1947 lines
60 KiB
C
1947 lines
60 KiB
C
/*-
|
||
* This code is derived from software copyrighted by the Free Software
|
||
* Foundation.
|
||
*
|
||
* Modified 1991 by Donn Seeley at UUNET Technologies, Inc.
|
||
*/
|
||
|
||
#ifndef lint
|
||
static char sccsid[] = "@(#)i386.c 6.4 (Berkeley) 5/8/91";
|
||
#endif /* not lint */
|
||
|
||
/* i386.c -- Assemble code for the Intel 80386
|
||
Copyright (C) 1989, Free Software Foundation.
|
||
|
||
This file is part of GAS, the GNU Assembler.
|
||
|
||
GAS is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 1, or (at your option)
|
||
any later version.
|
||
|
||
GAS is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GAS; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
/*
|
||
Intel 80386 machine specific gas.
|
||
Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
|
||
Bugs & suggestions are completely welcome. This is free software.
|
||
Please help us make it better.
|
||
*/
|
||
|
||
#include <stdio.h>
|
||
#include <varargs.h>
|
||
#include <ctype.h>
|
||
|
||
#ifdef __GNUC__
|
||
#define alloca __builtin_alloca
|
||
#else
|
||
extern char *alloca();
|
||
#endif
|
||
#ifdef USG
|
||
#define index strchr
|
||
#endif
|
||
|
||
#include "as.h"
|
||
#include "read.h"
|
||
#include "flonum.h"
|
||
#include "obstack.h"
|
||
#include "frags.h"
|
||
#include "struc-symbol.h"
|
||
#include "expr.h"
|
||
#include "symbols.h"
|
||
#include "hash.h"
|
||
#include "md.h"
|
||
#include "i386.h"
|
||
#include "i386-opcode.h"
|
||
|
||
long omagic = OMAGIC;
|
||
char FLT_CHARS[] = "fFdDxX";
|
||
char EXP_CHARS[] = "eE";
|
||
char line_comment_chars[] = "#";
|
||
char comment_chars[] = "#";
|
||
|
||
/* tables for lexical analysis */
|
||
static char opcode_chars[256];
|
||
static char register_chars[256];
|
||
static char operand_chars[256];
|
||
static char space_chars[256];
|
||
static char identifier_chars[256];
|
||
static char digit_chars[256];
|
||
|
||
/* lexical macros */
|
||
#define is_opcode_char(x) (opcode_chars[(unsigned char) x])
|
||
#define is_operand_char(x) (operand_chars[(unsigned char) x])
|
||
#define is_register_char(x) (register_chars[(unsigned char) x])
|
||
#define is_space_char(x) (space_chars[(unsigned char) x])
|
||
#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
|
||
#define is_digit_char(x) (digit_chars[(unsigned char) x])
|
||
|
||
/* put here all non-digit non-letter charcters that may occur in an operand */
|
||
static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:";
|
||
|
||
static char *ordinal_names[] = { "first", "second", "third" }; /* for printfs */
|
||
|
||
/* md_assemble() always leaves the strings it's passed unaltered. To
|
||
effect this we maintain a stack of saved characters that we've smashed
|
||
with '\0's (indicating end of strings for various sub-fields of the
|
||
assembler instruction). */
|
||
static char save_stack[32];
|
||
static char *save_stack_p; /* stack pointer */
|
||
#define END_STRING_AND_SAVE(s) *save_stack_p++ = *s; *s = '\0'
|
||
#define RESTORE_END_STRING(s) *s = *--save_stack_p
|
||
|
||
/* The instruction we're assembling. */
|
||
static i386_insn i;
|
||
|
||
/* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
|
||
static expressionS disp_expressions[2], im_expressions[2];
|
||
|
||
/* pointers to ebp & esp entries in reg_hash hash table */
|
||
static reg_entry *ebp, *esp;
|
||
|
||
static int this_operand; /* current operand we are working on */
|
||
|
||
/*
|
||
Interface to relax_segment.
|
||
There are 2 relax states for 386 jump insns: one for conditional & one
|
||
for unconditional jumps. This is because the these two types of jumps
|
||
add different sizes to frags when we're figuring out what sort of jump
|
||
to choose to reach a given label. */
|
||
|
||
/* types */
|
||
#define COND_JUMP 1 /* conditional jump */
|
||
#define UNCOND_JUMP 2 /* unconditional jump */
|
||
/* sizes */
|
||
#define BYTE 0
|
||
#define WORD 1
|
||
#define DWORD 2
|
||
#define UNKNOWN_SIZE 3
|
||
|
||
#define ENCODE_RELAX_STATE(type,size) ((type<<2) | (size))
|
||
#define SIZE_FROM_RELAX_STATE(s) \
|
||
( (((s) & 0x3) == BYTE ? 1 : (((s) & 0x3) == WORD ? 2 : 4)) )
|
||
|
||
const relax_typeS md_relax_table[] = {
|
||
/*
|
||
The fields are:
|
||
1) most positive reach of this state,
|
||
2) most negative reach of this state,
|
||
3) how many bytes this mode will add to the size of the current frag
|
||
4) which index into the table to try if we can't fit into this one.
|
||
*/
|
||
{1, 1, 0, 0},
|
||
{1, 1, 0, 0},
|
||
{1, 1, 0, 0},
|
||
{1, 1, 0, 0},
|
||
|
||
/* For now we don't use word displacement jumps: they may be
|
||
untrustworthy. */
|
||
{127+1, -128+1, 0, ENCODE_RELAX_STATE(COND_JUMP,DWORD) },
|
||
/* word conditionals add 3 bytes to frag:
|
||
2 opcode prefix; 1 displacement bytes */
|
||
{32767+2, -32768+2, 3, ENCODE_RELAX_STATE(COND_JUMP,DWORD) },
|
||
/* dword conditionals adds 4 bytes to frag:
|
||
1 opcode prefix; 3 displacement bytes */
|
||
{0, 0, 4, 0},
|
||
{1, 1, 0, 0},
|
||
|
||
{127+1, -128+1, 0, ENCODE_RELAX_STATE(UNCOND_JUMP,DWORD) },
|
||
/* word jmp adds 2 bytes to frag:
|
||
1 opcode prefix; 1 displacement bytes */
|
||
{32767+2, -32768+2, 2, ENCODE_RELAX_STATE(UNCOND_JUMP,DWORD) },
|
||
/* dword jmp adds 3 bytes to frag:
|
||
0 opcode prefix; 3 displacement bytes */
|
||
{0, 0, 3, 0},
|
||
{1, 1, 0, 0},
|
||
|
||
};
|
||
|
||
void float_cons (), cons ();
|
||
|
||
/* Ignore certain directives generated by gcc. This probably should
|
||
not be here. */
|
||
void dummy ()
|
||
{
|
||
while (*input_line_pointer && *input_line_pointer != '\n')
|
||
input_line_pointer++;
|
||
}
|
||
|
||
const pseudo_typeS md_pseudo_table[] = {
|
||
{ "ffloat", float_cons, 'f' },
|
||
{ "dfloat", float_cons, 'd' },
|
||
{ "tfloat", float_cons, 'x' },
|
||
{ "value", cons, 2 },
|
||
{ "ident", dummy, 0 }, /* ignore these directives */
|
||
{ "def", dummy, 0 },
|
||
{ "optim", dummy, 0 }, /* For sun386i cc */
|
||
{ "version", dummy, 0 },
|
||
{ "ln", dummy, 0 },
|
||
{ 0, 0, 0 }
|
||
};
|
||
|
||
/* for interface with expression () */
|
||
extern char * input_line_pointer;
|
||
char * index ();
|
||
|
||
char * output_invalid ();
|
||
reg_entry * parse_register ();
|
||
|
||
/* obstack for constructing various things in md_begin */
|
||
struct obstack o;
|
||
|
||
/* hash table for opcode lookup */
|
||
static struct hash_control *op_hash = (struct hash_control *) 0;
|
||
/* hash table for register lookup */
|
||
static struct hash_control *reg_hash = (struct hash_control *) 0;
|
||
/* hash table for prefix lookup */
|
||
static struct hash_control *prefix_hash = (struct hash_control *) 0;
|
||
|
||
|
||
void md_begin ()
|
||
{
|
||
char * hash_err;
|
||
|
||
obstack_begin (&o,4096);
|
||
|
||
/* initialize op_hash hash table */
|
||
op_hash = hash_new(); /* xmalloc handles error */
|
||
|
||
{
|
||
register template *optab;
|
||
register templates *core_optab;
|
||
char *prev_name;
|
||
|
||
optab = i386_optab; /* setup for loop */
|
||
prev_name = optab->name;
|
||
obstack_grow (&o, optab, sizeof(template));
|
||
core_optab = (templates *) xmalloc (sizeof (templates));
|
||
|
||
for (optab++; optab < i386_optab_end; optab++) {
|
||
if (! strcmp (optab->name, prev_name)) {
|
||
/* same name as before --> append to current template list */
|
||
obstack_grow (&o, optab, sizeof(template));
|
||
} else {
|
||
/* different name --> ship out current template list;
|
||
add to hash table; & begin anew */
|
||
/* Note: end must be set before start! since obstack_next_free changes
|
||
upon opstack_finish */
|
||
core_optab->end = (template *) obstack_next_free(&o);
|
||
core_optab->start = (template *) obstack_finish(&o);
|
||
hash_err = hash_insert (op_hash, prev_name, (char *) core_optab);
|
||
if (hash_err && *hash_err) {
|
||
hash_error:
|
||
as_fatal("Internal Error: Can't hash %s: %s",prev_name, hash_err);
|
||
}
|
||
prev_name = optab->name;
|
||
core_optab = (templates *) xmalloc (sizeof(templates));
|
||
obstack_grow (&o, optab, sizeof(template));
|
||
}
|
||
}
|
||
}
|
||
|
||
/* initialize reg_hash hash table */
|
||
reg_hash = hash_new();
|
||
{
|
||
register reg_entry *regtab;
|
||
|
||
for (regtab = i386_regtab; regtab < i386_regtab_end; regtab++) {
|
||
hash_err = hash_insert (reg_hash, regtab->reg_name, regtab);
|
||
if (hash_err && *hash_err) goto hash_error;
|
||
}
|
||
}
|
||
|
||
esp = (reg_entry *) hash_find (reg_hash, "esp");
|
||
ebp = (reg_entry *) hash_find (reg_hash, "ebp");
|
||
|
||
/* initialize reg_hash hash table */
|
||
prefix_hash = hash_new();
|
||
{
|
||
register prefix_entry *prefixtab;
|
||
|
||
for (prefixtab = i386_prefixtab;
|
||
prefixtab < i386_prefixtab_end; prefixtab++) {
|
||
hash_err = hash_insert (prefix_hash, prefixtab->prefix_name, prefixtab);
|
||
if (hash_err && *hash_err) goto hash_error;
|
||
}
|
||
}
|
||
|
||
/* fill in lexical tables: opcode_chars, operand_chars, space_chars */
|
||
{
|
||
register unsigned int c;
|
||
|
||
bzero (opcode_chars, sizeof(opcode_chars));
|
||
bzero (operand_chars, sizeof(operand_chars));
|
||
bzero (space_chars, sizeof(space_chars));
|
||
bzero (identifier_chars, sizeof(identifier_chars));
|
||
bzero (digit_chars, sizeof(digit_chars));
|
||
|
||
for (c = 0; c < 256; c++) {
|
||
if (islower(c) || isdigit(c)) {
|
||
opcode_chars[c] = c;
|
||
register_chars[c] = c;
|
||
} else if (isupper(c)) {
|
||
opcode_chars[c] = tolower(c);
|
||
register_chars[c] = opcode_chars[c];
|
||
} else if (c == PREFIX_SEPERATOR) {
|
||
opcode_chars[c] = c;
|
||
} else if (c == ')' || c == '(') {
|
||
register_chars[c] = c;
|
||
}
|
||
|
||
if (isupper(c) || islower(c) || isdigit(c))
|
||
operand_chars[c] = c;
|
||
else if (c && index(operand_special_chars, c))
|
||
operand_chars[c] = c;
|
||
|
||
if (isdigit(c) || c == '-') digit_chars[c] = c;
|
||
|
||
if (isalpha(c) || c == '_' || c == '.' || isdigit(c))
|
||
identifier_chars[c] = c;
|
||
|
||
if (c == ' ' || c == '\t') space_chars[c] = c;
|
||
}
|
||
}
|
||
}
|
||
|
||
void md_end() {} /* not much to do here. */
|
||
|
||
|
||
#ifdef DEBUG386
|
||
|
||
/* debugging routines for md_assemble */
|
||
static void pi (), pte (), pt (), pe (), ps ();
|
||
|
||
static void pi (line, x)
|
||
char * line;
|
||
i386_insn *x;
|
||
{
|
||
register template *p;
|
||
int i;
|
||
|
||
fprintf (stdout, "%s: template ", line);
|
||
pte (&x->tm);
|
||
fprintf (stdout, " modrm: mode %x reg %x reg/mem %x",
|
||
x->rm.mode, x->rm.reg, x->rm.regmem);
|
||
fprintf (stdout, " base %x index %x scale %x\n",
|
||
x->bi.base, x->bi.index, x->bi.scale);
|
||
for (i = 0; i < x->operands; i++) {
|
||
fprintf (stdout, " #%d: ", i+1);
|
||
pt (x->types[i]);
|
||
fprintf (stdout, "\n");
|
||
if (x->types[i] & Reg) fprintf (stdout, "%s\n", x->regs[i]->reg_name);
|
||
if (x->types[i] & Imm) pe (x->imms[i]);
|
||
if (x->types[i] & (Disp|Abs)) pe (x->disps[i]);
|
||
}
|
||
}
|
||
|
||
static void pte (t)
|
||
template *t;
|
||
{
|
||
int i;
|
||
fprintf (stdout, " %d operands ", t->operands);
|
||
fprintf (stdout, "opcode %x ",
|
||
t->base_opcode);
|
||
if (t->extension_opcode != None)
|
||
fprintf (stdout, "ext %x ", t->extension_opcode);
|
||
if (t->opcode_modifier&D)
|
||
fprintf (stdout, "D");
|
||
if (t->opcode_modifier&W)
|
||
fprintf (stdout, "W");
|
||
fprintf (stdout, "\n");
|
||
for (i = 0; i < t->operands; i++) {
|
||
fprintf (stdout, " #%d type ", i+1);
|
||
pt (t->operand_types[i]);
|
||
fprintf (stdout, "\n");
|
||
}
|
||
}
|
||
|
||
char *seg_names[] = {
|
||
"SEG_ABSOLUTE", "SEG_TEXT", "SEG_DATA", "SEG_BSS", "SEG_UNKNOWN",
|
||
"SEG_NONE", "SEG_PASS1", "SEG_GOOF", "SEG_BIG", "SEG_DIFFERENCE" };
|
||
|
||
static void pe (e)
|
||
expressionS *e;
|
||
{
|
||
fprintf (stdout, " segment %s\n", seg_names[(int) e->X_seg]);
|
||
fprintf (stdout, " add_number %d (%x)\n",
|
||
e->X_add_number, e->X_add_number);
|
||
if (e->X_add_symbol) {
|
||
fprintf (stdout, " add_symbol ");
|
||
ps (e->X_add_symbol);
|
||
fprintf (stdout, "\n");
|
||
}
|
||
if (e->X_subtract_symbol) {
|
||
fprintf (stdout, " sub_symbol ");
|
||
ps (e->X_subtract_symbol);
|
||
fprintf (stdout, "\n");
|
||
}
|
||
}
|
||
|
||
#define SYMBOL_TYPE(t) \
|
||
(((t&N_TYPE) == N_UNDF) ? "UNDEFINED" : \
|
||
(((t&N_TYPE) == N_ABS) ? "ABSOLUTE" : \
|
||
(((t&N_TYPE) == N_TEXT) ? "TEXT" : \
|
||
(((t&N_TYPE) == N_DATA) ? "DATA" : \
|
||
(((t&N_TYPE) == N_BSS) ? "BSS" : "Bad n_type!")))))
|
||
|
||
static void ps (s)
|
||
symbolS *s;
|
||
{
|
||
fprintf (stdout, "%s type %s%s",
|
||
s->sy_nlist.n_un.n_name,
|
||
(s->sy_nlist.n_type&N_EXT) ? "EXTERNAL " : "",
|
||
SYMBOL_TYPE (s->sy_nlist.n_type));
|
||
}
|
||
|
||
struct type_name {
|
||
uint mask;
|
||
char *tname;
|
||
} type_names[] = {
|
||
{ Reg8, "r8" }, { Reg16, "r16" }, { Reg32, "r32" }, { Imm8, "i8" },
|
||
{ Imm8S, "i8s" },
|
||
{ Imm16, "i16" }, { Imm32, "i32" }, { Mem8, "Mem8"}, { Mem16, "Mem16"},
|
||
{ Mem32, "Mem32"}, { BaseIndex, "BaseIndex" },
|
||
{ Abs8, "Abs8" }, { Abs16, "Abs16" }, { Abs32, "Abs32" },
|
||
{ Disp8, "d8" }, { Disp16, "d16" },
|
||
{ Disp32, "d32" }, { SReg2, "SReg2" }, { SReg3, "SReg3" }, { Acc, "Acc" },
|
||
{ InOutPortReg, "InOutPortReg" }, { ShiftCount, "ShiftCount" },
|
||
{ Imm1, "i1" }, { Control, "control reg" }, {Test, "test reg"},
|
||
{ FloatReg, "FReg"}, {FloatAcc, "FAcc"},
|
||
{ JumpAbsolute, "Jump Absolute"},
|
||
{ 0, "" }
|
||
};
|
||
|
||
static void pt (t)
|
||
uint t;
|
||
{
|
||
register struct type_name *ty;
|
||
|
||
if (t == Unknown) {
|
||
fprintf (stdout, "Unknown");
|
||
} else {
|
||
for (ty = type_names; ty->mask; ty++)
|
||
if (t & ty->mask) fprintf (stdout, "%s, ", ty->tname);
|
||
}
|
||
fflush (stdout);
|
||
}
|
||
|
||
#endif /* DEBUG386 */
|
||
|
||
/*
|
||
This is the guts of the machine-dependent assembler. LINE points to a
|
||
machine dependent instruction. This funciton is supposed to emit
|
||
the frags/bytes it assembles to.
|
||
*/
|
||
void md_assemble (line)
|
||
char *line;
|
||
{
|
||
/* Holds temlate once we've found it. */
|
||
register template * t;
|
||
|
||
/* Possible templates for current insn */
|
||
templates *current_templates = (templates *) 0;
|
||
|
||
/* Initialize globals. */
|
||
bzero (&i, sizeof(i));
|
||
bzero (disp_expressions, sizeof(disp_expressions));
|
||
bzero (im_expressions, sizeof(im_expressions));
|
||
save_stack_p = save_stack; /* reset stack pointer */
|
||
|
||
/* Fist parse an opcode & call i386_operand for the operands.
|
||
We assume that the scrubber has arranged it so that line[0] is the valid
|
||
start of a (possibly prefixed) opcode. */
|
||
{
|
||
register char *l = line; /* Fast place to put LINE. */
|
||
|
||
/* TRUE if operand is pending after ','. */
|
||
uint expecting_operand = 0;
|
||
/* TRUE if we found a prefix only acceptable with string insns. */
|
||
uint expecting_string_instruction = 0;
|
||
/* Non-zero if operand parens not balenced. */
|
||
uint paren_not_balenced;
|
||
char * token_start = l;
|
||
|
||
while (! is_space_char(*l) && *l != END_OF_INSN) {
|
||
if (! is_opcode_char(*l)) {
|
||
as_bad ("invalid character %s in opcode", output_invalid(*l));
|
||
return;
|
||
} else if (*l != PREFIX_SEPERATOR) {
|
||
*l = opcode_chars[(unsigned char) *l]; /* fold case of opcodes */
|
||
l++;
|
||
} else { /* this opcode's got a prefix */
|
||
register int q;
|
||
register prefix_entry * prefix;
|
||
|
||
if (l == token_start) {
|
||
as_bad ("expecting prefix; got nothing");
|
||
return;
|
||
}
|
||
END_STRING_AND_SAVE (l);
|
||
prefix = (prefix_entry *) hash_find (prefix_hash, token_start);
|
||
if (! prefix) {
|
||
as_bad ("no such opcode prefix ('%s')", token_start);
|
||
return;
|
||
}
|
||
RESTORE_END_STRING (l);
|
||
/* check for repeated prefix */
|
||
for (q = 0; q < i.prefixes; q++)
|
||
if (i.prefix[q] == prefix->prefix_code) {
|
||
as_bad ("same prefix used twice; you don't really want this!");
|
||
return;
|
||
}
|
||
if (i.prefixes == MAX_PREFIXES) {
|
||
as_bad ("too many opcode prefixes");
|
||
return;
|
||
}
|
||
i.prefix[i.prefixes++] = prefix->prefix_code;
|
||
if (prefix->prefix_code == REPE || prefix->prefix_code == REPNE)
|
||
expecting_string_instruction = TRUE;
|
||
/* skip past PREFIX_SEPERATOR and reset token_start */
|
||
token_start = ++l;
|
||
}
|
||
}
|
||
END_STRING_AND_SAVE (l);
|
||
if (token_start == l) {
|
||
as_bad ("expecting opcode; got nothing");
|
||
return;
|
||
}
|
||
|
||
/* Lookup insn in hash; try intel & att naming conventions if appropriate;
|
||
that is: we only use the opcode suffix 'b' 'w' or 'l' if we need to. */
|
||
current_templates = (templates *) hash_find (op_hash, token_start);
|
||
if (! current_templates) {
|
||
int last_index = strlen(token_start) - 1;
|
||
char last_char = token_start[last_index];
|
||
switch (last_char) {
|
||
case DWORD_OPCODE_SUFFIX:
|
||
case WORD_OPCODE_SUFFIX:
|
||
case BYTE_OPCODE_SUFFIX:
|
||
token_start[last_index] = '\0';
|
||
current_templates = (templates *) hash_find (op_hash, token_start);
|
||
token_start[last_index] = last_char;
|
||
i.suffix = last_char;
|
||
}
|
||
if (!current_templates) {
|
||
as_bad ("no such 386 instruction: `%s'", token_start); return;
|
||
}
|
||
}
|
||
RESTORE_END_STRING (l);
|
||
|
||
/* check for rep/repne without a string instruction */
|
||
if (expecting_string_instruction &&
|
||
! IS_STRING_INSTRUCTION (current_templates->
|
||
start->base_opcode)) {
|
||
as_bad ("expecting string instruction after rep/repne");
|
||
return;
|
||
}
|
||
|
||
/* There may be operands to parse. */
|
||
if (*l != END_OF_INSN &&
|
||
/* For string instructions, we ignore any operands if given. This
|
||
kludges, for example, 'rep/movsb %ds:(%esi), %es:(%edi)' where
|
||
the operands are always going to be the same, and are not really
|
||
encoded in machine code. */
|
||
! IS_STRING_INSTRUCTION (current_templates->
|
||
start->base_opcode)) {
|
||
/* parse operands */
|
||
do {
|
||
/* skip optional white space before operand */
|
||
while (! is_operand_char(*l) && *l != END_OF_INSN) {
|
||
if (! is_space_char(*l)) {
|
||
as_bad ("invalid character %s before %s operand",
|
||
output_invalid(*l),
|
||
ordinal_names[i.operands]);
|
||
return;
|
||
}
|
||
l++;
|
||
}
|
||
token_start = l; /* after white space */
|
||
paren_not_balenced = 0;
|
||
while (paren_not_balenced || *l != ',') {
|
||
if (*l == END_OF_INSN) {
|
||
if (paren_not_balenced) {
|
||
as_bad ("unbalenced parenthesis in %s operand.",
|
||
ordinal_names[i.operands]);
|
||
return;
|
||
} else break; /* we are done */
|
||
} else if (! is_operand_char(*l)) {
|
||
as_bad ("invalid character %s in %s operand",
|
||
output_invalid(*l),
|
||
ordinal_names[i.operands]);
|
||
return;
|
||
}
|
||
if (*l == '(') ++paren_not_balenced;
|
||
if (*l == ')') --paren_not_balenced;
|
||
l++;
|
||
}
|
||
if (l != token_start) { /* yes, we've read in another operand */
|
||
uint operand_ok;
|
||
this_operand = i.operands++;
|
||
if (i.operands > MAX_OPERANDS) {
|
||
as_bad ("spurious operands; (%d operands/instruction max)",
|
||
MAX_OPERANDS);
|
||
return;
|
||
}
|
||
/* now parse operand adding info to 'i' as we go along */
|
||
END_STRING_AND_SAVE (l);
|
||
operand_ok = i386_operand (token_start);
|
||
RESTORE_END_STRING (l); /* restore old contents */
|
||
if (!operand_ok) return;
|
||
} else {
|
||
if (expecting_operand) {
|
||
expecting_operand_after_comma:
|
||
as_bad ("expecting operand after ','; got nothing");
|
||
return;
|
||
}
|
||
if (*l == ',') {
|
||
as_bad ("expecting operand before ','; got nothing");
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* now *l must be either ',' or END_OF_INSN */
|
||
if (*l == ',') {
|
||
if (*++l == END_OF_INSN) { /* just skip it, if it's \n complain */
|
||
goto expecting_operand_after_comma;
|
||
}
|
||
expecting_operand = TRUE;
|
||
}
|
||
} while (*l != END_OF_INSN); /* until we get end of insn */
|
||
}
|
||
}
|
||
|
||
/* Now we've parsed the opcode into a set of templates, and have the
|
||
operands at hand.
|
||
Next, we find a template that matches the given insn,
|
||
making sure the overlap of the given operands types is consistent
|
||
with the template operand types. */
|
||
|
||
#define MATCH(overlap,given_type) \
|
||
(overlap && \
|
||
(overlap & (JumpAbsolute|BaseIndex|Mem8)) \
|
||
== (given_type & (JumpAbsolute|BaseIndex|Mem8)))
|
||
|
||
/* If m0 and m1 are register matches they must be consistent
|
||
with the expected operand types t0 and t1.
|
||
That is, if both m0 & m1 are register matches
|
||
i.e. ( ((m0 & (Reg)) && (m1 & (Reg)) ) ?
|
||
then, either 1. or 2. must be true:
|
||
1. the expected operand type register overlap is null:
|
||
(t0 & t1 & Reg) == 0
|
||
AND
|
||
the given register overlap is null:
|
||
(m0 & m1 & Reg) == 0
|
||
2. the expected operand type register overlap == the given
|
||
operand type overlap: (t0 & t1 & m0 & m1 & Reg).
|
||
*/
|
||
#define CONSISTENT_REGISTER_MATCH(m0, m1, t0, t1) \
|
||
( ((m0 & (Reg)) && (m1 & (Reg))) ? \
|
||
( ((t0 & t1 & (Reg)) == 0 && (m0 & m1 & (Reg)) == 0) || \
|
||
((t0 & t1) & (m0 & m1) & (Reg)) \
|
||
) : 1)
|
||
{
|
||
register uint overlap0, overlap1;
|
||
expressionS * exp;
|
||
uint overlap2;
|
||
uint found_reverse_match;
|
||
|
||
overlap0 = overlap1 = overlap2 = found_reverse_match = 0;
|
||
for (t = current_templates->start;
|
||
t < current_templates->end;
|
||
t++) {
|
||
|
||
/* must have right number of operands */
|
||
if (i.operands != t->operands) continue;
|
||
else if (!t->operands) break; /* 0 operands always matches */
|
||
|
||
overlap0 = i.types[0] & t->operand_types[0];
|
||
switch (t->operands) {
|
||
case 1:
|
||
if (! MATCH (overlap0,i.types[0])) continue;
|
||
break;
|
||
case 2: case 3:
|
||
overlap1 = i.types[1] & t->operand_types[1];
|
||
if (! MATCH (overlap0,i.types[0]) ||
|
||
! MATCH (overlap1,i.types[1]) ||
|
||
! CONSISTENT_REGISTER_MATCH(overlap0, overlap1,
|
||
t->operand_types[0],
|
||
t->operand_types[1])) {
|
||
|
||
/* check if other direction is valid ... */
|
||
if (! (t->opcode_modifier & COMES_IN_BOTH_DIRECTIONS))
|
||
continue;
|
||
|
||
/* try reversing direction of operands */
|
||
overlap0 = i.types[0] & t->operand_types[1];
|
||
overlap1 = i.types[1] & t->operand_types[0];
|
||
if (! MATCH (overlap0,i.types[0]) ||
|
||
! MATCH (overlap1,i.types[1]) ||
|
||
! CONSISTENT_REGISTER_MATCH (overlap0, overlap1,
|
||
t->operand_types[0],
|
||
t->operand_types[1])) {
|
||
/* does not match either direction */
|
||
continue;
|
||
}
|
||
/* found a reverse match here -- slip through */
|
||
/* found_reverse_match holds which of D or FloatD we've found */
|
||
found_reverse_match = t->opcode_modifier & COMES_IN_BOTH_DIRECTIONS;
|
||
} /* endif: not forward match */
|
||
/* found either forward/reverse 2 operand match here */
|
||
if (t->operands == 3) {
|
||
overlap2 = i.types[2] & t->operand_types[2];
|
||
if (! MATCH (overlap2,i.types[2]) ||
|
||
! CONSISTENT_REGISTER_MATCH (overlap0, overlap2,
|
||
t->operand_types[0],
|
||
t->operand_types[2]) ||
|
||
! CONSISTENT_REGISTER_MATCH (overlap1, overlap2,
|
||
t->operand_types[1],
|
||
t->operand_types[2]))
|
||
continue;
|
||
}
|
||
/* found either forward/reverse 2 or 3 operand match here:
|
||
slip through to break */
|
||
}
|
||
break; /* we've found a match; break out of loop */
|
||
} /* for (t = ... */
|
||
if (t == current_templates->end) { /* we found no match */
|
||
as_bad ("operands given don't match any known 386 instruction");
|
||
return;
|
||
}
|
||
|
||
/* Copy the template we found (we may change it!). */
|
||
bcopy (t, &i.tm, sizeof (template));
|
||
t = &i.tm; /* alter new copy of template */
|
||
|
||
/* If there's no opcode suffix we try to invent one based on register
|
||
operands. */
|
||
if (! i.suffix && i.reg_operands) {
|
||
/* We take i.suffix from the LAST register operand specified. This
|
||
assumes that the last register operands is the destination register
|
||
operand. */
|
||
int o;
|
||
for (o = 0; o < MAX_OPERANDS; o++)
|
||
if (i.types[o] & Reg) {
|
||
i.suffix = (i.types[o] == Reg8) ? BYTE_OPCODE_SUFFIX :
|
||
(i.types[o] == Reg16) ? WORD_OPCODE_SUFFIX :
|
||
DWORD_OPCODE_SUFFIX;
|
||
}
|
||
}
|
||
|
||
/* Make still unresolved immediate matches conform to size of immediate
|
||
given in i.suffix. Note: overlap2 cannot be an immediate!
|
||
We assume this. */
|
||
if ((overlap0 & (Imm8|Imm8S|Imm16|Imm32))
|
||
&& overlap0 != Imm8 && overlap0 != Imm8S
|
||
&& overlap0 != Imm16 && overlap0 != Imm32) {
|
||
if (! i.suffix) {
|
||
as_bad ("no opcode suffix given; can't determine immediate size");
|
||
return;
|
||
}
|
||
overlap0 &= (i.suffix == BYTE_OPCODE_SUFFIX ? (Imm8|Imm8S) :
|
||
(i.suffix == WORD_OPCODE_SUFFIX ? Imm16 : Imm32));
|
||
}
|
||
if ((overlap1 & (Imm8|Imm8S|Imm16|Imm32))
|
||
&& overlap1 != Imm8 && overlap1 != Imm8S
|
||
&& overlap1 != Imm16 && overlap1 != Imm32) {
|
||
if (! i.suffix) {
|
||
as_bad ("no opcode suffix given; can't determine immediate size");
|
||
return;
|
||
}
|
||
overlap1 &= (i.suffix == BYTE_OPCODE_SUFFIX ? (Imm8|Imm8S) :
|
||
(i.suffix == WORD_OPCODE_SUFFIX ? Imm16 : Imm32));
|
||
}
|
||
|
||
i.types[0] = overlap0;
|
||
i.types[1] = overlap1;
|
||
i.types[2] = overlap2;
|
||
|
||
if (overlap0 & ImplicitRegister) i.reg_operands--;
|
||
if (overlap1 & ImplicitRegister) i.reg_operands--;
|
||
if (overlap2 & ImplicitRegister) i.reg_operands--;
|
||
if (overlap0 & Imm1) i.imm_operands = 0; /* kludge for shift insns */
|
||
|
||
if (found_reverse_match) {
|
||
uint save;
|
||
save = t->operand_types[0];
|
||
t->operand_types[0] = t->operand_types[1];
|
||
t->operand_types[1] = save;
|
||
}
|
||
|
||
/* Finalize opcode. First, we change the opcode based on the operand
|
||
size given by i.suffix: we never have to change things for byte insns,
|
||
or when no opcode suffix is need to size the operands. */
|
||
|
||
if (! i.suffix && (t->opcode_modifier & W)) {
|
||
as_bad ("no opcode suffix given and no register operands; can't size instruction");
|
||
return;
|
||
}
|
||
|
||
if (i.suffix && i.suffix != BYTE_OPCODE_SUFFIX) {
|
||
/* Select between byte and word/dword operations. */
|
||
if (t->opcode_modifier & W)
|
||
t->base_opcode |= W;
|
||
/* Now select between word & dword operations via the
|
||
operand size prefix. */
|
||
if (i.suffix == WORD_OPCODE_SUFFIX) {
|
||
if (i.prefixes == MAX_PREFIXES) {
|
||
as_bad ("%d prefixes given and 'w' opcode suffix gives too many prefixes",
|
||
MAX_PREFIXES);
|
||
return;
|
||
}
|
||
i.prefix[i.prefixes++] = WORD_PREFIX_OPCODE;
|
||
}
|
||
}
|
||
|
||
/* For insns with operands there are more diddles to do to the opcode. */
|
||
if (i.operands) {
|
||
/* If we found a reverse match we must alter the opcode direction bit
|
||
found_reverse_match holds bit to set (different for int &
|
||
float insns). */
|
||
|
||
if (found_reverse_match) {
|
||
t->base_opcode |= found_reverse_match;
|
||
}
|
||
|
||
/*
|
||
The imul $imm, %reg instruction is converted into
|
||
imul $imm, %reg, %reg. */
|
||
if (t->opcode_modifier & imulKludge) {
|
||
i.regs[2] = i.regs[1]; /* Pretend we saw the 3 operand case. */
|
||
i.reg_operands = 2;
|
||
}
|
||
|
||
/* Certain instructions expect the destination to be in the i.rm.reg
|
||
field. This is by far the exceptional case. For these instructions,
|
||
if the source operand is a register, we must reverse the i.rm.reg
|
||
and i.rm.regmem fields. We accomplish this by faking that the
|
||
two register operands were given in the reverse order. */
|
||
if ((t->opcode_modifier & ReverseRegRegmem) && i.reg_operands == 2) {
|
||
uint first_reg_operand = (i.types[0] & Reg) ? 0 : 1;
|
||
uint second_reg_operand = first_reg_operand + 1;
|
||
reg_entry *tmp = i.regs[first_reg_operand];
|
||
i.regs[first_reg_operand] = i.regs[second_reg_operand];
|
||
i.regs[second_reg_operand] = tmp;
|
||
}
|
||
|
||
if (t->opcode_modifier & ShortForm) {
|
||
/* The register or float register operand is in operand 0 or 1. */
|
||
uint o = (i.types[0] & (Reg|FloatReg)) ? 0 : 1;
|
||
/* Register goes in low 3 bits of opcode. */
|
||
t->base_opcode |= i.regs[o]->reg_num;
|
||
} else if (t->opcode_modifier & ShortFormW) {
|
||
/* Short form with 0x8 width bit. Register is always dest. operand */
|
||
t->base_opcode |= i.regs[1]->reg_num;
|
||
if (i.suffix == WORD_OPCODE_SUFFIX ||
|
||
i.suffix == DWORD_OPCODE_SUFFIX)
|
||
t->base_opcode |= 0x8;
|
||
} else if (t->opcode_modifier & Seg2ShortForm) {
|
||
if (t->base_opcode == POP_SEG_SHORT && i.regs[0]->reg_num == 1) {
|
||
as_bad ("you can't 'pop cs' on the 386.");
|
||
return;
|
||
}
|
||
t->base_opcode |= (i.regs[0]->reg_num << 3);
|
||
} else if (t->opcode_modifier & Seg3ShortForm) {
|
||
/* 'push %fs' is 0x0fa0; 'pop %fs' is 0x0fa1.
|
||
'push %gs' is 0x0fa8; 'pop %fs' is 0x0fa9.
|
||
So, only if i.regs[0]->reg_num == 5 (%gs) do we need
|
||
to change the opcode. */
|
||
if (i.regs[0]->reg_num == 5)
|
||
t->base_opcode |= 0x08;
|
||
} else if (t->opcode_modifier & Modrm) {
|
||
/* The opcode is completed (modulo t->extension_opcode which must
|
||
be put into the modrm byte.
|
||
Now, we make the modrm & index base bytes based on all the info
|
||
we've collected. */
|
||
|
||
/* i.reg_operands MUST be the number of real register operands;
|
||
implicit registers do not count. */
|
||
if (i.reg_operands == 2) {
|
||
uint source, dest;
|
||
source = (i.types[0] & (Reg|SReg2|SReg3|Control|Debug|Test)) ? 0 : 1;
|
||
dest = source + 1;
|
||
i.rm.mode = 3;
|
||
/* We must be careful to make sure that all segment/control/test/
|
||
debug registers go into the i.rm.reg field (despite the whether
|
||
they are source or destination operands). */
|
||
if (i.regs[dest]->reg_type & (SReg2|SReg3|Control|Debug|Test)) {
|
||
i.rm.reg = i.regs[dest]->reg_num;
|
||
i.rm.regmem = i.regs[source]->reg_num;
|
||
} else {
|
||
i.rm.reg = i.regs[source]->reg_num;
|
||
i.rm.regmem = i.regs[dest]->reg_num;
|
||
}
|
||
} else { /* if it's not 2 reg operands... */
|
||
if (i.mem_operands) {
|
||
uint fake_zero_displacement = FALSE;
|
||
uint o = (i.types[0] & Mem) ? 0 : ((i.types[1] & Mem) ? 1 : 2);
|
||
|
||
/* Encode memory operand into modrm byte and base index byte. */
|
||
|
||
if (i.base_reg == esp && ! i.index_reg) {
|
||
/* <disp>(%esp) becomes two byte modrm with no index register. */
|
||
i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
|
||
i.rm.mode = MODE_FROM_DISP_SIZE (i.types[o]);
|
||
i.bi.base = ESP_REG_NUM;
|
||
i.bi.index = NO_INDEX_REGISTER;
|
||
i.bi.scale = 0; /* Must be zero! */
|
||
} else if (i.base_reg == ebp && !i.index_reg) {
|
||
if (! (i.types[o] & Disp)) {
|
||
/* Must fake a zero byte displacement.
|
||
There is no direct way to code '(%ebp)' directly. */
|
||
fake_zero_displacement = TRUE;
|
||
/* fake_zero_displacement code does not set this. */
|
||
i.types[o] |= Disp8;
|
||
}
|
||
i.rm.mode = MODE_FROM_DISP_SIZE (i.types[o]);
|
||
i.rm.regmem = EBP_REG_NUM;
|
||
} else if (! i.base_reg && (i.types[o] & BaseIndex)) {
|
||
/* There are three cases here.
|
||
Case 1: '<32bit disp>(,1)' -- indirect absolute.
|
||
(Same as cases 2 & 3 with NO index register)
|
||
Case 2: <32bit disp> (,<index>) -- no base register with disp
|
||
Case 3: (, <index>) --- no base register;
|
||
no disp (must add 32bit 0 disp). */
|
||
i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
|
||
i.rm.mode = 0; /* 32bit mode */
|
||
i.bi.base = NO_BASE_REGISTER;
|
||
i.types[o] &= ~Disp;
|
||
i.types[o] |= Disp32; /* Must be 32bit! */
|
||
if (i.index_reg) { /* case 2 or case 3 */
|
||
i.bi.index = i.index_reg->reg_num;
|
||
i.bi.scale = i.log2_scale_factor;
|
||
if (i.disp_operands == 0)
|
||
fake_zero_displacement = TRUE; /* case 3 */
|
||
} else {
|
||
i.bi.index = NO_INDEX_REGISTER;
|
||
i.bi.scale = 0;
|
||
}
|
||
} else if (i.disp_operands && !i.base_reg && !i.index_reg) {
|
||
/* Operand is just <32bit disp> */
|
||
i.rm.regmem = EBP_REG_NUM;
|
||
i.rm.mode = 0;
|
||
i.types[o] &= ~Disp;
|
||
i.types[o] |= Disp32;
|
||
} else {
|
||
/* It's not a special case; rev'em up. */
|
||
i.rm.regmem = i.base_reg->reg_num;
|
||
i.rm.mode = MODE_FROM_DISP_SIZE (i.types[o]);
|
||
if (i.index_reg) {
|
||
i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
|
||
i.bi.base = i.base_reg->reg_num;
|
||
i.bi.index = i.index_reg->reg_num;
|
||
i.bi.scale = i.log2_scale_factor;
|
||
if (i.base_reg == ebp && i.disp_operands == 0) { /* pace */
|
||
fake_zero_displacement = TRUE;
|
||
i.types[o] |= Disp8;
|
||
i.rm.mode = MODE_FROM_DISP_SIZE (i.types[o]);
|
||
}
|
||
}
|
||
}
|
||
if (fake_zero_displacement) {
|
||
/* Fakes a zero displacement assuming that i.types[o] holds
|
||
the correct displacement size. */
|
||
exp = &disp_expressions[i.disp_operands++];
|
||
i.disps[o] = exp;
|
||
exp->X_seg = SEG_ABSOLUTE;
|
||
exp->X_add_number = 0;
|
||
exp->X_add_symbol = (symbolS *) 0;
|
||
exp->X_subtract_symbol = (symbolS *) 0;
|
||
}
|
||
|
||
/* Select the correct segment for the memory operand. */
|
||
if (i.seg) {
|
||
uint seg_index;
|
||
seg_entry * default_seg;
|
||
|
||
if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING) {
|
||
seg_index = (i.rm.mode<<3) | i.bi.base;
|
||
default_seg = two_byte_segment_defaults [seg_index];
|
||
} else {
|
||
seg_index = (i.rm.mode<<3) | i.rm.regmem;
|
||
default_seg = one_byte_segment_defaults [seg_index];
|
||
}
|
||
/* If the specified segment is not the default, use an
|
||
opcode prefix to select it */
|
||
if (i.seg != default_seg) {
|
||
if (i.prefixes == MAX_PREFIXES) {
|
||
as_bad ("%d prefixes given and %s segment override gives too many prefixes",
|
||
MAX_PREFIXES, i.seg->seg_name);
|
||
return;
|
||
}
|
||
i.prefix[i.prefixes++] = i.seg->seg_prefix;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Fill in i.rm.reg or i.rm.regmem field with register operand
|
||
(if any) based on t->extension_opcode. Again, we must be careful
|
||
to make sure that segment/control/debug/test registers are coded
|
||
into the i.rm.reg field. */
|
||
if (i.reg_operands) {
|
||
uint o =
|
||
(i.types[0] & (Reg|SReg2|SReg3|Control|Debug|Test)) ? 0 :
|
||
(i.types[1] & (Reg|SReg2|SReg3|Control|Debug|Test)) ? 1 : 2;
|
||
/* If there is an extension opcode to put here, the register number
|
||
must be put into the regmem field. */
|
||
if (t->extension_opcode != None)
|
||
i.rm.regmem = i.regs[o]->reg_num;
|
||
else i.rm.reg = i.regs[o]->reg_num;
|
||
|
||
/* Now, if no memory operand has set i.rm.mode = 0, 1, 2
|
||
we must set it to 3 to indicate this is a register operand
|
||
int the regmem field */
|
||
if (! i.mem_operands) i.rm.mode = 3;
|
||
}
|
||
|
||
/* Fill in i.rm.reg field with extension opcode (if any). */
|
||
if (t->extension_opcode != None)
|
||
i.rm.reg = t->extension_opcode;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Handle conversion of 'int $3' --> special int3 insn. */
|
||
if (t->base_opcode == INT_OPCODE && i.imms[0]->X_add_number == 3) {
|
||
t->base_opcode = INT3_OPCODE;
|
||
i.imm_operands = 0;
|
||
}
|
||
|
||
/* We are ready to output the insn. */
|
||
{
|
||
register char * p;
|
||
|
||
/* Output jumps. */
|
||
if (t->opcode_modifier & Jump) {
|
||
int n = i.disps[0]->X_add_number;
|
||
|
||
switch (i.disps[0]->X_seg) {
|
||
case SEG_ABSOLUTE:
|
||
if (FITS_IN_SIGNED_BYTE (n)) {
|
||
p = frag_more (2);
|
||
p[0] = t->base_opcode;
|
||
p[1] = n;
|
||
#if 0 /* leave out 16 bit jumps - pace */
|
||
} else if (FITS_IN_SIGNED_WORD (n)) {
|
||
p = frag_more (4);
|
||
p[0] = WORD_PREFIX_OPCODE;
|
||
p[1] = t->base_opcode;
|
||
md_number_to_chars (&p[2], n, 2);
|
||
#endif
|
||
} else { /* It's an absolute dword displacement. */
|
||
if (t->base_opcode == JUMP_PC_RELATIVE) { /* pace */
|
||
/* unconditional jump */
|
||
p = frag_more (5);
|
||
p[0] = 0xe9;
|
||
md_number_to_chars (&p[1], n, 4);
|
||
} else {
|
||
/* conditional jump */
|
||
p = frag_more (6);
|
||
p[0] = TWO_BYTE_OPCODE_ESCAPE;
|
||
p[1] = t->base_opcode + 0x10;
|
||
md_number_to_chars (&p[2], n, 4);
|
||
}
|
||
}
|
||
break;
|
||
default:
|
||
/* It's a symbol; end frag & setup for relax.
|
||
Make sure there are 6 chars left in the current frag; if not
|
||
we'll have to start a new one. */
|
||
/* I caught it failing with obstack_room == 6,
|
||
so I changed to <= pace */
|
||
if (obstack_room (&frags) <= 6) {
|
||
frag_wane(frag_now);
|
||
frag_new (0);
|
||
}
|
||
p = frag_more (1);
|
||
p[0] = t->base_opcode;
|
||
frag_var (rs_machine_dependent,
|
||
6, /* 2 opcode/prefix + 4 displacement */
|
||
1,
|
||
((uchar) *p == JUMP_PC_RELATIVE
|
||
? ENCODE_RELAX_STATE (UNCOND_JUMP, BYTE)
|
||
: ENCODE_RELAX_STATE (COND_JUMP, BYTE)),
|
||
i.disps[0]->X_add_symbol,
|
||
n, p);
|
||
break;
|
||
}
|
||
} else if (t->opcode_modifier & (JumpByte|JumpDword)) {
|
||
int size = (t->opcode_modifier & JumpByte) ? 1 : 4;
|
||
int n = i.disps[0]->X_add_number;
|
||
|
||
if (FITS_IN_UNSIGNED_BYTE(t->base_opcode)) {
|
||
FRAG_APPEND_1_CHAR (t->base_opcode);
|
||
} else {
|
||
p = frag_more (2); /* opcode can be at most two bytes */
|
||
/* put out high byte first: can't use md_number_to_chars! */
|
||
*p++ = (t->base_opcode >> 8) & 0xff;
|
||
*p = t->base_opcode & 0xff;
|
||
}
|
||
|
||
p = frag_more (size);
|
||
switch (i.disps[0]->X_seg) {
|
||
case SEG_ABSOLUTE:
|
||
md_number_to_chars (p, n, size);
|
||
if (size == 1 && ! FITS_IN_SIGNED_BYTE (n)) {
|
||
as_bad ("loop/jecx only takes byte displacement; %d shortened to %d",
|
||
n, *p);
|
||
}
|
||
break;
|
||
default:
|
||
fix_new (frag_now, p - frag_now->fr_literal, size,
|
||
i.disps[0]->X_add_symbol, i.disps[0]->X_subtract_symbol,
|
||
i.disps[0]->X_add_number, 1);
|
||
break;
|
||
}
|
||
} else if (t->opcode_modifier & JumpInterSegment) {
|
||
p = frag_more (1 + 2 + 4); /* 1 opcode; 2 segment; 4 offset */
|
||
p[0] = t->base_opcode;
|
||
if (i.imms[1]->X_seg == SEG_ABSOLUTE)
|
||
md_number_to_chars (p + 1, i.imms[1]->X_add_number, 4);
|
||
else
|
||
fix_new (frag_now, p + 1 - frag_now->fr_literal, 4,
|
||
i.imms[1]->X_add_symbol,
|
||
i.imms[1]->X_subtract_symbol,
|
||
i.imms[1]->X_add_number, 0);
|
||
if (i.imms[0]->X_seg != SEG_ABSOLUTE)
|
||
as_bad ("can't handle non absolute segment in long call/jmp");
|
||
md_number_to_chars (p + 5, i.imms[0]->X_add_number, 2);
|
||
} else {
|
||
/* Output normal instructions here. */
|
||
register char *q;
|
||
|
||
/* First the prefix bytes. */
|
||
for (q = i.prefix; q < i.prefix + i.prefixes; q++) {
|
||
p = frag_more (1);
|
||
md_number_to_chars (p, (uint) *q, 1);
|
||
}
|
||
|
||
/* Now the opcode; be careful about word order here! */
|
||
if (FITS_IN_UNSIGNED_BYTE(t->base_opcode)) {
|
||
FRAG_APPEND_1_CHAR (t->base_opcode);
|
||
} else if (FITS_IN_UNSIGNED_WORD(t->base_opcode)) {
|
||
p = frag_more (2);
|
||
/* put out high byte first: can't use md_number_to_chars! */
|
||
*p++ = (t->base_opcode >> 8) & 0xff;
|
||
*p = t->base_opcode & 0xff;
|
||
} else { /* opcode is either 3 or 4 bytes */
|
||
if (t->base_opcode & 0xff000000) {
|
||
p = frag_more (4);
|
||
*p++ = (t->base_opcode >> 24) & 0xff;
|
||
} else p = frag_more (3);
|
||
*p++ = (t->base_opcode >> 16) & 0xff;
|
||
*p++ = (t->base_opcode >> 8) & 0xff;
|
||
*p = (t->base_opcode ) & 0xff;
|
||
}
|
||
|
||
/* Now the modrm byte and base index byte (if present). */
|
||
if (t->opcode_modifier & Modrm) {
|
||
p = frag_more (1);
|
||
/* md_number_to_chars (p, i.rm, 1); */
|
||
md_number_to_chars (p, (i.rm.regmem<<0 | i.rm.reg<<3 | i.rm.mode<<6), 1);
|
||
/* If i.rm.regmem == ESP (4) && i.rm.mode != Mode 3 (Register mode)
|
||
==> need second modrm byte. */
|
||
if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING && i.rm.mode != 3) {
|
||
p = frag_more (1);
|
||
/* md_number_to_chars (p, i.bi, 1); */
|
||
md_number_to_chars (p,(i.bi.base<<0 | i.bi.index<<3 | i.bi.scale<<6), 1);
|
||
}
|
||
}
|
||
|
||
if (i.disp_operands) {
|
||
register int n;
|
||
|
||
for (n = 0; n < i.operands; n++) {
|
||
if (i.disps[n]) {
|
||
if (i.disps[n]->X_seg == SEG_ABSOLUTE) {
|
||
if (i.types[n] & (Disp8|Abs8)) {
|
||
p = frag_more (1);
|
||
md_number_to_chars (p, i.disps[n]->X_add_number, 1);
|
||
} else if (i.types[n] & (Disp16|Abs16)) {
|
||
p = frag_more (2);
|
||
md_number_to_chars (p, i.disps[n]->X_add_number, 2);
|
||
} else { /* Disp32|Abs32 */
|
||
p = frag_more (4);
|
||
md_number_to_chars (p, i.disps[n]->X_add_number, 4);
|
||
}
|
||
} else { /* not SEG_ABSOLUTE */
|
||
/* need a 32-bit fixup (don't support 8bit non-absolute disps) */
|
||
p = frag_more (4);
|
||
fix_new (frag_now, p - frag_now->fr_literal, 4,
|
||
i.disps[n]->X_add_symbol, i.disps[n]->X_subtract_symbol,
|
||
i.disps[n]->X_add_number, 0);
|
||
}
|
||
}
|
||
}
|
||
} /* end displacement output */
|
||
|
||
/* output immediate */
|
||
if (i.imm_operands) {
|
||
register int n;
|
||
|
||
for (n = 0; n < i.operands; n++) {
|
||
if (i.imms[n]) {
|
||
if (i.imms[n]->X_seg == SEG_ABSOLUTE) {
|
||
if (i.types[n] & (Imm8|Imm8S)) {
|
||
p = frag_more (1);
|
||
md_number_to_chars (p, i.imms[n]->X_add_number, 1);
|
||
} else if (i.types[n] & Imm16) {
|
||
p = frag_more (2);
|
||
md_number_to_chars (p, i.imms[n]->X_add_number, 2);
|
||
} else {
|
||
p = frag_more (4);
|
||
md_number_to_chars (p, i.imms[n]->X_add_number, 4);
|
||
}
|
||
} else { /* not SEG_ABSOLUTE */
|
||
/* need a 32-bit fixup (don't support 8bit non-absolute ims) */
|
||
/* try to support other sizes ... */
|
||
int size;
|
||
if (i.types[n] & (Imm8|Imm8S))
|
||
size = 1;
|
||
else if (i.types[n] & Imm16)
|
||
size = 2;
|
||
else
|
||
size = 4;
|
||
p = frag_more (size);
|
||
fix_new (frag_now, p - frag_now->fr_literal, size,
|
||
i.imms[n]->X_add_symbol, i.imms[n]->X_subtract_symbol,
|
||
i.imms[n]->X_add_number, 0);
|
||
}
|
||
}
|
||
}
|
||
} /* end immediate output */
|
||
}
|
||
|
||
#ifdef DEBUG386
|
||
if (flagseen ['D']) {
|
||
pi (line, &i);
|
||
}
|
||
#endif /* DEBUG386 */
|
||
|
||
}
|
||
return;
|
||
}
|
||
|
||
/* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
|
||
on error. */
|
||
|
||
int i386_operand (operand_string)
|
||
char *operand_string;
|
||
{
|
||
register char *op_string = operand_string;
|
||
|
||
/* Address of '\0' at end of operand_string. */
|
||
char * end_of_operand_string = operand_string + strlen(operand_string);
|
||
|
||
/* Start and end of displacement string expression (if found). */
|
||
char * displacement_string_start = 0;
|
||
char * displacement_string_end;
|
||
|
||
/* We check for an absolute prefix (differentiating,
|
||
for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
|
||
if (*op_string == ABSOLUTE_PREFIX) {
|
||
op_string++;
|
||
i.types[this_operand] |= JumpAbsolute;
|
||
}
|
||
|
||
/* Check if operand is a register. */
|
||
if (*op_string == REGISTER_PREFIX) {
|
||
register reg_entry * r;
|
||
if (! (r = parse_register (op_string))) {
|
||
as_bad ("bad register name ('%s')", op_string);
|
||
return 0;
|
||
}
|
||
/* Check for segment override, rather than segment register by
|
||
searching for ':' after %<x>s where <x> = s, c, d, e, f, g. */
|
||
if ((r->reg_type & (SReg2|SReg3)) && op_string[3] == ':') {
|
||
switch (r->reg_num) {
|
||
case 0:
|
||
i.seg = &es; break;
|
||
case 1:
|
||
i.seg = &cs; break;
|
||
case 2:
|
||
i.seg = &ss; break;
|
||
case 3:
|
||
i.seg = &ds; break;
|
||
case 4:
|
||
i.seg = &fs; break;
|
||
case 5:
|
||
i.seg = &gs; break;
|
||
}
|
||
op_string += 4; /* skip % <x> s : */
|
||
operand_string = op_string; /* Pretend given string starts here. */
|
||
if (!is_digit_char(*op_string) && !is_identifier_char(*op_string)
|
||
&& *op_string != '(' && *op_string != ABSOLUTE_PREFIX) {
|
||
as_bad ("bad memory operand after segment override");
|
||
return 0;
|
||
}
|
||
/* Handle case of %es:*foo. */
|
||
if (*op_string == ABSOLUTE_PREFIX) {
|
||
op_string++;
|
||
i.types[this_operand] |= JumpAbsolute;
|
||
}
|
||
goto do_memory_reference;
|
||
}
|
||
i.types[this_operand] |= r->reg_type;
|
||
i.regs[this_operand] = r;
|
||
i.reg_operands++;
|
||
} else if (*op_string == IMMEDIATE_PREFIX) { /* ... or an immediate */
|
||
char * save_input_line_pointer;
|
||
register expressionS *exp;
|
||
segT exp_seg;
|
||
if (i.imm_operands == MAX_IMMEDIATE_OPERANDS) {
|
||
as_bad ("only 1 or 2 immediate operands are allowed");
|
||
return 0;
|
||
}
|
||
exp = &im_expressions[i.imm_operands++];
|
||
i.imms [this_operand] = exp;
|
||
save_input_line_pointer = input_line_pointer;
|
||
input_line_pointer = ++op_string; /* must advance op_string! */
|
||
exp_seg = expression (exp);
|
||
input_line_pointer = save_input_line_pointer;
|
||
switch (exp_seg) {
|
||
case SEG_NONE: /* missing or bad expr becomes absolute 0 */
|
||
as_bad ("missing or invalid immediate expression '%s' taken as 0",
|
||
operand_string);
|
||
exp->X_seg = SEG_ABSOLUTE;
|
||
exp->X_add_number = 0;
|
||
exp->X_add_symbol = (symbolS *) 0;
|
||
exp->X_subtract_symbol = (symbolS *) 0;
|
||
i.types[this_operand] |= Imm;
|
||
break;
|
||
case SEG_ABSOLUTE:
|
||
i.types[this_operand] |= SMALLEST_IMM_TYPE (exp->X_add_number);
|
||
break;
|
||
case SEG_TEXT: case SEG_DATA: case SEG_BSS: case SEG_UNKNOWN:
|
||
i.types[this_operand] |= Imm32; /* this is an address ==> 32bit */
|
||
break;
|
||
default:
|
||
seg_unimplemented:
|
||
as_bad ("Unimplemented segment type %d in parse_operand", exp_seg);
|
||
return 0;
|
||
}
|
||
/* shorten this type of this operand if the instruction wants
|
||
* fewer bits than are present in the immediate. The bit field
|
||
* code can put out 'andb $0xffffff, %al', for example. pace
|
||
* also 'movw $foo,(%eax)'
|
||
*/
|
||
switch (i.suffix) {
|
||
case WORD_OPCODE_SUFFIX:
|
||
i.types[this_operand] |= Imm16;
|
||
break;
|
||
case BYTE_OPCODE_SUFFIX:
|
||
i.types[this_operand] |= Imm16 | Imm8 | Imm8S;
|
||
break;
|
||
}
|
||
} else if (is_digit_char(*op_string) || is_identifier_char(*op_string)
|
||
|| *op_string == '(') {
|
||
/* This is a memory reference of some sort. */
|
||
register char * base_string;
|
||
uint found_base_index_form;
|
||
|
||
do_memory_reference:
|
||
if (i.mem_operands == MAX_MEMORY_OPERANDS) {
|
||
as_bad ("more than 1 memory reference in instruction");
|
||
return 0;
|
||
}
|
||
i.mem_operands++;
|
||
|
||
/* Determine type of memory operand from opcode_suffix;
|
||
no opcode suffix implies general memory references. */
|
||
switch (i.suffix) {
|
||
case BYTE_OPCODE_SUFFIX:
|
||
i.types[this_operand] |= Mem8;
|
||
break;
|
||
case WORD_OPCODE_SUFFIX:
|
||
i.types[this_operand] |= Mem16;
|
||
break;
|
||
case DWORD_OPCODE_SUFFIX:
|
||
default:
|
||
i.types[this_operand] |= Mem32;
|
||
}
|
||
|
||
/* Check for base index form. We detect the base index form by
|
||
looking for an ')' at the end of the operand, searching
|
||
for the '(' matching it, and finding a REGISTER_PREFIX or ','
|
||
after it. */
|
||
base_string = end_of_operand_string - 1;
|
||
found_base_index_form = FALSE;
|
||
if (*base_string == ')') {
|
||
uint parens_balenced = 1;
|
||
/* We've already checked that the number of left & right ()'s are equal,
|
||
so this loop will not be infinite. */
|
||
do {
|
||
base_string--;
|
||
if (*base_string == ')') parens_balenced++;
|
||
if (*base_string == '(') parens_balenced--;
|
||
} while (parens_balenced);
|
||
base_string++; /* Skip past '('. */
|
||
if (*base_string == REGISTER_PREFIX || *base_string == ',')
|
||
found_base_index_form = TRUE;
|
||
}
|
||
|
||
/* If we can't parse a base index register expression, we've found
|
||
a pure displacement expression. We set up displacement_string_start
|
||
and displacement_string_end for the code below. */
|
||
if (! found_base_index_form) {
|
||
displacement_string_start = op_string;
|
||
displacement_string_end = end_of_operand_string;
|
||
} else {
|
||
char *base_reg_name, *index_reg_name, *num_string;
|
||
int num;
|
||
|
||
i.types[this_operand] |= BaseIndex;
|
||
|
||
/* If there is a displacement set-up for it to be parsed later. */
|
||
if (base_string != op_string + 1) {
|
||
displacement_string_start = op_string;
|
||
displacement_string_end = base_string - 1;
|
||
}
|
||
|
||
/* Find base register (if any). */
|
||
if (*base_string != ',') {
|
||
base_reg_name = base_string++;
|
||
/* skip past register name & parse it */
|
||
while (isalpha(*base_string)) base_string++;
|
||
if (base_string == base_reg_name+1) {
|
||
as_bad ("can't find base register name after '(%c'",
|
||
REGISTER_PREFIX);
|
||
return 0;
|
||
}
|
||
END_STRING_AND_SAVE (base_string);
|
||
if (! (i.base_reg = parse_register (base_reg_name))) {
|
||
as_bad ("bad base register name ('%s')", base_reg_name);
|
||
return 0;
|
||
}
|
||
RESTORE_END_STRING (base_string);
|
||
}
|
||
|
||
/* Now check seperator; must be ',' ==> index reg
|
||
OR num ==> no index reg. just scale factor
|
||
OR ')' ==> end. (scale factor = 1) */
|
||
if (*base_string != ',' && *base_string != ')') {
|
||
as_bad ("expecting ',' or ')' after base register in `%s'",
|
||
operand_string);
|
||
return 0;
|
||
}
|
||
|
||
/* There may index reg here; and there may be a scale factor. */
|
||
if (*base_string == ',' && *(base_string+1) == REGISTER_PREFIX) {
|
||
index_reg_name = ++base_string;
|
||
while (isalpha(*++base_string));
|
||
END_STRING_AND_SAVE (base_string);
|
||
if (! (i.index_reg = parse_register(index_reg_name))) {
|
||
as_bad ("bad index register name ('%s')", index_reg_name);
|
||
return 0;
|
||
}
|
||
RESTORE_END_STRING (base_string);
|
||
}
|
||
|
||
/* Check for scale factor. */
|
||
if (*base_string == ',' && isdigit(*(base_string+1))) {
|
||
num_string = ++base_string;
|
||
while (is_digit_char(*base_string)) base_string++;
|
||
if (base_string == num_string) {
|
||
as_bad ("can't find a scale factor after ','");
|
||
return 0;
|
||
}
|
||
END_STRING_AND_SAVE (base_string);
|
||
/* We've got a scale factor. */
|
||
if (! sscanf (num_string, "%d", &num)) {
|
||
as_bad ("can't parse scale factor from '%s'", num_string);
|
||
return 0;
|
||
}
|
||
RESTORE_END_STRING (base_string);
|
||
switch (num) { /* must be 1 digit scale */
|
||
case 1: i.log2_scale_factor = 0; break;
|
||
case 2: i.log2_scale_factor = 1; break;
|
||
case 4: i.log2_scale_factor = 2; break;
|
||
case 8: i.log2_scale_factor = 3; break;
|
||
default:
|
||
as_bad ("expecting scale factor of 1, 2, 4, 8; got %d", num);
|
||
return 0;
|
||
}
|
||
} else {
|
||
if (! i.index_reg && *base_string == ',') {
|
||
as_bad ("expecting index register or scale factor after ','; got '%c'",
|
||
*(base_string+1));
|
||
return 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If there's an expression begining the operand, parse it,
|
||
assuming displacement_string_start and displacement_string_end
|
||
are meaningful. */
|
||
if (displacement_string_start) {
|
||
register expressionS * exp;
|
||
segT exp_seg;
|
||
char * save_input_line_pointer;
|
||
exp = &disp_expressions[i.disp_operands];
|
||
i.disps [this_operand] = exp;
|
||
i.disp_operands++;
|
||
save_input_line_pointer = input_line_pointer;
|
||
input_line_pointer = displacement_string_start;
|
||
END_STRING_AND_SAVE (displacement_string_end);
|
||
exp_seg = expression (exp);
|
||
if(*input_line_pointer)
|
||
as_bad("Ignoring junk '%s' after expression",input_line_pointer);
|
||
RESTORE_END_STRING (displacement_string_end);
|
||
input_line_pointer = save_input_line_pointer;
|
||
switch (exp_seg) {
|
||
case SEG_NONE:
|
||
/* missing expr becomes absolute 0 */
|
||
as_bad ("missing or invalid displacement '%s' taken as 0",
|
||
operand_string);
|
||
i.types[this_operand] |= (Disp|Abs);
|
||
exp->X_seg = SEG_ABSOLUTE;
|
||
exp->X_add_number = 0;
|
||
exp->X_add_symbol = (symbolS *) 0;
|
||
exp->X_subtract_symbol = (symbolS *) 0;
|
||
break;
|
||
case SEG_ABSOLUTE:
|
||
i.types[this_operand] |= SMALLEST_DISP_TYPE (exp->X_add_number);
|
||
break;
|
||
case SEG_TEXT: case SEG_DATA: case SEG_BSS:
|
||
case SEG_UNKNOWN: /* must be 32 bit displacement (i.e. address) */
|
||
i.types[this_operand] |= Disp32;
|
||
break;
|
||
default:
|
||
goto seg_unimplemented;
|
||
}
|
||
}
|
||
|
||
/* Make sure the memory operand we've been dealt is valid. */
|
||
if (i.base_reg && i.index_reg &&
|
||
! (i.base_reg->reg_type & i.index_reg->reg_type & Reg)) {
|
||
as_bad ("register size mismatch in (base,index,scale) expression");
|
||
return 0;
|
||
}
|
||
if ((i.base_reg && (i.base_reg->reg_type & Reg32) == 0) ||
|
||
(i.index_reg && (i.index_reg->reg_type & Reg32) == 0)) {
|
||
as_bad ("base/index register must be 32 bit register");
|
||
return 0;
|
||
}
|
||
if (i.index_reg && i.index_reg == esp) {
|
||
as_bad ("%s may not be used as an index register", esp->reg_name);
|
||
return 0;
|
||
}
|
||
} else { /* it's not a memory operand; argh! */
|
||
as_bad ("invalid char %s begining %s operand '%s'",
|
||
output_invalid(*op_string), ordinal_names[this_operand],
|
||
op_string);
|
||
return 0;
|
||
}
|
||
return 1; /* normal return */
|
||
}
|
||
|
||
/*
|
||
* md_estimate_size_before_relax()
|
||
*
|
||
* Called just before relax().
|
||
* Any symbol that is now undefined will not become defined.
|
||
* Return the correct fr_subtype in the frag.
|
||
* Return the initial "guess for fr_var" to caller.
|
||
* The guess for fr_var is ACTUALLY the growth beyond fr_fix.
|
||
* Whatever we do to grow fr_fix or fr_var contributes to our returned value.
|
||
* Although it may not be explicit in the frag, pretend fr_var starts with a
|
||
* 0 value.
|
||
*/
|
||
int
|
||
md_estimate_size_before_relax (fragP, segment_type)
|
||
register fragS * fragP;
|
||
register int segment_type; /* N_DATA or N_TEXT. */
|
||
{
|
||
register uchar * opcode;
|
||
register int old_fr_fix;
|
||
|
||
old_fr_fix = fragP -> fr_fix;
|
||
opcode = (uchar *) fragP -> fr_opcode;
|
||
/* We've already got fragP->fr_subtype right; all we have to do is check
|
||
for un-relaxable symbols. */
|
||
if ((fragP -> fr_symbol -> sy_type & N_TYPE) != segment_type) {
|
||
/* symbol is undefined in this segment */
|
||
switch (opcode[0]) {
|
||
case JUMP_PC_RELATIVE: /* make jmp (0xeb) a dword displacement jump */
|
||
opcode[0] = 0xe9; /* dword disp jmp */
|
||
fragP -> fr_fix += 4;
|
||
fix_new (fragP, old_fr_fix, 4,
|
||
fragP -> fr_symbol,
|
||
(symbolS *) 0,
|
||
fragP -> fr_offset, 1);
|
||
break;
|
||
|
||
default:
|
||
/* This changes the byte-displacement jump 0x7N -->
|
||
the dword-displacement jump 0x0f8N */
|
||
opcode[1] = opcode[0] + 0x10;
|
||
opcode[0] = TWO_BYTE_OPCODE_ESCAPE; /* two-byte escape */
|
||
fragP -> fr_fix += 1 + 4; /* we've added an opcode byte */
|
||
fix_new (fragP, old_fr_fix + 1, 4,
|
||
fragP -> fr_symbol,
|
||
(symbolS *) 0,
|
||
fragP -> fr_offset, 1);
|
||
break;
|
||
}
|
||
frag_wane (fragP);
|
||
}
|
||
return (fragP -> fr_var + fragP -> fr_fix - old_fr_fix);
|
||
} /* md_estimate_size_before_relax() */
|
||
|
||
/*
|
||
* md_convert_frag();
|
||
*
|
||
* Called after relax() is finished.
|
||
* In: Address of frag.
|
||
* fr_type == rs_machine_dependent.
|
||
* fr_subtype is what the address relaxed to.
|
||
*
|
||
* Out: Any fixSs and constants are set up.
|
||
* Caller will turn frag into a ".space 0".
|
||
*/
|
||
void
|
||
md_convert_frag (fragP)
|
||
register fragS * fragP;
|
||
{
|
||
register uchar * opcode;
|
||
uchar * where_to_put_displacement;
|
||
uint target_address, opcode_address;
|
||
uint extension;
|
||
int displacement_from_opcode_start;
|
||
|
||
opcode = (uchar *) fragP -> fr_opcode;
|
||
|
||
/* Address we want to reach in file space. */
|
||
target_address = fragP->fr_symbol->sy_value + fragP->fr_offset;
|
||
|
||
/* Address opcode resides at in file space. */
|
||
opcode_address = fragP->fr_address + fragP->fr_fix;
|
||
|
||
/* Displacement from opcode start to fill into instruction. */
|
||
displacement_from_opcode_start = target_address - opcode_address;
|
||
|
||
switch (fragP->fr_subtype) {
|
||
case ENCODE_RELAX_STATE (COND_JUMP, BYTE):
|
||
case ENCODE_RELAX_STATE (UNCOND_JUMP, BYTE):
|
||
/* don't have to change opcode */
|
||
extension = 1; /* 1 opcode + 1 displacement */
|
||
where_to_put_displacement = &opcode[1];
|
||
break;
|
||
|
||
case ENCODE_RELAX_STATE (COND_JUMP, WORD):
|
||
opcode[1] = TWO_BYTE_OPCODE_ESCAPE;
|
||
opcode[2] = opcode[0] + 0x10;
|
||
opcode[0] = WORD_PREFIX_OPCODE;
|
||
extension = 4; /* 3 opcode + 2 displacement */
|
||
where_to_put_displacement = &opcode[3];
|
||
break;
|
||
|
||
case ENCODE_RELAX_STATE (UNCOND_JUMP, WORD):
|
||
opcode[1] = 0xe9;
|
||
opcode[0] = WORD_PREFIX_OPCODE;
|
||
extension = 3; /* 2 opcode + 2 displacement */
|
||
where_to_put_displacement = &opcode[2];
|
||
break;
|
||
|
||
case ENCODE_RELAX_STATE (COND_JUMP, DWORD):
|
||
opcode[1] = opcode[0] + 0x10;
|
||
opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
|
||
extension = 5; /* 2 opcode + 4 displacement */
|
||
where_to_put_displacement = &opcode[2];
|
||
break;
|
||
|
||
case ENCODE_RELAX_STATE (UNCOND_JUMP, DWORD):
|
||
opcode[0] = 0xe9;
|
||
extension = 4; /* 1 opcode + 4 displacement */
|
||
where_to_put_displacement = &opcode[1];
|
||
break;
|
||
|
||
default:
|
||
BAD_CASE(fragP -> fr_subtype);
|
||
break;
|
||
}
|
||
/* now put displacement after opcode */
|
||
md_number_to_chars (where_to_put_displacement,
|
||
displacement_from_opcode_start - extension,
|
||
SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
|
||
fragP -> fr_fix += extension;
|
||
}
|
||
|
||
|
||
int md_short_jump_size = 2; /* size of byte displacement jmp */
|
||
int md_long_jump_size = 5; /* size of dword displacement jmp */
|
||
|
||
void md_create_short_jump(ptr, from_addr, to_addr)
|
||
char *ptr;
|
||
long from_addr, to_addr;
|
||
{
|
||
long offset;
|
||
|
||
offset = to_addr - (from_addr + 2);
|
||
md_number_to_chars (ptr, (long) 0xeb, 1); /* opcode for byte-disp jump */
|
||
md_number_to_chars (ptr + 1, offset, 1);
|
||
}
|
||
|
||
void md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
|
||
char *ptr;
|
||
long from_addr, to_addr;
|
||
fragS *frag;
|
||
symbolS *to_symbol;
|
||
{
|
||
long offset;
|
||
|
||
if (flagseen['m']) {
|
||
offset = to_addr - to_symbol->sy_value;
|
||
md_number_to_chars (ptr, 0xe9, 1); /* opcode for long jmp */
|
||
md_number_to_chars (ptr + 1, offset, 4);
|
||
fix_new (frag, (ptr+1) - frag->fr_literal, 4,
|
||
to_symbol, (symbolS *) 0, (long int) 0, 0);
|
||
} else {
|
||
offset = to_addr - (from_addr + 5);
|
||
md_number_to_chars(ptr, (long) 0xe9, 1);
|
||
md_number_to_chars(ptr + 1, offset, 4);
|
||
}
|
||
}
|
||
|
||
int
|
||
md_parse_option(argP,cntP,vecP)
|
||
char **argP;
|
||
int *cntP;
|
||
char ***vecP;
|
||
{
|
||
return 1;
|
||
}
|
||
|
||
void /* Knows about order of bytes in address. */
|
||
md_number_to_chars (con, value, nbytes)
|
||
char con []; /* Return 'nbytes' of chars here. */
|
||
long int value; /* The value of the bits. */
|
||
int nbytes; /* Number of bytes in the output. */
|
||
{
|
||
register char * p = con;
|
||
|
||
switch (nbytes) {
|
||
case 1:
|
||
p[0] = value & 0xff;
|
||
break;
|
||
case 2:
|
||
p[0] = value & 0xff;
|
||
p[1] = (value >> 8) & 0xff;
|
||
break;
|
||
case 4:
|
||
p[0] = value & 0xff;
|
||
p[1] = (value>>8) & 0xff;
|
||
p[2] = (value>>16) & 0xff;
|
||
p[3] = (value>>24) & 0xff;
|
||
break;
|
||
default:
|
||
BAD_CASE (nbytes);
|
||
}
|
||
}
|
||
|
||
void /* Knows about order of bytes in address. */
|
||
md_number_to_disp (con, value, nbytes)
|
||
char con []; /* Return 'nbytes' of chars here. */
|
||
long int value; /* The value of the bits. */
|
||
int nbytes; /* Number of bytes in the output. */
|
||
{
|
||
char * answer = alloca (nbytes);
|
||
register char * p = answer;
|
||
|
||
switch (nbytes) {
|
||
case 1:
|
||
*p = value;
|
||
break;
|
||
case 2:
|
||
*p++ = value;
|
||
*p = (value>>8);
|
||
break;
|
||
case 4:
|
||
*p++ = value;
|
||
*p++ = (value>>8);
|
||
*p++ = (value>>16);
|
||
*p = (value>>24);
|
||
break;
|
||
default:
|
||
BAD_CASE (nbytes);
|
||
}
|
||
bcopy (answer, con, nbytes);
|
||
}
|
||
|
||
void /* Knows about order of bytes in address. */
|
||
md_number_to_imm (con, value, nbytes)
|
||
char con []; /* Return 'nbytes' of chars here. */
|
||
long int value; /* The value of the bits. */
|
||
int nbytes; /* Number of bytes in the output. */
|
||
{
|
||
char * answer = alloca (nbytes);
|
||
register char * p = answer;
|
||
|
||
switch (nbytes) {
|
||
case 1:
|
||
*p = value;
|
||
break;
|
||
case 2:
|
||
*p++ = value;
|
||
*p = (value>>8);
|
||
break;
|
||
case 4:
|
||
*p++ = value;
|
||
*p++ = (value>>8);
|
||
*p++ = (value>>16);
|
||
*p = (value>>24);
|
||
break;
|
||
default:
|
||
BAD_CASE (nbytes);
|
||
}
|
||
bcopy (answer, con, nbytes);
|
||
}
|
||
|
||
void /* Knows about order of bytes in address. */
|
||
md_number_to_field (con, value, nbytes)
|
||
char con []; /* Return 'nbytes' of chars here. */
|
||
long int value; /* The value of the bits. */
|
||
int nbytes; /* Number of bytes in the output. */
|
||
{
|
||
char * answer = alloca (nbytes);
|
||
register char * p = answer;
|
||
|
||
switch (nbytes) {
|
||
case 1:
|
||
*p = value;
|
||
break;
|
||
case 2:
|
||
*p++ = value;
|
||
*p = (value>>8);
|
||
break;
|
||
case 4:
|
||
*p++ = value;
|
||
*p++ = (value>>8);
|
||
*p++ = (value>>16);
|
||
*p = (value>>24);
|
||
break;
|
||
default:
|
||
BAD_CASE (nbytes);
|
||
}
|
||
bcopy (answer, con, nbytes);
|
||
}
|
||
|
||
long int /* Knows about the byte order in a word. */
|
||
md_chars_to_number (con, nbytes)
|
||
unsigned char con[]; /* Low order byte 1st. */
|
||
int nbytes; /* Number of bytes in the input. */
|
||
{
|
||
long int retval;
|
||
for (retval=0, con+=nbytes-1; nbytes--; con--)
|
||
{
|
||
retval <<= BITS_PER_CHAR;
|
||
retval |= *con;
|
||
}
|
||
return retval;
|
||
}
|
||
|
||
void md_ri_to_chars(ri_p, ri)
|
||
struct relocation_info *ri_p, ri;
|
||
{
|
||
unsigned char the_bytes[8];
|
||
|
||
/* this is easy */
|
||
md_number_to_chars(the_bytes, ri.r_address, sizeof(ri.r_address));
|
||
/* now the fun stuff */
|
||
the_bytes[6] = (ri.r_symbolnum >> 16) & 0x0ff;
|
||
the_bytes[5] = (ri.r_symbolnum >> 8) & 0x0ff;
|
||
the_bytes[4] = ri.r_symbolnum & 0x0ff;
|
||
the_bytes[7] = (((ri.r_extern << 3) & 0x08) | ((ri.r_length << 1) & 0x06) |
|
||
((ri.r_pcrel << 0) & 0x01)) & 0x0F;
|
||
/* now put it back where you found it */
|
||
bcopy (the_bytes, (char *)ri_p, sizeof(struct relocation_info));
|
||
}
|
||
|
||
|
||
#define MAX_LITTLENUMS 6
|
||
|
||
/* Turn the string pointed to by litP into a floating point constant of type
|
||
type, and emit the appropriate bytes. The number of LITTLENUMS emitted
|
||
is stored in *sizeP . An error message is returned, or NULL on OK.
|
||
*/
|
||
char *
|
||
md_atof(type,litP,sizeP)
|
||
char type;
|
||
char *litP;
|
||
int *sizeP;
|
||
{
|
||
int prec;
|
||
LITTLENUM_TYPE words[MAX_LITTLENUMS];
|
||
LITTLENUM_TYPE *wordP;
|
||
char *t;
|
||
char *atof_ieee();
|
||
|
||
switch(type) {
|
||
case 'f':
|
||
case 'F':
|
||
prec = 2;
|
||
break;
|
||
|
||
case 'd':
|
||
case 'D':
|
||
prec = 4;
|
||
break;
|
||
|
||
case 'x':
|
||
case 'X':
|
||
prec = 5;
|
||
break;
|
||
|
||
default:
|
||
*sizeP=0;
|
||
return "Bad call to md_atof ()";
|
||
}
|
||
t = atof_ieee (input_line_pointer,type,words);
|
||
if(t)
|
||
input_line_pointer=t;
|
||
|
||
*sizeP = prec * sizeof(LITTLENUM_TYPE);
|
||
/* this loops outputs the LITTLENUMs in REVERSE order; in accord with
|
||
the bigendian 386 */
|
||
for(wordP = words + prec - 1;prec--;) {
|
||
md_number_to_chars (litP, (long) (*wordP--), sizeof(LITTLENUM_TYPE));
|
||
litP += sizeof(LITTLENUM_TYPE);
|
||
}
|
||
return ""; /* Someone should teach Dean about null pointers */
|
||
}
|
||
|
||
char output_invalid_buf[8];
|
||
|
||
char * output_invalid (c)
|
||
char c;
|
||
{
|
||
if (isprint(c)) sprintf (output_invalid_buf, "'%c'", c);
|
||
else sprintf (output_invalid_buf, "(0x%x)", c);
|
||
return output_invalid_buf;
|
||
}
|
||
|
||
reg_entry *parse_register (reg_string)
|
||
char *reg_string; /* reg_string starts *before* REGISTER_PREFIX */
|
||
{
|
||
register char *s = reg_string;
|
||
register char *p;
|
||
char reg_name_given[MAX_REG_NAME_SIZE];
|
||
|
||
s++; /* skip REGISTER_PREFIX */
|
||
for (p = reg_name_given; is_register_char (*s); p++, s++) {
|
||
*p = register_chars [*s];
|
||
if (p >= reg_name_given + MAX_REG_NAME_SIZE)
|
||
return (reg_entry *) 0;
|
||
}
|
||
*p = '\0';
|
||
return (reg_entry *) hash_find (reg_hash, reg_name_given);
|
||
}
|
||
|