freebsd-dev/sys/boot/kshim/bsd_kernel.c
Brooks Davis 92dbec66f2 Merge from CheriBSD:
Make the sysinit tool a build tool rather than building in with
/usr/bin/cc and running it from OBJDIR.  (It will be moved to usr.bin
once a manpage is written and a few style cleanups are done.)

Split the makefile bits for Hans' kernel shim layer into their own
includable kshim.mk.

Move USB support into a .mk file so loaders can include it.
2014-08-04 23:00:13 +00:00

1240 lines
23 KiB
C

/* $FreeBSD$ */
/*-
* Copyright (c) 2013 Hans Petter Selasky. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <bsd_global.h>
struct usb_process usb_process[USB_PROC_MAX];
static device_t usb_pci_root;
/*------------------------------------------------------------------------*
* Implementation of mutex API
*------------------------------------------------------------------------*/
struct mtx Giant;
static void
mtx_system_init(void *arg)
{
mtx_init(&Giant, "Giant", NULL, MTX_DEF | MTX_RECURSE);
}
SYSINIT(mtx_system_init, SI_SUB_LOCK, SI_ORDER_MIDDLE, mtx_system_init, NULL);
void
mtx_init(struct mtx *mtx, const char *name, const char *type, int opt)
{
mtx->owned = 0;
mtx->parent = mtx;
}
void
mtx_lock(struct mtx *mtx)
{
mtx = mtx->parent;
mtx->owned++;
}
void
mtx_unlock(struct mtx *mtx)
{
mtx = mtx->parent;
mtx->owned--;
}
int
mtx_owned(struct mtx *mtx)
{
mtx = mtx->parent;
return (mtx->owned != 0);
}
void
mtx_destroy(struct mtx *mtx)
{
/* NOP */
}
/*------------------------------------------------------------------------*
* Implementation of shared/exclusive mutex API
*------------------------------------------------------------------------*/
void
sx_init_flags(struct sx *sx, const char *name, int flags)
{
sx->owned = 0;
}
void
sx_destroy(struct sx *sx)
{
/* NOP */
}
void
sx_xlock(struct sx *sx)
{
sx->owned++;
}
void
sx_xunlock(struct sx *sx)
{
sx->owned--;
}
int
sx_xlocked(struct sx *sx)
{
return (sx->owned != 0);
}
/*------------------------------------------------------------------------*
* Implementaiton of condition variable API
*------------------------------------------------------------------------*/
void
cv_init(struct cv *cv, const char *desc)
{
cv->sleeping = 0;
}
void
cv_destroy(struct cv *cv)
{
/* NOP */
}
void
cv_wait(struct cv *cv, struct mtx *mtx)
{
cv_timedwait(cv, mtx, -1);
}
int
cv_timedwait(struct cv *cv, struct mtx *mtx, int timo)
{
int start = ticks;
int delta;
if (cv->sleeping)
return (EWOULDBLOCK); /* not allowed */
cv->sleeping = 1;
while (cv->sleeping) {
if (timo >= 0) {
delta = ticks - start;
if (delta >= timo || delta < 0)
break;
}
mtx_unlock(mtx);
usb_idle();
mtx_lock(mtx);
}
if (cv->sleeping) {
cv->sleeping = 0;
return (EWOULDBLOCK); /* not allowed */
}
return (0);
}
void
cv_signal(struct cv *cv)
{
cv->sleeping = 0;
}
void
cv_broadcast(struct cv *cv)
{
cv->sleeping = 0;
}
/*------------------------------------------------------------------------*
* Implementation of callout API
*------------------------------------------------------------------------*/
static void callout_proc_msg(struct usb_proc_msg *);
volatile int ticks = 0;
static LIST_HEAD(, callout) head_callout = LIST_HEAD_INITIALIZER(&head_callout);
static struct mtx mtx_callout;
static struct usb_proc_msg callout_msg[2];
static void
callout_system_init(void *arg)
{
mtx_init(&mtx_callout, "callout-mtx", NULL, MTX_DEF | MTX_RECURSE);
callout_msg[0].pm_callback = &callout_proc_msg;
callout_msg[1].pm_callback = &callout_proc_msg;
}
SYSINIT(callout_system_init, SI_SUB_LOCK, SI_ORDER_MIDDLE, callout_system_init, NULL);
static void
callout_callback(struct callout *c)
{
mtx_lock(c->mtx);
mtx_lock(&mtx_callout);
if (c->entry.le_prev != NULL) {
LIST_REMOVE(c, entry);
c->entry.le_prev = NULL;
}
mtx_unlock(&mtx_callout);
if (c->func)
(c->func) (c->arg);
if (!(c->flags & CALLOUT_RETURNUNLOCKED))
mtx_unlock(c->mtx);
}
void
callout_process(int timeout)
{
ticks += timeout;
usb_proc_msignal(usb_process + 2, &callout_msg[0], &callout_msg[1]);
}
static void
callout_proc_msg(struct usb_proc_msg *pmsg)
{
struct callout *c;
int delta;
repeat:
mtx_lock(&mtx_callout);
LIST_FOREACH(c, &head_callout, entry) {
delta = c->timeout - ticks;
if (delta < 0) {
mtx_unlock(&mtx_callout);
callout_callback(c);
goto repeat;
}
}
mtx_unlock(&mtx_callout);
}
void
callout_init_mtx(struct callout *c, struct mtx *mtx, int flags)
{
memset(c, 0, sizeof(*c));
if (mtx == NULL)
mtx = &Giant;
c->mtx = mtx;
c->flags = (flags & CALLOUT_RETURNUNLOCKED);
}
void
callout_reset(struct callout *c, int to_ticks,
void (*func) (void *), void *arg)
{
callout_stop(c);
c->func = func;
c->arg = arg;
c->timeout = ticks + to_ticks;
mtx_lock(&mtx_callout);
LIST_INSERT_HEAD(&head_callout, c, entry);
mtx_unlock(&mtx_callout);
}
void
callout_stop(struct callout *c)
{
mtx_lock(&mtx_callout);
if (c->entry.le_prev != NULL) {
LIST_REMOVE(c, entry);
c->entry.le_prev = NULL;
}
mtx_unlock(&mtx_callout);
c->func = NULL;
c->arg = NULL;
}
void
callout_drain(struct callout *c)
{
if (c->mtx == NULL)
return; /* not initialised */
mtx_lock(c->mtx);
callout_stop(c);
mtx_unlock(c->mtx);
}
int
callout_pending(struct callout *c)
{
int retval;
mtx_lock(&mtx_callout);
retval = (c->entry.le_prev != NULL);
mtx_unlock(&mtx_callout);
return (retval);
}
/*------------------------------------------------------------------------*
* Implementation of device API
*------------------------------------------------------------------------*/
static const char unknown_string[] = { "unknown" };
static TAILQ_HEAD(, module_data) module_head =
TAILQ_HEAD_INITIALIZER(module_head);
static uint8_t
devclass_equal(const char *a, const char *b)
{
char ta, tb;
if (a == b)
return (1);
while (1) {
ta = *a;
tb = *b;
if (ta != tb)
return (0);
if (ta == 0)
break;
a++;
b++;
}
return (1);
}
int
bus_generic_resume(device_t dev)
{
return (0);
}
int
bus_generic_shutdown(device_t dev)
{
return (0);
}
int
bus_generic_suspend(device_t dev)
{
return (0);
}
int
bus_generic_print_child(device_t dev, device_t child)
{
return (0);
}
void
bus_generic_driver_added(device_t dev, driver_t *driver)
{
return;
}
device_t
device_get_parent(device_t dev)
{
return (dev ? dev->dev_parent : NULL);
}
void
device_set_interrupt(device_t dev, driver_filter_t *filter,
driver_intr_t *fn, void *arg)
{
dev->dev_irq_filter = filter;
dev->dev_irq_fn = fn;
dev->dev_irq_arg = arg;
}
void
device_run_interrupts(device_t parent)
{
device_t child;
if (parent == NULL)
return;
TAILQ_FOREACH(child, &parent->dev_children, dev_link) {
int status;
if (child->dev_irq_filter != NULL)
status = child->dev_irq_filter(child->dev_irq_arg);
else
status = FILTER_SCHEDULE_THREAD;
if (status == FILTER_SCHEDULE_THREAD) {
if (child->dev_irq_fn != NULL)
(child->dev_irq_fn) (child->dev_irq_arg);
}
}
}
void
device_set_ivars(device_t dev, void *ivars)
{
dev->dev_aux = ivars;
}
void *
device_get_ivars(device_t dev)
{
return (dev ? dev->dev_aux : NULL);
}
int
device_get_unit(device_t dev)
{
return (dev ? dev->dev_unit : 0);
}
int
bus_generic_detach(device_t dev)
{
device_t child;
int error;
if (!dev->dev_attached)
return (EBUSY);
TAILQ_FOREACH(child, &dev->dev_children, dev_link) {
if ((error = device_detach(child)) != 0)
return (error);
}
return (0);
}
const char *
device_get_nameunit(device_t dev)
{
if (dev && dev->dev_nameunit[0])
return (dev->dev_nameunit);
return (unknown_string);
}
static uint8_t
devclass_create(devclass_t *dc_pp)
{
if (dc_pp == NULL) {
return (1);
}
if (dc_pp[0] == NULL) {
dc_pp[0] = malloc(sizeof(**(dc_pp)),
M_DEVBUF, M_WAITOK | M_ZERO);
if (dc_pp[0] == NULL) {
return (1);
}
}
return (0);
}
static const struct module_data *
devclass_find_create(const char *classname)
{
const struct module_data *mod;
TAILQ_FOREACH(mod, &module_head, entry) {
if (devclass_equal(mod->mod_name, classname)) {
if (devclass_create(mod->devclass_pp)) {
continue;
}
return (mod);
}
}
return (NULL);
}
static uint8_t
devclass_add_device(const struct module_data *mod, device_t dev)
{
device_t *pp_dev;
device_t *end;
uint8_t unit;
pp_dev = mod->devclass_pp[0]->dev_list;
end = pp_dev + DEVCLASS_MAXUNIT;
unit = 0;
while (pp_dev != end) {
if (*pp_dev == NULL) {
*pp_dev = dev;
dev->dev_unit = unit;
dev->dev_module = mod;
snprintf(dev->dev_nameunit,
sizeof(dev->dev_nameunit),
"%s%d", device_get_name(dev), unit);
return (0);
}
pp_dev++;
unit++;
}
DPRINTF("Could not add device to devclass.\n");
return (1);
}
static void
devclass_delete_device(const struct module_data *mod, device_t dev)
{
if (mod == NULL) {
return;
}
mod->devclass_pp[0]->dev_list[dev->dev_unit] = NULL;
dev->dev_module = NULL;
}
static device_t
make_device(device_t parent, const char *name)
{
device_t dev = NULL;
const struct module_data *mod = NULL;
if (name) {
mod = devclass_find_create(name);
if (!mod) {
DPRINTF("%s:%d:%s: can't find device "
"class %s\n", __FILE__, __LINE__,
__FUNCTION__, name);
goto done;
}
}
dev = malloc(sizeof(*dev),
M_DEVBUF, M_WAITOK | M_ZERO);
if (dev == NULL)
goto done;
dev->dev_parent = parent;
TAILQ_INIT(&dev->dev_children);
if (name) {
dev->dev_fixed_class = 1;
if (devclass_add_device(mod, dev)) {
goto error;
}
}
done:
return (dev);
error:
if (dev) {
free(dev, M_DEVBUF);
}
return (NULL);
}
device_t
device_add_child(device_t dev, const char *name, int unit)
{
device_t child;
if (unit != -1) {
device_printf(dev, "Unit is not -1\n");
}
child = make_device(dev, name);
if (child == NULL) {
device_printf(dev, "Could not add child '%s'\n", name);
goto done;
}
if (dev == NULL) {
/* no parent */
goto done;
}
TAILQ_INSERT_TAIL(&dev->dev_children, child, dev_link);
done:
return (child);
}
int
device_delete_child(device_t dev, device_t child)
{
int error = 0;
device_t grandchild;
/* remove children first */
while ((grandchild = TAILQ_FIRST(&child->dev_children))) {
error = device_delete_child(child, grandchild);
if (error) {
device_printf(dev, "Error deleting child!\n");
goto done;
}
}
error = device_detach(child);
if (error)
goto done;
devclass_delete_device(child->dev_module, child);
if (dev != NULL) {
/* remove child from parent */
TAILQ_REMOVE(&dev->dev_children, child, dev_link);
}
free(child, M_DEVBUF);
done:
return (error);
}
int
device_delete_children(device_t dev)
{
device_t child;
int error = 0;
while ((child = TAILQ_FIRST(&dev->dev_children))) {
error = device_delete_child(dev, child);
if (error) {
device_printf(dev, "Error deleting child!\n");
break;
}
}
return (error);
}
void
device_quiet(device_t dev)
{
dev->dev_quiet = 1;
}
const char *
device_get_desc(device_t dev)
{
if (dev)
return &(dev->dev_desc[0]);
return (unknown_string);
}
static int
default_method(void)
{
/* do nothing */
DPRINTF("Default method called\n");
return (0);
}
void *
device_get_method(device_t dev, const char *what)
{
const struct device_method *mtod;
mtod = dev->dev_module->driver->methods;
while (mtod->func != NULL) {
if (devclass_equal(mtod->desc, what)) {
return (mtod->func);
}
mtod++;
}
return ((void *)&default_method);
}
const char *
device_get_name(device_t dev)
{
if (dev == NULL)
return (unknown_string);
return (dev->dev_module->driver->name);
}
static int
device_allocate_softc(device_t dev)
{
const struct module_data *mod;
mod = dev->dev_module;
if ((dev->dev_softc_alloc == 0) &&
(mod->driver->size != 0)) {
dev->dev_sc = malloc(mod->driver->size,
M_DEVBUF, M_WAITOK | M_ZERO);
if (dev->dev_sc == NULL)
return (ENOMEM);
dev->dev_softc_alloc = 1;
}
return (0);
}
int
device_probe_and_attach(device_t dev)
{
const struct module_data *mod;
const char *bus_name_parent;
bus_name_parent = device_get_name(device_get_parent(dev));
if (dev->dev_attached)
return (0); /* fail-safe */
if (dev->dev_fixed_class) {
mod = dev->dev_module;
if (DEVICE_PROBE(dev) <= 0) {
if (device_allocate_softc(dev) == 0) {
if (DEVICE_ATTACH(dev) == 0) {
/* success */
dev->dev_attached = 1;
return (0);
}
}
}
device_detach(dev);
goto error;
}
/*
* Else find a module for our device, if any
*/
TAILQ_FOREACH(mod, &module_head, entry) {
if (devclass_equal(mod->bus_name, bus_name_parent)) {
if (devclass_create(mod->devclass_pp)) {
continue;
}
if (devclass_add_device(mod, dev)) {
continue;
}
if (DEVICE_PROBE(dev) <= 0) {
if (device_allocate_softc(dev) == 0) {
if (DEVICE_ATTACH(dev) == 0) {
/* success */
dev->dev_attached = 1;
return (0);
}
}
}
/* else try next driver */
device_detach(dev);
}
}
error:
return (ENODEV);
}
int
device_detach(device_t dev)
{
const struct module_data *mod = dev->dev_module;
int error;
if (dev->dev_attached) {
error = DEVICE_DETACH(dev);
if (error) {
return error;
}
dev->dev_attached = 0;
}
device_set_softc(dev, NULL);
if (dev->dev_fixed_class == 0)
devclass_delete_device(mod, dev);
return (0);
}
void
device_set_softc(device_t dev, void *softc)
{
if (dev->dev_softc_alloc) {
free(dev->dev_sc, M_DEVBUF);
dev->dev_sc = NULL;
}
dev->dev_sc = softc;
dev->dev_softc_alloc = 0;
}
void *
device_get_softc(device_t dev)
{
if (dev == NULL)
return (NULL);
return (dev->dev_sc);
}
int
device_is_attached(device_t dev)
{
return (dev->dev_attached);
}
void
device_set_desc(device_t dev, const char *desc)
{
snprintf(dev->dev_desc, sizeof(dev->dev_desc), "%s", desc);
}
void
device_set_desc_copy(device_t dev, const char *desc)
{
device_set_desc(dev, desc);
}
void *
devclass_get_softc(devclass_t dc, int unit)
{
return (device_get_softc(devclass_get_device(dc, unit)));
}
int
devclass_get_maxunit(devclass_t dc)
{
int max_unit = 0;
if (dc) {
max_unit = DEVCLASS_MAXUNIT;
while (max_unit--) {
if (dc->dev_list[max_unit]) {
break;
}
}
max_unit++;
}
return (max_unit);
}
device_t
devclass_get_device(devclass_t dc, int unit)
{
return (((unit < 0) || (unit >= DEVCLASS_MAXUNIT) || (dc == NULL)) ?
NULL : dc->dev_list[unit]);
}
devclass_t
devclass_find(const char *classname)
{
const struct module_data *mod;
TAILQ_FOREACH(mod, &module_head, entry) {
if (devclass_equal(mod->mod_name, classname))
return (mod->devclass_pp[0]);
}
return (NULL);
}
void
module_register(void *data)
{
struct module_data *mdata = data;
TAILQ_INSERT_TAIL(&module_head, mdata, entry);
}
/*------------------------------------------------------------------------*
* System startup
*------------------------------------------------------------------------*/
static void
sysinit_run(const void **ppdata)
{
const struct sysinit *psys;
while ((psys = *ppdata) != NULL) {
(psys->func) (psys->data);
ppdata++;
}
}
/*------------------------------------------------------------------------*
* USB process API
*------------------------------------------------------------------------*/
static int usb_do_process(struct usb_process *);
static int usb_proc_level = -1;
static struct mtx usb_proc_mtx;
void
usb_idle(void)
{
int old_level = usb_proc_level;
int old_giant = Giant.owned;
int worked;
device_run_interrupts(usb_pci_root);
do {
worked = 0;
Giant.owned = 0;
while (++usb_proc_level < USB_PROC_MAX)
worked |= usb_do_process(usb_process + usb_proc_level);
usb_proc_level = old_level;
Giant.owned = old_giant;
} while (worked);
}
void
usb_init(void)
{
sysinit_run(sysinit_data);
}
void
usb_uninit(void)
{
sysinit_run(sysuninit_data);
}
static void
usb_process_init_sub(struct usb_process *up)
{
TAILQ_INIT(&up->up_qhead);
cv_init(&up->up_cv, "-");
cv_init(&up->up_drain, "usbdrain");
up->up_mtx = &usb_proc_mtx;
}
static void
usb_process_init(void *arg)
{
uint8_t x;
mtx_init(&usb_proc_mtx, "usb-proc-mtx", NULL, MTX_DEF | MTX_RECURSE);
for (x = 0; x != USB_PROC_MAX; x++)
usb_process_init_sub(&usb_process[x]);
}
SYSINIT(usb_process_init, SI_SUB_LOCK, SI_ORDER_MIDDLE, usb_process_init, NULL);
static int
usb_do_process(struct usb_process *up)
{
struct usb_proc_msg *pm;
int worked = 0;
mtx_lock(&usb_proc_mtx);
repeat:
pm = TAILQ_FIRST(&up->up_qhead);
if (pm != NULL) {
worked = 1;
(pm->pm_callback) (pm);
if (pm == TAILQ_FIRST(&up->up_qhead)) {
/* nothing changed */
TAILQ_REMOVE(&up->up_qhead, pm, pm_qentry);
pm->pm_qentry.tqe_prev = NULL;
}
goto repeat;
}
mtx_unlock(&usb_proc_mtx);
return (worked);
}
void *
usb_proc_msignal(struct usb_process *up, void *_pm0, void *_pm1)
{
struct usb_proc_msg *pm0 = _pm0;
struct usb_proc_msg *pm1 = _pm1;
struct usb_proc_msg *pm2;
usb_size_t d;
uint8_t t;
t = 0;
if (pm0->pm_qentry.tqe_prev) {
t |= 1;
}
if (pm1->pm_qentry.tqe_prev) {
t |= 2;
}
if (t == 0) {
/*
* No entries are queued. Queue "pm0" and use the existing
* message number.
*/
pm2 = pm0;
} else if (t == 1) {
/* Check if we need to increment the message number. */
if (pm0->pm_num == up->up_msg_num) {
up->up_msg_num++;
}
pm2 = pm1;
} else if (t == 2) {
/* Check if we need to increment the message number. */
if (pm1->pm_num == up->up_msg_num) {
up->up_msg_num++;
}
pm2 = pm0;
} else if (t == 3) {
/*
* Both entries are queued. Re-queue the entry closest to
* the end.
*/
d = (pm1->pm_num - pm0->pm_num);
/* Check sign after subtraction */
if (d & 0x80000000) {
pm2 = pm0;
} else {
pm2 = pm1;
}
TAILQ_REMOVE(&up->up_qhead, pm2, pm_qentry);
} else {
pm2 = NULL; /* panic - should not happen */
}
/* Put message last on queue */
pm2->pm_num = up->up_msg_num;
TAILQ_INSERT_TAIL(&up->up_qhead, pm2, pm_qentry);
return (pm2);
}
/*------------------------------------------------------------------------*
* usb_proc_is_gone
*
* Return values:
* 0: USB process is running
* Else: USB process is tearing down
*------------------------------------------------------------------------*/
uint8_t
usb_proc_is_gone(struct usb_process *up)
{
return (0);
}
/*------------------------------------------------------------------------*
* usb_proc_mwait
*
* This function will return when the USB process message pointed to
* by "pm" is no longer on a queue. This function must be called
* having "usb_proc_mtx" locked.
*------------------------------------------------------------------------*/
void
usb_proc_mwait(struct usb_process *up, void *_pm0, void *_pm1)
{
struct usb_proc_msg *pm0 = _pm0;
struct usb_proc_msg *pm1 = _pm1;
/* Just remove the messages from the queue. */
if (pm0->pm_qentry.tqe_prev) {
TAILQ_REMOVE(&up->up_qhead, pm0, pm_qentry);
pm0->pm_qentry.tqe_prev = NULL;
}
if (pm1->pm_qentry.tqe_prev) {
TAILQ_REMOVE(&up->up_qhead, pm1, pm_qentry);
pm1->pm_qentry.tqe_prev = NULL;
}
}
/*------------------------------------------------------------------------*
* SYSTEM attach
*------------------------------------------------------------------------*/
#ifdef USB_PCI_PROBE_LIST
static device_method_t pci_methods[] = {
DEVMETHOD_END
};
static driver_t pci_driver = {
.name = "pci",
.methods = pci_methods,
};
static devclass_t pci_devclass;
DRIVER_MODULE(pci, pci, pci_driver, pci_devclass, 0, 0);
static const char *usb_pci_devices[] = {
USB_PCI_PROBE_LIST
};
#define USB_PCI_USB_MAX (sizeof(usb_pci_devices) / sizeof(void *))
static device_t usb_pci_dev[USB_PCI_USB_MAX];
static void
usb_pci_mod_load(void *arg)
{
uint32_t x;
usb_pci_root = device_add_child(NULL, "pci", -1);
if (usb_pci_root == NULL)
return;
for (x = 0; x != USB_PCI_USB_MAX; x++) {
usb_pci_dev[x] = device_add_child(usb_pci_root, usb_pci_devices[x], -1);
if (usb_pci_dev[x] == NULL)
continue;
if (device_probe_and_attach(usb_pci_dev[x])) {
device_printf(usb_pci_dev[x],
"WARNING: Probe and attach failed!\n");
}
}
}
SYSINIT(usb_pci_mod_load, SI_SUB_RUN_SCHEDULER, SI_ORDER_MIDDLE, usb_pci_mod_load, 0);
static void
usb_pci_mod_unload(void *arg)
{
uint32_t x;
for (x = 0; x != USB_PCI_USB_MAX; x++) {
if (usb_pci_dev[x]) {
device_detach(usb_pci_dev[x]);
device_delete_child(usb_pci_root, usb_pci_dev[x]);
}
}
if (usb_pci_root)
device_delete_child(NULL, usb_pci_root);
}
SYSUNINIT(usb_pci_mod_unload, SI_SUB_RUN_SCHEDULER, SI_ORDER_MIDDLE, usb_pci_mod_unload, 0);
#endif
/*------------------------------------------------------------------------*
* MALLOC API
*------------------------------------------------------------------------*/
#ifndef HAVE_MALLOC
#define USB_POOL_ALIGN 8
static uint8_t usb_pool[USB_POOL_SIZE] __aligned(USB_POOL_ALIGN);
static uint32_t usb_pool_rem = USB_POOL_SIZE;
static uint32_t usb_pool_entries;
struct malloc_hdr {
TAILQ_ENTRY(malloc_hdr) entry;
uint32_t size;
} __aligned(USB_POOL_ALIGN);
static TAILQ_HEAD(, malloc_hdr) malloc_head =
TAILQ_HEAD_INITIALIZER(malloc_head);
void *
usb_malloc(unsigned long size)
{
struct malloc_hdr *hdr;
size = (size + USB_POOL_ALIGN - 1) & ~(USB_POOL_ALIGN - 1);
size += sizeof(struct malloc_hdr);
TAILQ_FOREACH(hdr, &malloc_head, entry) {
if (hdr->size == size)
break;
}
if (hdr) {
DPRINTF("MALLOC: Entries = %d; Remainder = %d; Size = %d\n",
(int)usb_pool_entries, (int)usb_pool_rem, (int)size);
TAILQ_REMOVE(&malloc_head, hdr, entry);
memset(hdr + 1, 0, hdr->size - sizeof(*hdr));
return (hdr + 1);
}
if (usb_pool_rem >= size) {
hdr = (void *)(usb_pool + USB_POOL_SIZE - usb_pool_rem);
hdr->size = size;
usb_pool_rem -= size;
usb_pool_entries++;
DPRINTF("MALLOC: Entries = %d; Remainder = %d; Size = %d\n",
(int)usb_pool_entries, (int)usb_pool_rem, (int)size);
memset(hdr + 1, 0, hdr->size - sizeof(*hdr));
return (hdr + 1);
}
return (NULL);
}
void
usb_free(void *arg)
{
struct malloc_hdr *hdr;
if (arg == NULL)
return;
hdr = arg;
hdr--;
TAILQ_INSERT_TAIL(&malloc_head, hdr, entry);
}
#endif
char *
usb_strdup(const char *str)
{
char *tmp;
int len;
len = 1 + strlen(str);
tmp = malloc(len,XXX,XXX);
if (tmp == NULL)
return (NULL);
memcpy(tmp, str, len);
return (tmp);
}