freebsd-dev/sys/ufs/ffs/ffs_vnops.c
Konstantin Belousov 0af463e661 ffs_read(): lock buffers after snaplk with LK_NOWITNESS
Reviewed and tested by:	mckusick
Sponsored by:	The FreeBSD Foundation
MFC after:	1 week
Differential revision:	https://reviews.freebsd.org/D34179
2022-02-06 03:26:22 +02:00

2102 lines
53 KiB
C

/*-
* SPDX-License-Identifier: (BSD-2-Clause-FreeBSD AND BSD-3-Clause)
*
* Copyright (c) 2002, 2003 Networks Associates Technology, Inc.
* All rights reserved.
*
* This software was developed for the FreeBSD Project by Marshall
* Kirk McKusick and Network Associates Laboratories, the Security
* Research Division of Network Associates, Inc. under DARPA/SPAWAR
* contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
* research program
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Copyright (c) 1982, 1986, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)ufs_readwrite.c 8.11 (Berkeley) 5/8/95
* from: $FreeBSD: .../ufs/ufs_readwrite.c,v 1.96 2002/08/12 09:22:11 phk ...
* @(#)ffs_vnops.c 8.15 (Berkeley) 5/14/95
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_directio.h"
#include "opt_ffs.h"
#include "opt_ufs.h"
#include <sys/param.h>
#include <sys/bio.h>
#include <sys/systm.h>
#include <sys/buf.h>
#include <sys/conf.h>
#include <sys/extattr.h>
#include <sys/kernel.h>
#include <sys/limits.h>
#include <sys/malloc.h>
#include <sys/mount.h>
#include <sys/priv.h>
#include <sys/rwlock.h>
#include <sys/stat.h>
#include <sys/sysctl.h>
#include <sys/vmmeter.h>
#include <sys/vnode.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_extern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pager.h>
#include <vm/vnode_pager.h>
#include <ufs/ufs/extattr.h>
#include <ufs/ufs/quota.h>
#include <ufs/ufs/inode.h>
#include <ufs/ufs/ufs_extern.h>
#include <ufs/ufs/ufsmount.h>
#include <ufs/ufs/dir.h>
#ifdef UFS_DIRHASH
#include <ufs/ufs/dirhash.h>
#endif
#include <ufs/ffs/fs.h>
#include <ufs/ffs/ffs_extern.h>
#define ALIGNED_TO(ptr, s) \
(((uintptr_t)(ptr) & (_Alignof(s) - 1)) == 0)
#ifdef DIRECTIO
extern int ffs_rawread(struct vnode *vp, struct uio *uio, int *workdone);
#endif
static vop_fdatasync_t ffs_fdatasync;
static vop_fsync_t ffs_fsync;
static vop_getpages_t ffs_getpages;
static vop_getpages_async_t ffs_getpages_async;
static vop_lock1_t ffs_lock;
#ifdef INVARIANTS
static vop_unlock_t ffs_unlock_debug;
#endif
static vop_read_t ffs_read;
static vop_write_t ffs_write;
static int ffs_extread(struct vnode *vp, struct uio *uio, int ioflag);
static int ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag,
struct ucred *cred);
static vop_strategy_t ffsext_strategy;
static vop_closeextattr_t ffs_closeextattr;
static vop_deleteextattr_t ffs_deleteextattr;
static vop_getextattr_t ffs_getextattr;
static vop_listextattr_t ffs_listextattr;
static vop_openextattr_t ffs_openextattr;
static vop_setextattr_t ffs_setextattr;
static vop_vptofh_t ffs_vptofh;
static vop_vput_pair_t ffs_vput_pair;
/* Global vfs data structures for ufs. */
struct vop_vector ffs_vnodeops1 = {
.vop_default = &ufs_vnodeops,
.vop_fsync = ffs_fsync,
.vop_fdatasync = ffs_fdatasync,
.vop_getpages = ffs_getpages,
.vop_getpages_async = ffs_getpages_async,
.vop_lock1 = ffs_lock,
#ifdef INVARIANTS
.vop_unlock = ffs_unlock_debug,
#endif
.vop_read = ffs_read,
.vop_reallocblks = ffs_reallocblks,
.vop_write = ffs_write,
.vop_vptofh = ffs_vptofh,
.vop_vput_pair = ffs_vput_pair,
};
VFS_VOP_VECTOR_REGISTER(ffs_vnodeops1);
struct vop_vector ffs_fifoops1 = {
.vop_default = &ufs_fifoops,
.vop_fsync = ffs_fsync,
.vop_fdatasync = ffs_fdatasync,
.vop_lock1 = ffs_lock,
#ifdef INVARIANTS
.vop_unlock = ffs_unlock_debug,
#endif
.vop_vptofh = ffs_vptofh,
};
VFS_VOP_VECTOR_REGISTER(ffs_fifoops1);
/* Global vfs data structures for ufs. */
struct vop_vector ffs_vnodeops2 = {
.vop_default = &ufs_vnodeops,
.vop_fsync = ffs_fsync,
.vop_fdatasync = ffs_fdatasync,
.vop_getpages = ffs_getpages,
.vop_getpages_async = ffs_getpages_async,
.vop_lock1 = ffs_lock,
#ifdef INVARIANTS
.vop_unlock = ffs_unlock_debug,
#endif
.vop_read = ffs_read,
.vop_reallocblks = ffs_reallocblks,
.vop_write = ffs_write,
.vop_closeextattr = ffs_closeextattr,
.vop_deleteextattr = ffs_deleteextattr,
.vop_getextattr = ffs_getextattr,
.vop_listextattr = ffs_listextattr,
.vop_openextattr = ffs_openextattr,
.vop_setextattr = ffs_setextattr,
.vop_vptofh = ffs_vptofh,
.vop_vput_pair = ffs_vput_pair,
};
VFS_VOP_VECTOR_REGISTER(ffs_vnodeops2);
struct vop_vector ffs_fifoops2 = {
.vop_default = &ufs_fifoops,
.vop_fsync = ffs_fsync,
.vop_fdatasync = ffs_fdatasync,
.vop_lock1 = ffs_lock,
#ifdef INVARIANTS
.vop_unlock = ffs_unlock_debug,
#endif
.vop_reallocblks = ffs_reallocblks,
.vop_strategy = ffsext_strategy,
.vop_closeextattr = ffs_closeextattr,
.vop_deleteextattr = ffs_deleteextattr,
.vop_getextattr = ffs_getextattr,
.vop_listextattr = ffs_listextattr,
.vop_openextattr = ffs_openextattr,
.vop_setextattr = ffs_setextattr,
.vop_vptofh = ffs_vptofh,
};
VFS_VOP_VECTOR_REGISTER(ffs_fifoops2);
/*
* Synch an open file.
*/
/* ARGSUSED */
static int
ffs_fsync(struct vop_fsync_args *ap)
{
struct vnode *vp;
struct bufobj *bo;
int error;
vp = ap->a_vp;
bo = &vp->v_bufobj;
retry:
error = ffs_syncvnode(vp, ap->a_waitfor, 0);
if (error)
return (error);
if (ap->a_waitfor == MNT_WAIT && DOINGSOFTDEP(vp)) {
error = softdep_fsync(vp);
if (error)
return (error);
/*
* The softdep_fsync() function may drop vp lock,
* allowing for dirty buffers to reappear on the
* bo_dirty list. Recheck and resync as needed.
*/
BO_LOCK(bo);
if ((vp->v_type == VREG || vp->v_type == VDIR) &&
(bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)) {
BO_UNLOCK(bo);
goto retry;
}
BO_UNLOCK(bo);
}
if (ffs_fsfail_cleanup(VFSTOUFS(vp->v_mount), 0))
return (ENXIO);
return (0);
}
int
ffs_syncvnode(struct vnode *vp, int waitfor, int flags)
{
struct inode *ip;
struct bufobj *bo;
struct ufsmount *ump;
struct buf *bp, *nbp;
ufs_lbn_t lbn;
int error, passes, wflag;
bool still_dirty, unlocked, wait;
ip = VTOI(vp);
bo = &vp->v_bufobj;
ump = VFSTOUFS(vp->v_mount);
#ifdef WITNESS
wflag = IS_SNAPSHOT(ip) ? LK_NOWITNESS : 0;
#else
wflag = 0;
#endif
/*
* When doing MNT_WAIT we must first flush all dependencies
* on the inode.
*/
if (DOINGSOFTDEP(vp) && waitfor == MNT_WAIT &&
(error = softdep_sync_metadata(vp)) != 0) {
if (ffs_fsfail_cleanup(ump, error))
error = 0;
return (error);
}
/*
* Flush all dirty buffers associated with a vnode.
*/
error = 0;
passes = 0;
wait = false; /* Always do an async pass first. */
unlocked = false;
lbn = lblkno(ITOFS(ip), (ip->i_size + ITOFS(ip)->fs_bsize - 1));
BO_LOCK(bo);
loop:
TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
bp->b_vflags &= ~BV_SCANNED;
TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
/*
* Reasons to skip this buffer: it has already been considered
* on this pass, the buffer has dependencies that will cause
* it to be redirtied and it has not already been deferred,
* or it is already being written.
*/
if ((bp->b_vflags & BV_SCANNED) != 0)
continue;
bp->b_vflags |= BV_SCANNED;
/*
* Flush indirects in order, if requested.
*
* Note that if only datasync is requested, we can
* skip indirect blocks when softupdates are not
* active. Otherwise we must flush them with data,
* since dependencies prevent data block writes.
*/
if (waitfor == MNT_WAIT && bp->b_lblkno <= -UFS_NDADDR &&
(lbn_level(bp->b_lblkno) >= passes ||
((flags & DATA_ONLY) != 0 && !DOINGSOFTDEP(vp))))
continue;
if (bp->b_lblkno > lbn)
panic("ffs_syncvnode: syncing truncated data.");
if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) {
BO_UNLOCK(bo);
} else if (wait) {
if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
LK_INTERLOCK | wflag, BO_LOCKPTR(bo)) != 0) {
BO_LOCK(bo);
bp->b_vflags &= ~BV_SCANNED;
goto next_locked;
}
} else
continue;
if ((bp->b_flags & B_DELWRI) == 0)
panic("ffs_fsync: not dirty");
/*
* Check for dependencies and potentially complete them.
*/
if (!LIST_EMPTY(&bp->b_dep) &&
(error = softdep_sync_buf(vp, bp,
wait ? MNT_WAIT : MNT_NOWAIT)) != 0) {
/*
* Lock order conflict, buffer was already unlocked,
* and vnode possibly unlocked.
*/
if (error == ERELOOKUP) {
if (vp->v_data == NULL)
return (EBADF);
unlocked = true;
if (DOINGSOFTDEP(vp) && waitfor == MNT_WAIT &&
(error = softdep_sync_metadata(vp)) != 0) {
if (ffs_fsfail_cleanup(ump, error))
error = 0;
return (unlocked && error == 0 ?
ERELOOKUP : error);
}
/* Re-evaluate inode size */
lbn = lblkno(ITOFS(ip), (ip->i_size +
ITOFS(ip)->fs_bsize - 1));
goto next;
}
/* I/O error. */
if (error != EBUSY) {
BUF_UNLOCK(bp);
return (error);
}
/* If we deferred once, don't defer again. */
if ((bp->b_flags & B_DEFERRED) == 0) {
bp->b_flags |= B_DEFERRED;
BUF_UNLOCK(bp);
goto next;
}
}
if (wait) {
bremfree(bp);
error = bwrite(bp);
if (ffs_fsfail_cleanup(ump, error))
error = 0;
if (error != 0)
return (error);
} else if ((bp->b_flags & B_CLUSTEROK)) {
(void) vfs_bio_awrite(bp);
} else {
bremfree(bp);
(void) bawrite(bp);
}
next:
/*
* Since we may have slept during the I/O, we need
* to start from a known point.
*/
BO_LOCK(bo);
next_locked:
nbp = TAILQ_FIRST(&bo->bo_dirty.bv_hd);
}
if (waitfor != MNT_WAIT) {
BO_UNLOCK(bo);
if ((flags & NO_INO_UPDT) != 0)
return (unlocked ? ERELOOKUP : 0);
error = ffs_update(vp, 0);
if (error == 0 && unlocked)
error = ERELOOKUP;
return (error);
}
/* Drain IO to see if we're done. */
bufobj_wwait(bo, 0, 0);
/*
* Block devices associated with filesystems may have new I/O
* requests posted for them even if the vnode is locked, so no
* amount of trying will get them clean. We make several passes
* as a best effort.
*
* Regular files may need multiple passes to flush all dependency
* work as it is possible that we must write once per indirect
* level, once for the leaf, and once for the inode and each of
* these will be done with one sync and one async pass.
*/
if (bo->bo_dirty.bv_cnt > 0) {
if ((flags & DATA_ONLY) == 0) {
still_dirty = true;
} else {
/*
* For data-only sync, dirty indirect buffers
* are ignored.
*/
still_dirty = false;
TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
if (bp->b_lblkno > -UFS_NDADDR) {
still_dirty = true;
break;
}
}
}
if (still_dirty) {
/* Write the inode after sync passes to flush deps. */
if (wait && DOINGSOFTDEP(vp) &&
(flags & NO_INO_UPDT) == 0) {
BO_UNLOCK(bo);
ffs_update(vp, 1);
BO_LOCK(bo);
}
/* switch between sync/async. */
wait = !wait;
if (wait || ++passes < UFS_NIADDR + 2)
goto loop;
}
}
BO_UNLOCK(bo);
error = 0;
if ((flags & DATA_ONLY) == 0) {
if ((flags & NO_INO_UPDT) == 0)
error = ffs_update(vp, 1);
if (DOINGSUJ(vp))
softdep_journal_fsync(VTOI(vp));
} else if ((ip->i_flags & (IN_SIZEMOD | IN_IBLKDATA)) != 0) {
error = ffs_update(vp, 1);
}
if (error == 0 && unlocked)
error = ERELOOKUP;
if (error == 0)
ip->i_flag &= ~IN_NEEDSYNC;
return (error);
}
static int
ffs_fdatasync(struct vop_fdatasync_args *ap)
{
return (ffs_syncvnode(ap->a_vp, MNT_WAIT, DATA_ONLY));
}
static int
ffs_lock(ap)
struct vop_lock1_args /* {
struct vnode *a_vp;
int a_flags;
char *file;
int line;
} */ *ap;
{
#if !defined(NO_FFS_SNAPSHOT) || defined(DIAGNOSTIC)
struct vnode *vp = ap->a_vp;
#endif /* !NO_FFS_SNAPSHOT || DIAGNOSTIC */
#ifdef DIAGNOSTIC
struct inode *ip;
#endif /* DIAGNOSTIC */
int result;
#ifndef NO_FFS_SNAPSHOT
int flags;
struct lock *lkp;
/*
* Adaptive spinning mixed with SU leads to trouble. use a giant hammer
* and only use it when LK_NODDLKTREAT is set. Currently this means it
* is only used during path lookup.
*/
if ((ap->a_flags & LK_NODDLKTREAT) != 0)
ap->a_flags |= LK_ADAPTIVE;
switch (ap->a_flags & LK_TYPE_MASK) {
case LK_SHARED:
case LK_UPGRADE:
case LK_EXCLUSIVE:
flags = ap->a_flags;
for (;;) {
#ifdef DEBUG_VFS_LOCKS
VNPASS(vp->v_holdcnt != 0, vp);
#endif /* DEBUG_VFS_LOCKS */
lkp = vp->v_vnlock;
result = lockmgr_lock_flags(lkp, flags,
&VI_MTX(vp)->lock_object, ap->a_file, ap->a_line);
if (lkp == vp->v_vnlock || result != 0)
break;
/*
* Apparent success, except that the vnode
* mutated between snapshot file vnode and
* regular file vnode while this process
* slept. The lock currently held is not the
* right lock. Release it, and try to get the
* new lock.
*/
lockmgr_unlock(lkp);
if ((flags & (LK_INTERLOCK | LK_NOWAIT)) ==
(LK_INTERLOCK | LK_NOWAIT))
return (EBUSY);
if ((flags & LK_TYPE_MASK) == LK_UPGRADE)
flags = (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE;
flags &= ~LK_INTERLOCK;
}
#ifdef DIAGNOSTIC
switch (ap->a_flags & LK_TYPE_MASK) {
case LK_UPGRADE:
case LK_EXCLUSIVE:
if (result == 0 && vp->v_vnlock->lk_recurse == 0) {
ip = VTOI(vp);
if (ip != NULL)
ip->i_lock_gen++;
}
}
#endif /* DIAGNOSTIC */
break;
default:
#ifdef DIAGNOSTIC
if ((ap->a_flags & LK_TYPE_MASK) == LK_DOWNGRADE) {
ip = VTOI(vp);
if (ip != NULL)
ufs_unlock_tracker(ip);
}
#endif /* DIAGNOSTIC */
result = VOP_LOCK1_APV(&ufs_vnodeops, ap);
break;
}
#else /* NO_FFS_SNAPSHOT */
/*
* See above for an explanation.
*/
if ((ap->a_flags & LK_NODDLKTREAT) != 0)
ap->a_flags |= LK_ADAPTIVE;
#ifdef DIAGNOSTIC
if ((ap->a_flags & LK_TYPE_MASK) == LK_DOWNGRADE) {
ip = VTOI(vp);
if (ip != NULL)
ufs_unlock_tracker(ip);
}
#endif /* DIAGNOSTIC */
result = VOP_LOCK1_APV(&ufs_vnodeops, ap);
#endif /* NO_FFS_SNAPSHOT */
#ifdef DIAGNOSTIC
switch (ap->a_flags & LK_TYPE_MASK) {
case LK_UPGRADE:
case LK_EXCLUSIVE:
if (result == 0 && vp->v_vnlock->lk_recurse == 0) {
ip = VTOI(vp);
if (ip != NULL)
ip->i_lock_gen++;
}
}
#endif /* DIAGNOSTIC */
return (result);
}
#ifdef INVARIANTS
static int
ffs_unlock_debug(struct vop_unlock_args *ap)
{
struct vnode *vp;
struct inode *ip;
vp = ap->a_vp;
ip = VTOI(vp);
if (ip->i_flag & UFS_INODE_FLAG_LAZY_MASK_ASSERTABLE) {
if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
VI_LOCK(vp);
VNASSERT((vp->v_mflag & VMP_LAZYLIST), vp,
("%s: modified vnode (%x) not on lazy list",
__func__, ip->i_flag));
VI_UNLOCK(vp);
}
}
KASSERT(vp->v_type != VDIR || vp->v_vnlock->lk_recurse != 0 ||
(ip->i_flag & IN_ENDOFF) == 0,
("ufs dir vp %p ip %p flags %#x", vp, ip, ip->i_flag));
#ifdef DIAGNOSTIC
if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE && ip != NULL &&
vp->v_vnlock->lk_recurse == 0)
ufs_unlock_tracker(ip);
#endif
return (VOP_UNLOCK_APV(&ufs_vnodeops, ap));
}
#endif
static int
ffs_read_hole(struct uio *uio, long xfersize, long *size)
{
ssize_t saved_resid, tlen;
int error;
while (xfersize > 0) {
tlen = min(xfersize, ZERO_REGION_SIZE);
saved_resid = uio->uio_resid;
error = vn_io_fault_uiomove(__DECONST(void *, zero_region),
tlen, uio);
if (error != 0)
return (error);
tlen = saved_resid - uio->uio_resid;
xfersize -= tlen;
*size -= tlen;
}
return (0);
}
/*
* Vnode op for reading.
*/
static int
ffs_read(ap)
struct vop_read_args /* {
struct vnode *a_vp;
struct uio *a_uio;
int a_ioflag;
struct ucred *a_cred;
} */ *ap;
{
struct vnode *vp;
struct inode *ip;
struct uio *uio;
struct fs *fs;
struct buf *bp;
ufs_lbn_t lbn, nextlbn;
off_t bytesinfile;
long size, xfersize, blkoffset;
ssize_t orig_resid;
int bflag, error, ioflag, seqcount;
vp = ap->a_vp;
uio = ap->a_uio;
ioflag = ap->a_ioflag;
if (ap->a_ioflag & IO_EXT)
#ifdef notyet
return (ffs_extread(vp, uio, ioflag));
#else
panic("ffs_read+IO_EXT");
#endif
#ifdef DIRECTIO
if ((ioflag & IO_DIRECT) != 0) {
int workdone;
error = ffs_rawread(vp, uio, &workdone);
if (error != 0 || workdone != 0)
return error;
}
#endif
seqcount = ap->a_ioflag >> IO_SEQSHIFT;
ip = VTOI(vp);
#ifdef INVARIANTS
if (uio->uio_rw != UIO_READ)
panic("ffs_read: mode");
if (vp->v_type == VLNK) {
if ((int)ip->i_size < VFSTOUFS(vp->v_mount)->um_maxsymlinklen)
panic("ffs_read: short symlink");
} else if (vp->v_type != VREG && vp->v_type != VDIR)
panic("ffs_read: type %d", vp->v_type);
#endif
orig_resid = uio->uio_resid;
KASSERT(orig_resid >= 0, ("ffs_read: uio->uio_resid < 0"));
if (orig_resid == 0)
return (0);
KASSERT(uio->uio_offset >= 0, ("ffs_read: uio->uio_offset < 0"));
fs = ITOFS(ip);
if (uio->uio_offset < ip->i_size &&
uio->uio_offset >= fs->fs_maxfilesize)
return (EOVERFLOW);
bflag = GB_UNMAPPED | (uio->uio_segflg == UIO_NOCOPY ? 0 : GB_NOSPARSE);
#ifdef WITNESS
bflag |= IS_SNAPSHOT(ip) ? GB_NOWITNESS : 0;
#endif
for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) {
if ((bytesinfile = ip->i_size - uio->uio_offset) <= 0)
break;
lbn = lblkno(fs, uio->uio_offset);
nextlbn = lbn + 1;
/*
* size of buffer. The buffer representing the
* end of the file is rounded up to the size of
* the block type ( fragment or full block,
* depending ).
*/
size = blksize(fs, ip, lbn);
blkoffset = blkoff(fs, uio->uio_offset);
/*
* The amount we want to transfer in this iteration is
* one FS block less the amount of the data before
* our startpoint (duh!)
*/
xfersize = fs->fs_bsize - blkoffset;
/*
* But if we actually want less than the block,
* or the file doesn't have a whole block more of data,
* then use the lesser number.
*/
if (uio->uio_resid < xfersize)
xfersize = uio->uio_resid;
if (bytesinfile < xfersize)
xfersize = bytesinfile;
if (lblktosize(fs, nextlbn) >= ip->i_size) {
/*
* Don't do readahead if this is the end of the file.
*/
error = bread_gb(vp, lbn, size, NOCRED, bflag, &bp);
} else if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) {
/*
* Otherwise if we are allowed to cluster,
* grab as much as we can.
*
* XXX This may not be a win if we are not
* doing sequential access.
*/
error = cluster_read(vp, ip->i_size, lbn,
size, NOCRED, blkoffset + uio->uio_resid,
seqcount, bflag, &bp);
} else if (seqcount > 1) {
/*
* If we are NOT allowed to cluster, then
* if we appear to be acting sequentially,
* fire off a request for a readahead
* as well as a read. Note that the 4th and 5th
* arguments point to arrays of the size specified in
* the 6th argument.
*/
u_int nextsize = blksize(fs, ip, nextlbn);
error = breadn_flags(vp, lbn, lbn, size, &nextlbn,
&nextsize, 1, NOCRED, bflag, NULL, &bp);
} else {
/*
* Failing all of the above, just read what the
* user asked for. Interestingly, the same as
* the first option above.
*/
error = bread_gb(vp, lbn, size, NOCRED, bflag, &bp);
}
if (error == EJUSTRETURN) {
error = ffs_read_hole(uio, xfersize, &size);
if (error == 0)
continue;
}
if (error != 0) {
brelse(bp);
bp = NULL;
break;
}
/*
* We should only get non-zero b_resid when an I/O error
* has occurred, which should cause us to break above.
* However, if the short read did not cause an error,
* then we want to ensure that we do not uiomove bad
* or uninitialized data.
*/
size -= bp->b_resid;
if (size < xfersize) {
if (size == 0)
break;
xfersize = size;
}
if (buf_mapped(bp)) {
error = vn_io_fault_uiomove((char *)bp->b_data +
blkoffset, (int)xfersize, uio);
} else {
error = vn_io_fault_pgmove(bp->b_pages, blkoffset,
(int)xfersize, uio);
}
if (error)
break;
vfs_bio_brelse(bp, ioflag);
}
/*
* This can only happen in the case of an error
* because the loop above resets bp to NULL on each iteration
* and on normal completion has not set a new value into it.
* so it must have come from a 'break' statement
*/
if (bp != NULL)
vfs_bio_brelse(bp, ioflag);
if ((error == 0 || uio->uio_resid != orig_resid) &&
(vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0)
UFS_INODE_SET_FLAG_SHARED(ip, IN_ACCESS);
return (error);
}
/*
* Vnode op for writing.
*/
static int
ffs_write(ap)
struct vop_write_args /* {
struct vnode *a_vp;
struct uio *a_uio;
int a_ioflag;
struct ucred *a_cred;
} */ *ap;
{
struct vnode *vp;
struct uio *uio;
struct inode *ip;
struct fs *fs;
struct buf *bp;
ufs_lbn_t lbn;
off_t osize;
ssize_t resid;
int seqcount;
int blkoffset, error, flags, ioflag, size, xfersize;
vp = ap->a_vp;
if (DOINGSUJ(vp))
softdep_prealloc(vp, MNT_WAIT);
if (vp->v_data == NULL)
return (EBADF);
uio = ap->a_uio;
ioflag = ap->a_ioflag;
if (ap->a_ioflag & IO_EXT)
#ifdef notyet
return (ffs_extwrite(vp, uio, ioflag, ap->a_cred));
#else
panic("ffs_write+IO_EXT");
#endif
seqcount = ap->a_ioflag >> IO_SEQSHIFT;
ip = VTOI(vp);
#ifdef INVARIANTS
if (uio->uio_rw != UIO_WRITE)
panic("ffs_write: mode");
#endif
switch (vp->v_type) {
case VREG:
if (ioflag & IO_APPEND)
uio->uio_offset = ip->i_size;
if ((ip->i_flags & APPEND) && uio->uio_offset != ip->i_size)
return (EPERM);
/* FALLTHROUGH */
case VLNK:
break;
case VDIR:
panic("ffs_write: dir write");
break;
default:
panic("ffs_write: type %p %d (%d,%d)", vp, (int)vp->v_type,
(int)uio->uio_offset,
(int)uio->uio_resid
);
}
KASSERT(uio->uio_resid >= 0, ("ffs_write: uio->uio_resid < 0"));
KASSERT(uio->uio_offset >= 0, ("ffs_write: uio->uio_offset < 0"));
fs = ITOFS(ip);
if ((uoff_t)uio->uio_offset + uio->uio_resid > fs->fs_maxfilesize)
return (EFBIG);
/*
* Maybe this should be above the vnode op call, but so long as
* file servers have no limits, I don't think it matters.
*/
if (vn_rlimit_fsize(vp, uio, uio->uio_td))
return (EFBIG);
resid = uio->uio_resid;
osize = ip->i_size;
if (seqcount > BA_SEQMAX)
flags = BA_SEQMAX << BA_SEQSHIFT;
else
flags = seqcount << BA_SEQSHIFT;
if (ioflag & IO_SYNC)
flags |= IO_SYNC;
flags |= BA_UNMAPPED;
for (error = 0; uio->uio_resid > 0;) {
lbn = lblkno(fs, uio->uio_offset);
blkoffset = blkoff(fs, uio->uio_offset);
xfersize = fs->fs_bsize - blkoffset;
if (uio->uio_resid < xfersize)
xfersize = uio->uio_resid;
if (uio->uio_offset + xfersize > ip->i_size)
vnode_pager_setsize(vp, uio->uio_offset + xfersize);
/*
* We must perform a read-before-write if the transfer size
* does not cover the entire buffer.
*/
if (fs->fs_bsize > xfersize)
flags |= BA_CLRBUF;
else
flags &= ~BA_CLRBUF;
/* XXX is uio->uio_offset the right thing here? */
error = UFS_BALLOC(vp, uio->uio_offset, xfersize,
ap->a_cred, flags, &bp);
if (error != 0) {
vnode_pager_setsize(vp, ip->i_size);
break;
}
if ((ioflag & (IO_SYNC|IO_INVAL)) == (IO_SYNC|IO_INVAL))
bp->b_flags |= B_NOCACHE;
if (uio->uio_offset + xfersize > ip->i_size) {
ip->i_size = uio->uio_offset + xfersize;
DIP_SET(ip, i_size, ip->i_size);
UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
}
size = blksize(fs, ip, lbn) - bp->b_resid;
if (size < xfersize)
xfersize = size;
if (buf_mapped(bp)) {
error = vn_io_fault_uiomove((char *)bp->b_data +
blkoffset, (int)xfersize, uio);
} else {
error = vn_io_fault_pgmove(bp->b_pages, blkoffset,
(int)xfersize, uio);
}
/*
* If the buffer is not already filled and we encounter an
* error while trying to fill it, we have to clear out any
* garbage data from the pages instantiated for the buffer.
* If we do not, a failed uiomove() during a write can leave
* the prior contents of the pages exposed to a userland mmap.
*
* Note that we need only clear buffers with a transfer size
* equal to the block size because buffers with a shorter
* transfer size were cleared above by the call to UFS_BALLOC()
* with the BA_CLRBUF flag set.
*
* If the source region for uiomove identically mmaps the
* buffer, uiomove() performed the NOP copy, and the buffer
* content remains valid because the page fault handler
* validated the pages.
*/
if (error != 0 && (bp->b_flags & B_CACHE) == 0 &&
fs->fs_bsize == xfersize)
vfs_bio_clrbuf(bp);
vfs_bio_set_flags(bp, ioflag);
/*
* If IO_SYNC each buffer is written synchronously. Otherwise
* if we have a severe page deficiency write the buffer
* asynchronously. Otherwise try to cluster, and if that
* doesn't do it then either do an async write (if O_DIRECT),
* or a delayed write (if not).
*/
if (ioflag & IO_SYNC) {
(void)bwrite(bp);
} else if (vm_page_count_severe() ||
buf_dirty_count_severe() ||
(ioflag & IO_ASYNC)) {
bp->b_flags |= B_CLUSTEROK;
bawrite(bp);
} else if (xfersize + blkoffset == fs->fs_bsize) {
if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERW) == 0) {
bp->b_flags |= B_CLUSTEROK;
cluster_write(vp, &ip->i_clusterw, bp,
ip->i_size, seqcount, GB_UNMAPPED);
} else {
bawrite(bp);
}
} else if (ioflag & IO_DIRECT) {
bp->b_flags |= B_CLUSTEROK;
bawrite(bp);
} else {
bp->b_flags |= B_CLUSTEROK;
bdwrite(bp);
}
if (error || xfersize == 0)
break;
UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
}
/*
* If we successfully wrote any data, and we are not the superuser
* we clear the setuid and setgid bits as a precaution against
* tampering.
*/
if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid &&
ap->a_cred) {
if (priv_check_cred(ap->a_cred, PRIV_VFS_RETAINSUGID)) {
vn_seqc_write_begin(vp);
UFS_INODE_SET_MODE(ip, ip->i_mode & ~(ISUID | ISGID));
DIP_SET(ip, i_mode, ip->i_mode);
vn_seqc_write_end(vp);
}
}
if (error) {
if (ioflag & IO_UNIT) {
(void)ffs_truncate(vp, osize,
IO_NORMAL | (ioflag & IO_SYNC), ap->a_cred);
uio->uio_offset -= resid - uio->uio_resid;
uio->uio_resid = resid;
}
} else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) {
if (!(ioflag & IO_DATASYNC) ||
(ip->i_flags & (IN_SIZEMOD | IN_IBLKDATA)))
error = ffs_update(vp, 1);
if (ffs_fsfail_cleanup(VFSTOUFS(vp->v_mount), error))
error = ENXIO;
}
return (error);
}
/*
* Extended attribute area reading.
*/
static int
ffs_extread(struct vnode *vp, struct uio *uio, int ioflag)
{
struct inode *ip;
struct ufs2_dinode *dp;
struct fs *fs;
struct buf *bp;
ufs_lbn_t lbn, nextlbn;
off_t bytesinfile;
long size, xfersize, blkoffset;
ssize_t orig_resid;
int error;
ip = VTOI(vp);
fs = ITOFS(ip);
dp = ip->i_din2;
#ifdef INVARIANTS
if (uio->uio_rw != UIO_READ || fs->fs_magic != FS_UFS2_MAGIC)
panic("ffs_extread: mode");
#endif
orig_resid = uio->uio_resid;
KASSERT(orig_resid >= 0, ("ffs_extread: uio->uio_resid < 0"));
if (orig_resid == 0)
return (0);
KASSERT(uio->uio_offset >= 0, ("ffs_extread: uio->uio_offset < 0"));
for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) {
if ((bytesinfile = dp->di_extsize - uio->uio_offset) <= 0)
break;
lbn = lblkno(fs, uio->uio_offset);
nextlbn = lbn + 1;
/*
* size of buffer. The buffer representing the
* end of the file is rounded up to the size of
* the block type ( fragment or full block,
* depending ).
*/
size = sblksize(fs, dp->di_extsize, lbn);
blkoffset = blkoff(fs, uio->uio_offset);
/*
* The amount we want to transfer in this iteration is
* one FS block less the amount of the data before
* our startpoint (duh!)
*/
xfersize = fs->fs_bsize - blkoffset;
/*
* But if we actually want less than the block,
* or the file doesn't have a whole block more of data,
* then use the lesser number.
*/
if (uio->uio_resid < xfersize)
xfersize = uio->uio_resid;
if (bytesinfile < xfersize)
xfersize = bytesinfile;
if (lblktosize(fs, nextlbn) >= dp->di_extsize) {
/*
* Don't do readahead if this is the end of the info.
*/
error = bread(vp, -1 - lbn, size, NOCRED, &bp);
} else {
/*
* If we have a second block, then
* fire off a request for a readahead
* as well as a read. Note that the 4th and 5th
* arguments point to arrays of the size specified in
* the 6th argument.
*/
u_int nextsize = sblksize(fs, dp->di_extsize, nextlbn);
nextlbn = -1 - nextlbn;
error = breadn(vp, -1 - lbn,
size, &nextlbn, &nextsize, 1, NOCRED, &bp);
}
if (error) {
brelse(bp);
bp = NULL;
break;
}
/*
* We should only get non-zero b_resid when an I/O error
* has occurred, which should cause us to break above.
* However, if the short read did not cause an error,
* then we want to ensure that we do not uiomove bad
* or uninitialized data.
*/
size -= bp->b_resid;
if (size < xfersize) {
if (size == 0)
break;
xfersize = size;
}
error = uiomove((char *)bp->b_data + blkoffset,
(int)xfersize, uio);
if (error)
break;
vfs_bio_brelse(bp, ioflag);
}
/*
* This can only happen in the case of an error
* because the loop above resets bp to NULL on each iteration
* and on normal completion has not set a new value into it.
* so it must have come from a 'break' statement
*/
if (bp != NULL)
vfs_bio_brelse(bp, ioflag);
return (error);
}
/*
* Extended attribute area writing.
*/
static int
ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *ucred)
{
struct inode *ip;
struct ufs2_dinode *dp;
struct fs *fs;
struct buf *bp;
ufs_lbn_t lbn;
off_t osize;
ssize_t resid;
int blkoffset, error, flags, size, xfersize;
ip = VTOI(vp);
fs = ITOFS(ip);
dp = ip->i_din2;
#ifdef INVARIANTS
if (uio->uio_rw != UIO_WRITE || fs->fs_magic != FS_UFS2_MAGIC)
panic("ffs_extwrite: mode");
#endif
if (ioflag & IO_APPEND)
uio->uio_offset = dp->di_extsize;
KASSERT(uio->uio_offset >= 0, ("ffs_extwrite: uio->uio_offset < 0"));
KASSERT(uio->uio_resid >= 0, ("ffs_extwrite: uio->uio_resid < 0"));
if ((uoff_t)uio->uio_offset + uio->uio_resid >
UFS_NXADDR * fs->fs_bsize)
return (EFBIG);
resid = uio->uio_resid;
osize = dp->di_extsize;
flags = IO_EXT;
if (ioflag & IO_SYNC)
flags |= IO_SYNC;
for (error = 0; uio->uio_resid > 0;) {
lbn = lblkno(fs, uio->uio_offset);
blkoffset = blkoff(fs, uio->uio_offset);
xfersize = fs->fs_bsize - blkoffset;
if (uio->uio_resid < xfersize)
xfersize = uio->uio_resid;
/*
* We must perform a read-before-write if the transfer size
* does not cover the entire buffer.
*/
if (fs->fs_bsize > xfersize)
flags |= BA_CLRBUF;
else
flags &= ~BA_CLRBUF;
error = UFS_BALLOC(vp, uio->uio_offset, xfersize,
ucred, flags, &bp);
if (error != 0)
break;
/*
* If the buffer is not valid we have to clear out any
* garbage data from the pages instantiated for the buffer.
* If we do not, a failed uiomove() during a write can leave
* the prior contents of the pages exposed to a userland
* mmap(). XXX deal with uiomove() errors a better way.
*/
if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize)
vfs_bio_clrbuf(bp);
if (uio->uio_offset + xfersize > dp->di_extsize) {
dp->di_extsize = uio->uio_offset + xfersize;
UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
}
size = sblksize(fs, dp->di_extsize, lbn) - bp->b_resid;
if (size < xfersize)
xfersize = size;
error =
uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio);
vfs_bio_set_flags(bp, ioflag);
/*
* If IO_SYNC each buffer is written synchronously. Otherwise
* if we have a severe page deficiency write the buffer
* asynchronously. Otherwise try to cluster, and if that
* doesn't do it then either do an async write (if O_DIRECT),
* or a delayed write (if not).
*/
if (ioflag & IO_SYNC) {
(void)bwrite(bp);
} else if (vm_page_count_severe() ||
buf_dirty_count_severe() ||
xfersize + blkoffset == fs->fs_bsize ||
(ioflag & (IO_ASYNC | IO_DIRECT)))
bawrite(bp);
else
bdwrite(bp);
if (error || xfersize == 0)
break;
UFS_INODE_SET_FLAG(ip, IN_CHANGE);
}
/*
* If we successfully wrote any data, and we are not the superuser
* we clear the setuid and setgid bits as a precaution against
* tampering.
*/
if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && ucred) {
if (priv_check_cred(ucred, PRIV_VFS_RETAINSUGID)) {
vn_seqc_write_begin(vp);
UFS_INODE_SET_MODE(ip, ip->i_mode & ~(ISUID | ISGID));
dp->di_mode = ip->i_mode;
vn_seqc_write_end(vp);
}
}
if (error) {
if (ioflag & IO_UNIT) {
(void)ffs_truncate(vp, osize,
IO_EXT | (ioflag&IO_SYNC), ucred);
uio->uio_offset -= resid - uio->uio_resid;
uio->uio_resid = resid;
}
} else if (resid > uio->uio_resid && (ioflag & IO_SYNC))
error = ffs_update(vp, 1);
return (error);
}
/*
* Vnode operating to retrieve a named extended attribute.
*
* Locate a particular EA (nspace:name) in the area (ptr:length), and return
* the length of the EA, and possibly the pointer to the entry and to the data.
*/
static int
ffs_findextattr(u_char *ptr, u_int length, int nspace, const char *name,
struct extattr **eapp, u_char **eac)
{
struct extattr *eap, *eaend;
size_t nlen;
nlen = strlen(name);
KASSERT(ALIGNED_TO(ptr, struct extattr), ("unaligned"));
eap = (struct extattr *)ptr;
eaend = (struct extattr *)(ptr + length);
for (; eap < eaend; eap = EXTATTR_NEXT(eap)) {
KASSERT(EXTATTR_NEXT(eap) <= eaend,
("extattr next %p beyond %p", EXTATTR_NEXT(eap), eaend));
if (eap->ea_namespace != nspace || eap->ea_namelength != nlen
|| memcmp(eap->ea_name, name, nlen) != 0)
continue;
if (eapp != NULL)
*eapp = eap;
if (eac != NULL)
*eac = EXTATTR_CONTENT(eap);
return (EXTATTR_CONTENT_SIZE(eap));
}
return (-1);
}
static int
ffs_rdextattr(u_char **p, struct vnode *vp, struct thread *td)
{
const struct extattr *eap, *eaend, *eapnext;
struct inode *ip;
struct ufs2_dinode *dp;
struct fs *fs;
struct uio luio;
struct iovec liovec;
u_int easize;
int error;
u_char *eae;
ip = VTOI(vp);
fs = ITOFS(ip);
dp = ip->i_din2;
easize = dp->di_extsize;
if ((uoff_t)easize > UFS_NXADDR * fs->fs_bsize)
return (EFBIG);
eae = malloc(easize, M_TEMP, M_WAITOK);
liovec.iov_base = eae;
liovec.iov_len = easize;
luio.uio_iov = &liovec;
luio.uio_iovcnt = 1;
luio.uio_offset = 0;
luio.uio_resid = easize;
luio.uio_segflg = UIO_SYSSPACE;
luio.uio_rw = UIO_READ;
luio.uio_td = td;
error = ffs_extread(vp, &luio, IO_EXT | IO_SYNC);
if (error) {
free(eae, M_TEMP);
return (error);
}
/* Validate disk xattrfile contents. */
for (eap = (void *)eae, eaend = (void *)(eae + easize); eap < eaend;
eap = eapnext) {
/* Detect zeroed out tail */
if (eap->ea_length < sizeof(*eap) || eap->ea_length == 0) {
easize = (const u_char *)eap - eae;
break;
}
eapnext = EXTATTR_NEXT(eap);
/* Bogusly long entry. */
if (eapnext > eaend) {
free(eae, M_TEMP);
return (EINTEGRITY);
}
}
ip->i_ea_len = easize;
*p = eae;
return (0);
}
static void
ffs_lock_ea(struct vnode *vp)
{
struct inode *ip;
ip = VTOI(vp);
VI_LOCK(vp);
while (ip->i_flag & IN_EA_LOCKED) {
UFS_INODE_SET_FLAG(ip, IN_EA_LOCKWAIT);
msleep(&ip->i_ea_refs, &vp->v_interlock, PINOD + 2, "ufs_ea",
0);
}
UFS_INODE_SET_FLAG(ip, IN_EA_LOCKED);
VI_UNLOCK(vp);
}
static void
ffs_unlock_ea(struct vnode *vp)
{
struct inode *ip;
ip = VTOI(vp);
VI_LOCK(vp);
if (ip->i_flag & IN_EA_LOCKWAIT)
wakeup(&ip->i_ea_refs);
ip->i_flag &= ~(IN_EA_LOCKED | IN_EA_LOCKWAIT);
VI_UNLOCK(vp);
}
static int
ffs_open_ea(struct vnode *vp, struct ucred *cred, struct thread *td)
{
struct inode *ip;
int error;
ip = VTOI(vp);
ffs_lock_ea(vp);
if (ip->i_ea_area != NULL) {
ip->i_ea_refs++;
ffs_unlock_ea(vp);
return (0);
}
error = ffs_rdextattr(&ip->i_ea_area, vp, td);
if (error) {
ffs_unlock_ea(vp);
return (error);
}
ip->i_ea_error = 0;
ip->i_ea_refs++;
ffs_unlock_ea(vp);
return (0);
}
/*
* Vnode extattr transaction commit/abort
*/
static int
ffs_close_ea(struct vnode *vp, int commit, struct ucred *cred, struct thread *td)
{
struct inode *ip;
struct uio luio;
struct iovec *liovec;
struct ufs2_dinode *dp;
size_t ea_len, tlen;
int error, i, lcnt;
bool truncate;
ip = VTOI(vp);
ffs_lock_ea(vp);
if (ip->i_ea_area == NULL) {
ffs_unlock_ea(vp);
return (EINVAL);
}
dp = ip->i_din2;
error = ip->i_ea_error;
truncate = false;
if (commit && error == 0) {
ASSERT_VOP_ELOCKED(vp, "ffs_close_ea commit");
if (cred == NOCRED)
cred = vp->v_mount->mnt_cred;
ea_len = MAX(ip->i_ea_len, dp->di_extsize);
for (lcnt = 1, tlen = ea_len - ip->i_ea_len; tlen > 0;) {
tlen -= MIN(ZERO_REGION_SIZE, tlen);
lcnt++;
}
liovec = __builtin_alloca(lcnt * sizeof(struct iovec));
luio.uio_iovcnt = lcnt;
liovec[0].iov_base = ip->i_ea_area;
liovec[0].iov_len = ip->i_ea_len;
for (i = 1, tlen = ea_len - ip->i_ea_len; i < lcnt; i++) {
liovec[i].iov_base = __DECONST(void *, zero_region);
liovec[i].iov_len = MIN(ZERO_REGION_SIZE, tlen);
tlen -= liovec[i].iov_len;
}
MPASS(tlen == 0);
luio.uio_iov = liovec;
luio.uio_offset = 0;
luio.uio_resid = ea_len;
luio.uio_segflg = UIO_SYSSPACE;
luio.uio_rw = UIO_WRITE;
luio.uio_td = td;
error = ffs_extwrite(vp, &luio, IO_EXT | IO_SYNC, cred);
if (error == 0 && ip->i_ea_len == 0)
truncate = true;
}
if (--ip->i_ea_refs == 0) {
free(ip->i_ea_area, M_TEMP);
ip->i_ea_area = NULL;
ip->i_ea_len = 0;
ip->i_ea_error = 0;
}
ffs_unlock_ea(vp);
if (truncate)
ffs_truncate(vp, 0, IO_EXT, cred);
return (error);
}
/*
* Vnode extattr strategy routine for fifos.
*
* We need to check for a read or write of the external attributes.
* Otherwise we just fall through and do the usual thing.
*/
static int
ffsext_strategy(struct vop_strategy_args *ap)
/*
struct vop_strategy_args {
struct vnodeop_desc *a_desc;
struct vnode *a_vp;
struct buf *a_bp;
};
*/
{
struct vnode *vp;
daddr_t lbn;
vp = ap->a_vp;
lbn = ap->a_bp->b_lblkno;
if (I_IS_UFS2(VTOI(vp)) && lbn < 0 && lbn >= -UFS_NXADDR)
return (VOP_STRATEGY_APV(&ufs_vnodeops, ap));
if (vp->v_type == VFIFO)
return (VOP_STRATEGY_APV(&ufs_fifoops, ap));
panic("spec nodes went here");
}
/*
* Vnode extattr transaction commit/abort
*/
static int
ffs_openextattr(struct vop_openextattr_args *ap)
/*
struct vop_openextattr_args {
struct vnodeop_desc *a_desc;
struct vnode *a_vp;
IN struct ucred *a_cred;
IN struct thread *a_td;
};
*/
{
if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
return (EOPNOTSUPP);
return (ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td));
}
/*
* Vnode extattr transaction commit/abort
*/
static int
ffs_closeextattr(struct vop_closeextattr_args *ap)
/*
struct vop_closeextattr_args {
struct vnodeop_desc *a_desc;
struct vnode *a_vp;
int a_commit;
IN struct ucred *a_cred;
IN struct thread *a_td;
};
*/
{
struct vnode *vp;
vp = ap->a_vp;
if (vp->v_type == VCHR || vp->v_type == VBLK)
return (EOPNOTSUPP);
if (ap->a_commit && (vp->v_mount->mnt_flag & MNT_RDONLY) != 0)
return (EROFS);
if (ap->a_commit && DOINGSUJ(vp)) {
ASSERT_VOP_ELOCKED(vp, "ffs_closeextattr commit");
softdep_prealloc(vp, MNT_WAIT);
if (vp->v_data == NULL)
return (EBADF);
}
return (ffs_close_ea(vp, ap->a_commit, ap->a_cred, ap->a_td));
}
/*
* Vnode operation to remove a named attribute.
*/
static int
ffs_deleteextattr(struct vop_deleteextattr_args *ap)
/*
vop_deleteextattr {
IN struct vnode *a_vp;
IN int a_attrnamespace;
IN const char *a_name;
IN struct ucred *a_cred;
IN struct thread *a_td;
};
*/
{
struct vnode *vp;
struct inode *ip;
struct extattr *eap;
uint32_t ul;
int olen, error, i, easize;
u_char *eae;
void *tmp;
vp = ap->a_vp;
ip = VTOI(vp);
if (vp->v_type == VCHR || vp->v_type == VBLK)
return (EOPNOTSUPP);
if (strlen(ap->a_name) == 0)
return (EINVAL);
if (vp->v_mount->mnt_flag & MNT_RDONLY)
return (EROFS);
error = extattr_check_cred(vp, ap->a_attrnamespace,
ap->a_cred, ap->a_td, VWRITE);
if (error) {
/*
* ffs_lock_ea is not needed there, because the vnode
* must be exclusively locked.
*/
if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
ip->i_ea_error = error;
return (error);
}
if (DOINGSUJ(vp)) {
ASSERT_VOP_ELOCKED(vp, "ffs_deleteextattr");
softdep_prealloc(vp, MNT_WAIT);
if (vp->v_data == NULL)
return (EBADF);
}
error = ffs_open_ea(vp, ap->a_cred, ap->a_td);
if (error)
return (error);
/* CEM: delete could be done in-place instead */
eae = malloc(ip->i_ea_len, M_TEMP, M_WAITOK);
bcopy(ip->i_ea_area, eae, ip->i_ea_len);
easize = ip->i_ea_len;
olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name,
&eap, NULL);
if (olen == -1) {
/* delete but nonexistent */
free(eae, M_TEMP);
ffs_close_ea(vp, 0, ap->a_cred, ap->a_td);
return (ENOATTR);
}
ul = eap->ea_length;
i = (u_char *)EXTATTR_NEXT(eap) - eae;
bcopy(EXTATTR_NEXT(eap), eap, easize - i);
easize -= ul;
tmp = ip->i_ea_area;
ip->i_ea_area = eae;
ip->i_ea_len = easize;
free(tmp, M_TEMP);
error = ffs_close_ea(vp, 1, ap->a_cred, ap->a_td);
return (error);
}
/*
* Vnode operation to retrieve a named extended attribute.
*/
static int
ffs_getextattr(struct vop_getextattr_args *ap)
/*
vop_getextattr {
IN struct vnode *a_vp;
IN int a_attrnamespace;
IN const char *a_name;
INOUT struct uio *a_uio;
OUT size_t *a_size;
IN struct ucred *a_cred;
IN struct thread *a_td;
};
*/
{
struct inode *ip;
u_char *eae, *p;
unsigned easize;
int error, ealen;
ip = VTOI(ap->a_vp);
if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
return (EOPNOTSUPP);
error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
ap->a_cred, ap->a_td, VREAD);
if (error)
return (error);
error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
if (error)
return (error);
eae = ip->i_ea_area;
easize = ip->i_ea_len;
ealen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name,
NULL, &p);
if (ealen >= 0) {
error = 0;
if (ap->a_size != NULL)
*ap->a_size = ealen;
else if (ap->a_uio != NULL)
error = uiomove(p, ealen, ap->a_uio);
} else
error = ENOATTR;
ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
return (error);
}
/*
* Vnode operation to retrieve extended attributes on a vnode.
*/
static int
ffs_listextattr(struct vop_listextattr_args *ap)
/*
vop_listextattr {
IN struct vnode *a_vp;
IN int a_attrnamespace;
INOUT struct uio *a_uio;
OUT size_t *a_size;
IN struct ucred *a_cred;
IN struct thread *a_td;
};
*/
{
struct inode *ip;
struct extattr *eap, *eaend;
int error, ealen;
ip = VTOI(ap->a_vp);
if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
return (EOPNOTSUPP);
error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
ap->a_cred, ap->a_td, VREAD);
if (error)
return (error);
error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
if (error)
return (error);
error = 0;
if (ap->a_size != NULL)
*ap->a_size = 0;
KASSERT(ALIGNED_TO(ip->i_ea_area, struct extattr), ("unaligned"));
eap = (struct extattr *)ip->i_ea_area;
eaend = (struct extattr *)(ip->i_ea_area + ip->i_ea_len);
for (; error == 0 && eap < eaend; eap = EXTATTR_NEXT(eap)) {
KASSERT(EXTATTR_NEXT(eap) <= eaend,
("extattr next %p beyond %p", EXTATTR_NEXT(eap), eaend));
if (eap->ea_namespace != ap->a_attrnamespace)
continue;
ealen = eap->ea_namelength;
if (ap->a_size != NULL)
*ap->a_size += ealen + 1;
else if (ap->a_uio != NULL)
error = uiomove(&eap->ea_namelength, ealen + 1,
ap->a_uio);
}
ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
return (error);
}
/*
* Vnode operation to set a named attribute.
*/
static int
ffs_setextattr(struct vop_setextattr_args *ap)
/*
vop_setextattr {
IN struct vnode *a_vp;
IN int a_attrnamespace;
IN const char *a_name;
INOUT struct uio *a_uio;
IN struct ucred *a_cred;
IN struct thread *a_td;
};
*/
{
struct vnode *vp;
struct inode *ip;
struct fs *fs;
struct extattr *eap;
uint32_t ealength, ul;
ssize_t ealen;
int olen, eapad1, eapad2, error, i, easize;
u_char *eae;
void *tmp;
vp = ap->a_vp;
ip = VTOI(vp);
fs = ITOFS(ip);
if (vp->v_type == VCHR || vp->v_type == VBLK)
return (EOPNOTSUPP);
if (strlen(ap->a_name) == 0)
return (EINVAL);
/* XXX Now unsupported API to delete EAs using NULL uio. */
if (ap->a_uio == NULL)
return (EOPNOTSUPP);
if (vp->v_mount->mnt_flag & MNT_RDONLY)
return (EROFS);
ealen = ap->a_uio->uio_resid;
if (ealen < 0 || ealen > lblktosize(fs, UFS_NXADDR))
return (EINVAL);
error = extattr_check_cred(vp, ap->a_attrnamespace,
ap->a_cred, ap->a_td, VWRITE);
if (error) {
/*
* ffs_lock_ea is not needed there, because the vnode
* must be exclusively locked.
*/
if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
ip->i_ea_error = error;
return (error);
}
if (DOINGSUJ(vp)) {
ASSERT_VOP_ELOCKED(vp, "ffs_deleteextattr");
softdep_prealloc(vp, MNT_WAIT);
if (vp->v_data == NULL)
return (EBADF);
}
error = ffs_open_ea(vp, ap->a_cred, ap->a_td);
if (error)
return (error);
ealength = sizeof(uint32_t) + 3 + strlen(ap->a_name);
eapad1 = roundup2(ealength, 8) - ealength;
eapad2 = roundup2(ealen, 8) - ealen;
ealength += eapad1 + ealen + eapad2;
/*
* CEM: rewrites of the same size or smaller could be done in-place
* instead. (We don't acquire any fine-grained locks in here either,
* so we could also do bigger writes in-place.)
*/
eae = malloc(ip->i_ea_len + ealength, M_TEMP, M_WAITOK);
bcopy(ip->i_ea_area, eae, ip->i_ea_len);
easize = ip->i_ea_len;
olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name,
&eap, NULL);
if (olen == -1) {
/* new, append at end */
KASSERT(ALIGNED_TO(eae + easize, struct extattr),
("unaligned"));
eap = (struct extattr *)(eae + easize);
easize += ealength;
} else {
ul = eap->ea_length;
i = (u_char *)EXTATTR_NEXT(eap) - eae;
if (ul != ealength) {
bcopy(EXTATTR_NEXT(eap), (u_char *)eap + ealength,
easize - i);
easize += (ealength - ul);
}
}
if (easize > lblktosize(fs, UFS_NXADDR)) {
free(eae, M_TEMP);
ffs_close_ea(vp, 0, ap->a_cred, ap->a_td);
if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
ip->i_ea_error = ENOSPC;
return (ENOSPC);
}
eap->ea_length = ealength;
eap->ea_namespace = ap->a_attrnamespace;
eap->ea_contentpadlen = eapad2;
eap->ea_namelength = strlen(ap->a_name);
memcpy(eap->ea_name, ap->a_name, strlen(ap->a_name));
bzero(&eap->ea_name[strlen(ap->a_name)], eapad1);
error = uiomove(EXTATTR_CONTENT(eap), ealen, ap->a_uio);
if (error) {
free(eae, M_TEMP);
ffs_close_ea(vp, 0, ap->a_cred, ap->a_td);
if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
ip->i_ea_error = error;
return (error);
}
bzero((u_char *)EXTATTR_CONTENT(eap) + ealen, eapad2);
tmp = ip->i_ea_area;
ip->i_ea_area = eae;
ip->i_ea_len = easize;
free(tmp, M_TEMP);
error = ffs_close_ea(vp, 1, ap->a_cred, ap->a_td);
return (error);
}
/*
* Vnode pointer to File handle
*/
static int
ffs_vptofh(struct vop_vptofh_args *ap)
/*
vop_vptofh {
IN struct vnode *a_vp;
IN struct fid *a_fhp;
};
*/
{
struct inode *ip;
struct ufid *ufhp;
ip = VTOI(ap->a_vp);
ufhp = (struct ufid *)ap->a_fhp;
ufhp->ufid_len = sizeof(struct ufid);
ufhp->ufid_ino = ip->i_number;
ufhp->ufid_gen = ip->i_gen;
return (0);
}
SYSCTL_DECL(_vfs_ffs);
static int use_buf_pager = 1;
SYSCTL_INT(_vfs_ffs, OID_AUTO, use_buf_pager, CTLFLAG_RWTUN, &use_buf_pager, 0,
"Always use buffer pager instead of bmap");
static daddr_t
ffs_gbp_getblkno(struct vnode *vp, vm_ooffset_t off)
{
return (lblkno(VFSTOUFS(vp->v_mount)->um_fs, off));
}
static int
ffs_gbp_getblksz(struct vnode *vp, daddr_t lbn, long *sz)
{
*sz = blksize(VFSTOUFS(vp->v_mount)->um_fs, VTOI(vp), lbn);
return (0);
}
static int
ffs_getpages(struct vop_getpages_args *ap)
{
struct vnode *vp;
struct ufsmount *um;
vp = ap->a_vp;
um = VFSTOUFS(vp->v_mount);
if (!use_buf_pager && um->um_devvp->v_bufobj.bo_bsize <= PAGE_SIZE)
return (vnode_pager_generic_getpages(vp, ap->a_m, ap->a_count,
ap->a_rbehind, ap->a_rahead, NULL, NULL));
return (vfs_bio_getpages(vp, ap->a_m, ap->a_count, ap->a_rbehind,
ap->a_rahead, ffs_gbp_getblkno, ffs_gbp_getblksz));
}
static int
ffs_getpages_async(struct vop_getpages_async_args *ap)
{
struct vnode *vp;
struct ufsmount *um;
bool do_iodone;
int error;
vp = ap->a_vp;
um = VFSTOUFS(vp->v_mount);
do_iodone = true;
if (um->um_devvp->v_bufobj.bo_bsize <= PAGE_SIZE) {
error = vnode_pager_generic_getpages(vp, ap->a_m, ap->a_count,
ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg);
if (error == 0)
do_iodone = false;
} else {
error = vfs_bio_getpages(vp, ap->a_m, ap->a_count,
ap->a_rbehind, ap->a_rahead, ffs_gbp_getblkno,
ffs_gbp_getblksz);
}
if (do_iodone && ap->a_iodone != NULL)
ap->a_iodone(ap->a_arg, ap->a_m, ap->a_count, error);
return (error);
}
static int
ffs_vput_pair(struct vop_vput_pair_args *ap)
{
struct mount *mp;
struct vnode *dvp, *vp, *vp1, **vpp;
struct inode *dp, *ip;
ino_t ip_ino;
u_int64_t ip_gen;
int error, vp_locked;
dvp = ap->a_dvp;
dp = VTOI(dvp);
vpp = ap->a_vpp;
vp = vpp != NULL ? *vpp : NULL;
if ((dp->i_flag & (IN_NEEDSYNC | IN_ENDOFF)) == 0) {
vput(dvp);
if (vp != NULL && ap->a_unlock_vp)
vput(vp);
return (0);
}
mp = dvp->v_mount;
if (vp != NULL) {
if (ap->a_unlock_vp) {
vput(vp);
} else {
MPASS(vp->v_type != VNON);
vp_locked = VOP_ISLOCKED(vp);
ip = VTOI(vp);
ip_ino = ip->i_number;
ip_gen = ip->i_gen;
VOP_UNLOCK(vp);
}
}
/*
* If compaction or fsync was requested do it in ffs_vput_pair()
* now that other locks are no longer held.
*/
if ((dp->i_flag & IN_ENDOFF) != 0) {
VNASSERT(I_ENDOFF(dp) != 0 && I_ENDOFF(dp) < dp->i_size, dvp,
("IN_ENDOFF set but I_ENDOFF() is not"));
dp->i_flag &= ~IN_ENDOFF;
error = UFS_TRUNCATE(dvp, (off_t)I_ENDOFF(dp), IO_NORMAL |
(DOINGASYNC(dvp) ? 0 : IO_SYNC), curthread->td_ucred);
if (error != 0 && error != ERELOOKUP) {
if (!ffs_fsfail_cleanup(VFSTOUFS(mp), error)) {
vn_printf(dvp,
"IN_ENDOFF: failed to truncate, "
"error %d\n", error);
}
#ifdef UFS_DIRHASH
ufsdirhash_free(dp);
#endif
}
SET_I_ENDOFF(dp, 0);
}
if ((dp->i_flag & IN_NEEDSYNC) != 0) {
do {
error = ffs_syncvnode(dvp, MNT_WAIT, 0);
} while (error == ERELOOKUP);
}
vput(dvp);
if (vp == NULL || ap->a_unlock_vp)
return (0);
MPASS(mp != NULL);
/*
* It is possible that vp is reclaimed at this point. Only
* routines that call us with a_unlock_vp == false can find
* that their vp has been reclaimed. There are three areas
* that are affected:
* 1) vn_open_cred() - later VOPs could fail, but
* dead_open() returns 0 to simulate successful open.
* 2) ffs_snapshot() - creation of snapshot fails with EBADF.
* 3) NFS server (several places) - code is prepared to detect
* and respond to dead vnodes by returning ESTALE.
*/
VOP_LOCK(vp, vp_locked | LK_RETRY);
if (IS_UFS(vp))
return (0);
/*
* Try harder to recover from reclaimed vp if reclaim was not
* because underlying inode was cleared. We saved inode
* number and inode generation, so we can try to reinstantiate
* exactly same version of inode. If this fails, return
* original doomed vnode and let caller to handle
* consequences.
*
* Note that callers must keep write started around
* VOP_VPUT_PAIR() calls, so it is safe to use mp without
* busying it.
*/
VOP_UNLOCK(vp);
error = ffs_inotovp(mp, ip_ino, ip_gen, LK_EXCLUSIVE, &vp1,
FFSV_REPLACE_DOOMED);
if (error != 0) {
VOP_LOCK(vp, vp_locked | LK_RETRY);
} else {
vrele(vp);
*vpp = vp1;
}
return (error);
}