freebsd-dev/sys/dev/usb/storage/umass.c

3019 lines
80 KiB
C

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*-
* Copyright (c) 1999 MAEKAWA Masahide <bishop@rr.iij4u.or.jp>,
* Nick Hibma <n_hibma@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
* $NetBSD: umass.c,v 1.28 2000/04/02 23:46:53 augustss Exp $
*/
/* Also already merged from NetBSD:
* $NetBSD: umass.c,v 1.67 2001/11/25 19:05:22 augustss Exp $
* $NetBSD: umass.c,v 1.90 2002/11/04 19:17:33 pooka Exp $
* $NetBSD: umass.c,v 1.108 2003/11/07 17:03:25 wiz Exp $
* $NetBSD: umass.c,v 1.109 2003/12/04 13:57:31 keihan Exp $
*/
/*
* Universal Serial Bus Mass Storage Class specs:
* http://www.usb.org/developers/devclass_docs/usb_msc_overview_1.2.pdf
* http://www.usb.org/developers/devclass_docs/usbmassbulk_10.pdf
* http://www.usb.org/developers/devclass_docs/usb_msc_cbi_1.1.pdf
* http://www.usb.org/developers/devclass_docs/usbmass-ufi10.pdf
*/
/*
* Ported to NetBSD by Lennart Augustsson <augustss@NetBSD.org>.
* Parts of the code written by Jason R. Thorpe <thorpej@shagadelic.org>.
*/
/*
* The driver handles 3 Wire Protocols
* - Command/Bulk/Interrupt (CBI)
* - Command/Bulk/Interrupt with Command Completion Interrupt (CBI with CCI)
* - Mass Storage Bulk-Only (BBB)
* (BBB refers Bulk/Bulk/Bulk for Command/Data/Status phases)
*
* Over these wire protocols it handles the following command protocols
* - SCSI
* - UFI (floppy command set)
* - 8070i (ATAPI)
*
* UFI and 8070i (ATAPI) are transformed versions of the SCSI command set. The
* sc->sc_transform method is used to convert the commands into the appropriate
* format (if at all necessary). For example, UFI requires all commands to be
* 12 bytes in length amongst other things.
*
* The source code below is marked and can be split into a number of pieces
* (in this order):
*
* - probe/attach/detach
* - generic transfer routines
* - BBB
* - CBI
* - CBI_I (in addition to functions from CBI)
* - CAM (Common Access Method)
* - SCSI
* - UFI
* - 8070i (ATAPI)
*
* The protocols are implemented using a state machine, for the transfers as
* well as for the resets. The state machine is contained in umass_t_*_callback.
* The state machine is started through either umass_command_start() or
* umass_reset().
*
* The reason for doing this is a) CAM performs a lot better this way and b) it
* avoids using tsleep from interrupt context (for example after a failed
* transfer).
*/
/*
* The SCSI related part of this driver has been derived from the
* dev/ppbus/vpo.c driver, by Nicolas Souchu (nsouch@FreeBSD.org).
*
* The CAM layer uses so called actions which are messages sent to the host
* adapter for completion. The actions come in through umass_cam_action. The
* appropriate block of routines is called depending on the transport protocol
* in use. When the transfer has finished, these routines call
* umass_cam_cb again to complete the CAM command.
*/
#include <sys/stdint.h>
#include <sys/stddef.h>
#include <sys/param.h>
#include <sys/queue.h>
#include <sys/types.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/module.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/condvar.h>
#include <sys/sysctl.h>
#include <sys/sx.h>
#include <sys/unistd.h>
#include <sys/callout.h>
#include <sys/malloc.h>
#include <sys/priv.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include "usbdevs.h"
#include <dev/usb/quirk/usb_quirk.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_da.h>
#include <cam/cam_periph.h>
#ifdef USB_DEBUG
#define DIF(m, x) \
do { \
if (umass_debug & (m)) { x ; } \
} while (0)
#define DPRINTF(sc, m, fmt, ...) \
do { \
if (umass_debug & (m)) { \
printf("%s:%s: " fmt, \
(sc) ? (const char *)(sc)->sc_name : \
(const char *)"umassX", \
__FUNCTION__ ,## __VA_ARGS__); \
} \
} while (0)
#define UDMASS_GEN 0x00010000 /* general */
#define UDMASS_SCSI 0x00020000 /* scsi */
#define UDMASS_UFI 0x00040000 /* ufi command set */
#define UDMASS_ATAPI 0x00080000 /* 8070i command set */
#define UDMASS_CMD (UDMASS_SCSI|UDMASS_UFI|UDMASS_ATAPI)
#define UDMASS_USB 0x00100000 /* USB general */
#define UDMASS_BBB 0x00200000 /* Bulk-Only transfers */
#define UDMASS_CBI 0x00400000 /* CBI transfers */
#define UDMASS_WIRE (UDMASS_BBB|UDMASS_CBI)
#define UDMASS_ALL 0xffff0000 /* all of the above */
static int umass_debug;
static int umass_throttle;
static SYSCTL_NODE(_hw_usb, OID_AUTO, umass, CTLFLAG_RW, 0, "USB umass");
SYSCTL_INT(_hw_usb_umass, OID_AUTO, debug, CTLFLAG_RWTUN,
&umass_debug, 0, "umass debug level");
SYSCTL_INT(_hw_usb_umass, OID_AUTO, throttle, CTLFLAG_RWTUN,
&umass_throttle, 0, "Forced delay between commands in milliseconds");
#else
#define DIF(...) do { } while (0)
#define DPRINTF(...) do { } while (0)
#endif
#define UMASS_BULK_SIZE (1 << 17)
#define UMASS_CBI_DIAGNOSTIC_CMDLEN 12 /* bytes */
#define UMASS_MAX_CMDLEN MAX(12, CAM_MAX_CDBLEN) /* bytes */
/* USB transfer definitions */
#define UMASS_T_BBB_RESET1 0 /* Bulk-Only */
#define UMASS_T_BBB_RESET2 1
#define UMASS_T_BBB_RESET3 2
#define UMASS_T_BBB_COMMAND 3
#define UMASS_T_BBB_DATA_READ 4
#define UMASS_T_BBB_DATA_RD_CS 5
#define UMASS_T_BBB_DATA_WRITE 6
#define UMASS_T_BBB_DATA_WR_CS 7
#define UMASS_T_BBB_STATUS 8
#define UMASS_T_BBB_MAX 9
#define UMASS_T_CBI_RESET1 0 /* CBI */
#define UMASS_T_CBI_RESET2 1
#define UMASS_T_CBI_RESET3 2
#define UMASS_T_CBI_COMMAND 3
#define UMASS_T_CBI_DATA_READ 4
#define UMASS_T_CBI_DATA_RD_CS 5
#define UMASS_T_CBI_DATA_WRITE 6
#define UMASS_T_CBI_DATA_WR_CS 7
#define UMASS_T_CBI_STATUS 8
#define UMASS_T_CBI_RESET4 9
#define UMASS_T_CBI_MAX 10
#define UMASS_T_MAX MAX(UMASS_T_CBI_MAX, UMASS_T_BBB_MAX)
/* Generic definitions */
/* Direction for transfer */
#define DIR_NONE 0
#define DIR_IN 1
#define DIR_OUT 2
/* device name */
#define DEVNAME "umass"
#define DEVNAME_SIM "umass-sim"
/* Approximate maximum transfer speeds (assumes 33% overhead). */
#define UMASS_FULL_TRANSFER_SPEED 1000
#define UMASS_HIGH_TRANSFER_SPEED 40000
#define UMASS_SUPER_TRANSFER_SPEED 400000
#define UMASS_FLOPPY_TRANSFER_SPEED 20
#define UMASS_TIMEOUT 5000 /* ms */
/* CAM specific definitions */
#define UMASS_SCSIID_MAX 1 /* maximum number of drives expected */
#define UMASS_SCSIID_HOST UMASS_SCSIID_MAX
/* Bulk-Only features */
#define UR_BBB_RESET 0xff /* Bulk-Only reset */
#define UR_BBB_GET_MAX_LUN 0xfe /* Get maximum lun */
/* Command Block Wrapper */
typedef struct {
uDWord dCBWSignature;
#define CBWSIGNATURE 0x43425355
uDWord dCBWTag;
uDWord dCBWDataTransferLength;
uByte bCBWFlags;
#define CBWFLAGS_OUT 0x00
#define CBWFLAGS_IN 0x80
uByte bCBWLUN;
uByte bCDBLength;
#define CBWCDBLENGTH 16
uByte CBWCDB[CBWCDBLENGTH];
} __packed umass_bbb_cbw_t;
#define UMASS_BBB_CBW_SIZE 31
/* Command Status Wrapper */
typedef struct {
uDWord dCSWSignature;
#define CSWSIGNATURE 0x53425355
#define CSWSIGNATURE_IMAGINATION_DBX1 0x43425355
#define CSWSIGNATURE_OLYMPUS_C1 0x55425355
uDWord dCSWTag;
uDWord dCSWDataResidue;
uByte bCSWStatus;
#define CSWSTATUS_GOOD 0x0
#define CSWSTATUS_FAILED 0x1
#define CSWSTATUS_PHASE 0x2
} __packed umass_bbb_csw_t;
#define UMASS_BBB_CSW_SIZE 13
/* CBI features */
#define UR_CBI_ADSC 0x00
typedef union {
struct {
uint8_t type;
#define IDB_TYPE_CCI 0x00
uint8_t value;
#define IDB_VALUE_PASS 0x00
#define IDB_VALUE_FAIL 0x01
#define IDB_VALUE_PHASE 0x02
#define IDB_VALUE_PERSISTENT 0x03
#define IDB_VALUE_STATUS_MASK 0x03
} __packed common;
struct {
uint8_t asc;
uint8_t ascq;
} __packed ufi;
} __packed umass_cbi_sbl_t;
struct umass_softc; /* see below */
typedef void (umass_callback_t)(struct umass_softc *sc, union ccb *ccb,
uint32_t residue, uint8_t status);
#define STATUS_CMD_OK 0 /* everything ok */
#define STATUS_CMD_UNKNOWN 1 /* will have to fetch sense */
#define STATUS_CMD_FAILED 2 /* transfer was ok, command failed */
#define STATUS_WIRE_FAILED 3 /* couldn't even get command across */
typedef uint8_t (umass_transform_t)(struct umass_softc *sc, uint8_t *cmd_ptr,
uint8_t cmd_len);
/* Wire and command protocol */
#define UMASS_PROTO_BBB 0x0001 /* USB wire protocol */
#define UMASS_PROTO_CBI 0x0002
#define UMASS_PROTO_CBI_I 0x0004
#define UMASS_PROTO_WIRE 0x00ff /* USB wire protocol mask */
#define UMASS_PROTO_SCSI 0x0100 /* command protocol */
#define UMASS_PROTO_ATAPI 0x0200
#define UMASS_PROTO_UFI 0x0400
#define UMASS_PROTO_RBC 0x0800
#define UMASS_PROTO_COMMAND 0xff00 /* command protocol mask */
/* Device specific quirks */
#define NO_QUIRKS 0x0000
/*
* The drive does not support Test Unit Ready. Convert to Start Unit
*/
#define NO_TEST_UNIT_READY 0x0001
/*
* The drive does not reset the Unit Attention state after REQUEST
* SENSE has been sent. The INQUIRY command does not reset the UA
* either, and so CAM runs in circles trying to retrieve the initial
* INQUIRY data.
*/
#define RS_NO_CLEAR_UA 0x0002
/* The drive does not support START STOP. */
#define NO_START_STOP 0x0004
/* Don't ask for full inquiry data (255b). */
#define FORCE_SHORT_INQUIRY 0x0008
/* Needs to be initialised the Shuttle way */
#define SHUTTLE_INIT 0x0010
/* Drive needs to be switched to alternate iface 1 */
#define ALT_IFACE_1 0x0020
/* Drive does not do 1Mb/s, but just floppy speeds (20kb/s) */
#define FLOPPY_SPEED 0x0040
/* The device can't count and gets the residue of transfers wrong */
#define IGNORE_RESIDUE 0x0080
/* No GetMaxLun call */
#define NO_GETMAXLUN 0x0100
/* The device uses a weird CSWSIGNATURE. */
#define WRONG_CSWSIG 0x0200
/* Device cannot handle INQUIRY so fake a generic response */
#define NO_INQUIRY 0x0400
/* Device cannot handle INQUIRY EVPD, return CHECK CONDITION */
#define NO_INQUIRY_EVPD 0x0800
/* Pad all RBC requests to 12 bytes. */
#define RBC_PAD_TO_12 0x1000
/*
* Device reports number of sectors from READ_CAPACITY, not max
* sector number.
*/
#define READ_CAPACITY_OFFBY1 0x2000
/*
* Device cannot handle a SCSI synchronize cache command. Normally
* this quirk would be handled in the cam layer, but for IDE bridges
* we need to associate the quirk with the bridge and not the
* underlying disk device. This is handled by faking a success
* result.
*/
#define NO_SYNCHRONIZE_CACHE 0x4000
/* Device does not support 'PREVENT/ALLOW MEDIUM REMOVAL'. */
#define NO_PREVENT_ALLOW 0x8000
struct umass_softc {
struct scsi_sense cam_scsi_sense;
struct scsi_test_unit_ready cam_scsi_test_unit_ready;
struct mtx sc_mtx;
struct {
uint8_t *data_ptr;
union ccb *ccb;
umass_callback_t *callback;
uint32_t data_len; /* bytes */
uint32_t data_rem; /* bytes */
uint32_t data_timeout; /* ms */
uint32_t actlen; /* bytes */
uint8_t cmd_data[UMASS_MAX_CMDLEN];
uint8_t cmd_len; /* bytes */
uint8_t dir;
uint8_t lun;
} sc_transfer;
/* Bulk specific variables for transfers in progress */
umass_bbb_cbw_t cbw; /* command block wrapper */
umass_bbb_csw_t csw; /* command status wrapper */
/* CBI specific variables for transfers in progress */
umass_cbi_sbl_t sbl; /* status block */
device_t sc_dev;
struct usb_device *sc_udev;
struct cam_sim *sc_sim; /* SCSI Interface Module */
struct usb_xfer *sc_xfer[UMASS_T_MAX];
/*
* The command transform function is used to convert the SCSI
* commands into their derivatives, like UFI, ATAPI, and friends.
*/
umass_transform_t *sc_transform;
uint32_t sc_unit;
uint32_t sc_quirks; /* they got it almost right */
uint32_t sc_proto; /* wire and cmd protocol */
uint8_t sc_name[16];
uint8_t sc_iface_no; /* interface number */
uint8_t sc_maxlun; /* maximum LUN number, inclusive */
uint8_t sc_last_xfer_index;
uint8_t sc_status_try;
};
struct umass_probe_proto {
uint32_t quirks;
uint32_t proto;
int error;
};
/* prototypes */
static device_probe_t umass_probe;
static device_attach_t umass_attach;
static device_detach_t umass_detach;
static usb_callback_t umass_tr_error;
static usb_callback_t umass_t_bbb_reset1_callback;
static usb_callback_t umass_t_bbb_reset2_callback;
static usb_callback_t umass_t_bbb_reset3_callback;
static usb_callback_t umass_t_bbb_command_callback;
static usb_callback_t umass_t_bbb_data_read_callback;
static usb_callback_t umass_t_bbb_data_rd_cs_callback;
static usb_callback_t umass_t_bbb_data_write_callback;
static usb_callback_t umass_t_bbb_data_wr_cs_callback;
static usb_callback_t umass_t_bbb_status_callback;
static usb_callback_t umass_t_cbi_reset1_callback;
static usb_callback_t umass_t_cbi_reset2_callback;
static usb_callback_t umass_t_cbi_reset3_callback;
static usb_callback_t umass_t_cbi_reset4_callback;
static usb_callback_t umass_t_cbi_command_callback;
static usb_callback_t umass_t_cbi_data_read_callback;
static usb_callback_t umass_t_cbi_data_rd_cs_callback;
static usb_callback_t umass_t_cbi_data_write_callback;
static usb_callback_t umass_t_cbi_data_wr_cs_callback;
static usb_callback_t umass_t_cbi_status_callback;
static void umass_cancel_ccb(struct umass_softc *);
static void umass_init_shuttle(struct umass_softc *);
static void umass_reset(struct umass_softc *);
static void umass_t_bbb_data_clear_stall_callback(struct usb_xfer *,
uint8_t, uint8_t, usb_error_t);
static void umass_command_start(struct umass_softc *, uint8_t, void *,
uint32_t, uint32_t, umass_callback_t *, union ccb *);
static uint8_t umass_bbb_get_max_lun(struct umass_softc *);
static void umass_cbi_start_status(struct umass_softc *);
static void umass_t_cbi_data_clear_stall_callback(struct usb_xfer *,
uint8_t, uint8_t, usb_error_t);
static int umass_cam_attach_sim(struct umass_softc *);
static void umass_cam_attach(struct umass_softc *);
static void umass_cam_detach_sim(struct umass_softc *);
static void umass_cam_action(struct cam_sim *, union ccb *);
static void umass_cam_poll(struct cam_sim *);
static void umass_cam_cb(struct umass_softc *, union ccb *, uint32_t,
uint8_t);
static void umass_cam_sense_cb(struct umass_softc *, union ccb *, uint32_t,
uint8_t);
static void umass_cam_quirk_cb(struct umass_softc *, union ccb *, uint32_t,
uint8_t);
static uint8_t umass_scsi_transform(struct umass_softc *, uint8_t *, uint8_t);
static uint8_t umass_rbc_transform(struct umass_softc *, uint8_t *, uint8_t);
static uint8_t umass_ufi_transform(struct umass_softc *, uint8_t *, uint8_t);
static uint8_t umass_atapi_transform(struct umass_softc *, uint8_t *,
uint8_t);
static uint8_t umass_no_transform(struct umass_softc *, uint8_t *, uint8_t);
static uint8_t umass_std_transform(struct umass_softc *, union ccb *, uint8_t
*, uint8_t);
#ifdef USB_DEBUG
static void umass_bbb_dump_cbw(struct umass_softc *, umass_bbb_cbw_t *);
static void umass_bbb_dump_csw(struct umass_softc *, umass_bbb_csw_t *);
static void umass_cbi_dump_cmd(struct umass_softc *, void *, uint8_t);
static void umass_dump_buffer(struct umass_softc *, uint8_t *, uint32_t,
uint32_t);
#endif
static struct usb_config umass_bbb_config[UMASS_T_BBB_MAX] = {
[UMASS_T_BBB_RESET1] = {
.type = UE_CONTROL,
.endpoint = 0x00, /* Control pipe */
.direction = UE_DIR_ANY,
.bufsize = sizeof(struct usb_device_request),
.callback = &umass_t_bbb_reset1_callback,
.timeout = 5000, /* 5 seconds */
.interval = 500, /* 500 milliseconds */
},
[UMASS_T_BBB_RESET2] = {
.type = UE_CONTROL,
.endpoint = 0x00, /* Control pipe */
.direction = UE_DIR_ANY,
.bufsize = sizeof(struct usb_device_request),
.callback = &umass_t_bbb_reset2_callback,
.timeout = 5000, /* 5 seconds */
.interval = 50, /* 50 milliseconds */
},
[UMASS_T_BBB_RESET3] = {
.type = UE_CONTROL,
.endpoint = 0x00, /* Control pipe */
.direction = UE_DIR_ANY,
.bufsize = sizeof(struct usb_device_request),
.callback = &umass_t_bbb_reset3_callback,
.timeout = 5000, /* 5 seconds */
.interval = 50, /* 50 milliseconds */
},
[UMASS_T_BBB_COMMAND] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_OUT,
.bufsize = sizeof(umass_bbb_cbw_t),
.callback = &umass_t_bbb_command_callback,
.timeout = 5000, /* 5 seconds */
},
[UMASS_T_BBB_DATA_READ] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_IN,
.bufsize = UMASS_BULK_SIZE,
.flags = {.proxy_buffer = 1,.short_xfer_ok = 1,.ext_buffer=1,},
.callback = &umass_t_bbb_data_read_callback,
.timeout = 0, /* overwritten later */
},
[UMASS_T_BBB_DATA_RD_CS] = {
.type = UE_CONTROL,
.endpoint = 0x00, /* Control pipe */
.direction = UE_DIR_ANY,
.bufsize = sizeof(struct usb_device_request),
.callback = &umass_t_bbb_data_rd_cs_callback,
.timeout = 5000, /* 5 seconds */
},
[UMASS_T_BBB_DATA_WRITE] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_OUT,
.bufsize = UMASS_BULK_SIZE,
.flags = {.proxy_buffer = 1,.short_xfer_ok = 1,.ext_buffer=1,},
.callback = &umass_t_bbb_data_write_callback,
.timeout = 0, /* overwritten later */
},
[UMASS_T_BBB_DATA_WR_CS] = {
.type = UE_CONTROL,
.endpoint = 0x00, /* Control pipe */
.direction = UE_DIR_ANY,
.bufsize = sizeof(struct usb_device_request),
.callback = &umass_t_bbb_data_wr_cs_callback,
.timeout = 5000, /* 5 seconds */
},
[UMASS_T_BBB_STATUS] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_IN,
.bufsize = sizeof(umass_bbb_csw_t),
.flags = {.short_xfer_ok = 1,},
.callback = &umass_t_bbb_status_callback,
.timeout = 5000, /* ms */
},
};
static struct usb_config umass_cbi_config[UMASS_T_CBI_MAX] = {
[UMASS_T_CBI_RESET1] = {
.type = UE_CONTROL,
.endpoint = 0x00, /* Control pipe */
.direction = UE_DIR_ANY,
.bufsize = (sizeof(struct usb_device_request) +
UMASS_CBI_DIAGNOSTIC_CMDLEN),
.callback = &umass_t_cbi_reset1_callback,
.timeout = 5000, /* 5 seconds */
.interval = 500, /* 500 milliseconds */
},
[UMASS_T_CBI_RESET2] = {
.type = UE_CONTROL,
.endpoint = 0x00, /* Control pipe */
.direction = UE_DIR_ANY,
.bufsize = sizeof(struct usb_device_request),
.callback = &umass_t_cbi_reset2_callback,
.timeout = 5000, /* 5 seconds */
.interval = 50, /* 50 milliseconds */
},
[UMASS_T_CBI_RESET3] = {
.type = UE_CONTROL,
.endpoint = 0x00, /* Control pipe */
.direction = UE_DIR_ANY,
.bufsize = sizeof(struct usb_device_request),
.callback = &umass_t_cbi_reset3_callback,
.timeout = 5000, /* 5 seconds */
.interval = 50, /* 50 milliseconds */
},
[UMASS_T_CBI_COMMAND] = {
.type = UE_CONTROL,
.endpoint = 0x00, /* Control pipe */
.direction = UE_DIR_ANY,
.bufsize = (sizeof(struct usb_device_request) +
UMASS_MAX_CMDLEN),
.callback = &umass_t_cbi_command_callback,
.timeout = 5000, /* 5 seconds */
},
[UMASS_T_CBI_DATA_READ] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_IN,
.bufsize = UMASS_BULK_SIZE,
.flags = {.proxy_buffer = 1,.short_xfer_ok = 1,.ext_buffer=1,},
.callback = &umass_t_cbi_data_read_callback,
.timeout = 0, /* overwritten later */
},
[UMASS_T_CBI_DATA_RD_CS] = {
.type = UE_CONTROL,
.endpoint = 0x00, /* Control pipe */
.direction = UE_DIR_ANY,
.bufsize = sizeof(struct usb_device_request),
.callback = &umass_t_cbi_data_rd_cs_callback,
.timeout = 5000, /* 5 seconds */
},
[UMASS_T_CBI_DATA_WRITE] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_OUT,
.bufsize = UMASS_BULK_SIZE,
.flags = {.proxy_buffer = 1,.short_xfer_ok = 1,.ext_buffer=1,},
.callback = &umass_t_cbi_data_write_callback,
.timeout = 0, /* overwritten later */
},
[UMASS_T_CBI_DATA_WR_CS] = {
.type = UE_CONTROL,
.endpoint = 0x00, /* Control pipe */
.direction = UE_DIR_ANY,
.bufsize = sizeof(struct usb_device_request),
.callback = &umass_t_cbi_data_wr_cs_callback,
.timeout = 5000, /* 5 seconds */
},
[UMASS_T_CBI_STATUS] = {
.type = UE_INTERRUPT,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_IN,
.flags = {.short_xfer_ok = 1,.no_pipe_ok = 1,},
.bufsize = sizeof(umass_cbi_sbl_t),
.callback = &umass_t_cbi_status_callback,
.timeout = 5000, /* ms */
},
[UMASS_T_CBI_RESET4] = {
.type = UE_CONTROL,
.endpoint = 0x00, /* Control pipe */
.direction = UE_DIR_ANY,
.bufsize = sizeof(struct usb_device_request),
.callback = &umass_t_cbi_reset4_callback,
.timeout = 5000, /* ms */
},
};
/* If device cannot return valid inquiry data, fake it */
static const uint8_t fake_inq_data[SHORT_INQUIRY_LENGTH] = {
0, /* removable */ 0x80, SCSI_REV_2, SCSI_REV_2,
/* additional_length */ 31, 0, 0, 0
};
#define UFI_COMMAND_LENGTH 12 /* UFI commands are always 12 bytes */
#define ATAPI_COMMAND_LENGTH 12 /* ATAPI commands are always 12 bytes */
static devclass_t umass_devclass;
static device_method_t umass_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, umass_probe),
DEVMETHOD(device_attach, umass_attach),
DEVMETHOD(device_detach, umass_detach),
DEVMETHOD_END
};
static driver_t umass_driver = {
.name = "umass",
.methods = umass_methods,
.size = sizeof(struct umass_softc),
};
DRIVER_MODULE(umass, uhub, umass_driver, umass_devclass, NULL, 0);
MODULE_DEPEND(umass, usb, 1, 1, 1);
MODULE_DEPEND(umass, cam, 1, 1, 1);
MODULE_VERSION(umass, 1);
/*
* USB device probe/attach/detach
*/
static const STRUCT_USB_HOST_ID __used umass_devs[] = {
/* generic mass storage class */
{USB_IFACE_CLASS(UICLASS_MASS),},
};
static uint16_t
umass_get_proto(struct usb_interface *iface)
{
struct usb_interface_descriptor *id;
uint16_t retval;
retval = 0;
/* Check for a standards compliant device */
id = usbd_get_interface_descriptor(iface);
if ((id == NULL) ||
(id->bInterfaceClass != UICLASS_MASS)) {
goto done;
}
switch (id->bInterfaceSubClass) {
case UISUBCLASS_SCSI:
retval |= UMASS_PROTO_SCSI;
break;
case UISUBCLASS_UFI:
retval |= UMASS_PROTO_UFI;
break;
case UISUBCLASS_RBC:
retval |= UMASS_PROTO_RBC;
break;
case UISUBCLASS_SFF8020I:
case UISUBCLASS_SFF8070I:
retval |= UMASS_PROTO_ATAPI;
break;
default:
goto done;
}
switch (id->bInterfaceProtocol) {
case UIPROTO_MASS_CBI:
retval |= UMASS_PROTO_CBI;
break;
case UIPROTO_MASS_CBI_I:
retval |= UMASS_PROTO_CBI_I;
break;
case UIPROTO_MASS_BBB_OLD:
case UIPROTO_MASS_BBB:
retval |= UMASS_PROTO_BBB;
break;
default:
goto done;
}
done:
return (retval);
}
/*
* Match the device we are seeing with the devices supported.
*/
static struct umass_probe_proto
umass_probe_proto(device_t dev, struct usb_attach_arg *uaa)
{
struct umass_probe_proto ret;
uint32_t quirks = NO_QUIRKS;
uint32_t proto = umass_get_proto(uaa->iface);
memset(&ret, 0, sizeof(ret));
ret.error = BUS_PROBE_GENERIC;
/* Search for protocol enforcement */
if (usb_test_quirk(uaa, UQ_MSC_FORCE_WIRE_BBB)) {
proto &= ~UMASS_PROTO_WIRE;
proto |= UMASS_PROTO_BBB;
} else if (usb_test_quirk(uaa, UQ_MSC_FORCE_WIRE_CBI)) {
proto &= ~UMASS_PROTO_WIRE;
proto |= UMASS_PROTO_CBI;
} else if (usb_test_quirk(uaa, UQ_MSC_FORCE_WIRE_CBI_I)) {
proto &= ~UMASS_PROTO_WIRE;
proto |= UMASS_PROTO_CBI_I;
}
if (usb_test_quirk(uaa, UQ_MSC_FORCE_PROTO_SCSI)) {
proto &= ~UMASS_PROTO_COMMAND;
proto |= UMASS_PROTO_SCSI;
} else if (usb_test_quirk(uaa, UQ_MSC_FORCE_PROTO_ATAPI)) {
proto &= ~UMASS_PROTO_COMMAND;
proto |= UMASS_PROTO_ATAPI;
} else if (usb_test_quirk(uaa, UQ_MSC_FORCE_PROTO_UFI)) {
proto &= ~UMASS_PROTO_COMMAND;
proto |= UMASS_PROTO_UFI;
} else if (usb_test_quirk(uaa, UQ_MSC_FORCE_PROTO_RBC)) {
proto &= ~UMASS_PROTO_COMMAND;
proto |= UMASS_PROTO_RBC;
}
/* Check if the protocol is invalid */
if ((proto & UMASS_PROTO_COMMAND) == 0) {
ret.error = ENXIO;
goto done;
}
if ((proto & UMASS_PROTO_WIRE) == 0) {
ret.error = ENXIO;
goto done;
}
/* Search for quirks */
if (usb_test_quirk(uaa, UQ_MSC_NO_TEST_UNIT_READY))
quirks |= NO_TEST_UNIT_READY;
if (usb_test_quirk(uaa, UQ_MSC_NO_RS_CLEAR_UA))
quirks |= RS_NO_CLEAR_UA;
if (usb_test_quirk(uaa, UQ_MSC_NO_START_STOP))
quirks |= NO_START_STOP;
if (usb_test_quirk(uaa, UQ_MSC_NO_GETMAXLUN))
quirks |= NO_GETMAXLUN;
if (usb_test_quirk(uaa, UQ_MSC_NO_INQUIRY))
quirks |= NO_INQUIRY;
if (usb_test_quirk(uaa, UQ_MSC_NO_INQUIRY_EVPD))
quirks |= NO_INQUIRY_EVPD;
if (usb_test_quirk(uaa, UQ_MSC_NO_PREVENT_ALLOW))
quirks |= NO_PREVENT_ALLOW;
if (usb_test_quirk(uaa, UQ_MSC_NO_SYNC_CACHE))
quirks |= NO_SYNCHRONIZE_CACHE;
if (usb_test_quirk(uaa, UQ_MSC_SHUTTLE_INIT))
quirks |= SHUTTLE_INIT;
if (usb_test_quirk(uaa, UQ_MSC_ALT_IFACE_1))
quirks |= ALT_IFACE_1;
if (usb_test_quirk(uaa, UQ_MSC_FLOPPY_SPEED))
quirks |= FLOPPY_SPEED;
if (usb_test_quirk(uaa, UQ_MSC_IGNORE_RESIDUE))
quirks |= IGNORE_RESIDUE;
if (usb_test_quirk(uaa, UQ_MSC_WRONG_CSWSIG))
quirks |= WRONG_CSWSIG;
if (usb_test_quirk(uaa, UQ_MSC_RBC_PAD_TO_12))
quirks |= RBC_PAD_TO_12;
if (usb_test_quirk(uaa, UQ_MSC_READ_CAP_OFFBY1))
quirks |= READ_CAPACITY_OFFBY1;
if (usb_test_quirk(uaa, UQ_MSC_FORCE_SHORT_INQ))
quirks |= FORCE_SHORT_INQUIRY;
done:
ret.quirks = quirks;
ret.proto = proto;
return (ret);
}
static int
umass_probe(device_t dev)
{
struct usb_attach_arg *uaa = device_get_ivars(dev);
struct umass_probe_proto temp;
if (uaa->usb_mode != USB_MODE_HOST) {
return (ENXIO);
}
temp = umass_probe_proto(dev, uaa);
return (temp.error);
}
static int
umass_attach(device_t dev)
{
struct umass_softc *sc = device_get_softc(dev);
struct usb_attach_arg *uaa = device_get_ivars(dev);
struct umass_probe_proto temp = umass_probe_proto(dev, uaa);
struct usb_interface_descriptor *id;
int err;
/*
* NOTE: the softc struct is cleared in device_set_driver.
* We can safely call umass_detach without specifically
* initializing the struct.
*/
sc->sc_dev = dev;
sc->sc_udev = uaa->device;
sc->sc_proto = temp.proto;
sc->sc_quirks = temp.quirks;
sc->sc_unit = device_get_unit(dev);
snprintf(sc->sc_name, sizeof(sc->sc_name),
"%s", device_get_nameunit(dev));
device_set_usb_desc(dev);
mtx_init(&sc->sc_mtx, device_get_nameunit(dev),
NULL, MTX_DEF | MTX_RECURSE);
/* get interface index */
id = usbd_get_interface_descriptor(uaa->iface);
if (id == NULL) {
device_printf(dev, "failed to get "
"interface number\n");
goto detach;
}
sc->sc_iface_no = id->bInterfaceNumber;
#ifdef USB_DEBUG
device_printf(dev, " ");
switch (sc->sc_proto & UMASS_PROTO_COMMAND) {
case UMASS_PROTO_SCSI:
printf("SCSI");
break;
case UMASS_PROTO_ATAPI:
printf("8070i (ATAPI)");
break;
case UMASS_PROTO_UFI:
printf("UFI");
break;
case UMASS_PROTO_RBC:
printf("RBC");
break;
default:
printf("(unknown 0x%02x)",
sc->sc_proto & UMASS_PROTO_COMMAND);
break;
}
printf(" over ");
switch (sc->sc_proto & UMASS_PROTO_WIRE) {
case UMASS_PROTO_BBB:
printf("Bulk-Only");
break;
case UMASS_PROTO_CBI: /* uses Comand/Bulk pipes */
printf("CBI");
break;
case UMASS_PROTO_CBI_I: /* uses Comand/Bulk/Interrupt pipes */
printf("CBI with CCI");
break;
default:
printf("(unknown 0x%02x)",
sc->sc_proto & UMASS_PROTO_WIRE);
}
printf("; quirks = 0x%04x\n", sc->sc_quirks);
#endif
if (sc->sc_quirks & ALT_IFACE_1) {
err = usbd_set_alt_interface_index
(uaa->device, uaa->info.bIfaceIndex, 1);
if (err) {
DPRINTF(sc, UDMASS_USB, "could not switch to "
"Alt Interface 1\n");
goto detach;
}
}
/* allocate all required USB transfers */
if (sc->sc_proto & UMASS_PROTO_BBB) {
err = usbd_transfer_setup(uaa->device,
&uaa->info.bIfaceIndex, sc->sc_xfer, umass_bbb_config,
UMASS_T_BBB_MAX, sc, &sc->sc_mtx);
/* skip reset first time */
sc->sc_last_xfer_index = UMASS_T_BBB_COMMAND;
} else if (sc->sc_proto & (UMASS_PROTO_CBI | UMASS_PROTO_CBI_I)) {
err = usbd_transfer_setup(uaa->device,
&uaa->info.bIfaceIndex, sc->sc_xfer, umass_cbi_config,
UMASS_T_CBI_MAX, sc, &sc->sc_mtx);
/* skip reset first time */
sc->sc_last_xfer_index = UMASS_T_CBI_COMMAND;
} else {
err = USB_ERR_INVAL;
}
if (err) {
device_printf(dev, "could not setup required "
"transfers, %s\n", usbd_errstr(err));
goto detach;
}
#ifdef USB_DEBUG
if (umass_throttle > 0) {
uint8_t x;
int iv;
iv = umass_throttle;
if (iv < 1)
iv = 1;
else if (iv > 8000)
iv = 8000;
for (x = 0; x != UMASS_T_MAX; x++) {
if (sc->sc_xfer[x] != NULL)
usbd_xfer_set_interval(sc->sc_xfer[x], iv);
}
}
#endif
sc->sc_transform =
(sc->sc_proto & UMASS_PROTO_SCSI) ? &umass_scsi_transform :
(sc->sc_proto & UMASS_PROTO_UFI) ? &umass_ufi_transform :
(sc->sc_proto & UMASS_PROTO_ATAPI) ? &umass_atapi_transform :
(sc->sc_proto & UMASS_PROTO_RBC) ? &umass_rbc_transform :
&umass_no_transform;
/* from here onwards the device can be used. */
if (sc->sc_quirks & SHUTTLE_INIT) {
umass_init_shuttle(sc);
}
/* get the maximum LUN supported by the device */
if (((sc->sc_proto & UMASS_PROTO_WIRE) == UMASS_PROTO_BBB) &&
!(sc->sc_quirks & NO_GETMAXLUN))
sc->sc_maxlun = umass_bbb_get_max_lun(sc);
else
sc->sc_maxlun = 0;
/* Prepare the SCSI command block */
sc->cam_scsi_sense.opcode = REQUEST_SENSE;
sc->cam_scsi_test_unit_ready.opcode = TEST_UNIT_READY;
/* register the SIM */
err = umass_cam_attach_sim(sc);
if (err) {
goto detach;
}
/* scan the SIM */
umass_cam_attach(sc);
DPRINTF(sc, UDMASS_GEN, "Attach finished\n");
return (0); /* success */
detach:
umass_detach(dev);
return (ENXIO); /* failure */
}
static int
umass_detach(device_t dev)
{
struct umass_softc *sc = device_get_softc(dev);
DPRINTF(sc, UDMASS_USB, "\n");
/* teardown our statemachine */
usbd_transfer_unsetup(sc->sc_xfer, UMASS_T_MAX);
mtx_lock(&sc->sc_mtx);
/* cancel any leftover CCB's */
umass_cancel_ccb(sc);
umass_cam_detach_sim(sc);
mtx_unlock(&sc->sc_mtx);
mtx_destroy(&sc->sc_mtx);
return (0); /* success */
}
static void
umass_init_shuttle(struct umass_softc *sc)
{
struct usb_device_request req;
usb_error_t err;
uint8_t status[2] = {0, 0};
/*
* The Linux driver does this, but no one can tell us what the
* command does.
*/
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = 1; /* XXX unknown command */
USETW(req.wValue, 0);
req.wIndex[0] = sc->sc_iface_no;
req.wIndex[1] = 0;
USETW(req.wLength, sizeof(status));
err = usbd_do_request(sc->sc_udev, NULL, &req, &status);
DPRINTF(sc, UDMASS_GEN, "Shuttle init returned 0x%02x%02x\n",
status[0], status[1]);
}
/*
* Generic functions to handle transfers
*/
static void
umass_transfer_start(struct umass_softc *sc, uint8_t xfer_index)
{
DPRINTF(sc, UDMASS_GEN, "transfer index = "
"%d\n", xfer_index);
if (sc->sc_xfer[xfer_index]) {
sc->sc_last_xfer_index = xfer_index;
usbd_transfer_start(sc->sc_xfer[xfer_index]);
} else {
umass_cancel_ccb(sc);
}
}
static void
umass_reset(struct umass_softc *sc)
{
DPRINTF(sc, UDMASS_GEN, "resetting device\n");
/*
* stop the last transfer, if not already stopped:
*/
usbd_transfer_stop(sc->sc_xfer[sc->sc_last_xfer_index]);
umass_transfer_start(sc, 0);
}
static void
umass_cancel_ccb(struct umass_softc *sc)
{
union ccb *ccb;
mtx_assert(&sc->sc_mtx, MA_OWNED);
ccb = sc->sc_transfer.ccb;
sc->sc_transfer.ccb = NULL;
sc->sc_last_xfer_index = 0;
if (ccb) {
(sc->sc_transfer.callback)
(sc, ccb, (sc->sc_transfer.data_len -
sc->sc_transfer.actlen), STATUS_WIRE_FAILED);
}
}
static void
umass_tr_error(struct usb_xfer *xfer, usb_error_t error)
{
struct umass_softc *sc = usbd_xfer_softc(xfer);
if (error != USB_ERR_CANCELLED) {
DPRINTF(sc, UDMASS_GEN, "transfer error, %s -> "
"reset\n", usbd_errstr(error));
}
umass_cancel_ccb(sc);
}
/*
* BBB protocol specific functions
*/
static void
umass_t_bbb_reset1_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct umass_softc *sc = usbd_xfer_softc(xfer);
struct usb_device_request req;
struct usb_page_cache *pc;
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
umass_transfer_start(sc, UMASS_T_BBB_RESET2);
return;
case USB_ST_SETUP:
/*
* Reset recovery (5.3.4 in Universal Serial Bus Mass Storage Class)
*
* For Reset Recovery the host shall issue in the following order:
* a) a Bulk-Only Mass Storage Reset
* b) a Clear Feature HALT to the Bulk-In endpoint
* c) a Clear Feature HALT to the Bulk-Out endpoint
*
* This is done in 3 steps, using 3 transfers:
* UMASS_T_BBB_RESET1
* UMASS_T_BBB_RESET2
* UMASS_T_BBB_RESET3
*/
DPRINTF(sc, UDMASS_BBB, "BBB reset!\n");
req.bmRequestType = UT_WRITE_CLASS_INTERFACE;
req.bRequest = UR_BBB_RESET; /* bulk only reset */
USETW(req.wValue, 0);
req.wIndex[0] = sc->sc_iface_no;
req.wIndex[1] = 0;
USETW(req.wLength, 0);
pc = usbd_xfer_get_frame(xfer, 0);
usbd_copy_in(pc, 0, &req, sizeof(req));
usbd_xfer_set_frame_len(xfer, 0, sizeof(req));
usbd_xfer_set_frames(xfer, 1);
usbd_transfer_submit(xfer);
return;
default: /* Error */
umass_tr_error(xfer, error);
return;
}
}
static void
umass_t_bbb_reset2_callback(struct usb_xfer *xfer, usb_error_t error)
{
umass_t_bbb_data_clear_stall_callback(xfer, UMASS_T_BBB_RESET3,
UMASS_T_BBB_DATA_READ, error);
}
static void
umass_t_bbb_reset3_callback(struct usb_xfer *xfer, usb_error_t error)
{
umass_t_bbb_data_clear_stall_callback(xfer, UMASS_T_BBB_COMMAND,
UMASS_T_BBB_DATA_WRITE, error);
}
static void
umass_t_bbb_data_clear_stall_callback(struct usb_xfer *xfer,
uint8_t next_xfer, uint8_t stall_xfer, usb_error_t error)
{
struct umass_softc *sc = usbd_xfer_softc(xfer);
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
tr_transferred:
umass_transfer_start(sc, next_xfer);
return;
case USB_ST_SETUP:
if (usbd_clear_stall_callback(xfer, sc->sc_xfer[stall_xfer])) {
goto tr_transferred;
}
return;
default: /* Error */
umass_tr_error(xfer, error);
return;
}
}
static void
umass_t_bbb_command_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct umass_softc *sc = usbd_xfer_softc(xfer);
union ccb *ccb = sc->sc_transfer.ccb;
struct usb_page_cache *pc;
uint32_t tag;
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
umass_transfer_start
(sc, ((sc->sc_transfer.dir == DIR_IN) ? UMASS_T_BBB_DATA_READ :
(sc->sc_transfer.dir == DIR_OUT) ? UMASS_T_BBB_DATA_WRITE :
UMASS_T_BBB_STATUS));
return;
case USB_ST_SETUP:
sc->sc_status_try = 0;
if (ccb) {
/*
* the initial value is not important,
* as long as the values are unique:
*/
tag = UGETDW(sc->cbw.dCBWTag) + 1;
USETDW(sc->cbw.dCBWSignature, CBWSIGNATURE);
USETDW(sc->cbw.dCBWTag, tag);
/*
* dCBWDataTransferLength:
* This field indicates the number of bytes of data that the host
* intends to transfer on the IN or OUT Bulk endpoint(as indicated by
* the Direction bit) during the execution of this command. If this
* field is set to 0, the device will expect that no data will be
* transferred IN or OUT during this command, regardless of the value
* of the Direction bit defined in dCBWFlags.
*/
USETDW(sc->cbw.dCBWDataTransferLength, sc->sc_transfer.data_len);
/*
* dCBWFlags:
* The bits of the Flags field are defined as follows:
* Bits 0-6 reserved
* Bit 7 Direction - this bit shall be ignored if the
* dCBWDataTransferLength field is zero.
* 0 = data Out from host to device
* 1 = data In from device to host
*/
sc->cbw.bCBWFlags = ((sc->sc_transfer.dir == DIR_IN) ?
CBWFLAGS_IN : CBWFLAGS_OUT);
sc->cbw.bCBWLUN = sc->sc_transfer.lun;
if (sc->sc_transfer.cmd_len > sizeof(sc->cbw.CBWCDB)) {
sc->sc_transfer.cmd_len = sizeof(sc->cbw.CBWCDB);
DPRINTF(sc, UDMASS_BBB, "Truncating long command!\n");
}
sc->cbw.bCDBLength = sc->sc_transfer.cmd_len;
/* copy SCSI command data */
memcpy(sc->cbw.CBWCDB, sc->sc_transfer.cmd_data,
sc->sc_transfer.cmd_len);
/* clear remaining command area */
memset(sc->cbw.CBWCDB +
sc->sc_transfer.cmd_len, 0,
sizeof(sc->cbw.CBWCDB) -
sc->sc_transfer.cmd_len);
DIF(UDMASS_BBB, umass_bbb_dump_cbw(sc, &sc->cbw));
pc = usbd_xfer_get_frame(xfer, 0);
usbd_copy_in(pc, 0, &sc->cbw, sizeof(sc->cbw));
usbd_xfer_set_frame_len(xfer, 0, sizeof(sc->cbw));
usbd_transfer_submit(xfer);
}
return;
default: /* Error */
umass_tr_error(xfer, error);
return;
}
}
static void
umass_t_bbb_data_read_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct umass_softc *sc = usbd_xfer_softc(xfer);
uint32_t max_bulk = usbd_xfer_max_len(xfer);
int actlen, sumlen;
usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
sc->sc_transfer.data_rem -= actlen;
sc->sc_transfer.data_ptr += actlen;
sc->sc_transfer.actlen += actlen;
if (actlen < sumlen) {
/* short transfer */
sc->sc_transfer.data_rem = 0;
}
case USB_ST_SETUP:
DPRINTF(sc, UDMASS_BBB, "max_bulk=%d, data_rem=%d\n",
max_bulk, sc->sc_transfer.data_rem);
if (sc->sc_transfer.data_rem == 0) {
umass_transfer_start(sc, UMASS_T_BBB_STATUS);
return;
}
if (max_bulk > sc->sc_transfer.data_rem) {
max_bulk = sc->sc_transfer.data_rem;
}
usbd_xfer_set_timeout(xfer, sc->sc_transfer.data_timeout);
usbd_xfer_set_frame_data(xfer, 0, sc->sc_transfer.data_ptr,
max_bulk);
usbd_transfer_submit(xfer);
return;
default: /* Error */
if (error == USB_ERR_CANCELLED) {
umass_tr_error(xfer, error);
} else {
umass_transfer_start(sc, UMASS_T_BBB_DATA_RD_CS);
}
return;
}
}
static void
umass_t_bbb_data_rd_cs_callback(struct usb_xfer *xfer, usb_error_t error)
{
umass_t_bbb_data_clear_stall_callback(xfer, UMASS_T_BBB_STATUS,
UMASS_T_BBB_DATA_READ, error);
}
static void
umass_t_bbb_data_write_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct umass_softc *sc = usbd_xfer_softc(xfer);
uint32_t max_bulk = usbd_xfer_max_len(xfer);
int actlen, sumlen;
usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
sc->sc_transfer.data_rem -= actlen;
sc->sc_transfer.data_ptr += actlen;
sc->sc_transfer.actlen += actlen;
if (actlen < sumlen) {
/* short transfer */
sc->sc_transfer.data_rem = 0;
}
case USB_ST_SETUP:
DPRINTF(sc, UDMASS_BBB, "max_bulk=%d, data_rem=%d\n",
max_bulk, sc->sc_transfer.data_rem);
if (sc->sc_transfer.data_rem == 0) {
umass_transfer_start(sc, UMASS_T_BBB_STATUS);
return;
}
if (max_bulk > sc->sc_transfer.data_rem) {
max_bulk = sc->sc_transfer.data_rem;
}
usbd_xfer_set_timeout(xfer, sc->sc_transfer.data_timeout);
usbd_xfer_set_frame_data(xfer, 0, sc->sc_transfer.data_ptr,
max_bulk);
usbd_transfer_submit(xfer);
return;
default: /* Error */
if (error == USB_ERR_CANCELLED) {
umass_tr_error(xfer, error);
} else {
umass_transfer_start(sc, UMASS_T_BBB_DATA_WR_CS);
}
return;
}
}
static void
umass_t_bbb_data_wr_cs_callback(struct usb_xfer *xfer, usb_error_t error)
{
umass_t_bbb_data_clear_stall_callback(xfer, UMASS_T_BBB_STATUS,
UMASS_T_BBB_DATA_WRITE, error);
}
static void
umass_t_bbb_status_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct umass_softc *sc = usbd_xfer_softc(xfer);
union ccb *ccb = sc->sc_transfer.ccb;
struct usb_page_cache *pc;
uint32_t residue;
int actlen;
usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL);
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
/*
* Do a full reset if there is something wrong with the CSW:
*/
sc->sc_status_try = 1;
/* Zero missing parts of the CSW: */
if (actlen < (int)sizeof(sc->csw))
memset(&sc->csw, 0, sizeof(sc->csw));
pc = usbd_xfer_get_frame(xfer, 0);
usbd_copy_out(pc, 0, &sc->csw, actlen);
DIF(UDMASS_BBB, umass_bbb_dump_csw(sc, &sc->csw));
residue = UGETDW(sc->csw.dCSWDataResidue);
if ((!residue) || (sc->sc_quirks & IGNORE_RESIDUE)) {
residue = (sc->sc_transfer.data_len -
sc->sc_transfer.actlen);
}
if (residue > sc->sc_transfer.data_len) {
DPRINTF(sc, UDMASS_BBB, "truncating residue from %d "
"to %d bytes\n", residue, sc->sc_transfer.data_len);
residue = sc->sc_transfer.data_len;
}
/* translate weird command-status signatures: */
if (sc->sc_quirks & WRONG_CSWSIG) {
uint32_t temp = UGETDW(sc->csw.dCSWSignature);
if ((temp == CSWSIGNATURE_OLYMPUS_C1) ||
(temp == CSWSIGNATURE_IMAGINATION_DBX1)) {
USETDW(sc->csw.dCSWSignature, CSWSIGNATURE);
}
}
/* check CSW and handle eventual error */
if (UGETDW(sc->csw.dCSWSignature) != CSWSIGNATURE) {
DPRINTF(sc, UDMASS_BBB, "bad CSW signature 0x%08x != 0x%08x\n",
UGETDW(sc->csw.dCSWSignature), CSWSIGNATURE);
/*
* Invalid CSW: Wrong signature or wrong tag might
* indicate that we lost synchronization. Reset the
* device.
*/
goto tr_error;
} else if (UGETDW(sc->csw.dCSWTag) != UGETDW(sc->cbw.dCBWTag)) {
DPRINTF(sc, UDMASS_BBB, "Invalid CSW: tag 0x%08x should be "
"0x%08x\n", UGETDW(sc->csw.dCSWTag),
UGETDW(sc->cbw.dCBWTag));
goto tr_error;
} else if (sc->csw.bCSWStatus > CSWSTATUS_PHASE) {
DPRINTF(sc, UDMASS_BBB, "Invalid CSW: status %d > %d\n",
sc->csw.bCSWStatus, CSWSTATUS_PHASE);
goto tr_error;
} else if (sc->csw.bCSWStatus == CSWSTATUS_PHASE) {
DPRINTF(sc, UDMASS_BBB, "Phase error, residue = "
"%d\n", residue);
goto tr_error;
} else if (sc->sc_transfer.actlen > sc->sc_transfer.data_len) {
DPRINTF(sc, UDMASS_BBB, "Buffer overrun %d > %d\n",
sc->sc_transfer.actlen, sc->sc_transfer.data_len);
goto tr_error;
} else if (sc->csw.bCSWStatus == CSWSTATUS_FAILED) {
DPRINTF(sc, UDMASS_BBB, "Command failed, residue = "
"%d\n", residue);
sc->sc_transfer.ccb = NULL;
sc->sc_last_xfer_index = UMASS_T_BBB_COMMAND;
(sc->sc_transfer.callback)
(sc, ccb, residue, STATUS_CMD_FAILED);
} else {
sc->sc_transfer.ccb = NULL;
sc->sc_last_xfer_index = UMASS_T_BBB_COMMAND;
(sc->sc_transfer.callback)
(sc, ccb, residue, STATUS_CMD_OK);
}
return;
case USB_ST_SETUP:
usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
usbd_transfer_submit(xfer);
return;
default:
tr_error:
DPRINTF(sc, UDMASS_BBB, "Failed to read CSW: %s, try %d\n",
usbd_errstr(error), sc->sc_status_try);
if ((error == USB_ERR_CANCELLED) ||
(sc->sc_status_try)) {
umass_tr_error(xfer, error);
} else {
sc->sc_status_try = 1;
umass_transfer_start(sc, UMASS_T_BBB_DATA_RD_CS);
}
return;
}
}
static void
umass_command_start(struct umass_softc *sc, uint8_t dir,
void *data_ptr, uint32_t data_len,
uint32_t data_timeout, umass_callback_t *callback,
union ccb *ccb)
{
sc->sc_transfer.lun = ccb->ccb_h.target_lun;
/*
* NOTE: assumes that "sc->sc_transfer.cmd_data" and
* "sc->sc_transfer.cmd_len" has been properly
* initialized.
*/
sc->sc_transfer.dir = data_len ? dir : DIR_NONE;
sc->sc_transfer.data_ptr = data_ptr;
sc->sc_transfer.data_len = data_len;
sc->sc_transfer.data_rem = data_len;
sc->sc_transfer.data_timeout = (data_timeout + UMASS_TIMEOUT);
sc->sc_transfer.actlen = 0;
sc->sc_transfer.callback = callback;
sc->sc_transfer.ccb = ccb;
if (sc->sc_xfer[sc->sc_last_xfer_index]) {
usbd_transfer_start(sc->sc_xfer[sc->sc_last_xfer_index]);
} else {
umass_cancel_ccb(sc);
}
}
static uint8_t
umass_bbb_get_max_lun(struct umass_softc *sc)
{
struct usb_device_request req;
usb_error_t err;
uint8_t buf = 0;
/* The Get Max Lun command is a class-specific request. */
req.bmRequestType = UT_READ_CLASS_INTERFACE;
req.bRequest = UR_BBB_GET_MAX_LUN;
USETW(req.wValue, 0);
req.wIndex[0] = sc->sc_iface_no;
req.wIndex[1] = 0;
USETW(req.wLength, 1);
err = usbd_do_request(sc->sc_udev, NULL, &req, &buf);
if (err) {
buf = 0;
/* Device doesn't support Get Max Lun request. */
printf("%s: Get Max Lun not supported (%s)\n",
sc->sc_name, usbd_errstr(err));
}
return (buf);
}
/*
* Command/Bulk/Interrupt (CBI) specific functions
*/
static void
umass_cbi_start_status(struct umass_softc *sc)
{
if (sc->sc_xfer[UMASS_T_CBI_STATUS]) {
umass_transfer_start(sc, UMASS_T_CBI_STATUS);
} else {
union ccb *ccb = sc->sc_transfer.ccb;
sc->sc_transfer.ccb = NULL;
sc->sc_last_xfer_index = UMASS_T_CBI_COMMAND;
(sc->sc_transfer.callback)
(sc, ccb, (sc->sc_transfer.data_len -
sc->sc_transfer.actlen), STATUS_CMD_UNKNOWN);
}
}
static void
umass_t_cbi_reset1_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct umass_softc *sc = usbd_xfer_softc(xfer);
struct usb_device_request req;
struct usb_page_cache *pc;
uint8_t buf[UMASS_CBI_DIAGNOSTIC_CMDLEN];
uint8_t i;
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
umass_transfer_start(sc, UMASS_T_CBI_RESET2);
break;
case USB_ST_SETUP:
/*
* Command Block Reset Protocol
*
* First send a reset request to the device. Then clear
* any possibly stalled bulk endpoints.
*
* This is done in 3 steps, using 3 transfers:
* UMASS_T_CBI_RESET1
* UMASS_T_CBI_RESET2
* UMASS_T_CBI_RESET3
* UMASS_T_CBI_RESET4 (only if there is an interrupt endpoint)
*/
DPRINTF(sc, UDMASS_CBI, "CBI reset!\n");
req.bmRequestType = UT_WRITE_CLASS_INTERFACE;
req.bRequest = UR_CBI_ADSC;
USETW(req.wValue, 0);
req.wIndex[0] = sc->sc_iface_no;
req.wIndex[1] = 0;
USETW(req.wLength, UMASS_CBI_DIAGNOSTIC_CMDLEN);
/*
* The 0x1d code is the SEND DIAGNOSTIC command. To
* distinguish between the two, the last 10 bytes of the CBL
* is filled with 0xff (section 2.2 of the CBI
* specification)
*/
buf[0] = 0x1d; /* Command Block Reset */
buf[1] = 0x04;
for (i = 2; i < UMASS_CBI_DIAGNOSTIC_CMDLEN; i++) {
buf[i] = 0xff;
}
pc = usbd_xfer_get_frame(xfer, 0);
usbd_copy_in(pc, 0, &req, sizeof(req));
pc = usbd_xfer_get_frame(xfer, 1);
usbd_copy_in(pc, 0, buf, sizeof(buf));
usbd_xfer_set_frame_len(xfer, 0, sizeof(req));
usbd_xfer_set_frame_len(xfer, 1, sizeof(buf));
usbd_xfer_set_frames(xfer, 2);
usbd_transfer_submit(xfer);
break;
default: /* Error */
if (error == USB_ERR_CANCELLED)
umass_tr_error(xfer, error);
else
umass_transfer_start(sc, UMASS_T_CBI_RESET2);
break;
}
}
static void
umass_t_cbi_reset2_callback(struct usb_xfer *xfer, usb_error_t error)
{
umass_t_cbi_data_clear_stall_callback(xfer, UMASS_T_CBI_RESET3,
UMASS_T_CBI_DATA_READ, error);
}
static void
umass_t_cbi_reset3_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct umass_softc *sc = usbd_xfer_softc(xfer);
umass_t_cbi_data_clear_stall_callback
(xfer, (sc->sc_xfer[UMASS_T_CBI_RESET4] &&
sc->sc_xfer[UMASS_T_CBI_STATUS]) ?
UMASS_T_CBI_RESET4 : UMASS_T_CBI_COMMAND,
UMASS_T_CBI_DATA_WRITE, error);
}
static void
umass_t_cbi_reset4_callback(struct usb_xfer *xfer, usb_error_t error)
{
umass_t_cbi_data_clear_stall_callback(xfer, UMASS_T_CBI_COMMAND,
UMASS_T_CBI_STATUS, error);
}
static void
umass_t_cbi_data_clear_stall_callback(struct usb_xfer *xfer,
uint8_t next_xfer, uint8_t stall_xfer, usb_error_t error)
{
struct umass_softc *sc = usbd_xfer_softc(xfer);
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
tr_transferred:
if (next_xfer == UMASS_T_CBI_STATUS) {
umass_cbi_start_status(sc);
} else {
umass_transfer_start(sc, next_xfer);
}
break;
case USB_ST_SETUP:
if (usbd_clear_stall_callback(xfer, sc->sc_xfer[stall_xfer])) {
goto tr_transferred; /* should not happen */
}
break;
default: /* Error */
umass_tr_error(xfer, error);
break;
}
}
static void
umass_t_cbi_command_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct umass_softc *sc = usbd_xfer_softc(xfer);
union ccb *ccb = sc->sc_transfer.ccb;
struct usb_device_request req;
struct usb_page_cache *pc;
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
if (sc->sc_transfer.dir == DIR_NONE) {
umass_cbi_start_status(sc);
} else {
umass_transfer_start
(sc, (sc->sc_transfer.dir == DIR_IN) ?
UMASS_T_CBI_DATA_READ : UMASS_T_CBI_DATA_WRITE);
}
break;
case USB_ST_SETUP:
if (ccb) {
/*
* do a CBI transfer with cmd_len bytes from
* cmd_data, possibly a data phase of data_len
* bytes from/to the device and finally a status
* read phase.
*/
req.bmRequestType = UT_WRITE_CLASS_INTERFACE;
req.bRequest = UR_CBI_ADSC;
USETW(req.wValue, 0);
req.wIndex[0] = sc->sc_iface_no;
req.wIndex[1] = 0;
req.wLength[0] = sc->sc_transfer.cmd_len;
req.wLength[1] = 0;
pc = usbd_xfer_get_frame(xfer, 0);
usbd_copy_in(pc, 0, &req, sizeof(req));
pc = usbd_xfer_get_frame(xfer, 1);
usbd_copy_in(pc, 0, sc->sc_transfer.cmd_data,
sc->sc_transfer.cmd_len);
usbd_xfer_set_frame_len(xfer, 0, sizeof(req));
usbd_xfer_set_frame_len(xfer, 1, sc->sc_transfer.cmd_len);
usbd_xfer_set_frames(xfer,
sc->sc_transfer.cmd_len ? 2 : 1);
DIF(UDMASS_CBI,
umass_cbi_dump_cmd(sc,
sc->sc_transfer.cmd_data,
sc->sc_transfer.cmd_len));
usbd_transfer_submit(xfer);
}
break;
default: /* Error */
/*
* STALL on the control pipe can be result of the command error.
* Attempt to clear this STALL same as for bulk pipe also
* results in command completion interrupt, but ASC/ASCQ there
* look like not always valid, so don't bother about it.
*/
if ((error == USB_ERR_STALLED) ||
(sc->sc_transfer.callback == &umass_cam_cb)) {
sc->sc_transfer.ccb = NULL;
(sc->sc_transfer.callback)
(sc, ccb, sc->sc_transfer.data_len,
STATUS_CMD_UNKNOWN);
} else {
umass_tr_error(xfer, error);
/* skip reset */
sc->sc_last_xfer_index = UMASS_T_CBI_COMMAND;
}
break;
}
}
static void
umass_t_cbi_data_read_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct umass_softc *sc = usbd_xfer_softc(xfer);
uint32_t max_bulk = usbd_xfer_max_len(xfer);
int actlen, sumlen;
usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
sc->sc_transfer.data_rem -= actlen;
sc->sc_transfer.data_ptr += actlen;
sc->sc_transfer.actlen += actlen;
if (actlen < sumlen) {
/* short transfer */
sc->sc_transfer.data_rem = 0;
}
case USB_ST_SETUP:
DPRINTF(sc, UDMASS_CBI, "max_bulk=%d, data_rem=%d\n",
max_bulk, sc->sc_transfer.data_rem);
if (sc->sc_transfer.data_rem == 0) {
umass_cbi_start_status(sc);
break;
}
if (max_bulk > sc->sc_transfer.data_rem) {
max_bulk = sc->sc_transfer.data_rem;
}
usbd_xfer_set_timeout(xfer, sc->sc_transfer.data_timeout);
usbd_xfer_set_frame_data(xfer, 0, sc->sc_transfer.data_ptr,
max_bulk);
usbd_transfer_submit(xfer);
break;
default: /* Error */
if ((error == USB_ERR_CANCELLED) ||
(sc->sc_transfer.callback != &umass_cam_cb)) {
umass_tr_error(xfer, error);
} else {
umass_transfer_start(sc, UMASS_T_CBI_DATA_RD_CS);
}
break;
}
}
static void
umass_t_cbi_data_rd_cs_callback(struct usb_xfer *xfer, usb_error_t error)
{
umass_t_cbi_data_clear_stall_callback(xfer, UMASS_T_CBI_STATUS,
UMASS_T_CBI_DATA_READ, error);
}
static void
umass_t_cbi_data_write_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct umass_softc *sc = usbd_xfer_softc(xfer);
uint32_t max_bulk = usbd_xfer_max_len(xfer);
int actlen, sumlen;
usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
sc->sc_transfer.data_rem -= actlen;
sc->sc_transfer.data_ptr += actlen;
sc->sc_transfer.actlen += actlen;
if (actlen < sumlen) {
/* short transfer */
sc->sc_transfer.data_rem = 0;
}
case USB_ST_SETUP:
DPRINTF(sc, UDMASS_CBI, "max_bulk=%d, data_rem=%d\n",
max_bulk, sc->sc_transfer.data_rem);
if (sc->sc_transfer.data_rem == 0) {
umass_cbi_start_status(sc);
break;
}
if (max_bulk > sc->sc_transfer.data_rem) {
max_bulk = sc->sc_transfer.data_rem;
}
usbd_xfer_set_timeout(xfer, sc->sc_transfer.data_timeout);
usbd_xfer_set_frame_data(xfer, 0, sc->sc_transfer.data_ptr,
max_bulk);
usbd_transfer_submit(xfer);
break;
default: /* Error */
if ((error == USB_ERR_CANCELLED) ||
(sc->sc_transfer.callback != &umass_cam_cb)) {
umass_tr_error(xfer, error);
} else {
umass_transfer_start(sc, UMASS_T_CBI_DATA_WR_CS);
}
break;
}
}
static void
umass_t_cbi_data_wr_cs_callback(struct usb_xfer *xfer, usb_error_t error)
{
umass_t_cbi_data_clear_stall_callback(xfer, UMASS_T_CBI_STATUS,
UMASS_T_CBI_DATA_WRITE, error);
}
static void
umass_t_cbi_status_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct umass_softc *sc = usbd_xfer_softc(xfer);
union ccb *ccb = sc->sc_transfer.ccb;
struct usb_page_cache *pc;
uint32_t residue;
uint8_t status;
int actlen;
usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL);
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
if (actlen < (int)sizeof(sc->sbl)) {
goto tr_setup;
}
pc = usbd_xfer_get_frame(xfer, 0);
usbd_copy_out(pc, 0, &sc->sbl, sizeof(sc->sbl));
residue = (sc->sc_transfer.data_len -
sc->sc_transfer.actlen);
/* dissect the information in the buffer */
if (sc->sc_proto & UMASS_PROTO_UFI) {
/*
* Section 3.4.3.1.3 specifies that the UFI command
* protocol returns an ASC and ASCQ in the interrupt
* data block.
*/
DPRINTF(sc, UDMASS_CBI, "UFI CCI, ASC = 0x%02x, "
"ASCQ = 0x%02x\n", sc->sbl.ufi.asc,
sc->sbl.ufi.ascq);
status = (((sc->sbl.ufi.asc == 0) &&
(sc->sbl.ufi.ascq == 0)) ?
STATUS_CMD_OK : STATUS_CMD_FAILED);
sc->sc_transfer.ccb = NULL;
sc->sc_last_xfer_index = UMASS_T_CBI_COMMAND;
(sc->sc_transfer.callback)
(sc, ccb, residue, status);
break;
} else {
/* Command Interrupt Data Block */
DPRINTF(sc, UDMASS_CBI, "type=0x%02x, value=0x%02x\n",
sc->sbl.common.type, sc->sbl.common.value);
if (sc->sbl.common.type == IDB_TYPE_CCI) {
status = (sc->sbl.common.value & IDB_VALUE_STATUS_MASK);
status = ((status == IDB_VALUE_PASS) ? STATUS_CMD_OK :
(status == IDB_VALUE_FAIL) ? STATUS_CMD_FAILED :
(status == IDB_VALUE_PERSISTENT) ? STATUS_CMD_FAILED :
STATUS_WIRE_FAILED);
sc->sc_transfer.ccb = NULL;
sc->sc_last_xfer_index = UMASS_T_CBI_COMMAND;
(sc->sc_transfer.callback)
(sc, ccb, residue, status);
break;
}
}
/* fallthrough */
case USB_ST_SETUP:
tr_setup:
usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
usbd_transfer_submit(xfer);
break;
default: /* Error */
DPRINTF(sc, UDMASS_CBI, "Failed to read CSW: %s\n",
usbd_errstr(error));
umass_tr_error(xfer, error);
break;
}
}
/*
* CAM specific functions (used by SCSI, UFI, 8070i (ATAPI))
*/
static int
umass_cam_attach_sim(struct umass_softc *sc)
{
struct cam_devq *devq; /* Per device Queue */
/*
* A HBA is attached to the CAM layer.
*
* The CAM layer will then after a while start probing for devices on
* the bus. The number of SIMs is limited to one.
*/
devq = cam_simq_alloc(1 /* maximum openings */ );
if (devq == NULL) {
return (ENOMEM);
}
sc->sc_sim = cam_sim_alloc
(&umass_cam_action, &umass_cam_poll,
DEVNAME_SIM,
sc /* priv */ ,
sc->sc_unit /* unit number */ ,
&sc->sc_mtx /* mutex */ ,
1 /* maximum device openings */ ,
0 /* maximum tagged device openings */ ,
devq);
if (sc->sc_sim == NULL) {
cam_simq_free(devq);
return (ENOMEM);
}
mtx_lock(&sc->sc_mtx);
if (xpt_bus_register(sc->sc_sim, sc->sc_dev,
sc->sc_unit) != CAM_SUCCESS) {
mtx_unlock(&sc->sc_mtx);
return (ENOMEM);
}
mtx_unlock(&sc->sc_mtx);
return (0);
}
static void
umass_cam_attach(struct umass_softc *sc)
{
#ifndef USB_DEBUG
if (bootverbose)
#endif
printf("%s:%d:%d: Attached to scbus%d\n",
sc->sc_name, cam_sim_path(sc->sc_sim),
sc->sc_unit, cam_sim_path(sc->sc_sim));
}
/* umass_cam_detach
* detach from the CAM layer
*/
static void
umass_cam_detach_sim(struct umass_softc *sc)
{
if (sc->sc_sim != NULL) {
if (xpt_bus_deregister(cam_sim_path(sc->sc_sim))) {
/* accessing the softc is not possible after this */
sc->sc_sim->softc = NULL;
cam_sim_free(sc->sc_sim, /* free_devq */ TRUE);
} else {
panic("%s: CAM layer is busy\n",
sc->sc_name);
}
sc->sc_sim = NULL;
}
}
/* umass_cam_action
* CAM requests for action come through here
*/
static void
umass_cam_action(struct cam_sim *sim, union ccb *ccb)
{
struct umass_softc *sc = (struct umass_softc *)sim->softc;
if (sc == NULL) {
ccb->ccb_h.status = CAM_SEL_TIMEOUT;
xpt_done(ccb);
return;
}
/* Perform the requested action */
switch (ccb->ccb_h.func_code) {
case XPT_SCSI_IO:
{
uint8_t *cmd;
uint8_t dir;
if (ccb->csio.ccb_h.flags & CAM_CDB_POINTER) {
cmd = (uint8_t *)(ccb->csio.cdb_io.cdb_ptr);
} else {
cmd = (uint8_t *)(ccb->csio.cdb_io.cdb_bytes);
}
DPRINTF(sc, UDMASS_SCSI, "%d:%d:%jx:XPT_SCSI_IO: "
"cmd: 0x%02x, flags: 0x%02x, "
"%db cmd/%db data/%db sense\n",
cam_sim_path(sc->sc_sim), ccb->ccb_h.target_id,
(uintmax_t)ccb->ccb_h.target_lun, cmd[0],
ccb->ccb_h.flags & CAM_DIR_MASK, ccb->csio.cdb_len,
ccb->csio.dxfer_len, ccb->csio.sense_len);
if (sc->sc_transfer.ccb) {
DPRINTF(sc, UDMASS_SCSI, "%d:%d:%jx:XPT_SCSI_IO: "
"I/O in progress, deferring\n",
cam_sim_path(sc->sc_sim), ccb->ccb_h.target_id,
(uintmax_t)ccb->ccb_h.target_lun);
ccb->ccb_h.status = CAM_SCSI_BUSY;
xpt_done(ccb);
goto done;
}
switch (ccb->ccb_h.flags & CAM_DIR_MASK) {
case CAM_DIR_IN:
dir = DIR_IN;
break;
case CAM_DIR_OUT:
dir = DIR_OUT;
DIF(UDMASS_SCSI,
umass_dump_buffer(sc, ccb->csio.data_ptr,
ccb->csio.dxfer_len, 48));
break;
default:
dir = DIR_NONE;
}
ccb->ccb_h.status = CAM_REQ_INPROG | CAM_SIM_QUEUED;
/*
* sc->sc_transform will convert the command to the
* command format needed by the specific command set
* and return the converted command in
* "sc->sc_transfer.cmd_data"
*/
if (umass_std_transform(sc, ccb, cmd, ccb->csio.cdb_len)) {
if (sc->sc_transfer.cmd_data[0] == INQUIRY) {
const char *pserial;
pserial = usb_get_serial(sc->sc_udev);
/*
* Umass devices don't generally report their serial numbers
* in the usual SCSI way. Emulate it here.
*/
if ((sc->sc_transfer.cmd_data[1] & SI_EVPD) &&
(sc->sc_transfer.cmd_data[2] == SVPD_UNIT_SERIAL_NUMBER) &&
(pserial[0] != '\0')) {
struct scsi_vpd_unit_serial_number *vpd_serial;
vpd_serial = (struct scsi_vpd_unit_serial_number *)ccb->csio.data_ptr;
vpd_serial->length = strlen(pserial);
if (vpd_serial->length > sizeof(vpd_serial->serial_num))
vpd_serial->length = sizeof(vpd_serial->serial_num);
memcpy(vpd_serial->serial_num, pserial, vpd_serial->length);
ccb->csio.scsi_status = SCSI_STATUS_OK;
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
goto done;
}
/*
* Handle EVPD inquiry for broken devices first
* NO_INQUIRY also implies NO_INQUIRY_EVPD
*/
if ((sc->sc_quirks & (NO_INQUIRY_EVPD | NO_INQUIRY)) &&
(sc->sc_transfer.cmd_data[1] & SI_EVPD)) {
scsi_set_sense_data(&ccb->csio.sense_data,
/*sense_format*/ SSD_TYPE_NONE,
/*current_error*/ 1,
/*sense_key*/ SSD_KEY_ILLEGAL_REQUEST,
/*asc*/ 0x24,
/*ascq*/ 0x00,
/*extra args*/ SSD_ELEM_NONE);
ccb->csio.scsi_status = SCSI_STATUS_CHECK_COND;
ccb->ccb_h.status =
CAM_SCSI_STATUS_ERROR |
CAM_AUTOSNS_VALID |
CAM_DEV_QFRZN;
xpt_freeze_devq(ccb->ccb_h.path, 1);
xpt_done(ccb);
goto done;
}
/*
* Return fake inquiry data for
* broken devices
*/
if (sc->sc_quirks & NO_INQUIRY) {
memcpy(ccb->csio.data_ptr, &fake_inq_data,
sizeof(fake_inq_data));
ccb->csio.scsi_status = SCSI_STATUS_OK;
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
goto done;
}
if (sc->sc_quirks & FORCE_SHORT_INQUIRY) {
ccb->csio.dxfer_len = SHORT_INQUIRY_LENGTH;
}
} else if (sc->sc_transfer.cmd_data[0] == PREVENT_ALLOW) {
if (sc->sc_quirks & NO_PREVENT_ALLOW) {
ccb->csio.scsi_status = SCSI_STATUS_OK;
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
goto done;
}
} else if (sc->sc_transfer.cmd_data[0] == SYNCHRONIZE_CACHE) {
if (sc->sc_quirks & NO_SYNCHRONIZE_CACHE) {
ccb->csio.scsi_status = SCSI_STATUS_OK;
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
goto done;
}
}
umass_command_start(sc, dir, ccb->csio.data_ptr,
ccb->csio.dxfer_len,
ccb->ccb_h.timeout,
&umass_cam_cb, ccb);
}
break;
}
case XPT_PATH_INQ:
{
struct ccb_pathinq *cpi = &ccb->cpi;
DPRINTF(sc, UDMASS_SCSI, "%d:%d:%jx:XPT_PATH_INQ:.\n",
sc ? cam_sim_path(sc->sc_sim) : -1, ccb->ccb_h.target_id,
(uintmax_t)ccb->ccb_h.target_lun);
/* host specific information */
cpi->version_num = 1;
cpi->hba_inquiry = 0;
cpi->target_sprt = 0;
cpi->hba_misc = PIM_NO_6_BYTE;
cpi->hba_eng_cnt = 0;
cpi->max_target = UMASS_SCSIID_MAX; /* one target */
cpi->initiator_id = UMASS_SCSIID_HOST;
strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strlcpy(cpi->hba_vid, "USB SCSI", HBA_IDLEN);
strlcpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
cpi->bus_id = sc->sc_unit;
cpi->protocol = PROTO_SCSI;
cpi->protocol_version = SCSI_REV_2;
cpi->transport = XPORT_USB;
cpi->transport_version = 0;
if (sc == NULL) {
cpi->base_transfer_speed = 0;
cpi->max_lun = 0;
} else {
if (sc->sc_quirks & FLOPPY_SPEED) {
cpi->base_transfer_speed =
UMASS_FLOPPY_TRANSFER_SPEED;
} else {
switch (usbd_get_speed(sc->sc_udev)) {
case USB_SPEED_SUPER:
cpi->base_transfer_speed =
UMASS_SUPER_TRANSFER_SPEED;
cpi->maxio = MAXPHYS;
break;
case USB_SPEED_HIGH:
cpi->base_transfer_speed =
UMASS_HIGH_TRANSFER_SPEED;
break;
default:
cpi->base_transfer_speed =
UMASS_FULL_TRANSFER_SPEED;
break;
}
}
cpi->max_lun = sc->sc_maxlun;
}
cpi->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
case XPT_RESET_DEV:
{
DPRINTF(sc, UDMASS_SCSI, "%d:%d:%jx:XPT_RESET_DEV:.\n",
cam_sim_path(sc->sc_sim), ccb->ccb_h.target_id,
(uintmax_t)ccb->ccb_h.target_lun);
umass_reset(sc);
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
case XPT_GET_TRAN_SETTINGS:
{
struct ccb_trans_settings *cts = &ccb->cts;
DPRINTF(sc, UDMASS_SCSI, "%d:%d:%jx:XPT_GET_TRAN_SETTINGS:.\n",
cam_sim_path(sc->sc_sim), ccb->ccb_h.target_id,
(uintmax_t)ccb->ccb_h.target_lun);
cts->protocol = PROTO_SCSI;
cts->protocol_version = SCSI_REV_2;
cts->transport = XPORT_USB;
cts->transport_version = 0;
cts->xport_specific.valid = 0;
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
case XPT_SET_TRAN_SETTINGS:
{
DPRINTF(sc, UDMASS_SCSI, "%d:%d:%jx:XPT_SET_TRAN_SETTINGS:.\n",
cam_sim_path(sc->sc_sim), ccb->ccb_h.target_id,
(uintmax_t)ccb->ccb_h.target_lun);
ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
xpt_done(ccb);
break;
}
case XPT_CALC_GEOMETRY:
{
cam_calc_geometry(&ccb->ccg, /* extended */ 1);
xpt_done(ccb);
break;
}
case XPT_NOOP:
{
DPRINTF(sc, UDMASS_SCSI, "%d:%d:%jx:XPT_NOOP:.\n",
sc ? cam_sim_path(sc->sc_sim) : -1, ccb->ccb_h.target_id,
(uintmax_t)ccb->ccb_h.target_lun);
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
default:
DPRINTF(sc, UDMASS_SCSI, "%d:%d:%jx:func_code 0x%04x: "
"Not implemented\n",
sc ? cam_sim_path(sc->sc_sim) : -1, ccb->ccb_h.target_id,
(uintmax_t)ccb->ccb_h.target_lun, ccb->ccb_h.func_code);
ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
xpt_done(ccb);
break;
}
done:
return;
}
static void
umass_cam_poll(struct cam_sim *sim)
{
struct umass_softc *sc = (struct umass_softc *)sim->softc;
if (sc == NULL)
return;
DPRINTF(sc, UDMASS_SCSI, "CAM poll\n");
usbd_transfer_poll(sc->sc_xfer, UMASS_T_MAX);
}
/* umass_cam_cb
* finalise a completed CAM command
*/
static void
umass_cam_cb(struct umass_softc *sc, union ccb *ccb, uint32_t residue,
uint8_t status)
{
ccb->csio.resid = residue;
switch (status) {
case STATUS_CMD_OK:
ccb->ccb_h.status = CAM_REQ_CMP;
if ((sc->sc_quirks & READ_CAPACITY_OFFBY1) &&
(ccb->ccb_h.func_code == XPT_SCSI_IO) &&
(ccb->csio.cdb_io.cdb_bytes[0] == READ_CAPACITY)) {
struct scsi_read_capacity_data *rcap;
uint32_t maxsector;
rcap = (void *)(ccb->csio.data_ptr);
maxsector = scsi_4btoul(rcap->addr) - 1;
scsi_ulto4b(maxsector, rcap->addr);
}
/*
* We have to add SVPD_UNIT_SERIAL_NUMBER to the list
* of pages supported by the device - otherwise, CAM
* will never ask us for the serial number if the
* device cannot handle that by itself.
*/
if (ccb->ccb_h.func_code == XPT_SCSI_IO &&
sc->sc_transfer.cmd_data[0] == INQUIRY &&
(sc->sc_transfer.cmd_data[1] & SI_EVPD) &&
sc->sc_transfer.cmd_data[2] == SVPD_SUPPORTED_PAGE_LIST &&
(usb_get_serial(sc->sc_udev)[0] != '\0')) {
struct ccb_scsiio *csio;
struct scsi_vpd_supported_page_list *page_list;
csio = &ccb->csio;
page_list = (struct scsi_vpd_supported_page_list *)csio->data_ptr;
if (page_list->length + 1 < SVPD_SUPPORTED_PAGES_SIZE) {
page_list->list[page_list->length] = SVPD_UNIT_SERIAL_NUMBER;
page_list->length++;
}
}
xpt_done(ccb);
break;
case STATUS_CMD_UNKNOWN:
case STATUS_CMD_FAILED:
/* fetch sense data */
/* the rest of the command was filled in at attach */
sc->cam_scsi_sense.length = ccb->csio.sense_len;
DPRINTF(sc, UDMASS_SCSI, "Fetching %d bytes of "
"sense data\n", ccb->csio.sense_len);
if (umass_std_transform(sc, ccb, &sc->cam_scsi_sense.opcode,
sizeof(sc->cam_scsi_sense))) {
if ((sc->sc_quirks & FORCE_SHORT_INQUIRY) &&
(sc->sc_transfer.cmd_data[0] == INQUIRY)) {
ccb->csio.sense_len = SHORT_INQUIRY_LENGTH;
}
umass_command_start(sc, DIR_IN, &ccb->csio.sense_data.error_code,
ccb->csio.sense_len, ccb->ccb_h.timeout,
&umass_cam_sense_cb, ccb);
}
break;
default:
/*
* The wire protocol failed and will hopefully have
* recovered. We return an error to CAM and let CAM
* retry the command if necessary.
*/
xpt_freeze_devq(ccb->ccb_h.path, 1);
ccb->ccb_h.status = CAM_REQ_CMP_ERR | CAM_DEV_QFRZN;
xpt_done(ccb);
break;
}
}
/*
* Finalise a completed autosense operation
*/
static void
umass_cam_sense_cb(struct umass_softc *sc, union ccb *ccb, uint32_t residue,
uint8_t status)
{
uint8_t *cmd;
switch (status) {
case STATUS_CMD_OK:
case STATUS_CMD_UNKNOWN:
case STATUS_CMD_FAILED: {
int key, sense_len;
ccb->csio.sense_resid = residue;
sense_len = ccb->csio.sense_len - ccb->csio.sense_resid;
key = scsi_get_sense_key(&ccb->csio.sense_data, sense_len,
/*show_errors*/ 1);
if (ccb->csio.ccb_h.flags & CAM_CDB_POINTER) {
cmd = (uint8_t *)(ccb->csio.cdb_io.cdb_ptr);
} else {
cmd = (uint8_t *)(ccb->csio.cdb_io.cdb_bytes);
}
/*
* Getting sense data always succeeds (apart from wire
* failures):
*/
if ((sc->sc_quirks & RS_NO_CLEAR_UA) &&
(cmd[0] == INQUIRY) &&
(key == SSD_KEY_UNIT_ATTENTION)) {
/*
* Ignore unit attention errors in the case where
* the Unit Attention state is not cleared on
* REQUEST SENSE. They will appear again at the next
* command.
*/
ccb->ccb_h.status = CAM_REQ_CMP;
} else if (key == SSD_KEY_NO_SENSE) {
/*
* No problem after all (in the case of CBI without
* CCI)
*/
ccb->ccb_h.status = CAM_REQ_CMP;
} else if ((sc->sc_quirks & RS_NO_CLEAR_UA) &&
(cmd[0] == READ_CAPACITY) &&
(key == SSD_KEY_UNIT_ATTENTION)) {
/*
* Some devices do not clear the unit attention error
* on request sense. We insert a test unit ready
* command to make sure we clear the unit attention
* condition, then allow the retry to proceed as
* usual.
*/
xpt_freeze_devq(ccb->ccb_h.path, 1);
ccb->ccb_h.status = CAM_SCSI_STATUS_ERROR
| CAM_AUTOSNS_VALID | CAM_DEV_QFRZN;
ccb->csio.scsi_status = SCSI_STATUS_CHECK_COND;
#if 0
DELAY(300000);
#endif
DPRINTF(sc, UDMASS_SCSI, "Doing a sneaky"
"TEST_UNIT_READY\n");
/* the rest of the command was filled in at attach */
if ((sc->sc_transform)(sc,
&sc->cam_scsi_test_unit_ready.opcode,
sizeof(sc->cam_scsi_test_unit_ready)) == 1) {
umass_command_start(sc, DIR_NONE, NULL, 0,
ccb->ccb_h.timeout,
&umass_cam_quirk_cb, ccb);
break;
}
} else {
xpt_freeze_devq(ccb->ccb_h.path, 1);
if (key >= 0) {
ccb->ccb_h.status = CAM_SCSI_STATUS_ERROR
| CAM_AUTOSNS_VALID | CAM_DEV_QFRZN;
ccb->csio.scsi_status = SCSI_STATUS_CHECK_COND;
} else
ccb->ccb_h.status = CAM_AUTOSENSE_FAIL
| CAM_DEV_QFRZN;
}
xpt_done(ccb);
break;
}
default:
DPRINTF(sc, UDMASS_SCSI, "Autosense failed, "
"status %d\n", status);
xpt_freeze_devq(ccb->ccb_h.path, 1);
ccb->ccb_h.status = CAM_AUTOSENSE_FAIL | CAM_DEV_QFRZN;
xpt_done(ccb);
}
}
/*
* This completion code just handles the fact that we sent a test-unit-ready
* after having previously failed a READ CAPACITY with CHECK_COND. The CCB
* status for CAM is already set earlier.
*/
static void
umass_cam_quirk_cb(struct umass_softc *sc, union ccb *ccb, uint32_t residue,
uint8_t status)
{
DPRINTF(sc, UDMASS_SCSI, "Test unit ready "
"returned status %d\n", status);
xpt_done(ccb);
}
/*
* SCSI specific functions
*/
static uint8_t
umass_scsi_transform(struct umass_softc *sc, uint8_t *cmd_ptr,
uint8_t cmd_len)
{
if ((cmd_len == 0) ||
(cmd_len > sizeof(sc->sc_transfer.cmd_data))) {
DPRINTF(sc, UDMASS_SCSI, "Invalid command "
"length: %d bytes\n", cmd_len);
return (0); /* failure */
}
sc->sc_transfer.cmd_len = cmd_len;
switch (cmd_ptr[0]) {
case TEST_UNIT_READY:
if (sc->sc_quirks & NO_TEST_UNIT_READY) {
DPRINTF(sc, UDMASS_SCSI, "Converted TEST_UNIT_READY "
"to START_UNIT\n");
memset(sc->sc_transfer.cmd_data, 0, cmd_len);
sc->sc_transfer.cmd_data[0] = START_STOP_UNIT;
sc->sc_transfer.cmd_data[4] = SSS_START;
return (1);
}
break;
case INQUIRY:
/*
* some drives wedge when asked for full inquiry
* information.
*/
if (sc->sc_quirks & FORCE_SHORT_INQUIRY) {
memcpy(sc->sc_transfer.cmd_data, cmd_ptr, cmd_len);
sc->sc_transfer.cmd_data[4] = SHORT_INQUIRY_LENGTH;
return (1);
}
break;
}
memcpy(sc->sc_transfer.cmd_data, cmd_ptr, cmd_len);
return (1);
}
static uint8_t
umass_rbc_transform(struct umass_softc *sc, uint8_t *cmd_ptr, uint8_t cmd_len)
{
if ((cmd_len == 0) ||
(cmd_len > sizeof(sc->sc_transfer.cmd_data))) {
DPRINTF(sc, UDMASS_SCSI, "Invalid command "
"length: %d bytes\n", cmd_len);
return (0); /* failure */
}
switch (cmd_ptr[0]) {
/* these commands are defined in RBC: */
case READ_10:
case READ_CAPACITY:
case START_STOP_UNIT:
case SYNCHRONIZE_CACHE:
case WRITE_10:
case 0x2f: /* VERIFY_10 is absent from
* scsi_all.h??? */
case INQUIRY:
case MODE_SELECT_10:
case MODE_SENSE_10:
case TEST_UNIT_READY:
case WRITE_BUFFER:
/*
* The following commands are not listed in my copy of the
* RBC specs. CAM however seems to want those, and at least
* the Sony DSC device appears to support those as well
*/
case REQUEST_SENSE:
case PREVENT_ALLOW:
memcpy(sc->sc_transfer.cmd_data, cmd_ptr, cmd_len);
if ((sc->sc_quirks & RBC_PAD_TO_12) && (cmd_len < 12)) {
memset(sc->sc_transfer.cmd_data + cmd_len,
0, 12 - cmd_len);
cmd_len = 12;
}
sc->sc_transfer.cmd_len = cmd_len;
return (1); /* sucess */
/* All other commands are not legal in RBC */
default:
DPRINTF(sc, UDMASS_SCSI, "Unsupported RBC "
"command 0x%02x\n", cmd_ptr[0]);
return (0); /* failure */
}
}
static uint8_t
umass_ufi_transform(struct umass_softc *sc, uint8_t *cmd_ptr,
uint8_t cmd_len)
{
if ((cmd_len == 0) ||
(cmd_len > sizeof(sc->sc_transfer.cmd_data))) {
DPRINTF(sc, UDMASS_SCSI, "Invalid command "
"length: %d bytes\n", cmd_len);
return (0); /* failure */
}
/* An UFI command is always 12 bytes in length */
sc->sc_transfer.cmd_len = UFI_COMMAND_LENGTH;
/* Zero the command data */
memset(sc->sc_transfer.cmd_data, 0, UFI_COMMAND_LENGTH);
switch (cmd_ptr[0]) {
/*
* Commands of which the format has been verified. They
* should work. Copy the command into the (zeroed out)
* destination buffer.
*/
case TEST_UNIT_READY:
if (sc->sc_quirks & NO_TEST_UNIT_READY) {
/*
* Some devices do not support this command. Start
* Stop Unit should give the same results
*/
DPRINTF(sc, UDMASS_UFI, "Converted TEST_UNIT_READY "
"to START_UNIT\n");
sc->sc_transfer.cmd_data[0] = START_STOP_UNIT;
sc->sc_transfer.cmd_data[4] = SSS_START;
return (1);
}
break;
case REZERO_UNIT:
case REQUEST_SENSE:
case FORMAT_UNIT:
case INQUIRY:
case START_STOP_UNIT:
case SEND_DIAGNOSTIC:
case PREVENT_ALLOW:
case READ_CAPACITY:
case READ_10:
case WRITE_10:
case POSITION_TO_ELEMENT: /* SEEK_10 */
case WRITE_AND_VERIFY:
case VERIFY:
case MODE_SELECT_10:
case MODE_SENSE_10:
case READ_12:
case WRITE_12:
case READ_FORMAT_CAPACITIES:
break;
/*
* SYNCHRONIZE_CACHE isn't supported by UFI, nor should it be
* required for UFI devices, so it is appropriate to fake
* success.
*/
case SYNCHRONIZE_CACHE:
return (2);
default:
DPRINTF(sc, UDMASS_SCSI, "Unsupported UFI "
"command 0x%02x\n", cmd_ptr[0]);
return (0); /* failure */
}
memcpy(sc->sc_transfer.cmd_data, cmd_ptr, cmd_len);
return (1); /* success */
}
/*
* 8070i (ATAPI) specific functions
*/
static uint8_t
umass_atapi_transform(struct umass_softc *sc, uint8_t *cmd_ptr,
uint8_t cmd_len)
{
if ((cmd_len == 0) ||
(cmd_len > sizeof(sc->sc_transfer.cmd_data))) {
DPRINTF(sc, UDMASS_SCSI, "Invalid command "
"length: %d bytes\n", cmd_len);
return (0); /* failure */
}
/* An ATAPI command is always 12 bytes in length. */
sc->sc_transfer.cmd_len = ATAPI_COMMAND_LENGTH;
/* Zero the command data */
memset(sc->sc_transfer.cmd_data, 0, ATAPI_COMMAND_LENGTH);
switch (cmd_ptr[0]) {
/*
* Commands of which the format has been verified. They
* should work. Copy the command into the destination
* buffer.
*/
case INQUIRY:
/*
* some drives wedge when asked for full inquiry
* information.
*/
if (sc->sc_quirks & FORCE_SHORT_INQUIRY) {
memcpy(sc->sc_transfer.cmd_data, cmd_ptr, cmd_len);
sc->sc_transfer.cmd_data[4] = SHORT_INQUIRY_LENGTH;
return (1);
}
break;
case TEST_UNIT_READY:
if (sc->sc_quirks & NO_TEST_UNIT_READY) {
DPRINTF(sc, UDMASS_SCSI, "Converted TEST_UNIT_READY "
"to START_UNIT\n");
sc->sc_transfer.cmd_data[0] = START_STOP_UNIT;
sc->sc_transfer.cmd_data[4] = SSS_START;
return (1);
}
break;
case REZERO_UNIT:
case REQUEST_SENSE:
case START_STOP_UNIT:
case SEND_DIAGNOSTIC:
case PREVENT_ALLOW:
case READ_CAPACITY:
case READ_10:
case WRITE_10:
case POSITION_TO_ELEMENT: /* SEEK_10 */
case SYNCHRONIZE_CACHE:
case MODE_SELECT_10:
case MODE_SENSE_10:
case READ_BUFFER:
case 0x42: /* READ_SUBCHANNEL */
case 0x43: /* READ_TOC */
case 0x44: /* READ_HEADER */
case 0x47: /* PLAY_MSF (Play Minute/Second/Frame) */
case 0x48: /* PLAY_TRACK */
case 0x49: /* PLAY_TRACK_REL */
case 0x4b: /* PAUSE */
case 0x51: /* READ_DISK_INFO */
case 0x52: /* READ_TRACK_INFO */
case 0x54: /* SEND_OPC */
case 0x59: /* READ_MASTER_CUE */
case 0x5b: /* CLOSE_TR_SESSION */
case 0x5c: /* READ_BUFFER_CAP */
case 0x5d: /* SEND_CUE_SHEET */
case 0xa1: /* BLANK */
case 0xa5: /* PLAY_12 */
case 0xa6: /* EXCHANGE_MEDIUM */
case 0xad: /* READ_DVD_STRUCTURE */
case 0xbb: /* SET_CD_SPEED */
case 0xe5: /* READ_TRACK_INFO_PHILIPS */
break;
case READ_12:
case WRITE_12:
default:
DPRINTF(sc, UDMASS_SCSI, "Unsupported ATAPI "
"command 0x%02x - trying anyway\n",
cmd_ptr[0]);
break;
}
memcpy(sc->sc_transfer.cmd_data, cmd_ptr, cmd_len);
return (1); /* success */
}
static uint8_t
umass_no_transform(struct umass_softc *sc, uint8_t *cmd,
uint8_t cmdlen)
{
return (0); /* failure */
}
static uint8_t
umass_std_transform(struct umass_softc *sc, union ccb *ccb,
uint8_t *cmd, uint8_t cmdlen)
{
uint8_t retval;
retval = (sc->sc_transform) (sc, cmd, cmdlen);
if (retval == 2) {
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
return (0);
} else if (retval == 0) {
xpt_freeze_devq(ccb->ccb_h.path, 1);
ccb->ccb_h.status = CAM_REQ_INVALID | CAM_DEV_QFRZN;
xpt_done(ccb);
return (0);
}
/* Command should be executed */
return (1);
}
#ifdef USB_DEBUG
static void
umass_bbb_dump_cbw(struct umass_softc *sc, umass_bbb_cbw_t *cbw)
{
uint8_t *c = cbw->CBWCDB;
uint32_t dlen = UGETDW(cbw->dCBWDataTransferLength);
uint32_t tag = UGETDW(cbw->dCBWTag);
uint8_t clen = cbw->bCDBLength;
uint8_t flags = cbw->bCBWFlags;
uint8_t lun = cbw->bCBWLUN;
DPRINTF(sc, UDMASS_BBB, "CBW %d: cmd = %db "
"(0x%02x%02x%02x%02x%02x%02x%s), "
"data = %db, lun = %d, dir = %s\n",
tag, clen,
c[0], c[1], c[2], c[3], c[4], c[5], (clen > 6 ? "..." : ""),
dlen, lun, (flags == CBWFLAGS_IN ? "in" :
(flags == CBWFLAGS_OUT ? "out" : "<invalid>")));
}
static void
umass_bbb_dump_csw(struct umass_softc *sc, umass_bbb_csw_t *csw)
{
uint32_t sig = UGETDW(csw->dCSWSignature);
uint32_t tag = UGETDW(csw->dCSWTag);
uint32_t res = UGETDW(csw->dCSWDataResidue);
uint8_t status = csw->bCSWStatus;
DPRINTF(sc, UDMASS_BBB, "CSW %d: sig = 0x%08x (%s), tag = 0x%08x, "
"res = %d, status = 0x%02x (%s)\n",
tag, sig, (sig == CSWSIGNATURE ? "valid" : "invalid"),
tag, res,
status, (status == CSWSTATUS_GOOD ? "good" :
(status == CSWSTATUS_FAILED ? "failed" :
(status == CSWSTATUS_PHASE ? "phase" : "<invalid>"))));
}
static void
umass_cbi_dump_cmd(struct umass_softc *sc, void *cmd, uint8_t cmdlen)
{
uint8_t *c = cmd;
uint8_t dir = sc->sc_transfer.dir;
DPRINTF(sc, UDMASS_BBB, "cmd = %db "
"(0x%02x%02x%02x%02x%02x%02x%s), "
"data = %db, dir = %s\n",
cmdlen,
c[0], c[1], c[2], c[3], c[4], c[5], (cmdlen > 6 ? "..." : ""),
sc->sc_transfer.data_len,
(dir == DIR_IN ? "in" :
(dir == DIR_OUT ? "out" :
(dir == DIR_NONE ? "no data phase" : "<invalid>"))));
}
static void
umass_dump_buffer(struct umass_softc *sc, uint8_t *buffer, uint32_t buflen,
uint32_t printlen)
{
uint32_t i, j;
char s1[40];
char s2[40];
char s3[5];
s1[0] = '\0';
s3[0] = '\0';
sprintf(s2, " buffer=%p, buflen=%d", buffer, buflen);
for (i = 0; (i < buflen) && (i < printlen); i++) {
j = i % 16;
if (j == 0 && i != 0) {
DPRINTF(sc, UDMASS_GEN, "0x %s%s\n",
s1, s2);
s2[0] = '\0';
}
sprintf(&s1[j * 2], "%02x", buffer[i] & 0xff);
}
if (buflen > printlen)
sprintf(s3, " ...");
DPRINTF(sc, UDMASS_GEN, "0x %s%s%s\n",
s1, s2, s3);
}
#endif