freebsd-dev/contrib/libstdc++/stl/stl_algobase.h
1999-10-16 03:52:48 +00:00

527 lines
17 KiB
C++

/*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1996-1998
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/* NOTE: This is an internal header file, included by other STL headers.
* You should not attempt to use it directly.
*/
#ifndef __SGI_STL_INTERNAL_ALGOBASE_H
#define __SGI_STL_INTERNAL_ALGOBASE_H
#ifndef __STL_CONFIG_H
#include <stl_config.h>
#endif
#ifndef __SGI_STL_INTERNAL_RELOPS
#include <stl_relops.h>
#endif
#ifndef __SGI_STL_INTERNAL_PAIR_H
#include <stl_pair.h>
#endif
#ifndef __TYPE_TRAITS_H_
#include <type_traits.h>
#endif
#include <string.h>
#include <limits.h>
#include <stdlib.h>
#include <stddef.h>
#include <new.h>
#include <iostream.h>
#ifndef __SGI_STL_INTERNAL_ITERATOR_H
#include <stl_iterator.h>
#endif
__STL_BEGIN_NAMESPACE
// swap and iter_swap
template <class _ForwardIter1, class _ForwardIter2, class _Tp>
inline void __iter_swap(_ForwardIter1 __a, _ForwardIter2 __b, _Tp*) {
_Tp __tmp = *__a;
*__a = *__b;
*__b = __tmp;
}
template <class _ForwardIter1, class _ForwardIter2>
inline void iter_swap(_ForwardIter1 __a, _ForwardIter2 __b) {
__iter_swap(__a, __b, __VALUE_TYPE(__a));
}
template <class _Tp>
inline void swap(_Tp& __a, _Tp& __b) {
_Tp __tmp = __a;
__a = __b;
__b = __tmp;
}
//--------------------------------------------------
// min and max
#ifndef __BORLANDC__
#undef min
#undef max
template <class _Tp>
inline const _Tp& min(const _Tp& __a, const _Tp& __b) {
return __b < __a ? __b : __a;
}
template <class _Tp>
inline const _Tp& max(const _Tp& __a, const _Tp& __b) {
return __a < __b ? __b : __a;
}
#endif /* __BORLANDC__ */
template <class _Tp, class _Compare>
inline const _Tp& min(const _Tp& __a, const _Tp& __b, _Compare __comp) {
return __comp(__b, __a) ? __b : __a;
}
template <class _Tp, class _Compare>
inline const _Tp& max(const _Tp& __a, const _Tp& __b, _Compare __comp) {
return __comp(__a, __b) ? __b : __a;
}
//--------------------------------------------------
// copy
// All of these auxiliary functions serve two purposes. (1) Replace
// calls to copy with memmove whenever possible. (Memmove, not memcpy,
// because the input and output ranges are permitted to overlap.)
// (2) If we're using random access iterators, then write the loop as
// a for loop with an explicit count. The auxiliary class __copy_dispatch
// is a workaround for compilers that don't support partial ordering of
// function templates.
template <class _InputIter, class _OutputIter, class _Distance>
inline _OutputIter __copy(_InputIter __first, _InputIter __last,
_OutputIter __result,
input_iterator_tag, _Distance*)
{
for ( ; __first != __last; ++__result, ++__first)
*__result = *__first;
return __result;
}
template <class _RandomAccessIter, class _OutputIter, class _Distance>
inline _OutputIter
__copy(_RandomAccessIter __first, _RandomAccessIter __last,
_OutputIter __result, random_access_iterator_tag, _Distance*)
{
for (_Distance __n = __last - __first; __n > 0; --__n) {
*__result = *__first;
++__first;
++__result;
}
return __result;
}
template <class _Tp>
inline _Tp*
__copy_trivial(const _Tp* __first, const _Tp* __last, _Tp* __result) {
memmove(__result, __first, sizeof(_Tp) * (__last - __first));
return __result + (__last - __first);
}
#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
template <class _InputIter, class _OutputIter, class _BoolType>
struct __copy_dispatch {
static _OutputIter copy(_InputIter __first, _InputIter __last,
_OutputIter __result) {
typedef typename iterator_traits<_InputIter>::iterator_category _Category;
typedef typename iterator_traits<_InputIter>::difference_type _Distance;
return __copy(__first, __last, __result, _Category(), (_Distance*) 0);
}
};
template <class _Tp>
struct __copy_dispatch<_Tp*, _Tp*, __true_type>
{
static _Tp* copy(const _Tp* __first, const _Tp* __last, _Tp* __result) {
return __copy_trivial(__first, __last, __result);
}
};
template <class _Tp>
struct __copy_dispatch<const _Tp*, _Tp*, __true_type>
{
static _Tp* copy(const _Tp* __first, const _Tp* __last, _Tp* __result) {
return __copy_trivial(__first, __last, __result);
}
};
template <class _InputIter, class _OutputIter>
inline _OutputIter copy(_InputIter __first, _InputIter __last,
_OutputIter __result) {
typedef typename iterator_traits<_InputIter>::value_type _Tp;
typedef typename __type_traits<_Tp>::has_trivial_assignment_operator
_Trivial;
return __copy_dispatch<_InputIter, _OutputIter, _Trivial>
::copy(__first, __last, __result);
}
#else /* __STL_CLASS_PARTIAL_SPECIALIZATION */
template <class _InputIter, class _OutputIter>
inline _OutputIter copy(_InputIter __first, _InputIter __last,
_OutputIter __result)
{
return __copy(__first, __last, __result,
__ITERATOR_CATEGORY(__first),
__DISTANCE_TYPE(__first));
}
inline char* copy(const char* __first, const char* __last, char* __result) {
memmove(__result, __first, __last - __first);
return __result + (__last - __first);
}
inline wchar_t* copy(const wchar_t* __first, const wchar_t* __last,
wchar_t* __result) {
memmove(__result, __first, sizeof(wchar_t) * (__last - __first));
return __result + (__last - __first);
}
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
//--------------------------------------------------
// copy_backward
template <class _BidirectionalIter1, class _BidirectionalIter2,
class _Distance>
inline _BidirectionalIter2 __copy_backward(_BidirectionalIter1 __first,
_BidirectionalIter1 __last,
_BidirectionalIter2 __result,
bidirectional_iterator_tag,
_Distance*)
{
while (__first != __last)
*--__result = *--__last;
return __result;
}
template <class _RandomAccessIter, class _BidirectionalIter, class _Distance>
inline _BidirectionalIter __copy_backward(_RandomAccessIter __first,
_RandomAccessIter __last,
_BidirectionalIter __result,
random_access_iterator_tag,
_Distance*)
{
for (_Distance __n = __last - __first; __n > 0; --__n)
*--__result = *--__last;
return __result;
}
#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
// This dispatch class is a workaround for compilers that do not
// have partial ordering of function templates. All we're doing is
// creating a specialization so that we can turn a call to copy_backward
// into a memmove whenever possible.
template <class _BidirectionalIter1, class _BidirectionalIter2,
class _BoolType>
struct __copy_backward_dispatch
{
typedef typename iterator_traits<_BidirectionalIter1>::iterator_category
_Cat;
typedef typename iterator_traits<_BidirectionalIter1>::difference_type
_Distance;
static _BidirectionalIter2 copy(_BidirectionalIter1 __first,
_BidirectionalIter1 __last,
_BidirectionalIter2 __result) {
return __copy_backward(__first, __last, __result, _Cat(), (_Distance*) 0);
}
};
template <class _Tp>
struct __copy_backward_dispatch<_Tp*, _Tp*, __true_type>
{
static _Tp* copy(const _Tp* __first, const _Tp* __last, _Tp* __result) {
const ptrdiff_t _Num = __last - __first;
memmove(__result - _Num, __first, sizeof(_Tp) * _Num);
return __result - _Num;
}
};
template <class _Tp>
struct __copy_backward_dispatch<const _Tp*, _Tp*, __true_type>
{
static _Tp* copy(const _Tp* __first, const _Tp* __last, _Tp* __result) {
return __copy_backward_dispatch<_Tp*, _Tp*, __true_type>
::copy(__first, __last, __result);
}
};
template <class _BI1, class _BI2>
inline _BI2 copy_backward(_BI1 __first, _BI1 __last, _BI2 __result) {
typedef typename __type_traits<typename iterator_traits<_BI2>::value_type>
::has_trivial_assignment_operator
_Trivial;
return __copy_backward_dispatch<_BI1, _BI2, _Trivial>
::copy(__first, __last, __result);
}
#else /* __STL_CLASS_PARTIAL_SPECIALIZATION */
template <class _BI1, class _BI2>
inline _BI2 copy_backward(_BI1 __first, _BI1 __last, _BI2 __result) {
return __copy_backward(__first, __last, __result,
__ITERATOR_CATEGORY(__first),
__DISTANCE_TYPE(__first));
}
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
//--------------------------------------------------
// copy_n (not part of the C++ standard)
template <class _InputIter, class _Size, class _OutputIter>
pair<_InputIter, _OutputIter> __copy_n(_InputIter __first, _Size __count,
_OutputIter __result,
input_iterator_tag) {
for ( ; __count > 0; --__count) {
*__result = *__first;
++__first;
++__result;
}
return pair<_InputIter, _OutputIter>(__first, __result);
}
template <class _RAIter, class _Size, class _OutputIter>
inline pair<_RAIter, _OutputIter>
__copy_n(_RAIter __first, _Size __count,
_OutputIter __result,
random_access_iterator_tag) {
_RAIter __last = __first + __count;
return pair<_RAIter, _OutputIter>(__last, copy(__first, __last, __result));
}
template <class _InputIter, class _Size, class _OutputIter>
inline pair<_InputIter, _OutputIter>
__copy_n(_InputIter __first, _Size __count, _OutputIter __result) {
return __copy_n(__first, __count, __result,
__ITERATOR_CATEGORY(__first));
}
template <class _InputIter, class _Size, class _OutputIter>
inline pair<_InputIter, _OutputIter>
copy_n(_InputIter __first, _Size __count, _OutputIter __result) {
return __copy_n(__first, __count, __result);
}
//--------------------------------------------------
// fill and fill_n
template <class _ForwardIter, class _Tp>
void fill(_ForwardIter __first, _ForwardIter __last, const _Tp& __value) {
for ( ; __first != __last; ++__first)
*__first = __value;
}
template <class _OutputIter, class _Size, class _Tp>
_OutputIter fill_n(_OutputIter __first, _Size __n, const _Tp& __value) {
for ( ; __n > 0; --__n, ++__first)
*__first = __value;
return __first;
}
//--------------------------------------------------
// equal and mismatch
template <class _InputIter1, class _InputIter2>
pair<_InputIter1, _InputIter2> mismatch(_InputIter1 __first1,
_InputIter1 __last1,
_InputIter2 __first2) {
while (__first1 != __last1 && *__first1 == *__first2) {
++__first1;
++__first2;
}
return pair<_InputIter1, _InputIter2>(__first1, __first2);
}
template <class _InputIter1, class _InputIter2, class _BinaryPredicate>
pair<_InputIter1, _InputIter2> mismatch(_InputIter1 __first1,
_InputIter1 __last1,
_InputIter2 __first2,
_BinaryPredicate __binary_pred) {
while (__first1 != __last1 && __binary_pred(*__first1, *__first2)) {
++__first1;
++__first2;
}
return pair<_InputIter1, _InputIter2>(__first1, __first2);
}
template <class _InputIter1, class _InputIter2>
inline bool equal(_InputIter1 __first1, _InputIter1 __last1,
_InputIter2 __first2) {
for ( ; __first1 != __last1; ++__first1, ++__first2)
if (*__first1 != *__first2)
return false;
return true;
}
template <class _InputIter1, class _InputIter2, class _BinaryPredicate>
inline bool equal(_InputIter1 __first1, _InputIter1 __last1,
_InputIter2 __first2, _BinaryPredicate __binary_pred) {
for ( ; __first1 != __last1; ++__first1, ++__first2)
if (!__binary_pred(*__first1, *__first2))
return false;
return true;
}
//--------------------------------------------------
// lexicographical_compare and lexicographical_compare_3way.
// (the latter is not part of the C++ standard.)
template <class _InputIter1, class _InputIter2>
bool lexicographical_compare(_InputIter1 __first1, _InputIter1 __last1,
_InputIter2 __first2, _InputIter2 __last2) {
for ( ; __first1 != __last1 && __first2 != __last2
; ++__first1, ++__first2) {
if (*__first1 < *__first2)
return true;
if (*__first2 < *__first1)
return false;
}
return __first1 == __last1 && __first2 != __last2;
}
template <class _InputIter1, class _InputIter2, class _Compare>
bool lexicographical_compare(_InputIter1 __first1, _InputIter1 __last1,
_InputIter2 __first2, _InputIter2 __last2,
_Compare __comp) {
for ( ; __first1 != __last1 && __first2 != __last2
; ++__first1, ++__first2) {
if (__comp(*__first1, *__first2))
return true;
if (__comp(*__first2, *__first1))
return false;
}
return __first1 == __last1 && __first2 != __last2;
}
inline bool
lexicographical_compare(const unsigned char* __first1,
const unsigned char* __last1,
const unsigned char* __first2,
const unsigned char* __last2)
{
const size_t __len1 = __last1 - __first1;
const size_t __len2 = __last2 - __first2;
const int __result = memcmp(__first1, __first2, min(__len1, __len2));
return __result != 0 ? __result < 0 : __len1 < __len2;
}
inline bool lexicographical_compare(const char* __first1, const char* __last1,
const char* __first2, const char* __last2)
{
#if CHAR_MAX == SCHAR_MAX
return lexicographical_compare((const signed char*) __first1,
(const signed char*) __last1,
(const signed char*) __first2,
(const signed char*) __last2);
#else /* CHAR_MAX == SCHAR_MAX */
return lexicographical_compare((const unsigned char*) __first1,
(const unsigned char*) __last1,
(const unsigned char*) __first2,
(const unsigned char*) __last2);
#endif /* CHAR_MAX == SCHAR_MAX */
}
template <class _InputIter1, class _InputIter2>
int __lexicographical_compare_3way(_InputIter1 __first1, _InputIter1 __last1,
_InputIter2 __first2, _InputIter2 __last2)
{
while (__first1 != __last1 && __first2 != __last2) {
if (*__first1 < *__first2)
return -1;
if (*__first2 < *__first1)
return 1;
++__first1;
++__first2;
}
if (__first2 == __last2) {
return !(__first1 == __last1);
}
else {
return -1;
}
}
inline int
__lexicographical_compare_3way(const unsigned char* __first1,
const unsigned char* __last1,
const unsigned char* __first2,
const unsigned char* __last2)
{
const ptrdiff_t __len1 = __last1 - __first1;
const ptrdiff_t __len2 = __last2 - __first2;
const int __result = memcmp(__first1, __first2, min(__len1, __len2));
return __result != 0 ? __result
: (__len1 == __len2 ? 0 : (__len1 < __len2 ? -1 : 1));
}
inline int
__lexicographical_compare_3way(const char* __first1, const char* __last1,
const char* __first2, const char* __last2)
{
#if CHAR_MAX == SCHAR_MAX
return __lexicographical_compare_3way(
(const signed char*) __first1,
(const signed char*) __last1,
(const signed char*) __first2,
(const signed char*) __last2);
#else
return __lexicographical_compare_3way((const unsigned char*) __first1,
(const unsigned char*) __last1,
(const unsigned char*) __first2,
(const unsigned char*) __last2);
#endif
}
template <class _InputIter1, class _InputIter2>
int lexicographical_compare_3way(_InputIter1 __first1, _InputIter1 __last1,
_InputIter2 __first2, _InputIter2 __last2)
{
return __lexicographical_compare_3way(__first1, __last1, __first2, __last2);
}
__STL_END_NAMESPACE
#endif /* __SGI_STL_INTERNAL_ALGOBASE_H */
// Local Variables:
// mode:C++
// End: