value(prop, ztest_random(-1ULL));
|
|
} while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
|
|
|
|
return (value);
|
|
}
|
|
|
|
static int
|
|
ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
|
|
boolean_t inherit)
|
|
{
|
|
const char *propname = zfs_prop_to_name(prop);
|
|
const char *valname;
|
|
char *setpoint;
|
|
uint64_t curval;
|
|
int error;
|
|
|
|
error = dsl_prop_set(osname, propname,
|
|
(inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL),
|
|
sizeof (value), 1, &value);
|
|
|
|
if (error == ENOSPC) {
|
|
ztest_record_enospc(FTAG);
|
|
return (error);
|
|
}
|
|
ASSERT3U(error, ==, 0);
|
|
|
|
setpoint = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
|
|
VERIFY3U(dsl_prop_get(osname, propname, sizeof (curval),
|
|
1, &curval, setpoint), ==, 0);
|
|
|
|
if (zopt_verbose >= 6) {
|
|
VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0);
|
|
(void) printf("%s %s = %s at '%s'\n",
|
|
osname, propname, valname, setpoint);
|
|
}
|
|
umem_free(setpoint, MAXPATHLEN);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
ztest_spa_prop_set_uint64(ztest_shared_t *zs, zpool_prop_t prop, uint64_t value)
|
|
{
|
|
spa_t *spa = zs->zs_spa;
|
|
nvlist_t *props = NULL;
|
|
int error;
|
|
|
|
VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
|
|
VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0);
|
|
|
|
error = spa_prop_set(spa, props);
|
|
|
|
nvlist_free(props);
|
|
|
|
if (error == ENOSPC) {
|
|
ztest_record_enospc(FTAG);
|
|
return (error);
|
|
}
|
|
ASSERT3U(error, ==, 0);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
ztest_rll_init(rll_t *rll)
|
|
{
|
|
rll->rll_writer = NULL;
|
|
rll->rll_readers = 0;
|
|
mutex_init(&rll->rll_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
cv_init(&rll->rll_cv, NULL, CV_DEFAULT, NULL);
|
|
}
|
|
|
|
static void
|
|
ztest_rll_destroy(rll_t *rll)
|
|
{
|
|
ASSERT(rll->rll_writer == NULL);
|
|
ASSERT(rll->rll_readers == 0);
|
|
mutex_destroy(&rll->rll_lock);
|
|
cv_destroy(&rll->rll_cv);
|
|
}
|
|
|
|
static void
|
|
ztest_rll_lock(rll_t *rll, rl_type_t type)
|
|
{
|
|
mutex_enter(&rll->rll_lock);
|
|
|
|
if (type == RL_READER) {
|
|
while (rll->rll_writer != NULL)
|
|
(void) cv_wait(&rll->rll_cv, &rll->rll_lock);
|
|
rll->rll_readers++;
|
|
} else {
|
|
while (rll->rll_writer != NULL || rll->rll_readers)
|
|
(void) cv_wait(&rll->rll_cv, &rll->rll_lock);
|
|
rll->rll_writer = curthread;
|
|
}
|
|
|
|
mutex_exit(&rll->rll_lock);
|
|
}
|
|
|
|
static void
|
|
ztest_rll_unlock(rll_t *rll)
|
|
{
|
|
mutex_enter(&rll->rll_lock);
|
|
|
|
if (rll->rll_writer) {
|
|
ASSERT(rll->rll_readers == 0);
|
|
rll->rll_writer = NULL;
|
|
} else {
|
|
ASSERT(rll->rll_readers != 0);
|
|
ASSERT(rll->rll_writer == NULL);
|
|
rll->rll_readers--;
|
|
}
|
|
|
|
if (rll->rll_writer == NULL && rll->rll_readers == 0)
|
|
cv_broadcast(&rll->rll_cv);
|
|
|
|
mutex_exit(&rll->rll_lock);
|
|
}
|
|
|
|
static void
|
|
ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
|
|
{
|
|
rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
|
|
|
|
ztest_rll_lock(rll, type);
|
|
}
|
|
|
|
static void
|
|
ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
|
|
{
|
|
rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
|
|
|
|
ztest_rll_unlock(rll);
|
|
}
|
|
|
|
static rl_t *
|
|
ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
|
|
uint64_t size, rl_type_t type)
|
|
{
|
|
uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
|
|
rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
|
|
rl_t *rl;
|
|
|
|
rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
|
|
rl->rl_object = object;
|
|
rl->rl_offset = offset;
|
|
rl->rl_size = size;
|
|
rl->rl_lock = rll;
|
|
|
|
ztest_rll_lock(rll, type);
|
|
|
|
return (rl);
|
|
}
|
|
|
|
static void
|
|
ztest_range_unlock(rl_t *rl)
|
|
{
|
|
rll_t *rll = rl->rl_lock;
|
|
|
|
ztest_rll_unlock(rll);
|
|
|
|
umem_free(rl, sizeof (*rl));
|
|
}
|
|
|
|
static void
|
|
ztest_zd_init(ztest_ds_t *zd, objset_t *os)
|
|
{
|
|
zd->zd_os = os;
|
|
zd->zd_zilog = dmu_objset_zil(os);
|
|
zd->zd_seq = 0;
|
|
dmu_objset_name(os, zd->zd_name);
|
|
int l;
|
|
|
|
rw_init(&zd->zd_zilog_lock, NULL, RW_DEFAULT, NULL);
|
|
mutex_init(&zd->zd_dirobj_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
|
|
for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
|
|
ztest_rll_init(&zd->zd_object_lock[l]);
|
|
|
|
for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
|
|
ztest_rll_init(&zd->zd_range_lock[l]);
|
|
}
|
|
|
|
static void
|
|
ztest_zd_fini(ztest_ds_t *zd)
|
|
{
|
|
int l;
|
|
|
|
mutex_destroy(&zd->zd_dirobj_lock);
|
|
rw_destroy(&zd->zd_zilog_lock);
|
|
|
|
for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
|
|
ztest_rll_destroy(&zd->zd_object_lock[l]);
|
|
|
|
for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
|
|
ztest_rll_destroy(&zd->zd_range_lock[l]);
|
|
}
|
|
|
|
#define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
|
|
|
|
static uint64_t
|
|
ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
|
|
{
|
|
uint64_t txg;
|
|
int error;
|
|
|
|
/*
|
|
* Attempt to assign tx to some transaction group.
|
|
*/
|
|
error = dmu_tx_assign(tx, txg_how);
|
|
if (error) {
|
|
if (error == ERESTART) {
|
|
ASSERT(txg_how == TXG_NOWAIT);
|
|
dmu_tx_wait(tx);
|
|
} else {
|
|
ASSERT3U(error, ==, ENOSPC);
|
|
ztest_record_enospc(tag);
|
|
}
|
|
dmu_tx_abort(tx);
|
|
return (0);
|
|
}
|
|
txg = dmu_tx_get_txg(tx);
|
|
ASSERT(txg != 0);
|
|
return (txg);
|
|
}
|
|
|
|
static void
|
|
ztest_pattern_set(void *buf, uint64_t size, uint64_t value)
|
|
{
|
|
uint64_t *ip = buf;
|
|
uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
|
|
|
|
while (ip < ip_end)
|
|
*ip++ = value;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
static boolean_t
|
|
ztest_pattern_match(void *buf, uint64_t size, uint64_t value)
|
|
{
|
|
uint64_t *ip = buf;
|
|
uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
|
|
uint64_t diff = 0;
|
|
|
|
while (ip < ip_end)
|
|
diff |= (value - *ip++);
|
|
|
|
return (diff == 0);
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
|
|
uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
|
|
{
|
|
bt->bt_magic = BT_MAGIC;
|
|
bt->bt_objset = dmu_objset_id(os);
|
|
bt->bt_object = object;
|
|
bt->bt_offset = offset;
|
|
bt->bt_gen = gen;
|
|
bt->bt_txg = txg;
|
|
bt->bt_crtxg = crtxg;
|
|
}
|
|
|
|
static void
|
|
ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
|
|
uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
|
|
{
|
|
ASSERT(bt->bt_magic == BT_MAGIC);
|
|
ASSERT(bt->bt_objset == dmu_objset_id(os));
|
|
ASSERT(bt->bt_object == object);
|
|
ASSERT(bt->bt_offset == offset);
|
|
ASSERT(bt->bt_gen <= gen);
|
|
ASSERT(bt->bt_txg <= txg);
|
|
ASSERT(bt->bt_crtxg == crtxg);
|
|
}
|
|
|
|
static ztest_block_tag_t *
|
|
ztest_bt_bonus(dmu_buf_t *db)
|
|
{
|
|
dmu_object_info_t doi;
|
|
ztest_block_tag_t *bt;
|
|
|
|
dmu_object_info_from_db(db, &doi);
|
|
ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
|
|
ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
|
|
bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
|
|
|
|
return (bt);
|
|
}
|
|
|
|
/*
|
|
* ZIL logging ops
|
|
*/
|
|
|
|
#define lrz_type lr_mode
|
|
#define lrz_blocksize lr_uid
|
|
#define lrz_ibshift lr_gid
|
|
#define lrz_bonustype lr_rdev
|
|
#define lrz_bonuslen lr_crtime[1]
|
|
|
|
static void
|
|
ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
|
|
{
|
|
char *name = (void *)(lr + 1); /* name follows lr */
|
|
size_t namesize = strlen(name) + 1;
|
|
itx_t *itx;
|
|
|
|
if (zil_replaying(zd->zd_zilog, tx))
|
|
return;
|
|
|
|
itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
|
|
bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
|
|
sizeof (*lr) + namesize - sizeof (lr_t));
|
|
|
|
zil_itx_assign(zd->zd_zilog, itx, tx);
|
|
}
|
|
|
|
static void
|
|
ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
|
|
{
|
|
char *name = (void *)(lr + 1); /* name follows lr */
|
|
size_t namesize = strlen(name) + 1;
|
|
itx_t *itx;
|
|
|
|
if (zil_replaying(zd->zd_zilog, tx))
|
|
return;
|
|
|
|
itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
|
|
bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
|
|
sizeof (*lr) + namesize - sizeof (lr_t));
|
|
|
|
itx->itx_oid = object;
|
|
zil_itx_assign(zd->zd_zilog, itx, tx);
|
|
}
|
|
|
|
static void
|
|
ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
|
|
{
|
|
itx_t *itx;
|
|
itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
|
|
|
|
if (zil_replaying(zd->zd_zilog, tx))
|
|
return;
|
|
|
|
if (lr->lr_length > ZIL_MAX_LOG_DATA)
|
|
write_state = WR_INDIRECT;
|
|
|
|
itx = zil_itx_create(TX_WRITE,
|
|
sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
|
|
|
|
if (write_state == WR_COPIED &&
|
|
dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
|
|
((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
|
|
zil_itx_destroy(itx);
|
|
itx = zil_itx_create(TX_WRITE, sizeof (*lr));
|
|
write_state = WR_NEED_COPY;
|
|
}
|
|
itx->itx_private = zd;
|
|
itx->itx_wr_state = write_state;
|
|
itx->itx_sync = (ztest_random(8) == 0);
|
|
itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0);
|
|
|
|
bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
|
|
sizeof (*lr) - sizeof (lr_t));
|
|
|
|
zil_itx_assign(zd->zd_zilog, itx, tx);
|
|
}
|
|
|
|
static void
|
|
ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
|
|
{
|
|
itx_t *itx;
|
|
|
|
if (zil_replaying(zd->zd_zilog, tx))
|
|
return;
|
|
|
|
itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
|
|
bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
|
|
sizeof (*lr) - sizeof (lr_t));
|
|
|
|
itx->itx_sync = B_FALSE;
|
|
zil_itx_assign(zd->zd_zilog, itx, tx);
|
|
}
|
|
|
|
static void
|
|
ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
|
|
{
|
|
itx_t *itx;
|
|
|
|
if (zil_replaying(zd->zd_zilog, tx))
|
|
return;
|
|
|
|
itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
|
|
bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
|
|
sizeof (*lr) - sizeof (lr_t));
|
|
|
|
itx->itx_sync = B_FALSE;
|
|
zil_itx_assign(zd->zd_zilog, itx, tx);
|
|
}
|
|
|
|
/*
|
|
* ZIL replay ops
|
|
*/
|
|
static int
|
|
ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap)
|
|
{
|
|
char *name = (void *)(lr + 1); /* name follows lr */
|
|
objset_t *os = zd->zd_os;
|
|
ztest_block_tag_t *bbt;
|
|
dmu_buf_t *db;
|
|
dmu_tx_t *tx;
|
|
uint64_t txg;
|
|
int error = 0;
|
|
|
|
if (byteswap)
|
|
byteswap_uint64_array(lr, sizeof (*lr));
|
|
|
|
ASSERT(lr->lr_doid == ZTEST_DIROBJ);
|
|
ASSERT(name[0] != '\0');
|
|
|
|
tx = dmu_tx_create(os);
|
|
|
|
dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
|
|
|
|
if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
|
|
dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
|
|
} else {
|
|
dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
|
|
}
|
|
|
|
txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
|
|
if (txg == 0)
|
|
return (ENOSPC);
|
|
|
|
ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid);
|
|
|
|
if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
|
|
if (lr->lr_foid == 0) {
|
|
lr->lr_foid = zap_create(os,
|
|
lr->lrz_type, lr->lrz_bonustype,
|
|
lr->lrz_bonuslen, tx);
|
|
} else {
|
|
error = zap_create_claim(os, lr->lr_foid,
|
|
lr->lrz_type, lr->lrz_bonustype,
|
|
lr->lrz_bonuslen, tx);
|
|
}
|
|
} else {
|
|
if (lr->lr_foid == 0) {
|
|
lr->lr_foid = dmu_object_alloc(os,
|
|
lr->lrz_type, 0, lr->lrz_bonustype,
|
|
lr->lrz_bonuslen, tx);
|
|
} else {
|
|
error = dmu_object_claim(os, lr->lr_foid,
|
|
lr->lrz_type, 0, lr->lrz_bonustype,
|
|
lr->lrz_bonuslen, tx);
|
|
}
|
|
}
|
|
|
|
if (error) {
|
|
ASSERT3U(error, ==, EEXIST);
|
|
ASSERT(zd->zd_zilog->zl_replay);
|
|
dmu_tx_commit(tx);
|
|
return (error);
|
|
}
|
|
|
|
ASSERT(lr->lr_foid != 0);
|
|
|
|
if (lr->lrz_type != DMU_OT_ZAP_OTHER)
|
|
VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid,
|
|
lr->lrz_blocksize, lr->lrz_ibshift, tx));
|
|
|
|
VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
|
|
bbt = ztest_bt_bonus(db);
|
|
dmu_buf_will_dirty(db, tx);
|
|
ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg);
|
|
dmu_buf_rele(db, FTAG);
|
|
|
|
VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
|
|
&lr->lr_foid, tx));
|
|
|
|
(void) ztest_log_create(zd, tx, lr);
|
|
|
|
dmu_tx_commit(tx);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap)
|
|
{
|
|
char *name = (void *)(lr + 1); /* name follows lr */
|
|
objset_t *os = zd->zd_os;
|
|
dmu_object_info_t doi;
|
|
dmu_tx_t *tx;
|
|
uint64_t object, txg;
|
|
|
|
if (byteswap)
|
|
byteswap_uint64_array(lr, sizeof (*lr));
|
|
|
|
ASSERT(lr->lr_doid == ZTEST_DIROBJ);
|
|
ASSERT(name[0] != '\0');
|
|
|
|
VERIFY3U(0, ==,
|
|
zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
|
|
ASSERT(object != 0);
|
|
|
|
ztest_object_lock(zd, object, RL_WRITER);
|
|
|
|
VERIFY3U(0, ==, dmu_object_info(os, object, &doi));
|
|
|
|
tx = dmu_tx_create(os);
|
|
|
|
dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
|
|
dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
|
|
|
|
txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
|
|
if (txg == 0) {
|
|
ztest_object_unlock(zd, object);
|
|
return (ENOSPC);
|
|
}
|
|
|
|
if (doi.doi_type == DMU_OT_ZAP_OTHER) {
|
|
VERIFY3U(0, ==, zap_destroy(os, object, tx));
|
|
} else {
|
|
VERIFY3U(0, ==, dmu_object_free(os, object, tx));
|
|
}
|
|
|
|
VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx));
|
|
|
|
(void) ztest_log_remove(zd, tx, lr, object);
|
|
|
|
dmu_tx_commit(tx);
|
|
|
|
ztest_object_unlock(zd, object);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap)
|
|
{
|
|
objset_t *os = zd->zd_os;
|
|
void *data = lr + 1; /* data follows lr */
|
|
uint64_t offset, length;
|
|
ztest_block_tag_t *bt = data;
|
|
ztest_block_tag_t *bbt;
|
|
uint64_t gen, txg, lrtxg, crtxg;
|
|
dmu_object_info_t doi;
|
|
dmu_tx_t *tx;
|
|
dmu_buf_t *db;
|
|
arc_buf_t *abuf = NULL;
|
|
rl_t *rl;
|
|
|
|
if (byteswap)
|
|
byteswap_uint64_array(lr, sizeof (*lr));
|
|
|
|
offset = lr->lr_offset;
|
|
length = lr->lr_length;
|
|
|
|
/* If it's a dmu_sync() block, write the whole block */
|
|
if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
|
|
uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
|
|
if (length < blocksize) {
|
|
offset -= offset % blocksize;
|
|
length = blocksize;
|
|
}
|
|
}
|
|
|
|
if (bt->bt_magic == BSWAP_64(BT_MAGIC))
|
|
byteswap_uint64_array(bt, sizeof (*bt));
|
|
|
|
if (bt->bt_magic != BT_MAGIC)
|
|
bt = NULL;
|
|
|
|
ztest_object_lock(zd, lr->lr_foid, RL_READER);
|
|
rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);
|
|
|
|
VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
|
|
|
|
dmu_object_info_from_db(db, &doi);
|
|
|
|
bbt = ztest_bt_bonus(db);
|
|
ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
|
|
gen = bbt->bt_gen;
|
|
crtxg = bbt->bt_crtxg;
|
|
lrtxg = lr->lr_common.lrc_txg;
|
|
|
|
tx = dmu_tx_create(os);
|
|
|
|
dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
|
|
|
|
if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
|
|
P2PHASE(offset, length) == 0)
|
|
abuf = dmu_request_arcbuf(db, length);
|
|
|
|
txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
|
|
if (txg == 0) {
|
|
if (abuf != NULL)
|
|
dmu_return_arcbuf(abuf);
|
|
dmu_buf_rele(db, FTAG);
|
|
ztest_range_unlock(rl);
|
|
ztest_object_unlock(zd, lr->lr_foid);
|
|
return (ENOSPC);
|
|
}
|
|
|
|
if (bt != NULL) {
|
|
/*
|
|
* Usually, verify the old data before writing new data --
|
|
* but not always, because we also want to verify correct
|
|
* behavior when the data was not recently read into cache.
|
|
*/
|
|
ASSERT(offset % doi.doi_data_block_size == 0);
|
|
if (ztest_random(4) != 0) {
|
|
int prefetch = ztest_random(2) ?
|
|
DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
|
|
ztest_block_tag_t rbt;
|
|
|
|
VERIFY(dmu_read(os, lr->lr_foid, offset,
|
|
sizeof (rbt), &rbt, prefetch) == 0);
|
|
if (rbt.bt_magic == BT_MAGIC) {
|
|
ztest_bt_verify(&rbt, os, lr->lr_foid,
|
|
offset, gen, txg, crtxg);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Writes can appear to be newer than the bonus buffer because
|
|
* the ztest_get_data() callback does a dmu_read() of the
|
|
* open-context data, which may be different than the data
|
|
* as it was when the write was generated.
|
|
*/
|
|
if (zd->zd_zilog->zl_replay) {
|
|
ztest_bt_verify(bt, os, lr->lr_foid, offset,
|
|
MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
|
|
bt->bt_crtxg);
|
|
}
|
|
|
|
/*
|
|
* Set the bt's gen/txg to the bonus buffer's gen/txg
|
|
* so that all of the usual ASSERTs will work.
|
|
*/
|
|
ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg);
|
|
}
|
|
|
|
if (abuf == NULL) {
|
|
dmu_write(os, lr->lr_foid, offset, length, data, tx);
|
|
} else {
|
|
bcopy(data, abuf->b_data, length);
|
|
dmu_assign_arcbuf(db, offset, abuf, tx);
|
|
}
|
|
|
|
(void) ztest_log_write(zd, tx, lr);
|
|
|
|
dmu_buf_rele(db, FTAG);
|
|
|
|
dmu_tx_commit(tx);
|
|
|
|
ztest_range_unlock(rl);
|
|
ztest_object_unlock(zd, lr->lr_foid);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap)
|
|
{
|
|
objset_t *os = zd->zd_os;
|
|
dmu_tx_t *tx;
|
|
uint64_t txg;
|
|
rl_t *rl;
|
|
|
|
if (byteswap)
|
|
byteswap_uint64_array(lr, sizeof (*lr));
|
|
|
|
ztest_object_lock(zd, lr->lr_foid, RL_READER);
|
|
rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
|
|
RL_WRITER);
|
|
|
|
tx = dmu_tx_create(os);
|
|
|
|
dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
|
|
|
|
txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
|
|
if (txg == 0) {
|
|
ztest_range_unlock(rl);
|
|
ztest_object_unlock(zd, lr->lr_foid);
|
|
return (ENOSPC);
|
|
}
|
|
|
|
VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
|
|
lr->lr_length, tx) == 0);
|
|
|
|
(void) ztest_log_truncate(zd, tx, lr);
|
|
|
|
dmu_tx_commit(tx);
|
|
|
|
ztest_range_unlock(rl);
|
|
ztest_object_unlock(zd, lr->lr_foid);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap)
|
|
{
|
|
objset_t *os = zd->zd_os;
|
|
dmu_tx_t *tx;
|
|
dmu_buf_t *db;
|
|
ztest_block_tag_t *bbt;
|
|
uint64_t txg, lrtxg, crtxg;
|
|
|
|
if (byteswap)
|
|
byteswap_uint64_array(lr, sizeof (*lr));
|
|
|
|
ztest_object_lock(zd, lr->lr_foid, RL_WRITER);
|
|
|
|
VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
|
|
|
|
tx = dmu_tx_create(os);
|
|
dmu_tx_hold_bonus(tx, lr->lr_foid);
|
|
|
|
txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
|
|
if (txg == 0) {
|
|
dmu_buf_rele(db, FTAG);
|
|
ztest_object_unlock(zd, lr->lr_foid);
|
|
return (ENOSPC);
|
|
}
|
|
|
|
bbt = ztest_bt_bonus(db);
|
|
ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
|
|
crtxg = bbt->bt_crtxg;
|
|
lrtxg = lr->lr_common.lrc_txg;
|
|
|
|
if (zd->zd_zilog->zl_replay) {
|
|
ASSERT(lr->lr_size != 0);
|
|
ASSERT(lr->lr_mode != 0);
|
|
ASSERT(lrtxg != 0);
|
|
} else {
|
|
/*
|
|
* Randomly change the size and increment the generation.
|
|
*/
|
|
lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
|
|
sizeof (*bbt);
|
|
lr->lr_mode = bbt->bt_gen + 1;
|
|
ASSERT(lrtxg == 0);
|
|
}
|
|
|
|
/*
|
|
* Verify that the current bonus buffer is not newer than our txg.
|
|
*/
|
|
ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode,
|
|
MAX(txg, lrtxg), crtxg);
|
|
|
|
dmu_buf_will_dirty(db, tx);
|
|
|
|
ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
|
|
ASSERT3U(lr->lr_size, <=, db->db_size);
|
|
VERIFY3U(dmu_set_bonus(db, lr->lr_size, tx), ==, 0);
|
|
bbt = ztest_bt_bonus(db);
|
|
|
|
ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg);
|
|
|
|
dmu_buf_rele(db, FTAG);
|
|
|
|
(void) ztest_log_setattr(zd, tx, lr);
|
|
|
|
dmu_tx_commit(tx);
|
|
|
|
ztest_object_unlock(zd, lr->lr_foid);
|
|
|
|
return (0);
|
|
}
|
|
|
|
zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
|
|
NULL, /* 0 no such transaction type */
|
|
(zil_replay_func_t *)ztest_replay_create, /* TX_CREATE */
|
|
NULL, /* TX_MKDIR */
|
|
NULL, /* TX_MKXATTR */
|
|
NULL, /* TX_SYMLINK */
|
|
(zil_replay_func_t *)ztest_replay_remove, /* TX_REMOVE */
|
|
NULL, /* TX_RMDIR */
|
|
NULL, /* TX_LINK */
|
|
NULL, /* TX_RENAME */
|
|
(zil_replay_func_t *)ztest_replay_write, /* TX_WRITE */
|
|
(zil_replay_func_t *)ztest_replay_truncate, /* TX_TRUNCATE */
|
|
(zil_replay_func_t *)ztest_replay_setattr, /* TX_SETATTR */
|
|
NULL, /* TX_ACL */
|
|
NULL, /* TX_CREATE_ACL */
|
|
NULL, /* TX_CREATE_ATTR */
|
|
NULL, /* TX_CREATE_ACL_ATTR */
|
|
NULL, /* TX_MKDIR_ACL */
|
|
NULL, /* TX_MKDIR_ATTR */
|
|
NULL, /* TX_MKDIR_ACL_ATTR */
|
|
NULL, /* TX_WRITE2 */
|
|
};
|
|
|
|
/*
|
|
* ZIL get_data callbacks
|
|
*/
|
|
|
|
static void
|
|
ztest_get_done(zgd_t *zgd, int error)
|
|
{
|
|
ztest_ds_t *zd = zgd->zgd_private;
|
|
uint64_t object = zgd->zgd_rl->rl_object;
|
|
|
|
if (zgd->zgd_db)
|
|
dmu_buf_rele(zgd->zgd_db, zgd);
|
|
|
|
ztest_range_unlock(zgd->zgd_rl);
|
|
ztest_object_unlock(zd, object);
|
|
|
|
if (error == 0 && zgd->zgd_bp)
|
|
zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
|
|
|
|
umem_free(zgd, sizeof (*zgd));
|
|
}
|
|
|
|
static int
|
|
ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
|
|
{
|
|
ztest_ds_t *zd = arg;
|
|
objset_t *os = zd->zd_os;
|
|
uint64_t object = lr->lr_foid;
|
|
uint64_t offset = lr->lr_offset;
|
|
uint64_t size = lr->lr_length;
|
|
blkptr_t *bp = &lr->lr_blkptr;
|
|
uint64_t txg = lr->lr_common.lrc_txg;
|
|
uint64_t crtxg;
|
|
dmu_object_info_t doi;
|
|
dmu_buf_t *db;
|
|
zgd_t *zgd;
|
|
int error;
|
|
|
|
ztest_object_lock(zd, object, RL_READER);
|
|
error = dmu_bonus_hold(os, object, FTAG, &db);
|
|
if (error) {
|
|
ztest_object_unlock(zd, object);
|
|
return (error);
|
|
}
|
|
|
|
crtxg = ztest_bt_bonus(db)->bt_crtxg;
|
|
|
|
if (crtxg == 0 || crtxg > txg) {
|
|
dmu_buf_rele(db, FTAG);
|
|
ztest_object_unlock(zd, object);
|
|
return (ENOENT);
|
|
}
|
|
|
|
dmu_object_info_from_db(db, &doi);
|
|
dmu_buf_rele(db, FTAG);
|
|
db = NULL;
|
|
|
|
zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
|
|
zgd->zgd_zilog = zd->zd_zilog;
|
|
zgd->zgd_private = zd;
|
|
|
|
if (buf != NULL) { /* immediate write */
|
|
zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
|
|
RL_READER);
|
|
|
|
error = dmu_read(os, object, offset, size, buf,
|
|
DMU_READ_NO_PREFETCH);
|
|
ASSERT(error == 0);
|
|
} else {
|
|
size = doi.doi_data_block_size;
|
|
if (ISP2(size)) {
|
|
offset = P2ALIGN(offset, size);
|
|
} else {
|
|
ASSERT(offset < size);
|
|
offset = 0;
|
|
}
|
|
|
|
zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
|
|
RL_READER);
|
|
|
|
error = dmu_buf_hold(os, object, offset, zgd, &db,
|
|
DMU_READ_NO_PREFETCH);
|
|
|
|
if (error == 0) {
|
|
zgd->zgd_db = db;
|
|
zgd->zgd_bp = bp;
|
|
|
|
ASSERT(db->db_offset == offset);
|
|
ASSERT(db->db_size == size);
|
|
|
|
error = dmu_sync(zio, lr->lr_common.lrc_txg,
|
|
ztest_get_done, zgd);
|
|
|
|
if (error == 0)
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
ztest_get_done(zgd, error);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void *
|
|
ztest_lr_alloc(size_t lrsize, char *name)
|
|
{
|
|
char *lr;
|
|
size_t namesize = name ? strlen(name) + 1 : 0;
|
|
|
|
lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
|
|
|
|
if (name)
|
|
bcopy(name, lr + lrsize, namesize);
|
|
|
|
return (lr);
|
|
}
|
|
|
|
void
|
|
ztest_lr_free(void *lr, size_t lrsize, char *name)
|
|
{
|
|
size_t namesize = name ? strlen(name) + 1 : 0;
|
|
|
|
umem_free(lr, lrsize + namesize);
|
|
}
|
|
|
|
/*
|
|
* Lookup a bunch of objects. Returns the number of objects not found.
|
|
*/
|
|
static int
|
|
ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
|
|
{
|
|
int missing = 0;
|
|
int error;
|
|
int i;
|
|
|
|
ASSERT(mutex_held(&zd->zd_dirobj_lock));
|
|
|
|
for (i = 0; i < count; i++, od++) {
|
|
od->od_object = 0;
|
|
error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
|
|
sizeof (uint64_t), 1, &od->od_object);
|
|
if (error) {
|
|
ASSERT(error == ENOENT);
|
|
ASSERT(od->od_object == 0);
|
|
missing++;
|
|
} else {
|
|
dmu_buf_t *db;
|
|
ztest_block_tag_t *bbt;
|
|
dmu_object_info_t doi;
|
|
|
|
ASSERT(od->od_object != 0);
|
|
ASSERT(missing == 0); /* there should be no gaps */
|
|
|
|
ztest_object_lock(zd, od->od_object, RL_READER);
|
|
VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os,
|
|
od->od_object, FTAG, &db));
|
|
dmu_object_info_from_db(db, &doi);
|
|
bbt = ztest_bt_bonus(db);
|
|
ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
|
|
od->od_type = doi.doi_type;
|
|
od->od_blocksize = doi.doi_data_block_size;
|
|
od->od_gen = bbt->bt_gen;
|
|
dmu_buf_rele(db, FTAG);
|
|
ztest_object_unlock(zd, od->od_object);
|
|
}
|
|
}
|
|
|
|
return (missing);
|
|
}
|
|
|
|
static int
|
|
ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
|
|
{
|
|
int missing = 0;
|
|
int i;
|
|
|
|
ASSERT(mutex_held(&zd->zd_dirobj_lock));
|
|
|
|
for (i = 0; i < count; i++, od++) {
|
|
if (missing) {
|
|
od->od_object = 0;
|
|
missing++;
|
|
continue;
|
|
}
|
|
|
|
lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
|
|
|
|
lr->lr_doid = od->od_dir;
|
|
lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */
|
|
lr->lrz_type = od->od_crtype;
|
|
lr->lrz_blocksize = od->od_crblocksize;
|
|
lr->lrz_ibshift = ztest_random_ibshift();
|
|
lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
|
|
lr->lrz_bonuslen = dmu_bonus_max();
|
|
lr->lr_gen = od->od_crgen;
|
|
lr->lr_crtime[0] = time(NULL);
|
|
|
|
if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
|
|
ASSERT(missing == 0);
|
|
od->od_object = 0;
|
|
missing++;
|
|
} else {
|
|
od->od_object = lr->lr_foid;
|
|
od->od_type = od->od_crtype;
|
|
od->od_blocksize = od->od_crblocksize;
|
|
od->od_gen = od->od_crgen;
|
|
ASSERT(od->od_object != 0);
|
|
}
|
|
|
|
ztest_lr_free(lr, sizeof (*lr), od->od_name);
|
|
}
|
|
|
|
return (missing);
|
|
}
|
|
|
|
static int
|
|
ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
|
|
{
|
|
int missing = 0;
|
|
int error;
|
|
int i;
|
|
|
|
ASSERT(mutex_held(&zd->zd_dirobj_lock));
|
|
|
|
od += count - 1;
|
|
|
|
for (i = count - 1; i >= 0; i--, od--) {
|
|
if (missing) {
|
|
missing++;
|
|
continue;
|
|
}
|
|
|
|
if (od->od_object == 0)
|
|
continue;
|
|
|
|
lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
|
|
|
|
lr->lr_doid = od->od_dir;
|
|
|
|
if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
|
|
ASSERT3U(error, ==, ENOSPC);
|
|
missing++;
|
|
} else {
|
|
od->od_object = 0;
|
|
}
|
|
ztest_lr_free(lr, sizeof (*lr), od->od_name);
|
|
}
|
|
|
|
return (missing);
|
|
}
|
|
|
|
static int
|
|
ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
|
|
void *data)
|
|
{
|
|
lr_write_t *lr;
|
|
int error;
|
|
|
|
lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
|
|
|
|
lr->lr_foid = object;
|
|
lr->lr_offset = offset;
|
|
lr->lr_length = size;
|
|
lr->lr_blkoff = 0;
|
|
BP_ZERO(&lr->lr_blkptr);
|
|
|
|
bcopy(data, lr + 1, size);
|
|
|
|
error = ztest_replay_write(zd, lr, B_FALSE);
|
|
|
|
ztest_lr_free(lr, sizeof (*lr) + size, NULL);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
|
|
{
|
|
lr_truncate_t *lr;
|
|
int error;
|
|
|
|
lr = ztest_lr_alloc(sizeof (*lr), NULL);
|
|
|
|
lr->lr_foid = object;
|
|
lr->lr_offset = offset;
|
|
lr->lr_length = size;
|
|
|
|
error = ztest_replay_truncate(zd, lr, B_FALSE);
|
|
|
|
ztest_lr_free(lr, sizeof (*lr), NULL);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
ztest_setattr(ztest_ds_t *zd, uint64_t object)
|
|
{
|
|
lr_setattr_t *lr;
|
|
int error;
|
|
|
|
lr = ztest_lr_alloc(sizeof (*lr), NULL);
|
|
|
|
lr->lr_foid = object;
|
|
lr->lr_size = 0;
|
|
lr->lr_mode = 0;
|
|
|
|
error = ztest_replay_setattr(zd, lr, B_FALSE);
|
|
|
|
ztest_lr_free(lr, sizeof (*lr), NULL);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
|
|
{
|
|
objset_t *os = zd->zd_os;
|
|
dmu_tx_t *tx;
|
|
uint64_t txg;
|
|
rl_t *rl;
|
|
|
|
txg_wait_synced(dmu_objset_pool(os), 0);
|
|
|
|
ztest_object_lock(zd, object, RL_READER);
|
|
rl = ztest_range_lock(zd, object, offset, size, RL_WRITER);
|
|
|
|
tx = dmu_tx_create(os);
|
|
|
|
dmu_tx_hold_write(tx, object, offset, size);
|
|
|
|
txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
|
|
|
|
if (txg != 0) {
|
|
dmu_prealloc(os, object, offset, size, tx);
|
|
dmu_tx_commit(tx);
|
|
txg_wait_synced(dmu_objset_pool(os), txg);
|
|
} else {
|
|
(void) dmu_free_long_range(os, object, offset, size);
|
|
}
|
|
|
|
ztest_range_unlock(rl);
|
|
ztest_object_unlock(zd, object);
|
|
}
|
|
|
|
static void
|
|
ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
|
|
{
|
|
ztest_block_tag_t wbt;
|
|
dmu_object_info_t doi;
|
|
enum ztest_io_type io_type;
|
|
uint64_t blocksize;
|
|
void *data;
|
|
|
|
VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0);
|
|
blocksize = doi.doi_data_block_size;
|
|
data = umem_alloc(blocksize, UMEM_NOFAIL);
|
|
|
|
/*
|
|
* Pick an i/o type at random, biased toward writing block tags.
|
|
*/
|
|
io_type = ztest_random(ZTEST_IO_TYPES);
|
|
if (ztest_random(2) == 0)
|
|
io_type = ZTEST_IO_WRITE_TAG;
|
|
|
|
(void) rw_enter(&zd->zd_zilog_lock, RW_READER);
|
|
|
|
switch (io_type) {
|
|
|
|
case ZTEST_IO_WRITE_TAG:
|
|
ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0);
|
|
(void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
|
|
break;
|
|
|
|
case ZTEST_IO_WRITE_PATTERN:
|
|
(void) memset(data, 'a' + (object + offset) % 5, blocksize);
|
|
if (ztest_random(2) == 0) {
|
|
/*
|
|
* Induce fletcher2 collisions to ensure that
|
|
* zio_ddt_collision() detects and resolves them
|
|
* when using fletcher2-verify for deduplication.
|
|
*/
|
|
((uint64_t *)data)[0] ^= 1ULL << 63;
|
|
((uint64_t *)data)[4] ^= 1ULL << 63;
|
|
}
|
|
(void) ztest_write(zd, object, offset, blocksize, data);
|
|
break;
|
|
|
|
case ZTEST_IO_WRITE_ZEROES:
|
|
bzero(data, blocksize);
|
|
(void) ztest_write(zd, object, offset, blocksize, data);
|
|
break;
|
|
|
|
case ZTEST_IO_TRUNCATE:
|
|
(void) ztest_truncate(zd, object, offset, blocksize);
|
|
break;
|
|
|
|
case ZTEST_IO_SETATTR:
|
|
(void) ztest_setattr(zd, object);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
(void) rw_exit(&zd->zd_zilog_lock);
|
|
|
|
umem_free(data, blocksize);
|
|
}
|
|
|
|
/*
|
|
* Initialize an object description template.
|
|
*/
|
|
static void
|
|
ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index,
|
|
dmu_object_type_t type, uint64_t blocksize, uint64_t gen)
|
|
{
|
|
od->od_dir = ZTEST_DIROBJ;
|
|
od->od_object = 0;
|
|
|
|
od->od_crtype = type;
|
|
od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
|
|
od->od_crgen = gen;
|
|
|
|
od->od_type = DMU_OT_NONE;
|
|
od->od_blocksize = 0;
|
|
od->od_gen = 0;
|
|
|
|
(void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]",
|
|
tag, (longlong_t)id, (u_longlong_t)index);
|
|
}
|
|
|
|
/*
|
|
* Lookup or create the objects for a test using the od template.
|
|
* If the objects do not all exist, or if 'remove' is specified,
|
|
* remove any existing objects and create new ones. Otherwise,
|
|
* use the existing objects.
|
|
*/
|
|
static int
|
|
ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
|
|
{
|
|
int count = size / sizeof (*od);
|
|
int rv = 0;
|
|
|
|
mutex_enter(&zd->zd_dirobj_lock);
|
|
if ((ztest_lookup(zd, od, count) != 0 || remove) &&
|
|
(ztest_remove(zd, od, count) != 0 ||
|
|
ztest_create(zd, od, count) != 0))
|
|
rv = -1;
|
|
zd->zd_od = od;
|
|
mutex_exit(&zd->zd_dirobj_lock);
|
|
|
|
return (rv);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
void
|
|
ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
|
|
{
|
|
zilog_t *zilog = zd->zd_zilog;
|
|
|
|
(void) rw_enter(&zd->zd_zilog_lock, RW_READER);
|
|
|
|
zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
|
|
|
|
/*
|
|
* Remember the committed values in zd, which is in parent/child
|
|
* shared memory. If we die, the next iteration of ztest_run()
|
|
* will verify that the log really does contain this record.
|
|
*/
|
|
mutex_enter(&zilog->zl_lock);
|
|
ASSERT(zd->zd_seq <= zilog->zl_commit_lr_seq);
|
|
zd->zd_seq = zilog->zl_commit_lr_seq;
|
|
mutex_exit(&zilog->zl_lock);
|
|
|
|
(void) rw_exit(&zd->zd_zilog_lock);
|
|
}
|
|
|
|
/*
|
|
* This function is designed to simulate the operations that occur during a
|
|
* mount/unmount operation. We hold the dataset across these operations in an
|
|
* attempt to expose any implicit assumptions about ZIL management.
|
|
*/
|
|
/* ARGSUSED */
|
|
void
|
|
ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
|
|
{
|
|
objset_t *os = zd->zd_os;
|
|
|
|
(void) rw_enter(&zd->zd_zilog_lock, RW_WRITER);
|
|
|
|
/* zfs_sb_teardown() */
|
|
zil_close(zd->zd_zilog);
|
|
|
|
/* zfsvfs_setup() */
|
|
VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog);
|
|
zil_replay(os, zd, ztest_replay_vector);
|
|
|
|
(void) rw_exit(&zd->zd_zilog_lock);
|
|
}
|
|
|
|
/*
|
|
* Verify that we can't destroy an active pool, create an existing pool,
|
|
* or create a pool with a bad vdev spec.
|
|
*/
|
|
/* ARGSUSED */
|
|
void
|
|
ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
|
|
{
|
|
ztest_shared_t *zs = ztest_shared;
|
|
spa_t *spa;
|
|
nvlist_t *nvroot;
|
|
|
|
/*
|
|
* Attempt to create using a bad file.
|
|
*/
|
|
nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1);
|
|
VERIFY3U(ENOENT, ==,
|
|
spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL));
|
|
nvlist_free(nvroot);
|
|
|
|
/*
|
|
* Attempt to create using a bad mirror.
|
|
*/
|
|
nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 2, 1);
|
|
VERIFY3U(ENOENT, ==,
|
|
spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL));
|
|
nvlist_free(nvroot);
|
|
|
|
/*
|
|
* Attempt to create an existing pool. It shouldn't matter
|
|
* what's in the nvroot; we should fail with EEXIST.
|
|
*/
|
|
(void) rw_enter(&zs->zs_name_lock, RW_READER);
|
|
nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1);
|
|
VERIFY3U(EEXIST, ==, spa_create(zs->zs_pool, nvroot, NULL, NULL, NULL));
|
|
nvlist_free(nvroot);
|
|
VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG));
|
|
VERIFY3U(EBUSY, ==, spa_destroy(zs->zs_pool));
|
|
spa_close(spa, FTAG);
|
|
|
|
(void) rw_exit(&zs->zs_name_lock);
|
|
}
|
|
|
|
static vdev_t *
|
|
vdev_lookup_by_path(vdev_t *vd, const char *path)
|
|
{
|
|
vdev_t *mvd;
|
|
int c;
|
|
|
|
if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
|
|
return (vd);
|
|
|
|
for (c = 0; c < vd->vdev_children; c++)
|
|
if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
|
|
NULL)
|
|
return (mvd);
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Find the first available hole which can be used as a top-level.
|
|
*/
|
|
int
|
|
find_vdev_hole(spa_t *spa)
|
|
{
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
int c;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV);
|
|
|
|
for (c = 0; c < rvd->vdev_children; c++) {
|
|
vdev_t *cvd = rvd->vdev_child[c];
|
|
|
|
if (cvd->vdev_ishole)
|
|
break;
|
|
}
|
|
return (c);
|
|
}
|
|
|
|
/*
|
|
* Verify that vdev_add() works as expected.
|
|
*/
|
|
/* ARGSUSED */
|
|
void
|
|
ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
|
|
{
|
|
ztest_shared_t *zs = ztest_shared;
|
|
spa_t *spa = zs->zs_spa;
|
|
uint64_t leaves;
|
|
uint64_t guid;
|
|
nvlist_t *nvroot;
|
|
int error;
|
|
|
|
mutex_enter(&zs->zs_vdev_lock);
|
|
leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * zopt_raidz;
|
|
|
|
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
|
|
|
|
ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves;
|
|
|
|
/*
|
|
* If we have slogs then remove them 1/4 of the time.
|
|
*/
|
|
if (spa_has_slogs(spa) && ztest_random(4) == 0) {
|
|
/*
|
|
* Grab the guid from the head of the log class rotor.
|
|
*/
|
|
guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid;
|
|
|
|
spa_config_exit(spa, SCL_VDEV, FTAG);
|
|
|
|
/*
|
|
* We have to grab the zs_name_lock as writer to
|
|
* prevent a race between removing a slog (dmu_objset_find)
|
|
* and destroying a dataset. Removing the slog will
|
|
* grab a reference on the dataset which may cause
|
|
* dmu_objset_destroy() to fail with EBUSY thus
|
|
* leaving the dataset in an inconsistent state.
|
|
*/
|
|
rw_enter(&ztest_shared->zs_name_lock, RW_WRITER);
|
|
error = spa_vdev_remove(spa, guid, B_FALSE);
|
|
rw_exit(&ztest_shared->zs_name_lock);
|
|
|
|
if (error && error != EEXIST)
|
|
fatal(0, "spa_vdev_remove() = %d", error);
|
|
} else {
|
|
spa_config_exit(spa, SCL_VDEV, FTAG);
|
|
|
|
/*
|
|
* Make 1/4 of the devices be log devices.
|
|
*/
|
|
nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0,
|
|
ztest_random(4) == 0, zopt_raidz, zs->zs_mirrors, 1);
|
|
|
|
error = spa_vdev_add(spa, nvroot);
|
|
nvlist_free(nvroot);
|
|
|
|
if (error == ENOSPC)
|
|
ztest_record_enospc("spa_vdev_add");
|
|
else if (error != 0)
|
|
fatal(0, "spa_vdev_add() = %d", error);
|
|
}
|
|
|
|
mutex_exit(&ztest_shared->zs_vdev_lock);
|
|
}
|
|
|
|
/*
|
|
* Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
|
|
*/
|
|
/* ARGSUSED */
|
|
void
|
|
ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
|
|
{
|
|
ztest_shared_t *zs = ztest_shared;
|
|
spa_t *spa = zs->zs_spa;
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
spa_aux_vdev_t *sav;
|
|
char *aux;
|
|
char *path;
|
|
uint64_t guid = 0;
|
|
int error;
|
|
|
|
path = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
|
|
|
|
if (ztest_random(2) == 0) {
|
|
sav = &spa->spa_spares;
|
|
aux = ZPOOL_CONFIG_SPARES;
|
|
} else {
|
|
sav = &spa->spa_l2cache;
|
|
aux = ZPOOL_CONFIG_L2CACHE;
|
|
}
|
|
|
|
mutex_enter(&zs->zs_vdev_lock);
|
|
|
|
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
|
|
|
|
if (sav->sav_count != 0 && ztest_random(4) == 0) {
|
|
/*
|
|
* Pick a random device to remove.
|
|
*/
|
|
guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid;
|
|
} else {
|
|
/*
|
|
* Find an unused device we can add.
|
|
*/
|
|
zs->zs_vdev_aux = 0;
|
|
for (;;) {
|
|
int c;
|
|
(void) sprintf(path, ztest_aux_template, zopt_dir,
|
|
zopt_pool, aux, zs->zs_vdev_aux);
|
|
for (c = 0; c < sav->sav_count; c++)
|
|
if (strcmp(sav->sav_vdevs[c]->vdev_path,
|
|
path) == 0)
|
|
break;
|
|
if (c == sav->sav_count &&
|
|
vdev_lookup_by_path(rvd, path) == NULL)
|
|
break;
|
|
zs->zs_vdev_aux++;
|
|
}
|
|
}
|
|
|
|
spa_config_exit(spa, SCL_VDEV, FTAG);
|
|
|
|
if (guid == 0) {
|
|
/*
|
|
* Add a new device.
|
|
*/
|
|
nvlist_t *nvroot = make_vdev_root(NULL, aux,
|
|
(zopt_vdev_size * 5) / 4, 0, 0, 0, 0, 1);
|
|
error = spa_vdev_add(spa, nvroot);
|
|
if (error != 0)
|
|
fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
|
|
nvlist_free(nvroot);
|
|
} else {
|
|
/*
|
|
* Remove an existing device. Sometimes, dirty its
|
|
* vdev state first to make sure we handle removal
|
|
* of devices that have pending state changes.
|
|
*/
|
|
if (ztest_random(2) == 0)
|
|
(void) vdev_online(spa, guid, 0, NULL);
|
|
|
|
error = spa_vdev_remove(spa, guid, B_FALSE);
|
|
if (error != 0 && error != EBUSY)
|
|
fatal(0, "spa_vdev_remove(%llu) = %d", guid, error);
|
|
}
|
|
|
|
mutex_exit(&zs->zs_vdev_lock);
|
|
|
|
umem_free(path, MAXPATHLEN);
|
|
}
|
|
|
|
/*
|
|
* split a pool if it has mirror tlvdevs
|
|
*/
|
|
/* ARGSUSED */
|
|
void
|
|
ztest_split_pool(ztest_ds_t *zd, uint64_t id)
|
|
{
|
|
ztest_shared_t *zs = ztest_shared;
|
|
spa_t *spa = zs->zs_spa;
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
nvlist_t *tree, **child, *config, *split, **schild;
|
|
uint_t c, children, schildren = 0, lastlogid = 0;
|
|
int error = 0;
|
|
|
|
mutex_enter(&zs->zs_vdev_lock);
|
|
|
|
/* ensure we have a useable config; mirrors of raidz aren't supported */
|
|
if (zs->zs_mirrors < 3 || zopt_raidz > 1) {
|
|
mutex_exit(&zs->zs_vdev_lock);
|
|
return;
|
|
}
|
|
|
|
/* clean up the old pool, if any */
|
|
(void) spa_destroy("splitp");
|
|
|
|
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
|
|
|
|
/* generate a config from the existing config */
|
|
mutex_enter(&spa->spa_props_lock);
|
|
VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE,
|
|
&tree) == 0);
|
|
mutex_exit(&spa->spa_props_lock);
|
|
|
|
VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child,
|
|
&children) == 0);
|
|
|
|
schild = malloc(rvd->vdev_children * sizeof (nvlist_t *));
|
|
for (c = 0; c < children; c++) {
|
|
vdev_t *tvd = rvd->vdev_child[c];
|
|
nvlist_t **mchild;
|
|
uint_t mchildren;
|
|
|
|
if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
|
|
VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME,
|
|
0) == 0);
|
|
VERIFY(nvlist_add_string(schild[schildren],
|
|
ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0);
|
|
VERIFY(nvlist_add_uint64(schild[schildren],
|
|
ZPOOL_CONFIG_IS_HOLE, 1) == 0);
|
|
if (lastlogid == 0)
|
|
lastlogid = schildren;
|
|
++schildren;
|
|
continue;
|
|
}
|
|
lastlogid = 0;
|
|
VERIFY(nvlist_lookup_nvlist_array(child[c],
|
|
ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0);
|
|
VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0);
|
|
}
|
|
|
|
/* OK, create a config that can be used to split */
|
|
VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0);
|
|
VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE,
|
|
VDEV_TYPE_ROOT) == 0);
|
|
VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild,
|
|
lastlogid != 0 ? lastlogid : schildren) == 0);
|
|
|
|
VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0);
|
|
VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0);
|
|
|
|
for (c = 0; c < schildren; c++)
|
|
nvlist_free(schild[c]);
|
|
free(schild);
|
|
nvlist_free(split);
|
|
|
|
spa_config_exit(spa, SCL_VDEV, FTAG);
|
|
|
|
(void) rw_enter(&zs->zs_name_lock, RW_WRITER);
|
|
error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
|
|
(void) rw_exit(&zs->zs_name_lock);
|
|
|
|
nvlist_free(config);
|
|
|
|
if (error == 0) {
|
|
(void) printf("successful split - results:\n");
|
|
mutex_enter(&spa_namespace_lock);
|
|
show_pool_stats(spa);
|
|
show_pool_stats(spa_lookup("splitp"));
|
|
mutex_exit(&spa_namespace_lock);
|
|
++zs->zs_splits;
|
|
--zs->zs_mirrors;
|
|
}
|
|
mutex_exit(&zs->zs_vdev_lock);
|
|
|
|
}
|
|
|
|
/*
|
|
* Verify that we can attach and detach devices.
|
|
*/
|
|
/* ARGSUSED */
|
|
void
|
|
ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
|
|
{
|
|
ztest_shared_t *zs = ztest_shared;
|
|
spa_t *spa = zs->zs_spa;
|
|
spa_aux_vdev_t *sav = &spa->spa_spares;
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
vdev_t *oldvd, *newvd, *pvd;
|
|
nvlist_t *root;
|
|
uint64_t leaves;
|
|
uint64_t leaf, top;
|
|
uint64_t ashift = ztest_get_ashift();
|
|
uint64_t oldguid, pguid;
|
|
size_t oldsize, newsize;
|
|
char *oldpath, *newpath;
|
|
int replacing;
|
|
int oldvd_has_siblings = B_FALSE;
|
|
int newvd_is_spare = B_FALSE;
|
|
int oldvd_is_log;
|
|
int error, expected_error;
|
|
|
|
oldpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
|
|
newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
|
|
|
|
mutex_enter(&zs->zs_vdev_lock);
|
|
leaves = MAX(zs->zs_mirrors, 1) * zopt_raidz;
|
|
|
|
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
|
|
|
|
/*
|
|
* Decide whether to do an attach or a replace.
|
|
*/
|
|
replacing = ztest_random(2);
|
|
|
|
/*
|
|
* Pick a random top-level vdev.
|
|
*/
|
|
top = ztest_random_vdev_top(spa, B_TRUE);
|
|
|
|
/*
|
|
* Pick a random leaf within it.
|
|
*/
|
|
leaf = ztest_random(leaves);
|
|
|
|
/*
|
|
* Locate this vdev.
|
|
*/
|
|
oldvd = rvd->vdev_child[top];
|
|
if (zs->zs_mirrors >= 1) {
|
|
ASSERT(oldvd->vdev_ops == &vdev_mirror_ops);
|
|
ASSERT(oldvd->vdev_children >= zs->zs_mirrors);
|
|
oldvd = oldvd->vdev_child[leaf / zopt_raidz];
|
|
}
|
|
if (zopt_raidz > 1) {
|
|
ASSERT(oldvd->vdev_ops == &vdev_raidz_ops);
|
|
ASSERT(oldvd->vdev_children == zopt_raidz);
|
|
oldvd = oldvd->vdev_child[leaf % zopt_raidz];
|
|
}
|
|
|
|
/*
|
|
* If we're already doing an attach or replace, oldvd may be a
|
|
* mirror vdev -- in which case, pick a random child.
|
|
*/
|
|
while (oldvd->vdev_children != 0) {
|
|
oldvd_has_siblings = B_TRUE;
|
|
ASSERT(oldvd->vdev_children >= 2);
|
|
oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
|
|
}
|
|
|
|
oldguid = oldvd->vdev_guid;
|
|
oldsize = vdev_get_min_asize(oldvd);
|
|
oldvd_is_log = oldvd->vdev_top->vdev_islog;
|
|
(void) strcpy(oldpath, oldvd->vdev_path);
|
|
pvd = oldvd->vdev_parent;
|
|
pguid = pvd->vdev_guid;
|
|
|
|
/*
|
|
* If oldvd has siblings, then half of the time, detach it.
|
|
*/
|
|
if (oldvd_has_siblings && ztest_random(2) == 0) {
|
|
spa_config_exit(spa, SCL_VDEV, FTAG);
|
|
error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
|
|
if (error != 0 && error != ENODEV && error != EBUSY &&
|
|
error != ENOTSUP)
|
|
fatal(0, "detach (%s) returned %d", oldpath, error);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* For the new vdev, choose with equal probability between the two
|
|
* standard paths (ending in either 'a' or 'b') or a random hot spare.
|
|
*/
|
|
if (sav->sav_count != 0 && ztest_random(3) == 0) {
|
|
newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
|
|
newvd_is_spare = B_TRUE;
|
|
(void) strcpy(newpath, newvd->vdev_path);
|
|
} else {
|
|
(void) snprintf(newpath, sizeof (newpath), ztest_dev_template,
|
|
zopt_dir, zopt_pool, top * leaves + leaf);
|
|
if (ztest_random(2) == 0)
|
|
newpath[strlen(newpath) - 1] = 'b';
|
|
newvd = vdev_lookup_by_path(rvd, newpath);
|
|
}
|
|
|
|
if (newvd) {
|
|
newsize = vdev_get_min_asize(newvd);
|
|
} else {
|
|
/*
|
|
* Make newsize a little bigger or smaller than oldsize.
|
|
* If it's smaller, the attach should fail.
|
|
* If it's larger, and we're doing a replace,
|
|
* we should get dynamic LUN growth when we're done.
|
|
*/
|
|
newsize = 10 * oldsize / (9 + ztest_random(3));
|
|
}
|
|
|
|
/*
|
|
* If pvd is not a mirror or root, the attach should fail with ENOTSUP,
|
|
* unless it's a replace; in that case any non-replacing parent is OK.
|
|
*
|
|
* If newvd is already part of the pool, it should fail with EBUSY.
|
|
*
|
|
* If newvd is too small, it should fail with EOVERFLOW.
|
|
*/
|
|
if (pvd->vdev_ops != &vdev_mirror_ops &&
|
|
pvd->vdev_ops != &vdev_root_ops && (!replacing ||
|
|
pvd->vdev_ops == &vdev_replacing_ops ||
|
|
pvd->vdev_ops == &vdev_spare_ops))
|
|
expected_error = ENOTSUP;
|
|
else if (newvd_is_spare && (!replacing || oldvd_is_log))
|
|
expected_error = ENOTSUP;
|
|
else if (newvd == oldvd)
|
|
expected_error = replacing ? 0 : EBUSY;
|
|
else if (vdev_lookup_by_path(rvd, newpath) != NULL)
|
|
expected_error = EBUSY;
|
|
else if (newsize < oldsize)
|
|
expected_error = EOVERFLOW;
|
|
else if (ashift > oldvd->vdev_top->vdev_ashift)
|
|
expected_error = EDOM;
|
|
else
|
|
expected_error = 0;
|
|
|
|
spa_config_exit(spa, SCL_VDEV, FTAG);
|
|
|
|
/*
|
|
* Build the nvlist describing newpath.
|
|
*/
|
|
root = make_vdev_root(newpath, NULL, newvd == NULL ? newsize : 0,
|
|
ashift, 0, 0, 0, 1);
|
|
|
|
error = spa_vdev_attach(spa, oldguid, root, replacing);
|
|
|
|
nvlist_free(root);
|
|
|
|
/*
|
|
* If our parent was the replacing vdev, but the replace completed,
|
|
* then instead of failing with ENOTSUP we may either succeed,
|
|
* fail with ENODEV, or fail with EOVERFLOW.
|
|
*/
|
|
if (expected_error == ENOTSUP &&
|
|
(error == 0 || error == ENODEV || error == EOVERFLOW))
|
|
expected_error = error;
|
|
|
|
/*
|
|
* If someone grew the LUN, the replacement may be too small.
|
|
*/
|
|
if (error == EOVERFLOW || error == EBUSY)
|
|
expected_error = error;
|
|
|
|
/* XXX workaround 6690467 */
|
|
if (error != expected_error && expected_error != EBUSY) {
|
|
fatal(0, "attach (%s %llu, %s %llu, %d) "
|
|
"returned %d, expected %d",
|
|
oldpath, (longlong_t)oldsize, newpath,
|
|
(longlong_t)newsize, replacing, error, expected_error);
|
|
}
|
|
out:
|
|
mutex_exit(&zs->zs_vdev_lock);
|
|
|
|
umem_free(oldpath, MAXPATHLEN);
|
|
umem_free(newpath, MAXPATHLEN);
|
|
}
|
|
|
|
/*
|
|
* Callback function which expands the physical size of the vdev.
|
|
*/
|
|
vdev_t *
|
|
grow_vdev(vdev_t *vd, void *arg)
|
|
{
|
|
ASSERTV(spa_t *spa = vd->vdev_spa);
|
|
size_t *newsize = arg;
|
|
size_t fsize;
|
|
int fd;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
|
|
ASSERT(vd->vdev_ops->vdev_op_leaf);
|
|
|
|
if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
|
|
return (vd);
|
|
|
|
fsize = lseek(fd, 0, SEEK_END);
|
|
VERIFY(ftruncate(fd, *newsize) == 0);
|
|
|
|
if (zopt_verbose >= 6) {
|
|
(void) printf("%s grew from %lu to %lu bytes\n",
|
|
vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
|
|
}
|
|
(void) close(fd);
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Callback function which expands a given vdev by calling vdev_online().
|
|
*/
|
|
/* ARGSUSED */
|
|
vdev_t *
|
|
online_vdev(vdev_t *vd, void *arg)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
vdev_t *tvd = vd->vdev_top;
|
|
uint64_t guid = vd->vdev_guid;
|
|
uint64_t generation = spa->spa_config_generation + 1;
|
|
vdev_state_t newstate = VDEV_STATE_UNKNOWN;
|
|
int error;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
|
|
ASSERT(vd->vdev_ops->vdev_op_leaf);
|
|
|
|
/* Calling vdev_online will initialize the new metaslabs */
|
|
spa_config_exit(spa, SCL_STATE, spa);
|
|
error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
|
|
spa_config_enter(spa, SCL_STATE, spa, RW_READER);
|
|
|
|
/*
|
|
* If vdev_online returned an error or the underlying vdev_open
|
|
* failed then we abort the expand. The only way to know that
|
|
* vdev_open fails is by checking the returned newstate.
|
|
*/
|
|
if (error || newstate != VDEV_STATE_HEALTHY) {
|
|
if (zopt_verbose >= 5) {
|
|
(void) printf("Unable to expand vdev, state %llu, "
|
|
"error %d\n", (u_longlong_t)newstate, error);
|
|
}
|
|
return (vd);
|
|
}
|
|
ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
|
|
|
|
/*
|
|
* Since we dropped the lock we need to ensure that we're
|
|
* still talking to the original vdev. It's possible this
|
|
* vdev may have been detached/replaced while we were
|
|
* trying to online it.
|
|
*/
|
|
if (generation != spa->spa_config_generation) {
|
|
if (zopt_verbose >= 5) {
|
|
(void) printf("vdev configuration has changed, "
|
|
"guid %llu, state %llu, expected gen %llu, "
|
|
"got gen %llu\n",
|
|
(u_longlong_t)guid,
|
|
(u_longlong_t)tvd->vdev_state,
|
|
(u_longlong_t)generation,
|
|
(u_longlong_t)spa->spa_config_generation);
|
|
}
|
|
return (vd);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Traverse the vdev tree calling the supplied function.
|
|
* We continue to walk the tree until we either have walked all
|
|
* children or we receive a non-NULL return from the callback.
|
|
* If a NULL callback is passed, then we just return back the first
|
|
* leaf vdev we encounter.
|
|
*/
|
|
vdev_t *
|
|
vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
|
|
{
|
|
uint_t c;
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf) {
|
|
if (func == NULL)
|
|
return (vd);
|
|
else
|
|
return (func(vd, arg));
|
|
}
|
|
|
|
for (c = 0; c < vd->vdev_children; c++) {
|
|
vdev_t *cvd = vd->vdev_child[c];
|
|
if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
|
|
return (cvd);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Verify that dynamic LUN growth works as expected.
|
|
*/
|
|
/* ARGSUSED */
|
|
void
|
|
ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
|
|
{
|
|
ztest_shared_t *zs = ztest_shared;
|
|
spa_t *spa = zs->zs_spa;
|
|
vdev_t *vd, *tvd;
|
|
metaslab_class_t *mc;
|
|
metaslab_group_t *mg;
|
|
size_t psize, newsize;
|
|
uint64_t top;
|
|
uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
|
|
|
|
mutex_enter(&zs->zs_vdev_lock);
|
|
spa_config_enter(spa, SCL_STATE, spa, RW_READER);
|
|
|
|
top = ztest_random_vdev_top(spa, B_TRUE);
|
|
|
|
tvd = spa->spa_root_vdev->vdev_child[top];
|
|
mg = tvd->vdev_mg;
|
|
mc = mg->mg_class;
|
|
old_ms_count = tvd->vdev_ms_count;
|
|
old_class_space = metaslab_class_get_space(mc);
|
|
|
|
/*
|
|
* Determine the size of the first leaf vdev associated with
|
|
* our top-level device.
|
|
*/
|
|
vd = vdev_walk_tree(tvd, NULL, NULL);
|
|
ASSERT3P(vd, !=, NULL);
|
|
ASSERT(vd->vdev_ops->vdev_op_leaf);
|
|
|
|
psize = vd->vdev_psize;
|
|
|
|
/*
|
|
* We only try to expand the vdev if it's healthy, less than 4x its
|
|
* original size, and it has a valid psize.
|
|
*/
|
|
if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
|
|
psize == 0 || psize >= 4 * zopt_vdev_size) {
|
|
spa_config_exit(spa, SCL_STATE, spa);
|
|
mutex_exit(&zs->zs_vdev_lock);
|
|
return;
|
|
}
|
|
ASSERT(psize > 0);
|
|
newsize = psize + psize / 8;
|
|
ASSERT3U(newsize, >, psize);
|
|
|
|
if (zopt_verbose >= 6) {
|
|
(void) printf("Expanding LUN %s from %lu to %lu\n",
|
|
vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
|
|
}
|
|
|
|
/*
|
|
* Growing the vdev is a two step process:
|
|
* 1). expand the physical size (i.e. relabel)
|
|
* 2). online the vdev to create the new metaslabs
|
|
*/
|
|
if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
|
|
vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
|
|
tvd->vdev_state != VDEV_STATE_HEALTHY) {
|
|
if (zopt_verbose >= 5) {
|
|
(void) printf("Could not expand LUN because "
|
|
"the vdev configuration changed.\n");
|
|
}
|
|
spa_config_exit(spa, SCL_STATE, spa);
|
|
mutex_exit(&zs->zs_vdev_lock);
|
|
return;
|
|
}
|
|
|
|
spa_config_exit(spa, SCL_STATE, spa);
|
|
|
|
/*
|
|
* Expanding the LUN will update the config asynchronously,
|
|
* thus we must wait for the async thread to complete any
|
|
* pending tasks before proceeding.
|
|
*/
|
|
for (;;) {
|
|
boolean_t done;
|
|
mutex_enter(&spa->spa_async_lock);
|
|
done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
|
|
mutex_exit(&spa->spa_async_lock);
|
|
if (done)
|
|
break;
|
|
txg_wait_synced(spa_get_dsl(spa), 0);
|
|
(void) poll(NULL, 0, 100);
|
|
}
|
|
|
|
spa_config_enter(spa, SCL_STATE, spa, RW_READER);
|
|
|
|
tvd = spa->spa_root_vdev->vdev_child[top];
|
|
new_ms_count = tvd->vdev_ms_count;
|
|
new_class_space = metaslab_class_get_space(mc);
|
|
|
|
if (tvd->vdev_mg != mg || mg->mg_class != mc) {
|
|
if (zopt_verbose >= 5) {
|
|
(void) printf("Could not verify LUN expansion due to "
|
|
"intervening vdev offline or remove.\n");
|
|
}
|
|
spa_config_exit(spa, SCL_STATE, spa);
|
|
mutex_exit(&zs->zs_vdev_lock);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Make sure we were able to grow the vdev.
|
|
*/
|
|
if (new_ms_count <= old_ms_count)
|
|
fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n",
|
|
old_ms_count, new_ms_count);
|
|
|
|
/*
|
|
* Make sure we were able to grow the pool.
|
|
*/
|
|
if (new_class_space <= old_class_space)
|
|
fatal(0, "LUN expansion failed: class_space %llu <= %llu\n",
|
|
old_class_space, new_class_space);
|
|
|
|
if (zopt_verbose >= 5) {
|
|
char oldnumbuf[6], newnumbuf[6];
|
|
|
|
nicenum(old_class_space, oldnumbuf);
|
|
nicenum(new_class_space, newnumbuf);
|
|
(void) printf("%s grew from %s to %s\n",
|
|
spa->spa_name, oldnumbuf, newnumbuf);
|
|
}
|
|
|
|
spa_config_exit(spa, SCL_STATE, spa);
|
|
mutex_exit(&zs->zs_vdev_lock);
|
|
}
|
|
|
|
/*
|
|
* Verify that dmu_objset_{create,destroy,open,close} work as expected.
|
|
*/
|
|
/* ARGSUSED */
|
|
static void
|
|
ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
|
|
{
|
|
/*
|
|
* Create the objects common to all ztest datasets.
|
|
*/
|
|
VERIFY(zap_create_claim(os, ZTEST_DIROBJ,
|
|
DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
|
|
}
|
|
|
|
static int
|
|
ztest_dataset_create(char *dsname)
|
|
{
|
|
uint64_t zilset = ztest_random(100);
|
|
int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0,
|
|
ztest_objset_create_cb, NULL);
|
|
|
|
if (err || zilset < 80)
|
|
return (err);
|
|
|
|
if (zopt_verbose >= 5)
|
|
(void) printf("Setting dataset %s to sync always\n", dsname);
|
|
return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
|
|
ZFS_SYNC_ALWAYS, B_FALSE));
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
ztest_objset_destroy_cb(const char *name, void *arg)
|
|
{
|
|
objset_t *os;
|
|
dmu_object_info_t doi;
|
|
int error;
|
|
|
|
/*
|
|
* Verify that the dataset contains a directory object.
|
|
*/
|
|
VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os));
|
|
error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
|
|
if (error != ENOENT) {
|
|
/* We could have crashed in the middle of destroying it */
|
|
ASSERT3U(error, ==, 0);
|
|
ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
|
|
ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
|
|
}
|
|
dmu_objset_rele(os, FTAG);
|
|
|
|
/*
|
|
* Destroy the dataset.
|
|
*/
|
|
VERIFY3U(0, ==, dmu_objset_destroy(name, B_FALSE));
|
|
return (0);
|
|
}
|
|
|
|
static boolean_t
|
|
ztest_snapshot_create(char *osname, uint64_t id)
|
|
{
|
|
char snapname[MAXNAMELEN];
|
|
int error;
|
|
|
|
(void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname,
|
|
(u_longlong_t)id);
|
|
|
|
error = dmu_objset_snapshot(osname, strchr(snapname, '@') + 1,
|
|
NULL, NULL, B_FALSE, B_FALSE, -1);
|
|
if (error == ENOSPC) {
|
|
ztest_record_enospc(FTAG);
|
|
return (B_FALSE);
|
|
}
|
|
if (error != 0 && error != EEXIST)
|
|
fatal(0, "ztest_snapshot_create(%s) = %d", snapname, error);
|
|
return (B_TRUE);
|
|
}
|
|
|
|
static boolean_t
|
|
ztest_snapshot_destroy(char *osname, uint64_t id)
|
|
{
|
|
char snapname[MAXNAMELEN];
|
|
int error;
|
|
|
|
(void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname,
|
|
(u_longlong_t)id);
|
|
|
|
error = dmu_objset_destroy(snapname, B_FALSE);
|
|
if (error != 0 && error != ENOENT)
|
|
fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error);
|
|
return (B_TRUE);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
void
|
|
ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
|
|
{
|
|
ztest_shared_t *zs = ztest_shared;
|
|
ztest_ds_t *zdtmp;
|
|
int iters;
|
|
int error;
|
|
objset_t *os, *os2;
|
|
char *name;
|
|
zilog_t *zilog;
|
|
int i;
|
|
|
|
zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
|
|
name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
|
|
|
|
(void) rw_enter(&zs->zs_name_lock, RW_READER);
|
|
|
|
(void) snprintf(name, MAXNAMELEN, "%s/temp_%llu",
|
|
zs->zs_pool, (u_longlong_t)id);
|
|
|
|
/*
|
|
* If this dataset exists from a previous run, process its replay log
|
|
* half of the time. If we don't replay it, then dmu_objset_destroy()
|
|
* (invoked from ztest_objset_destroy_cb()) should just throw it away.
|
|
*/
|
|
if (ztest_random(2) == 0 &&
|
|
dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) {
|
|
ztest_zd_init(zdtmp, os);
|
|
zil_replay(os, zdtmp, ztest_replay_vector);
|
|
ztest_zd_fini(zdtmp);
|
|
dmu_objset_disown(os, FTAG);
|
|
}
|
|
|
|
/*
|
|
* There may be an old instance of the dataset we're about to
|
|
* create lying around from a previous run. If so, destroy it
|
|
* and all of its snapshots.
|
|
*/
|
|
(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
|
|
DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
|
|
|
|
/*
|
|
* Verify that the destroyed dataset is no longer in the namespace.
|
|
*/
|
|
VERIFY3U(ENOENT, ==, dmu_objset_hold(name, FTAG, &os));
|
|
|
|
/*
|
|
* Verify that we can create a new dataset.
|
|
*/
|
|
error = ztest_dataset_create(name);
|
|
if (error) {
|
|
if (error == ENOSPC) {
|
|
ztest_record_enospc(FTAG);
|
|
goto out;
|
|
}
|
|
fatal(0, "dmu_objset_create(%s) = %d", name, error);
|
|
}
|
|
|
|
VERIFY3U(0, ==,
|
|
dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os));
|
|
|
|
ztest_zd_init(zdtmp, os);
|
|
|
|
/*
|
|
* Open the intent log for it.
|
|
*/
|
|
zilog = zil_open(os, ztest_get_data);
|
|
|
|
/*
|
|
* Put some objects in there, do a little I/O to them,
|
|
* and randomly take a couple of snapshots along the way.
|
|
*/
|
|
iters = ztest_random(5);
|
|
for (i = 0; i < iters; i++) {
|
|
ztest_dmu_object_alloc_free(zdtmp, id);
|
|
if (ztest_random(iters) == 0)
|
|
(void) ztest_snapshot_create(name, i);
|
|
}
|
|
|
|
/*
|
|
* Verify that we cannot create an existing dataset.
|
|
*/
|
|
VERIFY3U(EEXIST, ==,
|
|
dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL));
|
|
|
|
/*
|
|
* Verify that we can hold an objset that is also owned.
|
|
*/
|
|
VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2));
|
|
dmu_objset_rele(os2, FTAG);
|
|
|
|
/*
|
|
* Verify that we cannot own an objset that is already owned.
|
|
*/
|
|
VERIFY3U(EBUSY, ==,
|
|
dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2));
|
|
|
|
zil_close(zilog);
|
|
dmu_objset_disown(os, FTAG);
|
|
ztest_zd_fini(zdtmp);
|
|
out:
|
|
(void) rw_exit(&zs->zs_name_lock);
|
|
|
|
umem_free(name, MAXNAMELEN);
|
|
umem_free(zdtmp, sizeof (ztest_ds_t));
|
|
}
|
|
|
|
/*
|
|
* Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
|
|
*/
|
|
void
|
|
ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
|
|
{
|
|
ztest_shared_t *zs = ztest_shared;
|
|
|
|
(void) rw_enter(&zs->zs_name_lock, RW_READER);
|
|
(void) ztest_snapshot_destroy(zd->zd_name, id);
|
|
(void) ztest_snapshot_create(zd->zd_name, id);
|
|
(void) rw_exit(&zs->zs_name_lock);
|
|
}
|
|
|
|
/*
|
|
* Cleanup non-standard snapshots and clones.
|
|
*/
|
|
void
|
|
ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
|
|
{
|
|
char *snap1name;
|
|
char *clone1name;
|
|
char *snap2name;
|
|
char *clone2name;
|
|
char *snap3name;
|
|
int error;
|
|
|
|
snap1name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
|
|
clone1name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
|
|
snap2name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
|
|
clone2name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
|
|
snap3name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
|
|
|
|
(void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu",
|
|
osname, (u_longlong_t)id);
|
|
(void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu",
|
|
osname, (u_longlong_t)id);
|
|
(void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu",
|
|
clone1name, (u_longlong_t)id);
|
|
(void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu",
|
|
osname, (u_longlong_t)id);
|
|
(void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu",
|
|
clone1name, (u_longlong_t)id);
|
|
|
|
error = dmu_objset_destroy(clone2name, B_FALSE);
|
|
if (error && error != ENOENT)
|
|
fatal(0, "dmu_objset_destroy(%s) = %d", clone2name, error);
|
|
error = dmu_objset_destroy(snap3name, B_FALSE);
|
|
if (error && error != ENOENT)
|
|
fatal(0, "dmu_objset_destroy(%s) = %d", snap3name, error);
|
|
error = dmu_objset_destroy(snap2name, B_FALSE);
|
|
if (error && error != ENOENT)
|
|
fatal(0, "dmu_objset_destroy(%s) = %d", snap2name, error);
|
|
error = dmu_objset_destroy(clone1name, B_FALSE);
|
|
if (error && error != ENOENT)
|
|
fatal(0, "dmu_objset_destroy(%s) = %d", clone1name, error);
|
|
error = dmu_objset_destroy(snap1name, B_FALSE);
|
|
if (error && error != ENOENT)
|
|
fatal(0, "dmu_objset_destroy(%s) = %d", snap1name, error);
|
|
|
|
umem_free(snap1name, MAXNAMELEN);
|
|
umem_free(clone1name, MAXNAMELEN);
|
|
umem_free(snap2name, MAXNAMELEN);
|
|
umem_free(clone2name, MAXNAMELEN);
|
|
umem_free(snap3name, MAXNAMELEN);
|
|
}
|
|
|
|
/*
|
|
* Verify dsl_dataset_promote handles EBUSY
|
|
*/
|
|
void
|
|
ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
|
|
{
|
|
ztest_shared_t *zs = ztest_shared;
|
|
objset_t *clone;
|
|
dsl_dataset_t *ds;
|
|
char *snap1name;
|
|
char *clone1name;
|
|
char *snap2name;
|
|
char *clone2name;
|
|
char *snap3name;
|
|
char *osname = zd->zd_name;
|
|
int error;
|
|
|
|
snap1name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
|
|
clone1name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
|
|
snap2name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
|
|
clone2name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
|
|
snap3name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
|
|
|
|
(void) rw_enter(&zs->zs_name_lock, RW_READER);
|
|
|
|
ztest_dsl_dataset_cleanup(osname, id);
|
|
|
|
(void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu",
|
|
osname, (u_longlong_t)id);
|
|
(void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu",
|
|
osname, (u_longlong_t)id);
|
|
(void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu",
|
|
clone1name, (u_longlong_t)id);
|
|
(void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu",
|
|
osname, (u_longlong_t)id);
|
|
(void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu",
|
|
clone1name, (u_longlong_t)id);
|
|
|
|
error = dmu_objset_snapshot(osname, strchr(snap1name, '@')+1,
|
|
NULL, NULL, B_FALSE, B_FALSE, -1);
|
|
if (error && error != EEXIST) {
|
|
if (error == ENOSPC) {
|
|
ztest_record_enospc(FTAG);
|
|
goto out;
|
|
}
|
|
fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error);
|
|
}
|
|
|
|
error = dmu_objset_hold(snap1name, FTAG, &clone);
|
|
if (error)
|
|
fatal(0, "dmu_open_snapshot(%s) = %d", snap1name, error);
|
|
|
|
error = dmu_objset_clone(clone1name, dmu_objset_ds(clone), 0);
|
|
dmu_objset_rele(clone, FTAG);
|
|
if (error) {
|
|
if (error == ENOSPC) {
|
|
ztest_record_enospc(FTAG);
|
|
goto out;
|
|
}
|
|
fatal(0, "dmu_objset_create(%s) = %d", clone1name, error);
|
|
}
|
|
|
|
error = dmu_objset_snapshot(clone1name, strchr(snap2name, '@')+1,
|
|
NULL, NULL, B_FALSE, B_FALSE, -1);
|
|
if (error && error != EEXIST) {
|
|
if (error == ENOSPC) {
|
|
ztest_record_enospc(FTAG);
|
|
goto out;
|
|
}
|
|
fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error);
|
|
}
|
|
|
|
error = dmu_objset_snapshot(clone1name, strchr(snap3name, '@')+1,
|
|
NULL, NULL, B_FALSE, B_FALSE, -1);
|
|
if (error && error != EEXIST) {
|
|
if (error == ENOSPC) {
|
|
ztest_record_enospc(FTAG);
|
|
goto out;
|
|
}
|
|
fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
|
|
}
|
|
|
|
error = dmu_objset_hold(snap3name, FTAG, &clone);
|
|
if (error)
|
|
fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
|
|
|
|
error = dmu_objset_clone(clone2name, dmu_objset_ds(clone), 0);
|
|
dmu_objset_rele(clone, FTAG);
|
|
if (error) {
|
|
if (error == ENOSPC) {
|
|
ztest_record_enospc(FTAG);
|
|
goto out;
|
|
}
|
|
fatal(0, "dmu_objset_create(%s) = %d", clone2name, error);
|
|
}
|
|
|
|
error = dsl_dataset_own(snap2name, B_FALSE, FTAG, &ds);
|
|
if (error)
|
|
fatal(0, "dsl_dataset_own(%s) = %d", snap2name, error);
|
|
error = dsl_dataset_promote(clone2name, NULL);
|
|
if (error != EBUSY)
|
|
fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name,
|
|
error);
|
|
dsl_dataset_disown(ds, FTAG);
|
|
|
|
out:
|
|
ztest_dsl_dataset_cleanup(osname, id);
|
|
|
|
(void) rw_exit(&zs->zs_name_lock);
|
|
|
|
umem_free(snap1name, MAXNAMELEN);
|
|
umem_free(clone1name, MAXNAMELEN);
|
|
umem_free(snap2name, MAXNAMELEN);
|
|
umem_free(clone2name, MAXNAMELEN);
|
|
umem_free(snap3name, MAXNAMELEN);
|
|
}
|
|
|
|
#undef OD_ARRAY_SIZE
|
|
#define OD_ARRAY_SIZE 4
|
|
|
|
/*
|
|
* Verify that dmu_object_{alloc,free} work as expected.
|
|
*/
|
|
void
|
|
ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
|
|
{
|
|
ztest_od_t *od;
|
|
int batchsize;
|
|
int size;
|
|
int b;
|
|
|
|
size = sizeof(ztest_od_t) * OD_ARRAY_SIZE;
|
|
od = umem_alloc(size, UMEM_NOFAIL);
|
|
batchsize = OD_ARRAY_SIZE;
|
|
|
|
for (b = 0; b < batchsize; b++)
|
|
ztest_od_init(od + b, id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0);
|
|
|
|
/*
|
|
* Destroy the previous batch of objects, create a new batch,
|
|
* and do some I/O on the new objects.
|
|
*/
|
|
if (ztest_object_init(zd, od, size, B_TRUE) != 0)
|
|
return;
|
|
|
|
while (ztest_random(4 * batchsize) != 0)
|
|
ztest_io(zd, od[ztest_random(batchsize)].od_object,
|
|
ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
|
|
|
|
umem_free(od, size);
|
|
}
|
|
|
|
#undef OD_ARRAY_SIZE
|
|
#define OD_ARRAY_SIZE 2
|
|
|
|
/*
|
|
* Verify that dmu_{read,write} work as expected.
|
|
*/
|
|
void
|
|
ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
|
|
{
|
|
int size;
|
|
ztest_od_t *od;
|
|
|
|
objset_t *os = zd->zd_os;
|
|
size = sizeof(ztest_od_t) * OD_ARRAY_SIZE;
|
|
od = umem_alloc(size, UMEM_NOFAIL);
|
|
dmu_tx_t *tx;
|
|
int i, freeit, error;
|
|
uint64_t n, s, txg;
|
|
bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
|
|
uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
|
|
uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
|
|
uint64_t regions = 997;
|
|
uint64_t stride = 123456789ULL;
|
|
uint64_t width = 40;
|
|
int free_percent = 5;
|
|
|
|
/*
|
|
* This test uses two objects, packobj and bigobj, that are always
|
|
* updated together (i.e. in the same tx) so that their contents are
|
|
* in sync and can be compared. Their contents relate to each other
|
|
* in a simple way: packobj is a dense array of 'bufwad' structures,
|
|
* while bigobj is a sparse array of the same bufwads. Specifically,
|
|
* for any index n, there are three bufwads that should be identical:
|
|
*
|
|
* packobj, at offset n * sizeof (bufwad_t)
|
|
* bigobj, at the head of the nth chunk
|
|
* bigobj, at the tail of the nth chunk
|
|
*
|
|
* The chunk size is arbitrary. It doesn't have to be a power of two,
|
|
* and it doesn't have any relation to the object blocksize.
|
|
* The only requirement is that it can hold at least two bufwads.
|
|
*
|
|
* Normally, we write the bufwad to each of these locations.
|
|
* However, free_percent of the time we instead write zeroes to
|
|
* packobj and perform a dmu_free_range() on bigobj. By comparing
|
|
* bigobj to packobj, we can verify that the DMU is correctly
|
|
* tracking which parts of an object are allocated and free,
|
|
* and that the contents of the allocated blocks are correct.
|
|
*/
|
|
|
|
/*
|
|
* Read the directory info. If it's the first time, set things up.
|
|
*/
|
|
ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize);
|
|
ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
|
|
|
|
if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
|
|
umem_free(od, size);
|
|
return;
|
|
}
|
|
|
|
bigobj = od[0].od_object;
|
|
packobj = od[1].od_object;
|
|
chunksize = od[0].od_gen;
|
|
ASSERT(chunksize == od[1].od_gen);
|
|
|
|
/*
|
|
* Prefetch a random chunk of the big object.
|
|
* Our aim here is to get some async reads in flight
|
|
* for blocks that we may free below; the DMU should
|
|
* handle this race correctly.
|
|
*/
|
|
n = ztest_random(regions) * stride + ztest_random(width);
|
|
s = 1 + ztest_random(2 * width - 1);
|
|
dmu_prefetch(os, bigobj, n * chunksize, s * chunksize);
|
|
|
|
/*
|
|
* Pick a random index and compute the offsets into packobj and bigobj.
|
|
*/
|
|
n = ztest_random(regions) * stride + ztest_random(width);
|
|
s = 1 + ztest_random(width - 1);
|
|
|
|
packoff = n * sizeof (bufwad_t);
|
|
packsize = s * sizeof (bufwad_t);
|
|
|
|
bigoff = n * chunksize;
|
|
bigsize = s * chunksize;
|
|
|
|
packbuf = umem_alloc(packsize, UMEM_NOFAIL);
|
|
bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
|
|
|
|
/*
|
|
* free_percent of the time, free a range of bigobj rather than
|
|
* overwriting it.
|
|
*/
|
|
freeit = (ztest_random(100) < free_percent);
|
|
|
|
/*
|
|
* Read the current contents of our objects.
|
|
*/
|
|
error = dmu_read(os, packobj, packoff, packsize, packbuf,
|
|
DMU_READ_PREFETCH);
|
|
ASSERT3U(error, ==, 0);
|
|
error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
|
|
DMU_READ_PREFETCH);
|
|
ASSERT3U(error, ==, 0);
|
|
|
|
/*
|
|
* Get a tx for the mods to both packobj and bigobj.
|
|
*/
|
|
tx = dmu_tx_create(os);
|
|
|
|
dmu_tx_hold_write(tx, packobj, packoff, packsize);
|
|
|
|
if (freeit)
|
|
dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
|
|
else
|
|
dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
|
|
|
|
txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
|
|
if (txg == 0) {
|
|
umem_free(packbuf, packsize);
|
|
umem_free(bigbuf, bigsize);
|
|
umem_free(od, size);
|
|
return;
|
|
}
|
|
|
|
dmu_object_set_checksum(os, bigobj,
|
|
(enum zio_checksum)ztest_random_dsl_prop(ZFS_PROP_CHECKSUM), tx);
|
|
|
|
dmu_object_set_compress(os, bigobj,
|
|
(enum zio_compress)ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), tx);
|
|
|
|
/*
|
|
* For each index from n to n + s, verify that the existing bufwad
|
|
* in packobj matches the bufwads at the head and tail of the
|
|
* corresponding chunk in bigobj. Then update all three bufwads
|
|
* with the new values we want to write out.
|
|
*/
|
|
for (i = 0; i < s; i++) {
|
|
/* LINTED */
|
|
pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
|
|
/* LINTED */
|
|
bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
|
|
/* LINTED */
|
|
bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
|
|
|
|
ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
|
|
ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
|
|
|
|
if (pack->bw_txg > txg)
|
|
fatal(0, "future leak: got %llx, open txg is %llx",
|
|
pack->bw_txg, txg);
|
|
|
|
if (pack->bw_data != 0 && pack->bw_index != n + i)
|
|
fatal(0, "wrong index: got %llx, wanted %llx+%llx",
|
|
pack->bw_index, n, i);
|
|
|
|
if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
|
|
fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
|
|
|
|
if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
|
|
fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
|
|
|
|
if (freeit) {
|
|
bzero(pack, sizeof (bufwad_t));
|
|
} else {
|
|
pack->bw_index = n + i;
|
|
pack->bw_txg = txg;
|
|
pack->bw_data = 1 + ztest_random(-2ULL);
|
|
}
|
|
*bigH = *pack;
|
|
*bigT = *pack;
|
|
}
|
|
|
|
/*
|
|
* We've verified all the old bufwads, and made new ones.
|
|
* Now write them out.
|
|
*/
|
|
dmu_write(os, packobj, packoff, packsize, packbuf, tx);
|
|
|
|
if (freeit) {
|
|
if (zopt_verbose >= 7) {
|
|
(void) printf("freeing offset %llx size %llx"
|
|
" txg %llx\n",
|
|
(u_longlong_t)bigoff,
|
|
(u_longlong_t)bigsize,
|
|
(u_longlong_t)txg);
|
|
}
|
|
VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx));
|
|
} else {
|
|
if (zopt_verbose >= 7) {
|
|
(void) printf("writing offset %llx size %llx"
|
|
" txg %llx\n",
|
|
(u_longlong_t)bigoff,
|
|
(u_longlong_t)bigsize,
|
|
(u_longlong_t)txg);
|
|
}
|
|
dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
|
|
}
|
|
|
|
dmu_tx_commit(tx);
|
|
|
|
/*
|
|
* Sanity check the stuff we just wrote.
|
|
*/
|
|
{
|
|
void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
|
|
void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
|
|
|
|
VERIFY(0 == dmu_read(os, packobj, packoff,
|
|
packsize, packcheck, DMU_READ_PREFETCH));
|
|
VERIFY(0 == dmu_read(os, bigobj, bigoff,
|
|
bigsize, bigcheck, DMU_READ_PREFETCH));
|
|
|
|
ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
|
|
ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
|
|
|
|
umem_free(packcheck, packsize);
|
|
umem_free(bigcheck, bigsize);
|
|
}
|
|
|
|
umem_free(packbuf, packsize);
|
|
umem_free(bigbuf, bigsize);
|
|
umem_free(od, size);
|
|
}
|
|
|
|
void
|
|
compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
|
|
uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
|
|
{
|
|
uint64_t i;
|
|
bufwad_t *pack;
|
|
bufwad_t *bigH;
|
|
bufwad_t *bigT;
|
|
|
|
/*
|
|
* For each index from n to n + s, verify that the existing bufwad
|
|
* in packobj matches the bufwads at the head and tail of the
|
|
* corresponding chunk in bigobj. Then update all three bufwads
|
|
* with the new values we want to write out.
|
|
*/
|
|
for (i = 0; i < s; i++) {
|
|
/* LINTED */
|
|
pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
|
|
/* LINTED */
|
|
bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
|
|
/* LINTED */
|
|
bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
|
|
|
|
ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
|
|
ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
|
|
|
|
if (pack->bw_txg > txg)
|
|
fatal(0, "future leak: got %llx, open txg is %llx",
|
|
pack->bw_txg, txg);
|
|
|
|
if (pack->bw_data != 0 && pack->bw_index != n + i)
|
|
fatal(0, "wrong index: got %llx, wanted %llx+%llx",
|
|
pack->bw_index, n, i);
|
|
|
|
if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
|
|
fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
|
|
|
|
if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
|
|
fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
|
|
|
|
pack->bw_index = n + i;
|
|
pack->bw_txg = txg;
|
|
pack->bw_data = 1 + ztest_random(-2ULL);
|
|
|
|
*bigH = *pack;
|
|
*bigT = *pack;
|
|
}
|
|
}
|
|
|
|
#undef OD_ARRAY_SIZE
|
|
#define OD_ARRAY_SIZE 2
|
|
|
|
void
|
|
ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
|
|
{
|
|
objset_t *os = zd->zd_os;
|
|
ztest_od_t *od;
|
|
dmu_tx_t *tx;
|
|
uint64_t i;
|
|
int error;
|
|
int size;
|
|
uint64_t n, s, txg;
|
|
bufwad_t *packbuf, *bigbuf;
|
|
uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
|
|
uint64_t blocksize = ztest_random_blocksize();
|
|
uint64_t chunksize = blocksize;
|
|
uint64_t regions = 997;
|
|
uint64_t stride = 123456789ULL;
|
|
uint64_t width = 9;
|
|
dmu_buf_t *bonus_db;
|
|
arc_buf_t **bigbuf_arcbufs;
|
|
dmu_object_info_t doi;
|
|
|
|
size = sizeof(ztest_od_t) * OD_ARRAY_SIZE;
|
|
od = umem_alloc(size, UMEM_NOFAIL);
|
|
|
|
/*
|
|
* This test uses two objects, packobj and bigobj, that are always
|
|
* updated together (i.e. in the same tx) so that their contents are
|
|
* in sync and can be compared. Their contents relate to each other
|
|
* in a simple way: packobj is a dense array of 'bufwad' structures,
|
|
* while bigobj is a sparse array of the same bufwads. Specifically,
|
|
* for any index n, there are three bufwads that should be identical:
|
|
*
|
|
* packobj, at offset n * sizeof (bufwad_t)
|
|
* bigobj, at the head of the nth chunk
|
|
* bigobj, at the tail of the nth chunk
|
|
*
|
|
* The chunk size is set equal to bigobj block size so that
|
|
* dmu_assign_arcbuf() can be tested for object updates.
|
|
*/
|
|
|
|
/*
|
|
* Read the directory info. If it's the first time, set things up.
|
|
*/
|
|
ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
|
|
ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
|
|
|
|
|
|
if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
|
|
umem_free(od, size);
|
|
return;
|
|
}
|
|
|
|
bigobj = od[0].od_object;
|
|
packobj = od[1].od_object;
|
|
blocksize = od[0].od_blocksize;
|
|
chunksize = blocksize;
|
|
ASSERT(chunksize == od[1].od_gen);
|
|
|
|
VERIFY(dmu_object_info(os, bigobj, &doi) == 0);
|
|
VERIFY(ISP2(doi.doi_data_block_size));
|
|
VERIFY(chunksize == doi.doi_data_block_size);
|
|
VERIFY(chunksize >= 2 * sizeof (bufwad_t));
|
|
|
|
/*
|
|
* Pick a random index and compute the offsets into packobj and bigobj.
|
|
*/
|
|
n = ztest_random(regions) * stride + ztest_random(width);
|
|
s = 1 + ztest_random(width - 1);
|
|
|
|
packoff = n * sizeof (bufwad_t);
|
|
packsize = s * sizeof (bufwad_t);
|
|
|
|
bigoff = n * chunksize;
|
|
bigsize = s * chunksize;
|
|
|
|
packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
|
|
bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
|
|
|
|
VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
|
|
|
|
bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
|
|
|
|
/*
|
|
* Iteration 0 test zcopy for DB_UNCACHED dbufs.
|
|
* Iteration 1 test zcopy to already referenced dbufs.
|
|
* Iteration 2 test zcopy to dirty dbuf in the same txg.
|
|
* Iteration 3 test zcopy to dbuf dirty in previous txg.
|
|
* Iteration 4 test zcopy when dbuf is no longer dirty.
|
|
* Iteration 5 test zcopy when it can't be done.
|
|
* Iteration 6 one more zcopy write.
|
|
*/
|
|
for (i = 0; i < 7; i++) {
|
|
uint64_t j;
|
|
uint64_t off;
|
|
|
|
/*
|
|
* In iteration 5 (i == 5) use arcbufs
|
|
* that don't match bigobj blksz to test
|
|
* dmu_assign_arcbuf() when it can't directly
|
|
* assign an arcbuf to a dbuf.
|
|
*/
|
|
for (j = 0; j < s; j++) {
|
|
if (i != 5) {
|
|
bigbuf_arcbufs[j] =
|
|
dmu_request_arcbuf(bonus_db, chunksize);
|
|
} else {
|
|
bigbuf_arcbufs[2 * j] =
|
|
dmu_request_arcbuf(bonus_db, chunksize / 2);
|
|
bigbuf_arcbufs[2 * j + 1] =
|
|
dmu_request_arcbuf(bonus_db, chunksize / 2);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Get a tx for the mods to both packobj and bigobj.
|
|
*/
|
|
tx = dmu_tx_create(os);
|
|
|
|
dmu_tx_hold_write(tx, packobj, packoff, packsize);
|
|
dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
|
|
|
|
txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
|
|
if (txg == 0) {
|
|
umem_free(packbuf, packsize);
|
|
umem_free(bigbuf, bigsize);
|
|
for (j = 0; j < s; j++) {
|
|
if (i != 5) {
|
|
dmu_return_arcbuf(bigbuf_arcbufs[j]);
|
|
} else {
|
|
dmu_return_arcbuf(
|
|
bigbuf_arcbufs[2 * j]);
|
|
dmu_return_arcbuf(
|
|
bigbuf_arcbufs[2 * j + 1]);
|
|
}
|
|
}
|
|
umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
|
|
umem_free(od, size);
|
|
dmu_buf_rele(bonus_db, FTAG);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* 50% of the time don't read objects in the 1st iteration to
|
|
* test dmu_assign_arcbuf() for the case when there're no
|
|
* existing dbufs for the specified offsets.
|
|
*/
|
|
if (i != 0 || ztest_random(2) != 0) {
|
|
error = dmu_read(os, packobj, packoff,
|
|
packsize, packbuf, DMU_READ_PREFETCH);
|
|
ASSERT3U(error, ==, 0);
|
|
error = dmu_read(os, bigobj, bigoff, bigsize,
|
|
bigbuf, DMU_READ_PREFETCH);
|
|
ASSERT3U(error, ==, 0);
|
|
}
|
|
compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
|
|
n, chunksize, txg);
|
|
|
|
/*
|
|
* We've verified all the old bufwads, and made new ones.
|
|
* Now write them out.
|
|
*/
|
|
dmu_write(os, packobj, packoff, packsize, packbuf, tx);
|
|
if (zopt_verbose >= 7) {
|
|
(void) printf("writing offset %llx size %llx"
|
|
" txg %llx\n",
|
|
(u_longlong_t)bigoff,
|
|
(u_longlong_t)bigsize,
|
|
(u_longlong_t)txg);
|
|
}
|
|
for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
|
|
dmu_buf_t *dbt;
|
|
if (i != 5) {
|
|
bcopy((caddr_t)bigbuf + (off - bigoff),
|
|
bigbuf_arcbufs[j]->b_data, chunksize);
|
|
} else {
|
|
bcopy((caddr_t)bigbuf + (off - bigoff),
|
|
bigbuf_arcbufs[2 * j]->b_data,
|
|
chunksize / 2);
|
|
bcopy((caddr_t)bigbuf + (off - bigoff) +
|
|
chunksize / 2,
|
|
bigbuf_arcbufs[2 * j + 1]->b_data,
|
|
chunksize / 2);
|
|
}
|
|
|
|
if (i == 1) {
|
|
VERIFY(dmu_buf_hold(os, bigobj, off,
|
|
FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
|
|
}
|
|
if (i != 5) {
|
|
dmu_assign_arcbuf(bonus_db, off,
|
|
bigbuf_arcbufs[j], tx);
|
|
} else {
|
|
dmu_assign_arcbuf(bonus_db, off,
|
|
bigbuf_arcbufs[2 * j], tx);
|
|
dmu_assign_arcbuf(bonus_db,
|
|
off + chunksize / 2,
|
|
bigbuf_arcbufs[2 * j + 1], tx);
|
|
}
|
|
if (i == 1) {
|
|
dmu_buf_rele(dbt, FTAG);
|
|
}
|
|
}
|
|
dmu_tx_commit(tx);
|
|
|
|
/*
|
|
* Sanity check the stuff we just wrote.
|
|
*/
|
|
{
|
|
void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
|
|
void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
|
|
|
|
VERIFY(0 == dmu_read(os, packobj, packoff,
|
|
packsize, packcheck, DMU_READ_PREFETCH));
|
|
VERIFY(0 == dmu_read(os, bigobj, bigoff,
|
|
bigsize, bigcheck, DMU_READ_PREFETCH));
|
|
|
|
ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
|
|
ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
|
|
|
|
umem_free(packcheck, packsize);
|
|
umem_free(bigcheck, bigsize);
|
|
}
|
|
if (i == 2) {
|
|
txg_wait_open(dmu_objset_pool(os), 0);
|
|
} else if (i == 3) {
|
|
txg_wait_synced(dmu_objset_pool(os), 0);
|
|
}
|
|
}
|
|
|
|
dmu_buf_rele(bonus_db, FTAG);
|
|
umem_free(packbuf, packsize);
|
|
umem_free(bigbuf, bigsize);
|
|
umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
|
|
umem_free(od, size);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
void
|
|
ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
|
|
{
|
|
ztest_od_t *od;
|
|
|
|
od = umem_alloc(sizeof(ztest_od_t), UMEM_NOFAIL);
|
|
uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
|
|
(ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
|
|
|
|
/*
|
|
* Have multiple threads write to large offsets in an object
|
|
* to verify that parallel writes to an object -- even to the
|
|
* same blocks within the object -- doesn't cause any trouble.
|
|
*/
|
|
ztest_od_init(od, ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
|
|
|
|
if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0)
|
|
return;
|
|
|
|
while (ztest_random(10) != 0)
|
|
ztest_io(zd, od->od_object, offset);
|
|
|
|
umem_free(od, sizeof(ztest_od_t));
|
|
}
|
|
|
|
void
|
|
ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
|
|
{
|
|
ztest_od_t *od;
|
|
uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
|
|
(ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
|
|
uint64_t count = ztest_random(20) + 1;
|
|
uint64_t blocksize = ztest_random_blocksize();
|
|
void *data;
|
|
|
|
od = umem_alloc(sizeof(ztest_od_t), UMEM_NOFAIL);
|
|
|
|
ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
|
|
|
|
if (ztest_object_init(zd, od, sizeof (ztest_od_t), !ztest_random(2)) != 0) {
|
|
umem_free(od, sizeof(ztest_od_t));
|
|
return;
|
|
}
|
|
|
|
if (ztest_truncate(zd, od->od_object, offset, count * blocksize) != 0) {
|
|
umem_free(od, sizeof(ztest_od_t));
|
|
return;
|
|
}
|
|
|
|
ztest_prealloc(zd, od->od_object, offset, count * blocksize);
|
|
|
|
data = umem_zalloc(blocksize, UMEM_NOFAIL);
|
|
|
|
while (ztest_random(count) != 0) {
|
|
uint64_t randoff = offset + (ztest_random(count) * blocksize);
|
|
if (ztest_write(zd, od->od_object, randoff, blocksize,
|
|
data) != 0)
|
|
break;
|
|
while (ztest_random(4) != 0)
|
|
ztest_io(zd, od->od_object, randoff);
|
|
}
|
|
|
|
umem_free(data, blocksize);
|
|
umem_free(od, sizeof(ztest_od_t));
|
|
}
|
|
|
|
/*
|
|
* Verify that zap_{create,destroy,add,remove,update} work as expected.
|
|
*/
|
|
#define ZTEST_ZAP_MIN_INTS 1
|
|
#define ZTEST_ZAP_MAX_INTS 4
|
|
#define ZTEST_ZAP_MAX_PROPS 1000
|
|
|
|
void
|
|
ztest_zap(ztest_ds_t *zd, uint64_t id)
|
|
{
|
|
objset_t *os = zd->zd_os;
|
|
ztest_od_t *od;
|
|
uint64_t object;
|
|
uint64_t txg, last_txg;
|
|
uint64_t value[ZTEST_ZAP_MAX_INTS];
|
|
uint64_t zl_ints, zl_intsize, prop;
|
|
int i, ints;
|
|
dmu_tx_t *tx;
|
|
char propname[100], txgname[100];
|
|
int error;
|
|
char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
|
|
|
|
od = umem_alloc(sizeof(ztest_od_t), UMEM_NOFAIL);
|
|
ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
|
|
|
|
if (ztest_object_init(zd, od, sizeof (ztest_od_t),
|
|
!ztest_random(2)) != 0)
|
|
goto out;
|
|
|
|
object = od->od_object;
|
|
|
|
/*
|
|
* Generate a known hash collision, and verify that
|
|
* we can lookup and remove both entries.
|
|
*/
|
|
tx = dmu_tx_create(os);
|
|
dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
|
|
txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
|
|
if (txg == 0)
|
|
goto out;
|
|
for (i = 0; i < 2; i++) {
|
|
value[i] = i;
|
|
VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t),
|
|
1, &value[i], tx));
|
|
}
|
|
for (i = 0; i < 2; i++) {
|
|
VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
|
|
sizeof (uint64_t), 1, &value[i], tx));
|
|
VERIFY3U(0, ==,
|
|
zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
|
|
ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
|
|
ASSERT3U(zl_ints, ==, 1);
|
|
}
|
|
for (i = 0; i < 2; i++) {
|
|
VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx));
|
|
}
|
|
dmu_tx_commit(tx);
|
|
|
|
/*
|
|
* Generate a buch of random entries.
|
|
*/
|
|
ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
|
|
|
|
prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
|
|
(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
|
|
(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
|
|
bzero(value, sizeof (value));
|
|
last_txg = 0;
|
|
|
|
/*
|
|
* If these zap entries already exist, validate their contents.
|
|
*/
|
|
error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
|
|
if (error == 0) {
|
|
ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
|
|
ASSERT3U(zl_ints, ==, 1);
|
|
|
|
VERIFY(zap_lookup(os, object, txgname, zl_intsize,
|
|
zl_ints, &last_txg) == 0);
|
|
|
|
VERIFY(zap_length(os, object, propname, &zl_intsize,
|
|
&zl_ints) == 0);
|
|
|
|
ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
|
|
ASSERT3U(zl_ints, ==, ints);
|
|
|
|
VERIFY(zap_lookup(os, object, propname, zl_intsize,
|
|
zl_ints, value) == 0);
|
|
|
|
for (i = 0; i < ints; i++) {
|
|
ASSERT3U(value[i], ==, last_txg + object + i);
|
|
}
|
|
} else {
|
|
ASSERT3U(error, ==, ENOENT);
|
|
}
|
|
|
|
/*
|
|
* Atomically update two entries in our zap object.
|
|
* The first is named txg_%llu, and contains the txg
|
|
* in which the property was last updated. The second
|
|
* is named prop_%llu, and the nth element of its value
|
|
* should be txg + object + n.
|
|
*/
|
|
tx = dmu_tx_create(os);
|
|
dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
|
|
txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
|
|
if (txg == 0)
|
|
goto out;
|
|
|
|
if (last_txg > txg)
|
|
fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
|
|
|
|
for (i = 0; i < ints; i++)
|
|
value[i] = txg + object + i;
|
|
|
|
VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t),
|
|
1, &txg, tx));
|
|
VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t),
|
|
ints, value, tx));
|
|
|
|
dmu_tx_commit(tx);
|
|
|
|
/*
|
|
* Remove a random pair of entries.
|
|
*/
|
|
prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
|
|
(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
|
|
(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
|
|
|
|
error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
|
|
|
|
if (error == ENOENT)
|
|
goto out;
|
|
|
|
ASSERT3U(error, ==, 0);
|
|
|
|
tx = dmu_tx_create(os);
|
|
dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
|
|
txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
|
|
if (txg == 0)
|
|
goto out;
|
|
VERIFY3U(0, ==, zap_remove(os, object, txgname, tx));
|
|
VERIFY3U(0, ==, zap_remove(os, object, propname, tx));
|
|
dmu_tx_commit(tx);
|
|
out:
|
|
umem_free(od, sizeof(ztest_od_t));
|
|
}
|
|
|
|
/*
|
|
* Testcase to test the upgrading of a microzap to fatzap.
|
|
*/
|
|
void
|
|
ztest_fzap(ztest_ds_t *zd, uint64_t id)
|
|
{
|
|
objset_t *os = zd->zd_os;
|
|
ztest_od_t *od;
|
|
uint64_t object, txg;
|
|
int i;
|
|
|
|
od = umem_alloc(sizeof(ztest_od_t), UMEM_NOFAIL);
|
|
ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
|
|
|
|
if (ztest_object_init(zd, od, sizeof (ztest_od_t),
|
|
!ztest_random(2)) != 0)
|
|
goto out;
|
|
object = od->od_object;
|
|
|
|
/*
|
|
* Add entries to this ZAP and make sure it spills over
|
|
* and gets upgraded to a fatzap. Also, since we are adding
|
|
* 2050 entries we should see ptrtbl growth and leaf-block split.
|
|
*/
|
|
for (i = 0; i < 2050; i++) {
|
|
char name[MAXNAMELEN];
|
|
uint64_t value = i;
|
|
dmu_tx_t *tx;
|
|
int error;
|
|
|
|
(void) snprintf(name, sizeof (name), "fzap-%llu-%llu",
|
|
(u_longlong_t)id, (u_longlong_t)value);
|
|
|
|
tx = dmu_tx_create(os);
|
|
dmu_tx_hold_zap(tx, object, B_TRUE, name);
|
|
txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
|
|
if (txg == 0)
|
|
goto out;
|
|
error = zap_add(os, object, name, sizeof (uint64_t), 1,
|
|
&value, tx);
|
|
ASSERT(error == 0 || error == EEXIST);
|
|
dmu_tx_commit(tx);
|
|
}
|
|
out:
|
|
umem_free(od, sizeof(ztest_od_t));
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
void
|
|
ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
|
|
{
|
|
objset_t *os = zd->zd_os;
|
|
ztest_od_t *od;
|
|
uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
|
|
dmu_tx_t *tx;
|
|
int i, namelen, error;
|
|
int micro = ztest_random(2);
|
|
char name[20], string_value[20];
|
|
void *data;
|
|
|
|
od = umem_alloc(sizeof(ztest_od_t), UMEM_NOFAIL);
|
|
ztest_od_init(od, ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0);
|
|
|
|
if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
|
|
umem_free(od, sizeof(ztest_od_t));
|
|
return;
|
|
}
|
|
|
|
object = od->od_object;
|
|
|
|
/*
|
|
* Generate a random name of the form 'xxx.....' where each
|
|
* x is a random printable character and the dots are dots.
|
|
* There are 94 such characters, and the name length goes from
|
|
* 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
|
|
*/
|
|
namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
|
|
|
|
for (i = 0; i < 3; i++)
|
|
name[i] = '!' + ztest_random('~' - '!' + 1);
|
|
for (; i < namelen - 1; i++)
|
|
name[i] = '.';
|
|
name[i] = '\0';
|
|
|
|
if ((namelen & 1) || micro) {
|
|
wsize = sizeof (txg);
|
|
wc = 1;
|
|
data = &txg;
|
|
} else {
|
|
wsize = 1;
|
|
wc = namelen;
|
|
data = string_value;
|
|
}
|
|
|
|
count = -1ULL;
|
|
VERIFY(zap_count(os, object, &count) == 0);
|
|
ASSERT(count != -1ULL);
|
|
|
|
/*
|
|
* Select an operation: length, lookup, add, update, remove.
|
|
*/
|
|
i = ztest_random(5);
|
|
|
|
if (i >= 2) {
|
|
tx = dmu_tx_create(os);
|
|
dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
|
|
txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
|
|
if (txg == 0)
|
|
return;
|
|
bcopy(name, string_value, namelen);
|
|
} else {
|
|
tx = NULL;
|
|
txg = 0;
|
|
bzero(string_value, namelen);
|
|
}
|
|
|
|
switch (i) {
|
|
|
|
case 0:
|
|
error = zap_length(os, object, name, &zl_wsize, &zl_wc);
|
|
if (error == 0) {
|
|
ASSERT3U(wsize, ==, zl_wsize);
|
|
ASSERT3U(wc, ==, zl_wc);
|
|
} else {
|
|
ASSERT3U(error, ==, ENOENT);
|
|
}
|
|
break;
|
|
|
|
case 1:
|
|
error = zap_lookup(os, object, name, wsize, wc, data);
|
|
if (error == 0) {
|
|
if (data == string_value &&
|
|
bcmp(name, data, namelen) != 0)
|
|
fatal(0, "name '%s' != val '%s' len %d",
|
|
name, data, namelen);
|
|
} else {
|
|
ASSERT3U(error, ==, ENOENT);
|
|
}
|
|
break;
|
|
|
|
case 2:
|
|
error = zap_add(os, object, name, wsize, wc, data, tx);
|
|
ASSERT(error == 0 || error == EEXIST);
|
|
break;
|
|
|
|
case 3:
|
|
VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0);
|
|
break;
|
|
|
|
case 4:
|
|
error = zap_remove(os, object, name, tx);
|
|
ASSERT(error == 0 || error == ENOENT);
|
|
break;
|
|
}
|
|
|
|
if (tx != NULL)
|
|
dmu_tx_commit(tx);
|
|
|
|
umem_free(od, sizeof(ztest_od_t));
|
|
}
|
|
|
|
/*
|
|
* Commit callback data.
|
|
*/
|
|
typedef struct ztest_cb_data {
|
|
list_node_t zcd_node;
|
|
uint64_t zcd_txg;
|
|
int zcd_expected_err;
|
|
boolean_t zcd_added;
|
|
boolean_t zcd_called;
|
|
spa_t *zcd_spa;
|
|
} ztest_cb_data_t;
|
|
|
|
/* This is the actual commit callback function */
|
|
static void
|
|
ztest_commit_callback(void *arg, int error)
|
|
{
|
|
ztest_cb_data_t *data = arg;
|
|
uint64_t synced_txg;
|
|
|
|
VERIFY(data != NULL);
|
|
VERIFY3S(data->zcd_expected_err, ==, error);
|
|
VERIFY(!data->zcd_called);
|
|
|
|
synced_txg = spa_last_synced_txg(data->zcd_spa);
|
|
if (data->zcd_txg > synced_txg)
|
|
fatal(0, "commit callback of txg %" PRIu64 " called prematurely"
|
|
", last synced txg = %" PRIu64 "\n", data->zcd_txg,
|
|
synced_txg);
|
|
|
|
data->zcd_called = B_TRUE;
|
|
|
|
if (error == ECANCELED) {
|
|
ASSERT3U(data->zcd_txg, ==, 0);
|
|
ASSERT(!data->zcd_added);
|
|
|
|
/*
|
|
* The private callback data should be destroyed here, but
|
|
* since we are going to check the zcd_called field after
|
|
* dmu_tx_abort(), we will destroy it there.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
ASSERT(data->zcd_added);
|
|
ASSERT3U(data->zcd_txg, !=, 0);
|
|
|
|
(void) mutex_enter(&zcl.zcl_callbacks_lock);
|
|
|
|
/* See if this cb was called more quickly */
|
|
if ((synced_txg - data->zcd_txg) < zc_min_txg_delay)
|
|
zc_min_txg_delay = synced_txg - data->zcd_txg;
|
|
|
|
/* Remove our callback from the list */
|
|
list_remove(&zcl.zcl_callbacks, data);
|
|
|
|
(void) mutex_exit(&zcl.zcl_callbacks_lock);
|
|
|
|
umem_free(data, sizeof (ztest_cb_data_t));
|
|
}
|
|
|
|
/* Allocate and initialize callback data structure */
|
|
static ztest_cb_data_t *
|
|
ztest_create_cb_data(objset_t *os, uint64_t txg)
|
|
{
|
|
ztest_cb_data_t *cb_data;
|
|
|
|
cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
|
|
|
|
cb_data->zcd_txg = txg;
|
|
cb_data->zcd_spa = dmu_objset_spa(os);
|
|
list_link_init(&cb_data->zcd_node);
|
|
|
|
return (cb_data);
|
|
}
|
|
|
|
/*
|
|
* Commit callback test.
|
|
*/
|
|
void
|
|
ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
|
|
{
|
|
objset_t *os = zd->zd_os;
|
|
ztest_od_t *od;
|
|
dmu_tx_t *tx;
|
|
ztest_cb_data_t *cb_data[3], *tmp_cb;
|
|
uint64_t old_txg, txg;
|
|
int i, error = 0;
|
|
|
|
od = umem_alloc(sizeof(ztest_od_t), UMEM_NOFAIL);
|
|
ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
|
|
|
|
if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
|
|
umem_free(od, sizeof(ztest_od_t));
|
|
return;
|
|
}
|
|
|
|
tx = dmu_tx_create(os);
|
|
|
|
cb_data[0] = ztest_create_cb_data(os, 0);
|
|
dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
|
|
|
|
dmu_tx_hold_write(tx, od->od_object, 0, sizeof (uint64_t));
|
|
|
|
/* Every once in a while, abort the transaction on purpose */
|
|
if (ztest_random(100) == 0)
|
|
error = -1;
|
|
|
|
if (!error)
|
|
error = dmu_tx_assign(tx, TXG_NOWAIT);
|
|
|
|
txg = error ? 0 : dmu_tx_get_txg(tx);
|
|
|
|
cb_data[0]->zcd_txg = txg;
|
|
cb_data[1] = ztest_create_cb_data(os, txg);
|
|
dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
|
|
|
|
if (error) {
|
|
/*
|
|
* It's not a strict requirement to call the registered
|
|
* callbacks from inside dmu_tx_abort(), but that's what
|
|
* it's supposed to happen in the current implementation
|
|
* so we will check for that.
|
|
*/
|
|
for (i = 0; i < 2; i++) {
|
|
cb_data[i]->zcd_expected_err = ECANCELED;
|
|
VERIFY(!cb_data[i]->zcd_called);
|
|
}
|
|
|
|
dmu_tx_abort(tx);
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
VERIFY(cb_data[i]->zcd_called);
|
|
umem_free(cb_data[i], sizeof (ztest_cb_data_t));
|
|
}
|
|
|
|
umem_free(od, sizeof(ztest_od_t));
|
|
return;
|
|
}
|
|
|
|
cb_data[2] = ztest_create_cb_data(os, txg);
|
|
dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
|
|
|
|
/*
|
|
* Read existing data to make sure there isn't a future leak.
|
|
*/
|
|
VERIFY(0 == dmu_read(os, od->od_object, 0, sizeof (uint64_t),
|
|
&old_txg, DMU_READ_PREFETCH));
|
|
|
|
if (old_txg > txg)
|
|
fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64,
|
|
old_txg, txg);
|
|
|
|
dmu_write(os, od->od_object, 0, sizeof (uint64_t), &txg, tx);
|
|
|
|
(void) mutex_enter(&zcl.zcl_callbacks_lock);
|
|
|
|
/*
|
|
* Since commit callbacks don't have any ordering requirement and since
|
|
* it is theoretically possible for a commit callback to be called
|
|
* after an arbitrary amount of time has elapsed since its txg has been
|
|
* synced, it is difficult to reliably determine whether a commit
|
|
* callback hasn't been called due to high load or due to a flawed
|
|
* implementation.
|
|
*
|
|
* In practice, we will assume that if after a certain number of txgs a
|
|
* commit callback hasn't been called, then most likely there's an
|
|
* implementation bug..
|
|
*/
|
|
tmp_cb = list_head(&zcl.zcl_callbacks);
|
|
if (tmp_cb != NULL &&
|
|
tmp_cb->zcd_txg + ZTEST_COMMIT_CB_THRESH < txg) {
|
|
fatal(0, "Commit callback threshold exceeded, oldest txg: %"
|
|
PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg);
|
|
}
|
|
|
|
/*
|
|
* Let's find the place to insert our callbacks.
|
|
*
|
|
* Even though the list is ordered by txg, it is possible for the
|
|
* insertion point to not be the end because our txg may already be
|
|
* quiescing at this point and other callbacks in the open txg
|
|
* (from other objsets) may have sneaked in.
|
|
*/
|
|
tmp_cb = list_tail(&zcl.zcl_callbacks);
|
|
while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
|
|
tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
|
|
|
|
/* Add the 3 callbacks to the list */
|
|
for (i = 0; i < 3; i++) {
|
|
if (tmp_cb == NULL)
|
|
list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
|
|
else
|
|
list_insert_after(&zcl.zcl_callbacks, tmp_cb,
|
|
cb_data[i]);
|
|
|
|
cb_data[i]->zcd_added = B_TRUE;
|
|
VERIFY(!cb_data[i]->zcd_called);
|
|
|
|
tmp_cb = cb_data[i];
|
|
}
|
|
|
|
zc_cb_counter += 3;
|
|
|
|
(void) mutex_exit(&zcl.zcl_callbacks_lock);
|
|
|
|
dmu_tx_commit(tx);
|
|
|
|
umem_free(od, sizeof(ztest_od_t));
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
void
|
|
ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
|
|
{
|
|
zfs_prop_t proplist[] = {
|
|
ZFS_PROP_CHECKSUM,
|
|
ZFS_PROP_COMPRESSION,
|
|
ZFS_PROP_COPIES,
|
|
ZFS_PROP_DEDUP
|
|
};
|
|
ztest_shared_t *zs = ztest_shared;
|
|
int p;
|
|
|
|
(void) rw_enter(&zs->zs_name_lock, RW_READER);
|
|
|
|
for (p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++)
|
|
(void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
|
|
ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
|
|
|
|
(void) rw_exit(&zs->zs_name_lock);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
void
|
|
ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
|
|
{
|
|
ztest_shared_t *zs = ztest_shared;
|
|
nvlist_t *props = NULL;
|
|
|
|
(void) rw_enter(&zs->zs_name_lock, RW_READER);
|
|
|
|
(void) ztest_spa_prop_set_uint64(zs, ZPOOL_PROP_DEDUPDITTO,
|
|
ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN));
|
|
|
|
VERIFY3U(spa_prop_get(zs->zs_spa, &props), ==, 0);
|
|
|
|
if (zopt_verbose >= 6)
|
|
dump_nvlist(props, 4);
|
|
|
|
nvlist_free(props);
|
|
|
|
(void) rw_exit(&zs->zs_name_lock);
|
|
}
|
|
|
|
/*
|
|
* Test snapshot hold/release and deferred destroy.
|
|
*/
|
|
void
|
|
ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
|
|
{
|
|
int error;
|
|
objset_t *os = zd->zd_os;
|
|
objset_t *origin;
|
|
char snapname[100];
|
|
char fullname[100];
|
|
char clonename[100];
|
|
char tag[100];
|
|
char osname[MAXNAMELEN];
|
|
|
|
(void) rw_enter(&ztest_shared->zs_name_lock, RW_READER);
|
|
|
|
dmu_objset_name(os, osname);
|
|
|
|
(void) snprintf(snapname, 100, "sh1_%llu", (u_longlong_t)id);
|
|
(void) snprintf(fullname, 100, "%s@%s", osname, snapname);
|
|
(void) snprintf(clonename, 100, "%s/ch1_%llu",osname,(u_longlong_t)id);
|
|
(void) snprintf(tag, 100, "tag_%llu", (u_longlong_t)id);
|
|
|
|
/*
|
|
* Clean up from any previous run.
|
|
*/
|
|
(void) dmu_objset_destroy(clonename, B_FALSE);
|
|
(void) dsl_dataset_user_release(osname, snapname, tag, B_FALSE);
|
|
(void) dmu_objset_destroy(fullname, B_FALSE);
|
|
|
|
/*
|
|
* Create snapshot, clone it, mark snap for deferred destroy,
|
|
* destroy clone, verify snap was also destroyed.
|
|
*/
|
|
error = dmu_objset_snapshot(osname, snapname, NULL, NULL, FALSE,
|
|
FALSE, -1);
|
|
if (error) {
|
|
if (error == ENOSPC) {
|
|
ztest_record_enospc("dmu_objset_snapshot");
|
|
goto out;
|
|
}
|
|
fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
|
|
}
|
|
|
|
error = dmu_objset_hold(fullname, FTAG, &origin);
|
|
if (error)
|
|
fatal(0, "dmu_objset_hold(%s) = %d", fullname, error);
|
|
|
|
error = dmu_objset_clone(clonename, dmu_objset_ds(origin), 0);
|
|
dmu_objset_rele(origin, FTAG);
|
|
if (error) {
|
|
if (error == ENOSPC) {
|
|
ztest_record_enospc("dmu_objset_clone");
|
|
goto out;
|
|
}
|
|
fatal(0, "dmu_objset_clone(%s) = %d", clonename, error);
|
|
}
|
|
|
|
error = dmu_objset_destroy(fullname, B_TRUE);
|
|
if (error) {
|
|
fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d",
|
|
fullname, error);
|
|
}
|
|
|
|
error = dmu_objset_destroy(clonename, B_FALSE);
|
|
if (error)
|
|
fatal(0, "dmu_objset_destroy(%s) = %d", clonename, error);
|
|
|
|
error = dmu_objset_hold(fullname, FTAG, &origin);
|
|
if (error != ENOENT)
|
|
fatal(0, "dmu_objset_hold(%s) = %d", fullname, error);
|
|
|
|
/*
|
|
* Create snapshot, add temporary hold, verify that we can't
|
|
* destroy a held snapshot, mark for deferred destroy,
|
|
* release hold, verify snapshot was destroyed.
|
|
*/
|
|
error = dmu_objset_snapshot(osname, snapname, NULL, NULL, FALSE,
|
|
FALSE, -1);
|
|
if (error) {
|
|
if (error == ENOSPC) {
|
|
ztest_record_enospc("dmu_objset_snapshot");
|
|
goto out;
|
|
}
|
|
fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
|
|
}
|
|
|
|
error = dsl_dataset_user_hold(osname, snapname, tag, B_FALSE,
|
|
B_TRUE, -1);
|
|
if (error)
|
|
fatal(0, "dsl_dataset_user_hold(%s)", fullname, tag);
|
|
|
|
error = dmu_objset_destroy(fullname, B_FALSE);
|
|
if (error != EBUSY) {
|
|
fatal(0, "dmu_objset_destroy(%s, B_FALSE) = %d",
|
|
fullname, error);
|
|
}
|
|
|
|
error = dmu_objset_destroy(fullname, B_TRUE);
|
|
if (error) {
|
|
fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d",
|
|
fullname, error);
|
|
}
|
|
|
|
error = dsl_dataset_user_release(osname, snapname, tag, B_FALSE);
|
|
if (error)
|
|
fatal(0, "dsl_dataset_user_release(%s)", fullname, tag);
|
|
|
|
VERIFY(dmu_objset_hold(fullname, FTAG, &origin) == ENOENT);
|
|
|
|
out:
|
|
(void) rw_exit(&ztest_shared->zs_name_lock);
|
|
}
|
|
|
|
/*
|
|
* Inject random faults into the on-disk data.
|
|
*/
|
|
/* ARGSUSED */
|
|
void
|
|
ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
|
|
{
|
|
ztest_shared_t *zs = ztest_shared;
|
|
spa_t *spa = zs->zs_spa;
|
|
int fd;
|
|
uint64_t offset;
|
|
uint64_t leaves;
|
|
uint64_t bad = 0x1990c0ffeedecadeull;
|
|
uint64_t top, leaf;
|
|
char *path0;
|
|
char *pathrand;
|
|
size_t fsize;
|
|
int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */
|
|
int iters = 1000;
|
|
int maxfaults;
|
|
int mirror_save;
|
|
vdev_t *vd0 = NULL;
|
|
uint64_t guid0 = 0;
|
|
boolean_t islog = B_FALSE;
|
|
|
|
path0 = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
|
|
pathrand = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
|
|
|
|
mutex_enter(&zs->zs_vdev_lock);
|
|
maxfaults = MAXFAULTS();
|
|
leaves = MAX(zs->zs_mirrors, 1) * zopt_raidz;
|
|
mirror_save = zs->zs_mirrors;
|
|
mutex_exit(&zs->zs_vdev_lock);
|
|
|
|
ASSERT(leaves >= 1);
|
|
|
|
/*
|
|
* We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
|
|
*/
|
|
spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
|
|
|
|
if (ztest_random(2) == 0) {
|
|
/*
|
|
* Inject errors on a normal data device or slog device.
|
|
*/
|
|
top = ztest_random_vdev_top(spa, B_TRUE);
|
|
leaf = ztest_random(leaves) + zs->zs_splits;
|
|
|
|
/*
|
|
* Generate paths to the first leaf in this top-level vdev,
|
|
* and to the random leaf we selected. We'll induce transient
|
|
* write failures and random online/offline activity on leaf 0,
|
|
* and we'll write random garbage to the randomly chosen leaf.
|
|
*/
|
|
(void) snprintf(path0, sizeof (path0), ztest_dev_template,
|
|
zopt_dir, zopt_pool, top * leaves + zs->zs_splits);
|
|
(void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template,
|
|
zopt_dir, zopt_pool, top * leaves + leaf);
|
|
|
|
vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
|
|
if (vd0 != NULL && vd0->vdev_top->vdev_islog)
|
|
islog = B_TRUE;
|
|
|
|
if (vd0 != NULL && maxfaults != 1) {
|
|
/*
|
|
* Make vd0 explicitly claim to be unreadable,
|
|
* or unwriteable, or reach behind its back
|
|
* and close the underlying fd. We can do this if
|
|
* maxfaults == 0 because we'll fail and reexecute,
|
|
* and we can do it if maxfaults >= 2 because we'll
|
|
* have enough redundancy. If maxfaults == 1, the
|
|
* combination of this with injection of random data
|
|
* corruption below exceeds the pool's fault tolerance.
|
|
*/
|
|
vdev_file_t *vf = vd0->vdev_tsd;
|
|
|
|
if (vf != NULL && ztest_random(3) == 0) {
|
|
(void) close(vf->vf_vnode->v_fd);
|
|
vf->vf_vnode->v_fd = -1;
|
|
} else if (ztest_random(2) == 0) {
|
|
vd0->vdev_cant_read = B_TRUE;
|
|
} else {
|
|
vd0->vdev_cant_write = B_TRUE;
|
|
}
|
|
guid0 = vd0->vdev_guid;
|
|
}
|
|
} else {
|
|
/*
|
|
* Inject errors on an l2cache device.
|
|
*/
|
|
spa_aux_vdev_t *sav = &spa->spa_l2cache;
|
|
|
|
if (sav->sav_count == 0) {
|
|
spa_config_exit(spa, SCL_STATE, FTAG);
|
|
goto out;
|
|
}
|
|
vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
|
|
guid0 = vd0->vdev_guid;
|
|
(void) strcpy(path0, vd0->vdev_path);
|
|
(void) strcpy(pathrand, vd0->vdev_path);
|
|
|
|
leaf = 0;
|
|
leaves = 1;
|
|
maxfaults = INT_MAX; /* no limit on cache devices */
|
|
}
|
|
|
|
spa_config_exit(spa, SCL_STATE, FTAG);
|
|
|
|
/*
|
|
* If we can tolerate two or more faults, or we're dealing
|
|
* with a slog, randomly online/offline vd0.
|
|
*/
|
|
if ((maxfaults >= 2 || islog) && guid0 != 0) {
|
|
if (ztest_random(10) < 6) {
|
|
int flags = (ztest_random(2) == 0 ?
|
|
ZFS_OFFLINE_TEMPORARY : 0);
|
|
|
|
/*
|
|
* We have to grab the zs_name_lock as writer to
|
|
* prevent a race between offlining a slog and
|
|
* destroying a dataset. Offlining the slog will
|
|
* grab a reference on the dataset which may cause
|
|
* dmu_objset_destroy() to fail with EBUSY thus
|
|
* leaving the dataset in an inconsistent state.
|
|
*/
|
|
if (islog)
|
|
(void) rw_enter(&ztest_shared->zs_name_lock,
|
|
RW_WRITER);
|
|
|
|
VERIFY(vdev_offline(spa, guid0, flags) != EBUSY);
|
|
|
|
if (islog)
|
|
(void) rw_exit(&ztest_shared->zs_name_lock);
|
|
} else {
|
|
(void) vdev_online(spa, guid0, 0, NULL);
|
|
}
|
|
}
|
|
|
|
if (maxfaults == 0)
|
|
goto out;
|
|
|
|
/*
|
|
* We have at least single-fault tolerance, so inject data corruption.
|
|
*/
|
|
fd = open(pathrand, O_RDWR);
|
|
|
|
if (fd == -1) /* we hit a gap in the device namespace */
|
|
goto out;
|
|
|
|
fsize = lseek(fd, 0, SEEK_END);
|
|
|
|
while (--iters != 0) {
|
|
offset = ztest_random(fsize / (leaves << bshift)) *
|
|
(leaves << bshift) + (leaf << bshift) +
|
|
(ztest_random(1ULL << (bshift - 1)) & -8ULL);
|
|
|
|
if (offset >= fsize)
|
|
continue;
|
|
|
|
mutex_enter(&zs->zs_vdev_lock);
|
|
if (mirror_save != zs->zs_mirrors) {
|
|
mutex_exit(&zs->zs_vdev_lock);
|
|
(void) close(fd);
|
|
goto out;
|
|
}
|
|
|
|
if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
|
|
fatal(1, "can't inject bad word at 0x%llx in %s",
|
|
offset, pathrand);
|
|
|
|
mutex_exit(&zs->zs_vdev_lock);
|
|
|
|
if (zopt_verbose >= 7)
|
|
(void) printf("injected bad word into %s,"
|
|
" offset 0x%llx\n", pathrand, (u_longlong_t)offset);
|
|
}
|
|
|
|
(void) close(fd);
|
|
out:
|
|
umem_free(path0, MAXPATHLEN);
|
|
umem_free(pathrand, MAXPATHLEN);
|
|
}
|
|
|
|
/*
|
|
* Verify that DDT repair works as expected.
|
|
*/
|
|
void
|
|
ztest_ddt_repair(ztest_ds_t *zd, uint64_t id)
|
|
{
|
|
ztest_shared_t *zs = ztest_shared;
|
|
spa_t *spa = zs->zs_spa;
|
|
objset_t *os = zd->zd_os;
|
|
ztest_od_t *od;
|
|
uint64_t object, blocksize, txg, pattern, psize;
|
|
enum zio_checksum checksum = spa_dedup_checksum(spa);
|
|
dmu_buf_t *db;
|
|
dmu_tx_t *tx;
|
|
void *buf;
|
|
blkptr_t blk;
|
|
int copies = 2 * ZIO_DEDUPDITTO_MIN;
|
|
int i;
|
|
|
|
blocksize = ztest_random_blocksize();
|
|
blocksize = MIN(blocksize, 2048); /* because we write so many */
|
|
|
|
od = umem_alloc(sizeof(ztest_od_t), UMEM_NOFAIL);
|
|
ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
|
|
|
|
if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
|
|
umem_free(od, sizeof(ztest_od_t));
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Take the name lock as writer to prevent anyone else from changing
|
|
* the pool and dataset properies we need to maintain during this test.
|
|
*/
|
|
(void) rw_enter(&zs->zs_name_lock, RW_WRITER);
|
|
|
|
if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum,
|
|
B_FALSE) != 0 ||
|
|
ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1,
|
|
B_FALSE) != 0) {
|
|
(void) rw_exit(&zs->zs_name_lock);
|
|
umem_free(od, sizeof(ztest_od_t));
|
|
return;
|
|
}
|
|
|
|
object = od[0].od_object;
|
|
blocksize = od[0].od_blocksize;
|
|
pattern = zs->zs_guid ^ dmu_objset_fsid_guid(os);
|
|
|
|
ASSERT(object != 0);
|
|
|
|
tx = dmu_tx_create(os);
|
|
dmu_tx_hold_write(tx, object, 0, copies * blocksize);
|
|
txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
|
|
if (txg == 0) {
|
|
(void) rw_exit(&zs->zs_name_lock);
|
|
umem_free(od, sizeof(ztest_od_t));
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Write all the copies of our block.
|
|
*/
|
|
for (i = 0; i < copies; i++) {
|
|
uint64_t offset = i * blocksize;
|
|
VERIFY(dmu_buf_hold(os, object, offset, FTAG, &db,
|
|
DMU_READ_NO_PREFETCH) == 0);
|
|
ASSERT(db->db_offset == offset);
|
|
ASSERT(db->db_size == blocksize);
|
|
ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) ||
|
|
ztest_pattern_match(db->db_data, db->db_size, 0ULL));
|
|
dmu_buf_will_fill(db, tx);
|
|
ztest_pattern_set(db->db_data, db->db_size, pattern);
|
|
dmu_buf_rele(db, FTAG);
|
|
}
|
|
|
|
dmu_tx_commit(tx);
|
|
txg_wait_synced(spa_get_dsl(spa), txg);
|
|
|
|
/*
|
|
* Find out what block we got.
|
|
*/
|
|
VERIFY(dmu_buf_hold(os, object, 0, FTAG, &db,
|
|
DMU_READ_NO_PREFETCH) == 0);
|
|
blk = *((dmu_buf_impl_t *)db)->db_blkptr;
|
|
dmu_buf_rele(db, FTAG);
|
|
|
|
/*
|
|
* Damage the block. Dedup-ditto will save us when we read it later.
|
|
*/
|
|
psize = BP_GET_PSIZE(&blk);
|
|
buf = zio_buf_alloc(psize);
|
|
ztest_pattern_set(buf, psize, ~pattern);
|
|
|
|
(void) zio_wait(zio_rewrite(NULL, spa, 0, &blk,
|
|
buf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE,
|
|
ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL));
|
|
|
|
zio_buf_free(buf, psize);
|
|
|
|
(void) rw_exit(&zs->zs_name_lock);
|
|
umem_free(od, sizeof(ztest_od_t));
|
|
}
|
|
|
|
/*
|
|
* Scrub the pool.
|
|
*/
|
|
/* ARGSUSED */
|
|
void
|
|
ztest_scrub(ztest_ds_t *zd, uint64_t id)
|
|
{
|
|
ztest_shared_t *zs = ztest_shared;
|
|
spa_t *spa = zs->zs_spa;
|
|
|
|
(void) spa_scan(spa, POOL_SCAN_SCRUB);
|
|
(void) poll(NULL, 0, 100); /* wait a moment, then force a restart */
|
|
(void) spa_scan(spa, POOL_SCAN_SCRUB);
|
|
}
|
|
|
|
/*
|
|
* Change the guid for the pool.
|
|
*/
|
|
/* ARGSUSED */
|
|
void
|
|
ztest_reguid(ztest_ds_t *zd, uint64_t id)
|
|
{
|
|
ztest_shared_t *zs = ztest_shared;
|
|
spa_t *spa = zs->zs_spa;
|
|
uint64_t orig, load;
|
|
|
|
orig = spa_guid(spa);
|
|
load = spa_load_guid(spa);
|
|
if (spa_change_guid(spa) != 0)
|
|
return;
|
|
|
|
if (zopt_verbose >= 3) {
|
|
(void) printf("Changed guid old %llu -> %llu\n",
|
|
(u_longlong_t)orig, (u_longlong_t)spa_guid(spa));
|
|
}
|
|
|
|
VERIFY3U(orig, !=, spa_guid(spa));
|
|
VERIFY3U(load, ==, spa_load_guid(spa));
|
|
}
|
|
|
|
/*
|
|
* Rename the pool to a different name and then rename it back.
|
|
*/
|
|
/* ARGSUSED */
|
|
void
|
|
ztest_spa_rename(ztest_ds_t *zd, uint64_t id)
|
|
{
|
|
ztest_shared_t *zs = ztest_shared;
|
|
char *oldname, *newname;
|
|
spa_t *spa;
|
|
|
|
(void) rw_enter(&zs->zs_name_lock, RW_WRITER);
|
|
|
|
oldname = zs->zs_pool;
|
|
newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL);
|
|
(void) strcpy(newname, oldname);
|
|
(void) strcat(newname, "_tmp");
|
|
|
|
/*
|
|
* Do the rename
|
|
*/
|
|
VERIFY3U(0, ==, spa_rename(oldname, newname));
|
|
|
|
/*
|
|
* Try to open it under the old name, which shouldn't exist
|
|
*/
|
|
VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
|
|
|
|
/*
|
|
* Open it under the new name and make sure it's still the same spa_t.
|
|
*/
|
|
VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
|
|
|
|
ASSERT(spa == zs->zs_spa);
|
|
spa_close(spa, FTAG);
|
|
|
|
/*
|
|
* Rename it back to the original
|
|
*/
|
|
VERIFY3U(0, ==, spa_rename(newname, oldname));
|
|
|
|
/*
|
|
* Make sure it can still be opened
|
|
*/
|
|
VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
|
|
|
|
ASSERT(spa == zs->zs_spa);
|
|
spa_close(spa, FTAG);
|
|
|
|
umem_free(newname, strlen(newname) + 1);
|
|
|
|
(void) rw_exit(&zs->zs_name_lock);
|
|
}
|
|
|
|
/*
|
|
* Verify pool integrity by running zdb.
|
|
*/
|
|
static void
|
|
ztest_run_zdb(char *pool)
|
|
{
|
|
int status;
|
|
char *bin;
|
|
char *zdb;
|
|
char *zbuf;
|
|
FILE *fp;
|
|
|
|
bin = umem_alloc(MAXPATHLEN + MAXNAMELEN + 20, UMEM_NOFAIL);
|
|
zdb = umem_alloc(MAXPATHLEN + MAXNAMELEN + 20, UMEM_NOFAIL);
|
|
zbuf = umem_alloc(1024, UMEM_NOFAIL);
|
|
|
|
VERIFY(realpath(getexecname(), bin) != NULL);
|
|
if (strncmp(bin, "/usr/sbin/ztest", 15) == 0) {
|
|
strcpy(bin, "/usr/sbin/zdb"); /* Installed */
|
|
} else if (strncmp(bin, "/sbin/ztest", 11) == 0) {
|
|
strcpy(bin, "/sbin/zdb"); /* Installed */
|
|
} else {
|
|
strstr(bin, "/ztest/")[0] = '\0'; /* In-tree */
|
|
strcat(bin, "/zdb/zdb");
|
|
}
|
|
|
|
(void) sprintf(zdb,
|
|
"%s -bcc%s%s -U %s %s",
|
|
bin,
|
|
zopt_verbose >= 3 ? "s" : "",
|
|
zopt_verbose >= 4 ? "v" : "",
|
|
spa_config_path,
|
|
pool);
|
|
|
|
if (zopt_verbose >= 5)
|
|
(void) printf("Executing %s\n", strstr(zdb, "zdb "));
|
|
|
|
fp = popen(zdb, "r");
|
|
|
|
while (fgets(zbuf, sizeof (zbuf), fp) != NULL)
|
|
if (zopt_verbose >= 3)
|
|
(void) printf("%s", zbuf);
|
|
|
|
status = pclose(fp);
|
|
|
|
if (status == 0)
|
|
goto out;
|
|
|
|
ztest_dump_core = 0;
|
|
if (WIFEXITED(status))
|
|
fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
|
|
else
|
|
fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
|
|
out:
|
|
umem_free(bin, MAXPATHLEN + MAXNAMELEN + 20);
|
|
umem_free(zdb, MAXPATHLEN + MAXNAMELEN + 20);
|
|
umem_free(zbuf, 1024);
|
|
}
|
|
|
|
static void
|
|
ztest_walk_pool_directory(char *header)
|
|
{
|
|
spa_t *spa = NULL;
|
|
|
|
if (zopt_verbose >= 6)
|
|
(void) printf("%s\n", header);
|
|
|
|
mutex_enter(&spa_namespace_lock);
|
|
while ((spa = spa_next(spa)) != NULL)
|
|
if (zopt_verbose >= 6)
|
|
(void) printf("\t%s\n", spa_name(spa));
|
|
mutex_exit(&spa_namespace_lock);
|
|
}
|
|
|
|
static void
|
|
ztest_spa_import_export(char *oldname, char *newname)
|
|
{
|
|
nvlist_t *config, *newconfig;
|
|
uint64_t pool_guid;
|
|
spa_t *spa;
|
|
|
|
if (zopt_verbose >= 4) {
|
|
(void) printf("import/export: old = %s, new = %s\n",
|
|
oldname, newname);
|
|
}
|
|
|
|
/*
|
|
* Clean up from previous runs.
|
|
*/
|
|
(void) spa_destroy(newname);
|
|
|
|
/*
|
|
* Get the pool's configuration and guid.
|
|
*/
|
|
VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
|
|
|
|
/*
|
|
* Kick off a scrub to tickle scrub/export races.
|
|
*/
|
|
if (ztest_random(2) == 0)
|
|
(void) spa_scan(spa, POOL_SCAN_SCRUB);
|
|
|
|
pool_guid = spa_guid(spa);
|
|
spa_close(spa, FTAG);
|
|
|
|
ztest_walk_pool_directory("pools before export");
|
|
|
|
/*
|
|
* Export it.
|
|
*/
|
|
VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE));
|
|
|
|
ztest_walk_pool_directory("pools after export");
|
|
|
|
/*
|
|
* Try to import it.
|
|
*/
|
|
newconfig = spa_tryimport(config);
|
|
ASSERT(newconfig != NULL);
|
|
nvlist_free(newconfig);
|
|
|
|
/*
|
|
* Import it under the new name.
|
|
*/
|
|
VERIFY3U(0, ==, spa_import(newname, config, NULL, 0));
|
|
|
|
ztest_walk_pool_directory("pools after import");
|
|
|
|
/*
|
|
* Try to import it again -- should fail with EEXIST.
|
|
*/
|
|
VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
|
|
|
|
/*
|
|
* Try to import it under a different name -- should fail with EEXIST.
|
|
*/
|
|
VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
|
|
|
|
/*
|
|
* Verify that the pool is no longer visible under the old name.
|
|
*/
|
|
VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
|
|
|
|
/*
|
|
* Verify that we can open and close the pool using the new name.
|
|
*/
|
|
VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
|
|
ASSERT(pool_guid == spa_guid(spa));
|
|
spa_close(spa, FTAG);
|
|
|
|
nvlist_free(config);
|
|
}
|
|
|
|
static void
|
|
ztest_resume(spa_t *spa)
|
|
{
|
|
if (spa_suspended(spa) && zopt_verbose >= 6)
|
|
(void) printf("resuming from suspended state\n");
|
|
spa_vdev_state_enter(spa, SCL_NONE);
|
|
vdev_clear(spa, NULL);
|
|
(void) spa_vdev_state_exit(spa, NULL, 0);
|
|
(void) zio_resume(spa);
|
|
}
|
|
|
|
static void *
|
|
ztest_resume_thread(void *arg)
|
|
{
|
|
spa_t *spa = arg;
|
|
|
|
while (!ztest_exiting) {
|
|
if (spa_suspended(spa))
|
|
ztest_resume(spa);
|
|
(void) poll(NULL, 0, 100);
|
|
}
|
|
|
|
thread_exit();
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
#define GRACE 300
|
|
|
|
static void
|
|
ztest_deadman_alarm(int sig)
|
|
{
|
|
fatal(0, "failed to complete within %d seconds of deadline", GRACE);
|
|
}
|
|
|
|
static void
|
|
ztest_execute(ztest_info_t *zi, uint64_t id)
|
|
{
|
|
ztest_shared_t *zs = ztest_shared;
|
|
ztest_ds_t *zd = &zs->zs_zd[id % zopt_datasets];
|
|
hrtime_t functime = gethrtime();
|
|
int i;
|
|
|
|
for (i = 0; i < zi->zi_iters; i++)
|
|
zi->zi_func(zd, id);
|
|
|
|
functime = gethrtime() - functime;
|
|
|
|
atomic_add_64(&zi->zi_call_count, 1);
|
|
atomic_add_64(&zi->zi_call_time, functime);
|
|
|
|
if (zopt_verbose >= 4) {
|
|
Dl_info dli;
|
|
(void) dladdr((void *)zi->zi_func, &dli);
|
|
(void) printf("%6.2f sec in %s\n",
|
|
(double)functime / NANOSEC, dli.dli_sname);
|
|
}
|
|
}
|
|
|
|
static void *
|
|
ztest_thread(void *arg)
|
|
{
|
|
uint64_t id = (uintptr_t)arg;
|
|
ztest_shared_t *zs = ztest_shared;
|
|
uint64_t call_next;
|
|
hrtime_t now;
|
|
ztest_info_t *zi;
|
|
|
|
while ((now = gethrtime()) < zs->zs_thread_stop) {
|
|
/*
|
|
* See if it's time to force a crash.
|
|
*/
|
|
if (now > zs->zs_thread_kill)
|
|
ztest_kill(zs);
|
|
|
|
/*
|
|
* If we're getting ENOSPC with some regularity, stop.
|
|
*/
|
|
if (zs->zs_enospc_count > 10)
|
|
break;
|
|
|
|
/*
|
|
* Pick a random function to execute.
|
|
*/
|
|
zi = &zs->zs_info[ztest_random(ZTEST_FUNCS)];
|
|
call_next = zi->zi_call_next;
|
|
|
|
if (now >= call_next &&
|
|
atomic_cas_64(&zi->zi_call_next, call_next, call_next +
|
|
ztest_random(2 * zi->zi_interval[0] + 1)) == call_next)
|
|
ztest_execute(zi, id);
|
|
}
|
|
|
|
thread_exit();
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
static void
|
|
ztest_dataset_name(char *dsname, char *pool, int d)
|
|
{
|
|
(void) snprintf(dsname, MAXNAMELEN, "%s/ds_%d", pool, d);
|
|
}
|
|
|
|
static void
|
|
ztest_dataset_destroy(ztest_shared_t *zs, int d)
|
|
{
|
|
char name[MAXNAMELEN];
|
|
int t;
|
|
|
|
ztest_dataset_name(name, zs->zs_pool, d);
|
|
|
|
if (zopt_verbose >= 3)
|
|
(void) printf("Destroying %s to free up space\n", name);
|
|
|
|
/*
|
|
* Cleanup any non-standard clones and snapshots. In general,
|
|
* ztest thread t operates on dataset (t % zopt_datasets),
|
|
* so there may be more than one thing to clean up.
|
|
*/
|
|
for (t = d; t < zopt_threads; t += zopt_datasets)
|
|
ztest_dsl_dataset_cleanup(name, t);
|
|
|
|
(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
|
|
DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
|
|
}
|
|
|
|
static void
|
|
ztest_dataset_dirobj_verify(ztest_ds_t *zd)
|
|
{
|
|
uint64_t usedobjs, dirobjs, scratch;
|
|
|
|
/*
|
|
* ZTEST_DIROBJ is the object directory for the entire dataset.
|
|
* Therefore, the number of objects in use should equal the
|
|
* number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
|
|
* If not, we have an object leak.
|
|
*
|
|
* Note that we can only check this in ztest_dataset_open(),
|
|
* when the open-context and syncing-context values agree.
|
|
* That's because zap_count() returns the open-context value,
|
|
* while dmu_objset_space() returns the rootbp fill count.
|
|
*/
|
|
VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
|
|
dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
|
|
ASSERT3U(dirobjs + 1, ==, usedobjs);
|
|
}
|
|
|
|
static int
|
|
ztest_dataset_open(ztest_shared_t *zs, int d)
|
|
{
|
|
ztest_ds_t *zd = &zs->zs_zd[d];
|
|
uint64_t committed_seq = zd->zd_seq;
|
|
objset_t *os;
|
|
zilog_t *zilog;
|
|
char name[MAXNAMELEN];
|
|
int error;
|
|
|
|
ztest_dataset_name(name, zs->zs_pool, d);
|
|
|
|
(void) rw_enter(&zs->zs_name_lock, RW_READER);
|
|
|
|
error = ztest_dataset_create(name);
|
|
if (error == ENOSPC) {
|
|
(void) rw_exit(&zs->zs_name_lock);
|
|
ztest_record_enospc(FTAG);
|
|
return (error);
|
|
}
|
|
ASSERT(error == 0 || error == EEXIST);
|
|
|
|
VERIFY3U(dmu_objset_hold(name, zd, &os), ==, 0);
|
|
(void) rw_exit(&zs->zs_name_lock);
|
|
|
|
ztest_zd_init(zd, os);
|
|
|
|
zilog = zd->zd_zilog;
|
|
|
|
if (zilog->zl_header->zh_claim_lr_seq != 0 &&
|
|
zilog->zl_header->zh_claim_lr_seq < committed_seq)
|
|
fatal(0, "missing log records: claimed %llu < committed %llu",
|
|
zilog->zl_header->zh_claim_lr_seq, committed_seq);
|
|
|
|
ztest_dataset_dirobj_verify(zd);
|
|
|
|
zil_replay(os, zd, ztest_replay_vector);
|
|
|
|
ztest_dataset_dirobj_verify(zd);
|
|
|
|
if (zopt_verbose >= 6)
|
|
(void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
|
|
zd->zd_name,
|
|
(u_longlong_t)zilog->zl_parse_blk_count,
|
|
(u_longlong_t)zilog->zl_parse_lr_count,
|
|
(u_longlong_t)zilog->zl_replaying_seq);
|
|
|
|
zilog = zil_open(os, ztest_get_data);
|
|
|
|
if (zilog->zl_replaying_seq != 0 &&
|
|
zilog->zl_replaying_seq < committed_seq)
|
|
fatal(0, "missing log records: replayed %llu < committed %llu",
|
|
zilog->zl_replaying_seq, committed_seq);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
ztest_dataset_close(ztest_shared_t *zs, int d)
|
|
{
|
|
ztest_ds_t *zd = &zs->zs_zd[d];
|
|
|
|
zil_close(zd->zd_zilog);
|
|
dmu_objset_rele(zd->zd_os, zd);
|
|
|
|
ztest_zd_fini(zd);
|
|
}
|
|
|
|
/*
|
|
* Kick off threads to run tests on all datasets in parallel.
|
|
*/
|
|
static void
|
|
ztest_run(ztest_shared_t *zs)
|
|
{
|
|
kt_did_t *tid;
|
|
spa_t *spa;
|
|
objset_t *os;
|
|
kthread_t *resume_thread;
|
|
uint64_t object;
|
|
int error;
|
|
int t, d;
|
|
|
|
ztest_exiting = B_FALSE;
|
|
|
|
/*
|
|
* Initialize parent/child shared state.
|
|
*/
|
|
mutex_init(&zs->zs_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
rw_init(&zs->zs_name_lock, NULL, RW_DEFAULT, NULL);
|
|
|
|
zs->zs_thread_start = gethrtime();
|
|
zs->zs_thread_stop = zs->zs_thread_start + zopt_passtime * NANOSEC;
|
|
zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
|
|
zs->zs_thread_kill = zs->zs_thread_stop;
|
|
if (ztest_random(100) < zopt_killrate)
|
|
zs->zs_thread_kill -= ztest_random(zopt_passtime * NANOSEC);
|
|
|
|
mutex_init(&zcl.zcl_callbacks_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
|
|
list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
|
|
offsetof(ztest_cb_data_t, zcd_node));
|
|
|
|
/*
|
|
* Open our pool.
|
|
*/
|
|
kernel_init(FREAD | FWRITE);
|
|
VERIFY(spa_open(zs->zs_pool, &spa, FTAG) == 0);
|
|
spa->spa_debug = B_TRUE;
|
|
zs->zs_spa = spa;
|
|
|
|
VERIFY3U(0, ==, dmu_objset_hold(zs->zs_pool, FTAG, &os));
|
|
zs->zs_guid = dmu_objset_fsid_guid(os);
|
|
dmu_objset_rele(os, FTAG);
|
|
|
|
spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN;
|
|
|
|
/*
|
|
* We don't expect the pool to suspend unless maxfaults == 0,
|
|
* in which case ztest_fault_inject() temporarily takes away
|
|
* the only valid replica.
|
|
*/
|
|
if (MAXFAULTS() == 0)
|
|
spa->spa_failmode = ZIO_FAILURE_MODE_WAIT;
|
|
else
|
|
spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
|
|
|
|
/*
|
|
* Create a thread to periodically resume suspended I/O.
|
|
*/
|
|
VERIFY3P((resume_thread = thread_create(NULL, 0, ztest_resume_thread,
|
|
spa, TS_RUN, NULL, 0, 0)), !=, NULL);
|
|
|
|
/*
|
|
* Set a deadman alarm to abort() if we hang.
|
|
*/
|
|
signal(SIGALRM, ztest_deadman_alarm);
|
|
alarm((zs->zs_thread_stop - zs->zs_thread_start) / NANOSEC + GRACE);
|
|
|
|
/*
|
|
* Verify that we can safely inquire about about any object,
|
|
* whether it's allocated or not. To make it interesting,
|
|
* we probe a 5-wide window around each power of two.
|
|
* This hits all edge cases, including zero and the max.
|
|
*/
|
|
for (t = 0; t < 64; t++) {
|
|
for (d = -5; d <= 5; d++) {
|
|
error = dmu_object_info(spa->spa_meta_objset,
|
|
(1ULL << t) + d, NULL);
|
|
ASSERT(error == 0 || error == ENOENT ||
|
|
error == EINVAL);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we got any ENOSPC errors on the previous run, destroy something.
|
|
*/
|
|
if (zs->zs_enospc_count != 0) {
|
|
int d = ztest_random(zopt_datasets);
|
|
ztest_dataset_destroy(zs, d);
|
|
}
|
|
zs->zs_enospc_count = 0;
|
|
|
|
tid = umem_zalloc(zopt_threads * sizeof (kt_did_t), UMEM_NOFAIL);
|
|
|
|
if (zopt_verbose >= 4)
|
|
(void) printf("starting main threads...\n");
|
|
|
|
/*
|
|
* Kick off all the tests that run in parallel.
|
|
*/
|
|
for (t = 0; t < zopt_threads; t++) {
|
|
kthread_t *thread;
|
|
|
|
if (t < zopt_datasets && ztest_dataset_open(zs, t) != 0)
|
|
return;
|
|
|
|
VERIFY3P(thread = thread_create(NULL, 0, ztest_thread,
|
|
(void *)(uintptr_t)t, TS_RUN, NULL, 0, 0), !=, NULL);
|
|
tid[t] = thread->t_tid;
|
|
}
|
|
|
|
/*
|
|
* Wait for all of the tests to complete. We go in reverse order
|
|
* so we don't close datasets while threads are still using them.
|
|
*/
|
|
for (t = zopt_threads - 1; t >= 0; t--) {
|
|
thread_join(tid[t]);
|
|
if (t < zopt_datasets)
|
|
ztest_dataset_close(zs, t);
|
|
}
|
|
|
|
txg_wait_synced(spa_get_dsl(spa), 0);
|
|
|
|
zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
|
|
zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
|
|
|
|
umem_free(tid, zopt_threads * sizeof (kt_did_t));
|
|
|
|
/* Kill the resume thread */
|
|
ztest_exiting = B_TRUE;
|
|
thread_join(resume_thread->t_tid);
|
|
ztest_resume(spa);
|
|
|
|
/*
|
|
* Right before closing the pool, kick off a bunch of async I/O;
|
|
* spa_close() should wait for it to complete.
|
|
*/
|
|
for (object = 1; object < 50; object++)
|
|
dmu_prefetch(spa->spa_meta_objset, object, 0, 1ULL << 20);
|
|
|
|
/* Verify that at least one commit cb was called in a timely fashion */
|
|
if (zc_cb_counter >= ZTEST_COMMIT_CB_MIN_REG)
|
|
VERIFY3U(zc_min_txg_delay, ==, 0);
|
|
|
|
spa_close(spa, FTAG);
|
|
|
|
/*
|
|
* Verify that we can loop over all pools.
|
|
*/
|
|
mutex_enter(&spa_namespace_lock);
|
|
for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
|
|
if (zopt_verbose > 3)
|
|
(void) printf("spa_next: found %s\n", spa_name(spa));
|
|
mutex_exit(&spa_namespace_lock);
|
|
|
|
/*
|
|
* Verify that we can export the pool and reimport it under a
|
|
* different name.
|
|
*/
|
|
if (ztest_random(2) == 0) {
|
|
char name[MAXNAMELEN];
|
|
(void) snprintf(name, MAXNAMELEN, "%s_import", zs->zs_pool);
|
|
ztest_spa_import_export(zs->zs_pool, name);
|
|
ztest_spa_import_export(name, zs->zs_pool);
|
|
}
|
|
|
|
kernel_fini();
|
|
|
|
list_destroy(&zcl.zcl_callbacks);
|
|
mutex_destroy(&zcl.zcl_callbacks_lock);
|
|
rw_destroy(&zs->zs_name_lock);
|
|
mutex_destroy(&zs->zs_vdev_lock);
|
|
}
|
|
|
|
static void
|
|
ztest_freeze(ztest_shared_t *zs)
|
|
{
|
|
ztest_ds_t *zd = &zs->zs_zd[0];
|
|
spa_t *spa;
|
|
int numloops = 0;
|
|
|
|
if (zopt_verbose >= 3)
|
|
(void) printf("testing spa_freeze()...\n");
|
|
|
|
kernel_init(FREAD | FWRITE);
|
|
VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG));
|
|
VERIFY3U(0, ==, ztest_dataset_open(zs, 0));
|
|
|
|
/*
|
|
* Force the first log block to be transactionally allocated.
|
|
* We have to do this before we freeze the pool -- otherwise
|
|
* the log chain won't be anchored.
|
|
*/
|
|
while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
|
|
ztest_dmu_object_alloc_free(zd, 0);
|
|
zil_commit(zd->zd_zilog, 0);
|
|
}
|
|
|
|
txg_wait_synced(spa_get_dsl(spa), 0);
|
|
|
|
/*
|
|
* Freeze the pool. This stops spa_sync() from doing anything,
|
|
* so that the only way to record changes from now on is the ZIL.
|
|
*/
|
|
spa_freeze(spa);
|
|
|
|
/*
|
|
* Run tests that generate log records but don't alter the pool config
|
|
* or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
|
|
* We do a txg_wait_synced() after each iteration to force the txg
|
|
* to increase well beyond the last synced value in the uberblock.
|
|
* The ZIL should be OK with that.
|
|
*/
|
|
while (ztest_random(10) != 0 && numloops++ < zopt_maxloops) {
|
|
ztest_dmu_write_parallel(zd, 0);
|
|
ztest_dmu_object_alloc_free(zd, 0);
|
|
txg_wait_synced(spa_get_dsl(spa), 0);
|
|
}
|
|
|
|
/*
|
|
* Commit all of the changes we just generated.
|
|
*/
|
|
zil_commit(zd->zd_zilog, 0);
|
|
txg_wait_synced(spa_get_dsl(spa), 0);
|
|
|
|
/*
|
|
* Close our dataset and close the pool.
|
|
*/
|
|
ztest_dataset_close(zs, 0);
|
|
spa_close(spa, FTAG);
|
|
kernel_fini();
|
|
|
|
/*
|
|
* Open and close the pool and dataset to induce log replay.
|
|
*/
|
|
kernel_init(FREAD | FWRITE);
|
|
VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG));
|
|
VERIFY3U(0, ==, ztest_dataset_open(zs, 0));
|
|
ztest_dataset_close(zs, 0);
|
|
spa_close(spa, FTAG);
|
|
kernel_fini();
|
|
}
|
|
|
|
void
|
|
print_time(hrtime_t t, char *timebuf)
|
|
{
|
|
hrtime_t s = t / NANOSEC;
|
|
hrtime_t m = s / 60;
|
|
hrtime_t h = m / 60;
|
|
hrtime_t d = h / 24;
|
|
|
|
s -= m * 60;
|
|
m -= h * 60;
|
|
h -= d * 24;
|
|
|
|
timebuf[0] = '\0';
|
|
|
|
if (d)
|
|
(void) sprintf(timebuf,
|
|
"%llud%02lluh%02llum%02llus", d, h, m, s);
|
|
else if (h)
|
|
(void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
|
|
else if (m)
|
|
(void) sprintf(timebuf, "%llum%02llus", m, s);
|
|
else
|
|
(void) sprintf(timebuf, "%llus", s);
|
|
}
|
|
|
|
static nvlist_t *
|
|
make_random_props(void)
|
|
{
|
|
nvlist_t *props;
|
|
|
|
if (ztest_random(2) == 0)
|
|
return (NULL);
|
|
|
|
VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
|
|
VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0);
|
|
|
|
(void) printf("props:\n");
|
|
dump_nvlist(props, 4);
|
|
|
|
return (props);
|
|
}
|
|
|
|
/*
|
|
* Create a storage pool with the given name and initial vdev size.
|
|
* Then test spa_freeze() functionality.
|
|
*/
|
|
static void
|
|
ztest_init(ztest_shared_t *zs)
|
|
{
|
|
spa_t *spa;
|
|
nvlist_t *nvroot, *props;
|
|
|
|
mutex_init(&zs->zs_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
rw_init(&zs->zs_name_lock, NULL, RW_DEFAULT, NULL);
|
|
|
|
kernel_init(FREAD | FWRITE);
|
|
|
|
/*
|
|
* Create the storage pool.
|
|
*/
|
|
(void) spa_destroy(zs->zs_pool);
|
|
ztest_shared->zs_vdev_next_leaf = 0;
|
|
zs->zs_splits = 0;
|
|
zs->zs_mirrors = zopt_mirrors;
|
|
nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0,
|
|
0, zopt_raidz, zs->zs_mirrors, 1);
|
|
props = make_random_props();
|
|
VERIFY3U(0, ==, spa_create(zs->zs_pool, nvroot, props, NULL, NULL));
|
|
nvlist_free(nvroot);
|
|
|
|
VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG));
|
|
metaslab_sz = 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
|
|
spa_close(spa, FTAG);
|
|
|
|
kernel_fini();
|
|
|
|
ztest_run_zdb(zs->zs_pool);
|
|
|
|
ztest_freeze(zs);
|
|
|
|
ztest_run_zdb(zs->zs_pool);
|
|
|
|
(void) rw_destroy(&zs->zs_name_lock);
|
|
(void) mutex_destroy(&zs->zs_vdev_lock);
|
|
}
|
|
|
|
int
|
|
main(int argc, char **argv)
|
|
{
|
|
int kills = 0;
|
|
int iters = 0;
|
|
ztest_shared_t *zs;
|
|
size_t shared_size;
|
|
ztest_info_t *zi;
|
|
char timebuf[100];
|
|
char numbuf[6];
|
|
spa_t *spa;
|
|
int i, f;
|
|
|
|
(void) setvbuf(stdout, NULL, _IOLBF, 0);
|
|
|
|
ztest_random_fd = open("/dev/urandom", O_RDONLY);
|
|
|
|
dprintf_setup(&argc, argv);
|
|
process_options(argc, argv);
|
|
|
|
/* Override location of zpool.cache */
|
|
VERIFY(asprintf((char **)&spa_config_path, "%s/zpool.cache",
|
|
zopt_dir) != -1);
|
|
|
|
/*
|
|
* Blow away any existing copy of zpool.cache
|
|
*/
|
|
if (zopt_init != 0)
|
|
(void) remove(spa_config_path);
|
|
|
|
shared_size = sizeof (*zs) + zopt_datasets * sizeof (ztest_ds_t);
|
|
|
|
zs = ztest_shared = (void *)mmap(0,
|
|
P2ROUNDUP(shared_size, getpagesize()),
|
|
PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0);
|
|
|
|
if (zopt_verbose >= 1) {
|
|
(void) printf("%llu vdevs, %d datasets, %d threads,"
|
|
" %llu seconds...\n",
|
|
(u_longlong_t)zopt_vdevs, zopt_datasets, zopt_threads,
|
|
(u_longlong_t)zopt_time);
|
|
}
|
|
|
|
/*
|
|
* Create and initialize our storage pool.
|
|
*/
|
|
for (i = 1; i <= zopt_init; i++) {
|
|
bzero(zs, sizeof (ztest_shared_t));
|
|
if (zopt_verbose >= 3 && zopt_init != 1)
|
|
(void) printf("ztest_init(), pass %d\n", i);
|
|
zs->zs_pool = zopt_pool;
|
|
ztest_init(zs);
|
|
}
|
|
|
|
zs->zs_pool = zopt_pool;
|
|
zs->zs_proc_start = gethrtime();
|
|
zs->zs_proc_stop = zs->zs_proc_start + zopt_time * NANOSEC;
|
|
|
|
for (f = 0; f < ZTEST_FUNCS; f++) {
|
|
zi = &zs->zs_info[f];
|
|
*zi = ztest_info[f];
|
|
if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
|
|
zi->zi_call_next = UINT64_MAX;
|
|
else
|
|
zi->zi_call_next = zs->zs_proc_start +
|
|
ztest_random(2 * zi->zi_interval[0] + 1);
|
|
}
|
|
|
|
/*
|
|
* Run the tests in a loop. These tests include fault injection
|
|
* to verify that self-healing data works, and forced crashes
|
|
* to verify that we never lose on-disk consistency.
|
|
*/
|
|
while (gethrtime() < zs->zs_proc_stop) {
|
|
int status;
|
|
pid_t pid;
|
|
|
|
/*
|
|
* Initialize the workload counters for each function.
|
|
*/
|
|
for (f = 0; f < ZTEST_FUNCS; f++) {
|
|
zi = &zs->zs_info[f];
|
|
zi->zi_call_count = 0;
|
|
zi->zi_call_time = 0;
|
|
}
|
|
|
|
/* Set the allocation switch size */
|
|
metaslab_df_alloc_threshold = ztest_random(metaslab_sz / 4) + 1;
|
|
|
|
pid = fork();
|
|
|
|
if (pid == -1)
|
|
fatal(1, "fork failed");
|
|
|
|
if (pid == 0) { /* child */
|
|
struct rlimit rl = { 1024, 1024 };
|
|
(void) setrlimit(RLIMIT_NOFILE, &rl);
|
|
(void) enable_extended_FILE_stdio(-1, -1);
|
|
ztest_run(zs);
|
|
exit(0);
|
|
}
|
|
|
|
while (waitpid(pid, &status, 0) != pid)
|
|
continue;
|
|
|
|
if (WIFEXITED(status)) {
|
|
if (WEXITSTATUS(status) != 0) {
|
|
(void) fprintf(stderr,
|
|
"child exited with code %d\n",
|
|
WEXITSTATUS(status));
|
|
exit(2);
|
|
}
|
|
} else if (WIFSIGNALED(status)) {
|
|
if (WTERMSIG(status) != SIGKILL) {
|
|
(void) fprintf(stderr,
|
|
"child died with signal %d\n",
|
|
WTERMSIG(status));
|
|
exit(3);
|
|
}
|
|
kills++;
|
|
} else {
|
|
(void) fprintf(stderr, "something strange happened "
|
|
"to child\n");
|
|
exit(4);
|
|
}
|
|
|
|
iters++;
|
|
|
|
if (zopt_verbose >= 1) {
|
|
hrtime_t now = gethrtime();
|
|
|
|
now = MIN(now, zs->zs_proc_stop);
|
|
print_time(zs->zs_proc_stop - now, timebuf);
|
|
nicenum(zs->zs_space, numbuf);
|
|
|
|
(void) printf("Pass %3d, %8s, %3llu ENOSPC, "
|
|
"%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
|
|
iters,
|
|
WIFEXITED(status) ? "Complete" : "SIGKILL",
|
|
(u_longlong_t)zs->zs_enospc_count,
|
|
100.0 * zs->zs_alloc / zs->zs_space,
|
|
numbuf,
|
|
100.0 * (now - zs->zs_proc_start) /
|
|
(zopt_time * NANOSEC), timebuf);
|
|
}
|
|
|
|
if (zopt_verbose >= 2) {
|
|
(void) printf("\nWorkload summary:\n\n");
|
|
(void) printf("%7s %9s %s\n",
|
|
"Calls", "Time", "Function");
|
|
(void) printf("%7s %9s %s\n",
|
|
"-----", "----", "--------");
|
|
for (f = 0; f < ZTEST_FUNCS; f++) {
|
|
Dl_info dli;
|
|
|
|
zi = &zs->zs_info[f];
|
|
print_time(zi->zi_call_time, timebuf);
|
|
(void) dladdr((void *)zi->zi_func, &dli);
|
|
(void) printf("%7llu %9s %s\n",
|
|
(u_longlong_t)zi->zi_call_count, timebuf,
|
|
dli.dli_sname);
|
|
}
|
|
(void) printf("\n");
|
|
}
|
|
|
|
/*
|
|
* It's possible that we killed a child during a rename test,
|
|
* in which case we'll have a 'ztest_tmp' pool lying around
|
|
* instead of 'ztest'. Do a blind rename in case this happened.
|
|
*/
|
|
kernel_init(FREAD);
|
|
if (spa_open(zopt_pool, &spa, FTAG) == 0) {
|
|
spa_close(spa, FTAG);
|
|
} else {
|
|
char tmpname[MAXNAMELEN];
|
|
kernel_fini();
|
|
kernel_init(FREAD | FWRITE);
|
|
(void) snprintf(tmpname, sizeof (tmpname), "%s_tmp",
|
|
zopt_pool);
|
|
(void) spa_rename(tmpname, zopt_pool);
|
|
}
|
|
kernel_fini();
|
|
|
|
ztest_run_zdb(zopt_pool);
|
|
}
|
|
|
|
if (zopt_verbose >= 1) {
|
|
(void) printf("%d killed, %d completed, %.0f%% kill rate\n",
|
|
kills, iters - kills, (100.0 * kills) / MAX(1, iters));
|
|
}
|
|
|
|
return (0);
|
|
}
|