freebsd-dev/sys/dev/cxgbe/tom/t4_cpl_io.c
2017-07-19 01:49:01 +00:00

2334 lines
60 KiB
C

/*-
* Copyright (c) 2012, 2015 Chelsio Communications, Inc.
* All rights reserved.
* Written by: Navdeep Parhar <np@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet.h"
#include "opt_inet6.h"
#include "opt_ratelimit.h"
#ifdef TCP_OFFLOAD
#include <sys/param.h>
#include <sys/aio.h>
#include <sys/file.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/module.h>
#include <sys/proc.h>
#include <sys/protosw.h>
#include <sys/domain.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sglist.h>
#include <sys/taskqueue.h>
#include <netinet/in.h>
#include <netinet/in_pcb.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#define TCPSTATES
#include <netinet/tcp_fsm.h>
#include <netinet/tcp_seq.h>
#include <netinet/tcp_var.h>
#include <netinet/toecore.h>
#include <security/mac/mac_framework.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_page.h>
#include "common/common.h"
#include "common/t4_msg.h"
#include "common/t4_regs.h"
#include "common/t4_tcb.h"
#include "tom/t4_tom_l2t.h"
#include "tom/t4_tom.h"
VNET_DECLARE(int, tcp_do_autosndbuf);
#define V_tcp_do_autosndbuf VNET(tcp_do_autosndbuf)
VNET_DECLARE(int, tcp_autosndbuf_inc);
#define V_tcp_autosndbuf_inc VNET(tcp_autosndbuf_inc)
VNET_DECLARE(int, tcp_autosndbuf_max);
#define V_tcp_autosndbuf_max VNET(tcp_autosndbuf_max)
VNET_DECLARE(int, tcp_do_autorcvbuf);
#define V_tcp_do_autorcvbuf VNET(tcp_do_autorcvbuf)
VNET_DECLARE(int, tcp_autorcvbuf_inc);
#define V_tcp_autorcvbuf_inc VNET(tcp_autorcvbuf_inc)
VNET_DECLARE(int, tcp_autorcvbuf_max);
#define V_tcp_autorcvbuf_max VNET(tcp_autorcvbuf_max)
#define IS_AIOTX_MBUF(m) \
((m)->m_flags & M_EXT && (m)->m_ext.ext_flags & EXT_FLAG_AIOTX)
static void t4_aiotx_cancel(struct kaiocb *job);
static void t4_aiotx_queue_toep(struct toepcb *toep);
static size_t
aiotx_mbuf_pgoff(struct mbuf *m)
{
struct aiotx_buffer *ab;
MPASS(IS_AIOTX_MBUF(m));
ab = m->m_ext.ext_arg1;
return ((ab->ps.offset + (uintptr_t)m->m_ext.ext_arg2) % PAGE_SIZE);
}
static vm_page_t *
aiotx_mbuf_pages(struct mbuf *m)
{
struct aiotx_buffer *ab;
int npages;
MPASS(IS_AIOTX_MBUF(m));
ab = m->m_ext.ext_arg1;
npages = (ab->ps.offset + (uintptr_t)m->m_ext.ext_arg2) / PAGE_SIZE;
return (ab->ps.pages + npages);
}
void
send_flowc_wr(struct toepcb *toep, struct flowc_tx_params *ftxp)
{
struct wrqe *wr;
struct fw_flowc_wr *flowc;
unsigned int nparams = ftxp ? 8 : 6, flowclen;
struct vi_info *vi = toep->vi;
struct port_info *pi = vi->pi;
struct adapter *sc = pi->adapter;
unsigned int pfvf = G_FW_VIID_PFN(vi->viid) << S_FW_VIID_PFN;
struct ofld_tx_sdesc *txsd = &toep->txsd[toep->txsd_pidx];
KASSERT(!(toep->flags & TPF_FLOWC_WR_SENT),
("%s: flowc for tid %u sent already", __func__, toep->tid));
flowclen = sizeof(*flowc) + nparams * sizeof(struct fw_flowc_mnemval);
wr = alloc_wrqe(roundup2(flowclen, 16), toep->ofld_txq);
if (wr == NULL) {
/* XXX */
panic("%s: allocation failure.", __func__);
}
flowc = wrtod(wr);
memset(flowc, 0, wr->wr_len);
flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
V_FW_FLOWC_WR_NPARAMS(nparams));
flowc->flowid_len16 = htonl(V_FW_WR_LEN16(howmany(flowclen, 16)) |
V_FW_WR_FLOWID(toep->tid));
flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
flowc->mnemval[0].val = htobe32(pfvf);
flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
flowc->mnemval[1].val = htobe32(pi->tx_chan);
flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
flowc->mnemval[2].val = htobe32(pi->tx_chan);
flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
flowc->mnemval[3].val = htobe32(toep->ofld_rxq->iq.abs_id);
if (ftxp) {
uint32_t sndbuf = min(ftxp->snd_space, sc->tt.sndbuf);
flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SNDNXT;
flowc->mnemval[4].val = htobe32(ftxp->snd_nxt);
flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_RCVNXT;
flowc->mnemval[5].val = htobe32(ftxp->rcv_nxt);
flowc->mnemval[6].mnemonic = FW_FLOWC_MNEM_SNDBUF;
flowc->mnemval[6].val = htobe32(sndbuf);
flowc->mnemval[7].mnemonic = FW_FLOWC_MNEM_MSS;
flowc->mnemval[7].val = htobe32(ftxp->mss);
CTR6(KTR_CXGBE,
"%s: tid %u, mss %u, sndbuf %u, snd_nxt 0x%x, rcv_nxt 0x%x",
__func__, toep->tid, ftxp->mss, sndbuf, ftxp->snd_nxt,
ftxp->rcv_nxt);
} else {
flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SNDBUF;
flowc->mnemval[4].val = htobe32(512);
flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_MSS;
flowc->mnemval[5].val = htobe32(512);
CTR2(KTR_CXGBE, "%s: tid %u", __func__, toep->tid);
}
txsd->tx_credits = howmany(flowclen, 16);
txsd->plen = 0;
KASSERT(toep->tx_credits >= txsd->tx_credits && toep->txsd_avail > 0,
("%s: not enough credits (%d)", __func__, toep->tx_credits));
toep->tx_credits -= txsd->tx_credits;
if (__predict_false(++toep->txsd_pidx == toep->txsd_total))
toep->txsd_pidx = 0;
toep->txsd_avail--;
toep->flags |= TPF_FLOWC_WR_SENT;
t4_wrq_tx(sc, wr);
}
#ifdef RATELIMIT
/*
* Input is Bytes/second (so_max_pacing-rate), chip counts in Kilobits/second.
*/
static int
update_tx_rate_limit(struct adapter *sc, struct toepcb *toep, u_int Bps)
{
int tc_idx, rc;
const u_int kbps = (u_int) (uint64_t)Bps * 8ULL / 1000;
const int port_id = toep->vi->pi->port_id;
CTR3(KTR_CXGBE, "%s: tid %u, rate %uKbps", __func__, toep->tid, kbps);
if (kbps == 0) {
/* unbind */
tc_idx = -1;
} else {
rc = t4_reserve_cl_rl_kbps(sc, port_id, kbps, &tc_idx);
if (rc != 0)
return (rc);
MPASS(tc_idx >= 0 && tc_idx < sc->chip_params->nsched_cls);
}
if (toep->tc_idx != tc_idx) {
struct wrqe *wr;
struct fw_flowc_wr *flowc;
int nparams = 1, flowclen, flowclen16;
struct ofld_tx_sdesc *txsd = &toep->txsd[toep->txsd_pidx];
flowclen = sizeof(*flowc) + nparams * sizeof(struct
fw_flowc_mnemval);
flowclen16 = howmany(flowclen, 16);
if (toep->tx_credits < flowclen16 || toep->txsd_avail == 0 ||
(wr = alloc_wrqe(roundup2(flowclen, 16), toep->ofld_txq)) == NULL) {
if (tc_idx >= 0)
t4_release_cl_rl_kbps(sc, port_id, tc_idx);
return (ENOMEM);
}
flowc = wrtod(wr);
memset(flowc, 0, wr->wr_len);
flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
V_FW_FLOWC_WR_NPARAMS(nparams));
flowc->flowid_len16 = htonl(V_FW_WR_LEN16(flowclen16) |
V_FW_WR_FLOWID(toep->tid));
flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
if (tc_idx == -1)
flowc->mnemval[0].val = htobe32(0xff);
else
flowc->mnemval[0].val = htobe32(tc_idx);
txsd->tx_credits = flowclen16;
txsd->plen = 0;
toep->tx_credits -= txsd->tx_credits;
if (__predict_false(++toep->txsd_pidx == toep->txsd_total))
toep->txsd_pidx = 0;
toep->txsd_avail--;
t4_wrq_tx(sc, wr);
}
if (toep->tc_idx >= 0)
t4_release_cl_rl_kbps(sc, port_id, toep->tc_idx);
toep->tc_idx = tc_idx;
return (0);
}
#endif
void
send_reset(struct adapter *sc, struct toepcb *toep, uint32_t snd_nxt)
{
struct wrqe *wr;
struct cpl_abort_req *req;
int tid = toep->tid;
struct inpcb *inp = toep->inp;
struct tcpcb *tp = intotcpcb(inp); /* don't use if INP_DROPPED */
INP_WLOCK_ASSERT(inp);
CTR6(KTR_CXGBE, "%s: tid %d (%s), toep_flags 0x%x, inp_flags 0x%x%s",
__func__, toep->tid,
inp->inp_flags & INP_DROPPED ? "inp dropped" :
tcpstates[tp->t_state],
toep->flags, inp->inp_flags,
toep->flags & TPF_ABORT_SHUTDOWN ?
" (abort already in progress)" : "");
if (toep->flags & TPF_ABORT_SHUTDOWN)
return; /* abort already in progress */
toep->flags |= TPF_ABORT_SHUTDOWN;
KASSERT(toep->flags & TPF_FLOWC_WR_SENT,
("%s: flowc_wr not sent for tid %d.", __func__, tid));
wr = alloc_wrqe(sizeof(*req), toep->ofld_txq);
if (wr == NULL) {
/* XXX */
panic("%s: allocation failure.", __func__);
}
req = wrtod(wr);
INIT_TP_WR_MIT_CPL(req, CPL_ABORT_REQ, tid);
if (inp->inp_flags & INP_DROPPED)
req->rsvd0 = htobe32(snd_nxt);
else
req->rsvd0 = htobe32(tp->snd_nxt);
req->rsvd1 = !(toep->flags & TPF_TX_DATA_SENT);
req->cmd = CPL_ABORT_SEND_RST;
/*
* XXX: What's the correct way to tell that the inp hasn't been detached
* from its socket? Should I even be flushing the snd buffer here?
*/
if ((inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT)) == 0) {
struct socket *so = inp->inp_socket;
if (so != NULL) /* because I'm not sure. See comment above */
sbflush(&so->so_snd);
}
t4_l2t_send(sc, wr, toep->l2te);
}
/*
* Called when a connection is established to translate the TCP options
* reported by HW to FreeBSD's native format.
*/
static void
assign_rxopt(struct tcpcb *tp, unsigned int opt)
{
struct toepcb *toep = tp->t_toe;
struct inpcb *inp = tp->t_inpcb;
struct adapter *sc = td_adapter(toep->td);
int n;
INP_LOCK_ASSERT(inp);
if (inp->inp_inc.inc_flags & INC_ISIPV6)
n = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
else
n = sizeof(struct ip) + sizeof(struct tcphdr);
if (V_tcp_do_rfc1323)
n += TCPOLEN_TSTAMP_APPA;
tp->t_maxseg = sc->params.mtus[G_TCPOPT_MSS(opt)] - n;
CTR4(KTR_CXGBE, "%s: tid %d, mtu_idx %u (%u)", __func__, toep->tid,
G_TCPOPT_MSS(opt), sc->params.mtus[G_TCPOPT_MSS(opt)]);
if (G_TCPOPT_TSTAMP(opt)) {
tp->t_flags |= TF_RCVD_TSTMP; /* timestamps ok */
tp->ts_recent = 0; /* hmmm */
tp->ts_recent_age = tcp_ts_getticks();
}
if (G_TCPOPT_SACK(opt))
tp->t_flags |= TF_SACK_PERMIT; /* should already be set */
else
tp->t_flags &= ~TF_SACK_PERMIT; /* sack disallowed by peer */
if (G_TCPOPT_WSCALE_OK(opt))
tp->t_flags |= TF_RCVD_SCALE;
/* Doing window scaling? */
if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
(TF_RCVD_SCALE | TF_REQ_SCALE)) {
tp->rcv_scale = tp->request_r_scale;
tp->snd_scale = G_TCPOPT_SND_WSCALE(opt);
}
}
/*
* Completes some final bits of initialization for just established connections
* and changes their state to TCPS_ESTABLISHED.
*
* The ISNs are from after the exchange of SYNs. i.e., the true ISN + 1.
*/
void
make_established(struct toepcb *toep, uint32_t snd_isn, uint32_t rcv_isn,
uint16_t opt)
{
struct inpcb *inp = toep->inp;
struct socket *so = inp->inp_socket;
struct tcpcb *tp = intotcpcb(inp);
long bufsize;
uint32_t iss = be32toh(snd_isn) - 1; /* true ISS */
uint32_t irs = be32toh(rcv_isn) - 1; /* true IRS */
uint16_t tcpopt = be16toh(opt);
struct flowc_tx_params ftxp;
INP_WLOCK_ASSERT(inp);
KASSERT(tp->t_state == TCPS_SYN_SENT ||
tp->t_state == TCPS_SYN_RECEIVED,
("%s: TCP state %s", __func__, tcpstates[tp->t_state]));
CTR6(KTR_CXGBE, "%s: tid %d, so %p, inp %p, tp %p, toep %p",
__func__, toep->tid, so, inp, tp, toep);
tp->t_state = TCPS_ESTABLISHED;
tp->t_starttime = ticks;
TCPSTAT_INC(tcps_connects);
tp->irs = irs;
tcp_rcvseqinit(tp);
tp->rcv_wnd = toep->rx_credits << 10;
tp->rcv_adv += tp->rcv_wnd;
tp->last_ack_sent = tp->rcv_nxt;
/*
* If we were unable to send all rx credits via opt0, save the remainder
* in rx_credits so that they can be handed over with the next credit
* update.
*/
SOCKBUF_LOCK(&so->so_rcv);
bufsize = select_rcv_wnd(so);
SOCKBUF_UNLOCK(&so->so_rcv);
toep->rx_credits = bufsize - tp->rcv_wnd;
tp->iss = iss;
tcp_sendseqinit(tp);
tp->snd_una = iss + 1;
tp->snd_nxt = iss + 1;
tp->snd_max = iss + 1;
assign_rxopt(tp, tcpopt);
SOCKBUF_LOCK(&so->so_snd);
if (so->so_snd.sb_flags & SB_AUTOSIZE && V_tcp_do_autosndbuf)
bufsize = V_tcp_autosndbuf_max;
else
bufsize = sbspace(&so->so_snd);
SOCKBUF_UNLOCK(&so->so_snd);
ftxp.snd_nxt = tp->snd_nxt;
ftxp.rcv_nxt = tp->rcv_nxt;
ftxp.snd_space = bufsize;
ftxp.mss = tp->t_maxseg;
send_flowc_wr(toep, &ftxp);
soisconnected(so);
}
static int
send_rx_credits(struct adapter *sc, struct toepcb *toep, int credits)
{
struct wrqe *wr;
struct cpl_rx_data_ack *req;
uint32_t dack = F_RX_DACK_CHANGE | V_RX_DACK_MODE(1);
KASSERT(credits >= 0, ("%s: %d credits", __func__, credits));
wr = alloc_wrqe(sizeof(*req), toep->ctrlq);
if (wr == NULL)
return (0);
req = wrtod(wr);
INIT_TP_WR_MIT_CPL(req, CPL_RX_DATA_ACK, toep->tid);
req->credit_dack = htobe32(dack | V_RX_CREDITS(credits));
t4_wrq_tx(sc, wr);
return (credits);
}
void
t4_rcvd_locked(struct toedev *tod, struct tcpcb *tp)
{
struct adapter *sc = tod->tod_softc;
struct inpcb *inp = tp->t_inpcb;
struct socket *so = inp->inp_socket;
struct sockbuf *sb = &so->so_rcv;
struct toepcb *toep = tp->t_toe;
int credits;
INP_WLOCK_ASSERT(inp);
SOCKBUF_LOCK_ASSERT(sb);
KASSERT(toep->sb_cc >= sbused(sb),
("%s: sb %p has more data (%d) than last time (%d).",
__func__, sb, sbused(sb), toep->sb_cc));
toep->rx_credits += toep->sb_cc - sbused(sb);
toep->sb_cc = sbused(sb);
if (toep->rx_credits > 0 &&
(tp->rcv_wnd <= 32 * 1024 || toep->rx_credits >= 64 * 1024 ||
(toep->rx_credits >= 16 * 1024 && tp->rcv_wnd <= 128 * 1024) ||
toep->sb_cc + tp->rcv_wnd < sb->sb_lowat)) {
credits = send_rx_credits(sc, toep, toep->rx_credits);
toep->rx_credits -= credits;
tp->rcv_wnd += credits;
tp->rcv_adv += credits;
}
}
void
t4_rcvd(struct toedev *tod, struct tcpcb *tp)
{
struct inpcb *inp = tp->t_inpcb;
struct socket *so = inp->inp_socket;
struct sockbuf *sb = &so->so_rcv;
SOCKBUF_LOCK(sb);
t4_rcvd_locked(tod, tp);
SOCKBUF_UNLOCK(sb);
}
/*
* Close a connection by sending a CPL_CLOSE_CON_REQ message.
*/
static int
close_conn(struct adapter *sc, struct toepcb *toep)
{
struct wrqe *wr;
struct cpl_close_con_req *req;
unsigned int tid = toep->tid;
CTR3(KTR_CXGBE, "%s: tid %u%s", __func__, toep->tid,
toep->flags & TPF_FIN_SENT ? ", IGNORED" : "");
if (toep->flags & TPF_FIN_SENT)
return (0);
KASSERT(toep->flags & TPF_FLOWC_WR_SENT,
("%s: flowc_wr not sent for tid %u.", __func__, tid));
wr = alloc_wrqe(sizeof(*req), toep->ofld_txq);
if (wr == NULL) {
/* XXX */
panic("%s: allocation failure.", __func__);
}
req = wrtod(wr);
req->wr.wr_hi = htonl(V_FW_WR_OP(FW_TP_WR) |
V_FW_WR_IMMDLEN(sizeof(*req) - sizeof(req->wr)));
req->wr.wr_mid = htonl(V_FW_WR_LEN16(howmany(sizeof(*req), 16)) |
V_FW_WR_FLOWID(tid));
req->wr.wr_lo = cpu_to_be64(0);
OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_CON_REQ, tid));
req->rsvd = 0;
toep->flags |= TPF_FIN_SENT;
toep->flags &= ~TPF_SEND_FIN;
t4_l2t_send(sc, wr, toep->l2te);
return (0);
}
#define MAX_OFLD_TX_CREDITS (SGE_MAX_WR_LEN / 16)
#define MIN_OFLD_TX_CREDITS (howmany(sizeof(struct fw_ofld_tx_data_wr) + 1, 16))
/* Maximum amount of immediate data we could stuff in a WR */
static inline int
max_imm_payload(int tx_credits)
{
const int n = 2; /* Use only up to 2 desc for imm. data WR */
KASSERT(tx_credits >= 0 &&
tx_credits <= MAX_OFLD_TX_CREDITS,
("%s: %d credits", __func__, tx_credits));
if (tx_credits < MIN_OFLD_TX_CREDITS)
return (0);
if (tx_credits >= (n * EQ_ESIZE) / 16)
return ((n * EQ_ESIZE) - sizeof(struct fw_ofld_tx_data_wr));
else
return (tx_credits * 16 - sizeof(struct fw_ofld_tx_data_wr));
}
/* Maximum number of SGL entries we could stuff in a WR */
static inline int
max_dsgl_nsegs(int tx_credits)
{
int nseg = 1; /* ulptx_sgl has room for 1, rest ulp_tx_sge_pair */
int sge_pair_credits = tx_credits - MIN_OFLD_TX_CREDITS;
KASSERT(tx_credits >= 0 &&
tx_credits <= MAX_OFLD_TX_CREDITS,
("%s: %d credits", __func__, tx_credits));
if (tx_credits < MIN_OFLD_TX_CREDITS)
return (0);
nseg += 2 * (sge_pair_credits * 16 / 24);
if ((sge_pair_credits * 16) % 24 == 16)
nseg++;
return (nseg);
}
static inline void
write_tx_wr(void *dst, struct toepcb *toep, unsigned int immdlen,
unsigned int plen, uint8_t credits, int shove, int ulp_submode, int txalign)
{
struct fw_ofld_tx_data_wr *txwr = dst;
txwr->op_to_immdlen = htobe32(V_WR_OP(FW_OFLD_TX_DATA_WR) |
V_FW_WR_IMMDLEN(immdlen));
txwr->flowid_len16 = htobe32(V_FW_WR_FLOWID(toep->tid) |
V_FW_WR_LEN16(credits));
txwr->lsodisable_to_flags = htobe32(V_TX_ULP_MODE(toep->ulp_mode) |
V_TX_ULP_SUBMODE(ulp_submode) | V_TX_URG(0) | V_TX_SHOVE(shove));
txwr->plen = htobe32(plen);
if (txalign > 0) {
struct tcpcb *tp = intotcpcb(toep->inp);
if (plen < 2 * tp->t_maxseg || is_10G_port(toep->vi->pi))
txwr->lsodisable_to_flags |=
htobe32(F_FW_OFLD_TX_DATA_WR_LSODISABLE);
else
txwr->lsodisable_to_flags |=
htobe32(F_FW_OFLD_TX_DATA_WR_ALIGNPLD |
(tp->t_flags & TF_NODELAY ? 0 :
F_FW_OFLD_TX_DATA_WR_ALIGNPLDSHOVE));
}
}
/*
* Generate a DSGL from a starting mbuf. The total number of segments and the
* maximum segments in any one mbuf are provided.
*/
static void
write_tx_sgl(void *dst, struct mbuf *start, struct mbuf *stop, int nsegs, int n)
{
struct mbuf *m;
struct ulptx_sgl *usgl = dst;
int i, j, rc;
struct sglist sg;
struct sglist_seg segs[n];
KASSERT(nsegs > 0, ("%s: nsegs 0", __func__));
sglist_init(&sg, n, segs);
usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
V_ULPTX_NSGE(nsegs));
i = -1;
for (m = start; m != stop; m = m->m_next) {
if (IS_AIOTX_MBUF(m))
rc = sglist_append_vmpages(&sg, aiotx_mbuf_pages(m),
aiotx_mbuf_pgoff(m), m->m_len);
else
rc = sglist_append(&sg, mtod(m, void *), m->m_len);
if (__predict_false(rc != 0))
panic("%s: sglist_append %d", __func__, rc);
for (j = 0; j < sg.sg_nseg; i++, j++) {
if (i < 0) {
usgl->len0 = htobe32(segs[j].ss_len);
usgl->addr0 = htobe64(segs[j].ss_paddr);
} else {
usgl->sge[i / 2].len[i & 1] =
htobe32(segs[j].ss_len);
usgl->sge[i / 2].addr[i & 1] =
htobe64(segs[j].ss_paddr);
}
#ifdef INVARIANTS
nsegs--;
#endif
}
sglist_reset(&sg);
}
if (i & 1)
usgl->sge[i / 2].len[1] = htobe32(0);
KASSERT(nsegs == 0, ("%s: nsegs %d, start %p, stop %p",
__func__, nsegs, start, stop));
}
/*
* Max number of SGL entries an offload tx work request can have. This is 41
* (1 + 40) for a full 512B work request.
* fw_ofld_tx_data_wr(16B) + ulptx_sgl(16B, 1) + ulptx_sge_pair(480B, 40)
*/
#define OFLD_SGL_LEN (41)
/*
* Send data and/or a FIN to the peer.
*
* The socket's so_snd buffer consists of a stream of data starting with sb_mb
* and linked together with m_next. sb_sndptr, if set, is the last mbuf that
* was transmitted.
*
* drop indicates the number of bytes that should be dropped from the head of
* the send buffer. It is an optimization that lets do_fw4_ack avoid creating
* contention on the send buffer lock (before this change it used to do
* sowwakeup and then t4_push_frames right after that when recovering from tx
* stalls). When drop is set this function MUST drop the bytes and wake up any
* writers.
*/
void
t4_push_frames(struct adapter *sc, struct toepcb *toep, int drop)
{
struct mbuf *sndptr, *m, *sb_sndptr;
struct fw_ofld_tx_data_wr *txwr;
struct wrqe *wr;
u_int plen, nsegs, credits, max_imm, max_nsegs, max_nsegs_1mbuf;
struct inpcb *inp = toep->inp;
struct tcpcb *tp = intotcpcb(inp);
struct socket *so = inp->inp_socket;
struct sockbuf *sb = &so->so_snd;
int tx_credits, shove, compl, sowwakeup;
struct ofld_tx_sdesc *txsd;
bool aiotx_mbuf_seen;
INP_WLOCK_ASSERT(inp);
KASSERT(toep->flags & TPF_FLOWC_WR_SENT,
("%s: flowc_wr not sent for tid %u.", __func__, toep->tid));
KASSERT(toep->ulp_mode == ULP_MODE_NONE ||
toep->ulp_mode == ULP_MODE_TCPDDP ||
toep->ulp_mode == ULP_MODE_RDMA,
("%s: ulp_mode %u for toep %p", __func__, toep->ulp_mode, toep));
#ifdef VERBOSE_TRACES
CTR4(KTR_CXGBE, "%s: tid %d toep flags %#x tp flags %#x drop %d",
__func__, toep->tid, toep->flags, tp->t_flags);
#endif
if (__predict_false(toep->flags & TPF_ABORT_SHUTDOWN))
return;
#ifdef RATELIMIT
if (__predict_false(inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) &&
(update_tx_rate_limit(sc, toep, so->so_max_pacing_rate) == 0)) {
inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
}
#endif
/*
* This function doesn't resume by itself. Someone else must clear the
* flag and call this function.
*/
if (__predict_false(toep->flags & TPF_TX_SUSPENDED)) {
KASSERT(drop == 0,
("%s: drop (%d) != 0 but tx is suspended", __func__, drop));
return;
}
txsd = &toep->txsd[toep->txsd_pidx];
do {
tx_credits = min(toep->tx_credits, MAX_OFLD_TX_CREDITS);
max_imm = max_imm_payload(tx_credits);
max_nsegs = max_dsgl_nsegs(tx_credits);
SOCKBUF_LOCK(sb);
sowwakeup = drop;
if (drop) {
sbdrop_locked(sb, drop);
drop = 0;
}
sb_sndptr = sb->sb_sndptr;
sndptr = sb_sndptr ? sb_sndptr->m_next : sb->sb_mb;
plen = 0;
nsegs = 0;
max_nsegs_1mbuf = 0; /* max # of SGL segments in any one mbuf */
aiotx_mbuf_seen = false;
for (m = sndptr; m != NULL; m = m->m_next) {
int n;
if (IS_AIOTX_MBUF(m))
n = sglist_count_vmpages(aiotx_mbuf_pages(m),
aiotx_mbuf_pgoff(m), m->m_len);
else
n = sglist_count(mtod(m, void *), m->m_len);
nsegs += n;
plen += m->m_len;
/* This mbuf sent us _over_ the nsegs limit, back out */
if (plen > max_imm && nsegs > max_nsegs) {
nsegs -= n;
plen -= m->m_len;
if (plen == 0) {
/* Too few credits */
toep->flags |= TPF_TX_SUSPENDED;
if (sowwakeup) {
if (!TAILQ_EMPTY(
&toep->aiotx_jobq))
t4_aiotx_queue_toep(
toep);
sowwakeup_locked(so);
} else
SOCKBUF_UNLOCK(sb);
SOCKBUF_UNLOCK_ASSERT(sb);
return;
}
break;
}
if (IS_AIOTX_MBUF(m))
aiotx_mbuf_seen = true;
if (max_nsegs_1mbuf < n)
max_nsegs_1mbuf = n;
sb_sndptr = m; /* new sb->sb_sndptr if all goes well */
/* This mbuf put us right at the max_nsegs limit */
if (plen > max_imm && nsegs == max_nsegs) {
m = m->m_next;
break;
}
}
if (sbused(sb) > sb->sb_hiwat * 5 / 8 &&
toep->plen_nocompl + plen >= sb->sb_hiwat / 4)
compl = 1;
else
compl = 0;
if (sb->sb_flags & SB_AUTOSIZE &&
V_tcp_do_autosndbuf &&
sb->sb_hiwat < V_tcp_autosndbuf_max &&
sbused(sb) >= sb->sb_hiwat * 7 / 8) {
int newsize = min(sb->sb_hiwat + V_tcp_autosndbuf_inc,
V_tcp_autosndbuf_max);
if (!sbreserve_locked(sb, newsize, so, NULL))
sb->sb_flags &= ~SB_AUTOSIZE;
else
sowwakeup = 1; /* room available */
}
if (sowwakeup) {
if (!TAILQ_EMPTY(&toep->aiotx_jobq))
t4_aiotx_queue_toep(toep);
sowwakeup_locked(so);
} else
SOCKBUF_UNLOCK(sb);
SOCKBUF_UNLOCK_ASSERT(sb);
/* nothing to send */
if (plen == 0) {
KASSERT(m == NULL,
("%s: nothing to send, but m != NULL", __func__));
break;
}
if (__predict_false(toep->flags & TPF_FIN_SENT))
panic("%s: excess tx.", __func__);
shove = m == NULL && !(tp->t_flags & TF_MORETOCOME);
if (plen <= max_imm && !aiotx_mbuf_seen) {
/* Immediate data tx */
wr = alloc_wrqe(roundup2(sizeof(*txwr) + plen, 16),
toep->ofld_txq);
if (wr == NULL) {
/* XXX: how will we recover from this? */
toep->flags |= TPF_TX_SUSPENDED;
return;
}
txwr = wrtod(wr);
credits = howmany(wr->wr_len, 16);
write_tx_wr(txwr, toep, plen, plen, credits, shove, 0,
sc->tt.tx_align);
m_copydata(sndptr, 0, plen, (void *)(txwr + 1));
nsegs = 0;
} else {
int wr_len;
/* DSGL tx */
wr_len = sizeof(*txwr) + sizeof(struct ulptx_sgl) +
((3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1)) * 8;
wr = alloc_wrqe(roundup2(wr_len, 16), toep->ofld_txq);
if (wr == NULL) {
/* XXX: how will we recover from this? */
toep->flags |= TPF_TX_SUSPENDED;
return;
}
txwr = wrtod(wr);
credits = howmany(wr_len, 16);
write_tx_wr(txwr, toep, 0, plen, credits, shove, 0,
sc->tt.tx_align);
write_tx_sgl(txwr + 1, sndptr, m, nsegs,
max_nsegs_1mbuf);
if (wr_len & 0xf) {
uint64_t *pad = (uint64_t *)
((uintptr_t)txwr + wr_len);
*pad = 0;
}
}
KASSERT(toep->tx_credits >= credits,
("%s: not enough credits", __func__));
toep->tx_credits -= credits;
toep->tx_nocompl += credits;
toep->plen_nocompl += plen;
if (toep->tx_credits <= toep->tx_total * 3 / 8 &&
toep->tx_nocompl >= toep->tx_total / 4)
compl = 1;
if (compl || toep->ulp_mode == ULP_MODE_RDMA) {
txwr->op_to_immdlen |= htobe32(F_FW_WR_COMPL);
toep->tx_nocompl = 0;
toep->plen_nocompl = 0;
}
tp->snd_nxt += plen;
tp->snd_max += plen;
SOCKBUF_LOCK(sb);
KASSERT(sb_sndptr, ("%s: sb_sndptr is NULL", __func__));
sb->sb_sndptr = sb_sndptr;
SOCKBUF_UNLOCK(sb);
toep->flags |= TPF_TX_DATA_SENT;
if (toep->tx_credits < MIN_OFLD_TX_CREDITS)
toep->flags |= TPF_TX_SUSPENDED;
KASSERT(toep->txsd_avail > 0, ("%s: no txsd", __func__));
txsd->plen = plen;
txsd->tx_credits = credits;
txsd++;
if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) {
toep->txsd_pidx = 0;
txsd = &toep->txsd[0];
}
toep->txsd_avail--;
t4_l2t_send(sc, wr, toep->l2te);
} while (m != NULL);
/* Send a FIN if requested, but only if there's no more data to send */
if (m == NULL && toep->flags & TPF_SEND_FIN)
close_conn(sc, toep);
}
static inline void
rqdrop_locked(struct mbufq *q, int plen)
{
struct mbuf *m;
while (plen > 0) {
m = mbufq_dequeue(q);
/* Too many credits. */
MPASS(m != NULL);
M_ASSERTPKTHDR(m);
/* Partial credits. */
MPASS(plen >= m->m_pkthdr.len);
plen -= m->m_pkthdr.len;
m_freem(m);
}
}
void
t4_push_pdus(struct adapter *sc, struct toepcb *toep, int drop)
{
struct mbuf *sndptr, *m;
struct fw_ofld_tx_data_wr *txwr;
struct wrqe *wr;
u_int plen, nsegs, credits, max_imm, max_nsegs, max_nsegs_1mbuf;
u_int adjusted_plen, ulp_submode;
struct inpcb *inp = toep->inp;
struct tcpcb *tp = intotcpcb(inp);
int tx_credits, shove;
struct ofld_tx_sdesc *txsd = &toep->txsd[toep->txsd_pidx];
struct mbufq *pduq = &toep->ulp_pduq;
static const u_int ulp_extra_len[] = {0, 4, 4, 8};
INP_WLOCK_ASSERT(inp);
KASSERT(toep->flags & TPF_FLOWC_WR_SENT,
("%s: flowc_wr not sent for tid %u.", __func__, toep->tid));
KASSERT(toep->ulp_mode == ULP_MODE_ISCSI,
("%s: ulp_mode %u for toep %p", __func__, toep->ulp_mode, toep));
if (__predict_false(toep->flags & TPF_ABORT_SHUTDOWN))
return;
/*
* This function doesn't resume by itself. Someone else must clear the
* flag and call this function.
*/
if (__predict_false(toep->flags & TPF_TX_SUSPENDED)) {
KASSERT(drop == 0,
("%s: drop (%d) != 0 but tx is suspended", __func__, drop));
return;
}
if (drop)
rqdrop_locked(&toep->ulp_pdu_reclaimq, drop);
while ((sndptr = mbufq_first(pduq)) != NULL) {
M_ASSERTPKTHDR(sndptr);
tx_credits = min(toep->tx_credits, MAX_OFLD_TX_CREDITS);
max_imm = max_imm_payload(tx_credits);
max_nsegs = max_dsgl_nsegs(tx_credits);
plen = 0;
nsegs = 0;
max_nsegs_1mbuf = 0; /* max # of SGL segments in any one mbuf */
for (m = sndptr; m != NULL; m = m->m_next) {
int n = sglist_count(mtod(m, void *), m->m_len);
nsegs += n;
plen += m->m_len;
/*
* This mbuf would send us _over_ the nsegs limit.
* Suspend tx because the PDU can't be sent out.
*/
if (plen > max_imm && nsegs > max_nsegs) {
toep->flags |= TPF_TX_SUSPENDED;
return;
}
if (max_nsegs_1mbuf < n)
max_nsegs_1mbuf = n;
}
if (__predict_false(toep->flags & TPF_FIN_SENT))
panic("%s: excess tx.", __func__);
/*
* We have a PDU to send. All of it goes out in one WR so 'm'
* is NULL. A PDU's length is always a multiple of 4.
*/
MPASS(m == NULL);
MPASS((plen & 3) == 0);
MPASS(sndptr->m_pkthdr.len == plen);
shove = !(tp->t_flags & TF_MORETOCOME);
ulp_submode = mbuf_ulp_submode(sndptr);
MPASS(ulp_submode < nitems(ulp_extra_len));
/*
* plen doesn't include header and data digests, which are
* generated and inserted in the right places by the TOE, but
* they do occupy TCP sequence space and need to be accounted
* for.
*/
adjusted_plen = plen + ulp_extra_len[ulp_submode];
if (plen <= max_imm) {
/* Immediate data tx */
wr = alloc_wrqe(roundup2(sizeof(*txwr) + plen, 16),
toep->ofld_txq);
if (wr == NULL) {
/* XXX: how will we recover from this? */
toep->flags |= TPF_TX_SUSPENDED;
return;
}
txwr = wrtod(wr);
credits = howmany(wr->wr_len, 16);
write_tx_wr(txwr, toep, plen, adjusted_plen, credits,
shove, ulp_submode, sc->tt.tx_align);
m_copydata(sndptr, 0, plen, (void *)(txwr + 1));
nsegs = 0;
} else {
int wr_len;
/* DSGL tx */
wr_len = sizeof(*txwr) + sizeof(struct ulptx_sgl) +
((3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1)) * 8;
wr = alloc_wrqe(roundup2(wr_len, 16), toep->ofld_txq);
if (wr == NULL) {
/* XXX: how will we recover from this? */
toep->flags |= TPF_TX_SUSPENDED;
return;
}
txwr = wrtod(wr);
credits = howmany(wr_len, 16);
write_tx_wr(txwr, toep, 0, adjusted_plen, credits,
shove, ulp_submode, sc->tt.tx_align);
write_tx_sgl(txwr + 1, sndptr, m, nsegs,
max_nsegs_1mbuf);
if (wr_len & 0xf) {
uint64_t *pad = (uint64_t *)
((uintptr_t)txwr + wr_len);
*pad = 0;
}
}
KASSERT(toep->tx_credits >= credits,
("%s: not enough credits", __func__));
m = mbufq_dequeue(pduq);
MPASS(m == sndptr);
mbufq_enqueue(&toep->ulp_pdu_reclaimq, m);
toep->tx_credits -= credits;
toep->tx_nocompl += credits;
toep->plen_nocompl += plen;
if (toep->tx_credits <= toep->tx_total * 3 / 8 &&
toep->tx_nocompl >= toep->tx_total / 4) {
txwr->op_to_immdlen |= htobe32(F_FW_WR_COMPL);
toep->tx_nocompl = 0;
toep->plen_nocompl = 0;
}
tp->snd_nxt += adjusted_plen;
tp->snd_max += adjusted_plen;
toep->flags |= TPF_TX_DATA_SENT;
if (toep->tx_credits < MIN_OFLD_TX_CREDITS)
toep->flags |= TPF_TX_SUSPENDED;
KASSERT(toep->txsd_avail > 0, ("%s: no txsd", __func__));
txsd->plen = plen;
txsd->tx_credits = credits;
txsd++;
if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) {
toep->txsd_pidx = 0;
txsd = &toep->txsd[0];
}
toep->txsd_avail--;
t4_l2t_send(sc, wr, toep->l2te);
}
/* Send a FIN if requested, but only if there are no more PDUs to send */
if (mbufq_first(pduq) == NULL && toep->flags & TPF_SEND_FIN)
close_conn(sc, toep);
}
int
t4_tod_output(struct toedev *tod, struct tcpcb *tp)
{
struct adapter *sc = tod->tod_softc;
#ifdef INVARIANTS
struct inpcb *inp = tp->t_inpcb;
#endif
struct toepcb *toep = tp->t_toe;
INP_WLOCK_ASSERT(inp);
KASSERT((inp->inp_flags & INP_DROPPED) == 0,
("%s: inp %p dropped.", __func__, inp));
KASSERT(toep != NULL, ("%s: toep is NULL", __func__));
if (toep->ulp_mode == ULP_MODE_ISCSI)
t4_push_pdus(sc, toep, 0);
else
t4_push_frames(sc, toep, 0);
return (0);
}
int
t4_send_fin(struct toedev *tod, struct tcpcb *tp)
{
struct adapter *sc = tod->tod_softc;
#ifdef INVARIANTS
struct inpcb *inp = tp->t_inpcb;
#endif
struct toepcb *toep = tp->t_toe;
INP_WLOCK_ASSERT(inp);
KASSERT((inp->inp_flags & INP_DROPPED) == 0,
("%s: inp %p dropped.", __func__, inp));
KASSERT(toep != NULL, ("%s: toep is NULL", __func__));
toep->flags |= TPF_SEND_FIN;
if (tp->t_state >= TCPS_ESTABLISHED) {
if (toep->ulp_mode == ULP_MODE_ISCSI)
t4_push_pdus(sc, toep, 0);
else
t4_push_frames(sc, toep, 0);
}
return (0);
}
int
t4_send_rst(struct toedev *tod, struct tcpcb *tp)
{
struct adapter *sc = tod->tod_softc;
#if defined(INVARIANTS)
struct inpcb *inp = tp->t_inpcb;
#endif
struct toepcb *toep = tp->t_toe;
INP_WLOCK_ASSERT(inp);
KASSERT((inp->inp_flags & INP_DROPPED) == 0,
("%s: inp %p dropped.", __func__, inp));
KASSERT(toep != NULL, ("%s: toep is NULL", __func__));
/* hmmmm */
KASSERT(toep->flags & TPF_FLOWC_WR_SENT,
("%s: flowc for tid %u [%s] not sent already",
__func__, toep->tid, tcpstates[tp->t_state]));
send_reset(sc, toep, 0);
return (0);
}
/*
* Peer has sent us a FIN.
*/
static int
do_peer_close(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
{
struct adapter *sc = iq->adapter;
const struct cpl_peer_close *cpl = (const void *)(rss + 1);
unsigned int tid = GET_TID(cpl);
struct toepcb *toep = lookup_tid(sc, tid);
struct inpcb *inp = toep->inp;
struct tcpcb *tp = NULL;
struct socket *so;
#ifdef INVARIANTS
unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl)));
#endif
KASSERT(opcode == CPL_PEER_CLOSE,
("%s: unexpected opcode 0x%x", __func__, opcode));
KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
if (__predict_false(toep->flags & TPF_SYNQE)) {
#ifdef INVARIANTS
struct synq_entry *synqe = (void *)toep;
INP_WLOCK(synqe->lctx->inp);
if (synqe->flags & TPF_SYNQE_HAS_L2TE) {
KASSERT(synqe->flags & TPF_ABORT_SHUTDOWN,
("%s: listen socket closed but tid %u not aborted.",
__func__, tid));
} else {
/*
* do_pass_accept_req is still running and will
* eventually take care of this tid.
*/
}
INP_WUNLOCK(synqe->lctx->inp);
#endif
CTR4(KTR_CXGBE, "%s: tid %u, synqe %p (0x%x)", __func__, tid,
toep, toep->flags);
return (0);
}
KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__));
CURVNET_SET(toep->vnet);
INP_INFO_RLOCK(&V_tcbinfo);
INP_WLOCK(inp);
tp = intotcpcb(inp);
CTR5(KTR_CXGBE, "%s: tid %u (%s), toep_flags 0x%x, inp %p", __func__,
tid, tp ? tcpstates[tp->t_state] : "no tp", toep->flags, inp);
if (toep->flags & TPF_ABORT_SHUTDOWN)
goto done;
tp->rcv_nxt++; /* FIN */
so = inp->inp_socket;
if (toep->ulp_mode == ULP_MODE_TCPDDP) {
DDP_LOCK(toep);
if (__predict_false(toep->ddp_flags &
(DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)))
handle_ddp_close(toep, tp, cpl->rcv_nxt);
DDP_UNLOCK(toep);
}
socantrcvmore(so);
if (toep->ulp_mode != ULP_MODE_RDMA) {
KASSERT(tp->rcv_nxt == be32toh(cpl->rcv_nxt),
("%s: rcv_nxt mismatch: %u %u", __func__, tp->rcv_nxt,
be32toh(cpl->rcv_nxt)));
}
switch (tp->t_state) {
case TCPS_SYN_RECEIVED:
tp->t_starttime = ticks;
/* FALLTHROUGH */
case TCPS_ESTABLISHED:
tp->t_state = TCPS_CLOSE_WAIT;
break;
case TCPS_FIN_WAIT_1:
tp->t_state = TCPS_CLOSING;
break;
case TCPS_FIN_WAIT_2:
tcp_twstart(tp);
INP_UNLOCK_ASSERT(inp); /* safe, we have a ref on the inp */
INP_INFO_RUNLOCK(&V_tcbinfo);
CURVNET_RESTORE();
INP_WLOCK(inp);
final_cpl_received(toep);
return (0);
default:
log(LOG_ERR, "%s: TID %u received CPL_PEER_CLOSE in state %d\n",
__func__, tid, tp->t_state);
}
done:
INP_WUNLOCK(inp);
INP_INFO_RUNLOCK(&V_tcbinfo);
CURVNET_RESTORE();
return (0);
}
/*
* Peer has ACK'd our FIN.
*/
static int
do_close_con_rpl(struct sge_iq *iq, const struct rss_header *rss,
struct mbuf *m)
{
struct adapter *sc = iq->adapter;
const struct cpl_close_con_rpl *cpl = (const void *)(rss + 1);
unsigned int tid = GET_TID(cpl);
struct toepcb *toep = lookup_tid(sc, tid);
struct inpcb *inp = toep->inp;
struct tcpcb *tp = NULL;
struct socket *so = NULL;
#ifdef INVARIANTS
unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl)));
#endif
KASSERT(opcode == CPL_CLOSE_CON_RPL,
("%s: unexpected opcode 0x%x", __func__, opcode));
KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__));
CURVNET_SET(toep->vnet);
INP_INFO_RLOCK(&V_tcbinfo);
INP_WLOCK(inp);
tp = intotcpcb(inp);
CTR4(KTR_CXGBE, "%s: tid %u (%s), toep_flags 0x%x",
__func__, tid, tp ? tcpstates[tp->t_state] : "no tp", toep->flags);
if (toep->flags & TPF_ABORT_SHUTDOWN)
goto done;
so = inp->inp_socket;
tp->snd_una = be32toh(cpl->snd_nxt) - 1; /* exclude FIN */
switch (tp->t_state) {
case TCPS_CLOSING: /* see TCPS_FIN_WAIT_2 in do_peer_close too */
tcp_twstart(tp);
release:
INP_UNLOCK_ASSERT(inp); /* safe, we have a ref on the inp */
INP_INFO_RUNLOCK(&V_tcbinfo);
CURVNET_RESTORE();
INP_WLOCK(inp);
final_cpl_received(toep); /* no more CPLs expected */
return (0);
case TCPS_LAST_ACK:
if (tcp_close(tp))
INP_WUNLOCK(inp);
goto release;
case TCPS_FIN_WAIT_1:
if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
soisdisconnected(so);
tp->t_state = TCPS_FIN_WAIT_2;
break;
default:
log(LOG_ERR,
"%s: TID %u received CPL_CLOSE_CON_RPL in state %s\n",
__func__, tid, tcpstates[tp->t_state]);
}
done:
INP_WUNLOCK(inp);
INP_INFO_RUNLOCK(&V_tcbinfo);
CURVNET_RESTORE();
return (0);
}
void
send_abort_rpl(struct adapter *sc, struct sge_wrq *ofld_txq, int tid,
int rst_status)
{
struct wrqe *wr;
struct cpl_abort_rpl *cpl;
wr = alloc_wrqe(sizeof(*cpl), ofld_txq);
if (wr == NULL) {
/* XXX */
panic("%s: allocation failure.", __func__);
}
cpl = wrtod(wr);
INIT_TP_WR_MIT_CPL(cpl, CPL_ABORT_RPL, tid);
cpl->cmd = rst_status;
t4_wrq_tx(sc, wr);
}
static int
abort_status_to_errno(struct tcpcb *tp, unsigned int abort_reason)
{
switch (abort_reason) {
case CPL_ERR_BAD_SYN:
case CPL_ERR_CONN_RESET:
return (tp->t_state == TCPS_CLOSE_WAIT ? EPIPE : ECONNRESET);
case CPL_ERR_XMIT_TIMEDOUT:
case CPL_ERR_PERSIST_TIMEDOUT:
case CPL_ERR_FINWAIT2_TIMEDOUT:
case CPL_ERR_KEEPALIVE_TIMEDOUT:
return (ETIMEDOUT);
default:
return (EIO);
}
}
/*
* TCP RST from the peer, timeout, or some other such critical error.
*/
static int
do_abort_req(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
{
struct adapter *sc = iq->adapter;
const struct cpl_abort_req_rss *cpl = (const void *)(rss + 1);
unsigned int tid = GET_TID(cpl);
struct toepcb *toep = lookup_tid(sc, tid);
struct sge_wrq *ofld_txq = toep->ofld_txq;
struct inpcb *inp;
struct tcpcb *tp;
#ifdef INVARIANTS
unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl)));
#endif
KASSERT(opcode == CPL_ABORT_REQ_RSS,
("%s: unexpected opcode 0x%x", __func__, opcode));
KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
if (toep->flags & TPF_SYNQE)
return (do_abort_req_synqe(iq, rss, m));
KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__));
if (negative_advice(cpl->status)) {
CTR4(KTR_CXGBE, "%s: negative advice %d for tid %d (0x%x)",
__func__, cpl->status, tid, toep->flags);
return (0); /* Ignore negative advice */
}
inp = toep->inp;
CURVNET_SET(toep->vnet);
INP_INFO_RLOCK(&V_tcbinfo); /* for tcp_close */
INP_WLOCK(inp);
tp = intotcpcb(inp);
CTR6(KTR_CXGBE,
"%s: tid %d (%s), toep_flags 0x%x, inp_flags 0x%x, status %d",
__func__, tid, tp ? tcpstates[tp->t_state] : "no tp", toep->flags,
inp->inp_flags, cpl->status);
/*
* If we'd initiated an abort earlier the reply to it is responsible for
* cleaning up resources. Otherwise we tear everything down right here
* right now. We owe the T4 a CPL_ABORT_RPL no matter what.
*/
if (toep->flags & TPF_ABORT_SHUTDOWN) {
INP_WUNLOCK(inp);
goto done;
}
toep->flags |= TPF_ABORT_SHUTDOWN;
if ((inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT)) == 0) {
struct socket *so = inp->inp_socket;
if (so != NULL)
so_error_set(so, abort_status_to_errno(tp,
cpl->status));
tp = tcp_close(tp);
if (tp == NULL)
INP_WLOCK(inp); /* re-acquire */
}
final_cpl_received(toep);
done:
INP_INFO_RUNLOCK(&V_tcbinfo);
CURVNET_RESTORE();
send_abort_rpl(sc, ofld_txq, tid, CPL_ABORT_NO_RST);
return (0);
}
/*
* Reply to the CPL_ABORT_REQ (send_reset)
*/
static int
do_abort_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
{
struct adapter *sc = iq->adapter;
const struct cpl_abort_rpl_rss *cpl = (const void *)(rss + 1);
unsigned int tid = GET_TID(cpl);
struct toepcb *toep = lookup_tid(sc, tid);
struct inpcb *inp = toep->inp;
#ifdef INVARIANTS
unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl)));
#endif
KASSERT(opcode == CPL_ABORT_RPL_RSS,
("%s: unexpected opcode 0x%x", __func__, opcode));
KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
if (toep->flags & TPF_SYNQE)
return (do_abort_rpl_synqe(iq, rss, m));
KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__));
CTR5(KTR_CXGBE, "%s: tid %u, toep %p, inp %p, status %d",
__func__, tid, toep, inp, cpl->status);
KASSERT(toep->flags & TPF_ABORT_SHUTDOWN,
("%s: wasn't expecting abort reply", __func__));
INP_WLOCK(inp);
final_cpl_received(toep);
return (0);
}
static int
do_rx_data(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
{
struct adapter *sc = iq->adapter;
const struct cpl_rx_data *cpl = mtod(m, const void *);
unsigned int tid = GET_TID(cpl);
struct toepcb *toep = lookup_tid(sc, tid);
struct inpcb *inp = toep->inp;
struct tcpcb *tp;
struct socket *so;
struct sockbuf *sb;
int len;
uint32_t ddp_placed = 0;
if (__predict_false(toep->flags & TPF_SYNQE)) {
#ifdef INVARIANTS
struct synq_entry *synqe = (void *)toep;
INP_WLOCK(synqe->lctx->inp);
if (synqe->flags & TPF_SYNQE_HAS_L2TE) {
KASSERT(synqe->flags & TPF_ABORT_SHUTDOWN,
("%s: listen socket closed but tid %u not aborted.",
__func__, tid));
} else {
/*
* do_pass_accept_req is still running and will
* eventually take care of this tid.
*/
}
INP_WUNLOCK(synqe->lctx->inp);
#endif
CTR4(KTR_CXGBE, "%s: tid %u, synqe %p (0x%x)", __func__, tid,
toep, toep->flags);
m_freem(m);
return (0);
}
KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__));
/* strip off CPL header */
m_adj(m, sizeof(*cpl));
len = m->m_pkthdr.len;
INP_WLOCK(inp);
if (inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT)) {
CTR4(KTR_CXGBE, "%s: tid %u, rx (%d bytes), inp_flags 0x%x",
__func__, tid, len, inp->inp_flags);
INP_WUNLOCK(inp);
m_freem(m);
return (0);
}
tp = intotcpcb(inp);
if (__predict_false(tp->rcv_nxt != be32toh(cpl->seq)))
ddp_placed = be32toh(cpl->seq) - tp->rcv_nxt;
tp->rcv_nxt += len;
if (tp->rcv_wnd < len) {
KASSERT(toep->ulp_mode == ULP_MODE_RDMA,
("%s: negative window size", __func__));
}
tp->rcv_wnd -= len;
tp->t_rcvtime = ticks;
if (toep->ulp_mode == ULP_MODE_TCPDDP)
DDP_LOCK(toep);
so = inp_inpcbtosocket(inp);
sb = &so->so_rcv;
SOCKBUF_LOCK(sb);
if (__predict_false(sb->sb_state & SBS_CANTRCVMORE)) {
CTR3(KTR_CXGBE, "%s: tid %u, excess rx (%d bytes)",
__func__, tid, len);
m_freem(m);
SOCKBUF_UNLOCK(sb);
if (toep->ulp_mode == ULP_MODE_TCPDDP)
DDP_UNLOCK(toep);
INP_WUNLOCK(inp);
CURVNET_SET(toep->vnet);
INP_INFO_RLOCK(&V_tcbinfo);
INP_WLOCK(inp);
tp = tcp_drop(tp, ECONNRESET);
if (tp)
INP_WUNLOCK(inp);
INP_INFO_RUNLOCK(&V_tcbinfo);
CURVNET_RESTORE();
return (0);
}
/* receive buffer autosize */
MPASS(toep->vnet == so->so_vnet);
CURVNET_SET(toep->vnet);
if (sb->sb_flags & SB_AUTOSIZE &&
V_tcp_do_autorcvbuf &&
sb->sb_hiwat < V_tcp_autorcvbuf_max &&
len > (sbspace(sb) / 8 * 7)) {
unsigned int hiwat = sb->sb_hiwat;
unsigned int newsize = min(hiwat + V_tcp_autorcvbuf_inc,
V_tcp_autorcvbuf_max);
if (!sbreserve_locked(sb, newsize, so, NULL))
sb->sb_flags &= ~SB_AUTOSIZE;
else
toep->rx_credits += newsize - hiwat;
}
if (toep->ddp_waiting_count != 0 || toep->ddp_active_count != 0)
CTR3(KTR_CXGBE, "%s: tid %u, non-ddp rx (%d bytes)", __func__,
tid, len);
if (toep->ulp_mode == ULP_MODE_TCPDDP) {
int changed = !(toep->ddp_flags & DDP_ON) ^ cpl->ddp_off;
if (changed) {
if (toep->ddp_flags & DDP_SC_REQ)
toep->ddp_flags ^= DDP_ON | DDP_SC_REQ;
else {
KASSERT(cpl->ddp_off == 1,
("%s: DDP switched on by itself.",
__func__));
/* Fell out of DDP mode */
toep->ddp_flags &= ~DDP_ON;
CTR1(KTR_CXGBE, "%s: fell out of DDP mode",
__func__);
insert_ddp_data(toep, ddp_placed);
}
}
if (toep->ddp_flags & DDP_ON) {
/*
* CPL_RX_DATA with DDP on can only be an indicate.
* Start posting queued AIO requests via DDP. The
* payload that arrived in this indicate is appended
* to the socket buffer as usual.
*/
handle_ddp_indicate(toep);
}
}
KASSERT(toep->sb_cc >= sbused(sb),
("%s: sb %p has more data (%d) than last time (%d).",
__func__, sb, sbused(sb), toep->sb_cc));
toep->rx_credits += toep->sb_cc - sbused(sb);
sbappendstream_locked(sb, m, 0);
toep->sb_cc = sbused(sb);
if (toep->rx_credits > 0 && toep->sb_cc + tp->rcv_wnd < sb->sb_lowat) {
int credits;
credits = send_rx_credits(sc, toep, toep->rx_credits);
toep->rx_credits -= credits;
tp->rcv_wnd += credits;
tp->rcv_adv += credits;
}
if (toep->ddp_waiting_count > 0 && sbavail(sb) != 0) {
CTR2(KTR_CXGBE, "%s: tid %u queueing AIO task", __func__,
tid);
ddp_queue_toep(toep);
}
sorwakeup_locked(so);
SOCKBUF_UNLOCK_ASSERT(sb);
if (toep->ulp_mode == ULP_MODE_TCPDDP)
DDP_UNLOCK(toep);
INP_WUNLOCK(inp);
CURVNET_RESTORE();
return (0);
}
#define S_CPL_FW4_ACK_OPCODE 24
#define M_CPL_FW4_ACK_OPCODE 0xff
#define V_CPL_FW4_ACK_OPCODE(x) ((x) << S_CPL_FW4_ACK_OPCODE)
#define G_CPL_FW4_ACK_OPCODE(x) \
(((x) >> S_CPL_FW4_ACK_OPCODE) & M_CPL_FW4_ACK_OPCODE)
#define S_CPL_FW4_ACK_FLOWID 0
#define M_CPL_FW4_ACK_FLOWID 0xffffff
#define V_CPL_FW4_ACK_FLOWID(x) ((x) << S_CPL_FW4_ACK_FLOWID)
#define G_CPL_FW4_ACK_FLOWID(x) \
(((x) >> S_CPL_FW4_ACK_FLOWID) & M_CPL_FW4_ACK_FLOWID)
#define S_CPL_FW4_ACK_CR 24
#define M_CPL_FW4_ACK_CR 0xff
#define V_CPL_FW4_ACK_CR(x) ((x) << S_CPL_FW4_ACK_CR)
#define G_CPL_FW4_ACK_CR(x) (((x) >> S_CPL_FW4_ACK_CR) & M_CPL_FW4_ACK_CR)
#define S_CPL_FW4_ACK_SEQVAL 0
#define M_CPL_FW4_ACK_SEQVAL 0x1
#define V_CPL_FW4_ACK_SEQVAL(x) ((x) << S_CPL_FW4_ACK_SEQVAL)
#define G_CPL_FW4_ACK_SEQVAL(x) \
(((x) >> S_CPL_FW4_ACK_SEQVAL) & M_CPL_FW4_ACK_SEQVAL)
#define F_CPL_FW4_ACK_SEQVAL V_CPL_FW4_ACK_SEQVAL(1U)
static int
do_fw4_ack(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
{
struct adapter *sc = iq->adapter;
const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
unsigned int tid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
struct toepcb *toep = lookup_tid(sc, tid);
struct inpcb *inp;
struct tcpcb *tp;
struct socket *so;
uint8_t credits = cpl->credits;
struct ofld_tx_sdesc *txsd;
int plen;
#ifdef INVARIANTS
unsigned int opcode = G_CPL_FW4_ACK_OPCODE(be32toh(OPCODE_TID(cpl)));
#endif
/*
* Very unusual case: we'd sent a flowc + abort_req for a synq entry and
* now this comes back carrying the credits for the flowc.
*/
if (__predict_false(toep->flags & TPF_SYNQE)) {
KASSERT(toep->flags & TPF_ABORT_SHUTDOWN,
("%s: credits for a synq entry %p", __func__, toep));
return (0);
}
inp = toep->inp;
KASSERT(opcode == CPL_FW4_ACK,
("%s: unexpected opcode 0x%x", __func__, opcode));
KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__));
INP_WLOCK(inp);
if (__predict_false(toep->flags & TPF_ABORT_SHUTDOWN)) {
INP_WUNLOCK(inp);
return (0);
}
KASSERT((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) == 0,
("%s: inp_flags 0x%x", __func__, inp->inp_flags));
tp = intotcpcb(inp);
if (cpl->flags & CPL_FW4_ACK_FLAGS_SEQVAL) {
tcp_seq snd_una = be32toh(cpl->snd_una);
#ifdef INVARIANTS
if (__predict_false(SEQ_LT(snd_una, tp->snd_una))) {
log(LOG_ERR,
"%s: unexpected seq# %x for TID %u, snd_una %x\n",
__func__, snd_una, toep->tid, tp->snd_una);
}
#endif
if (tp->snd_una != snd_una) {
tp->snd_una = snd_una;
tp->ts_recent_age = tcp_ts_getticks();
}
}
#ifdef VERBOSE_TRACES
CTR3(KTR_CXGBE, "%s: tid %d credits %u", __func__, tid, credits);
#endif
so = inp->inp_socket;
txsd = &toep->txsd[toep->txsd_cidx];
plen = 0;
while (credits) {
KASSERT(credits >= txsd->tx_credits,
("%s: too many (or partial) credits", __func__));
credits -= txsd->tx_credits;
toep->tx_credits += txsd->tx_credits;
plen += txsd->plen;
txsd++;
toep->txsd_avail++;
KASSERT(toep->txsd_avail <= toep->txsd_total,
("%s: txsd avail > total", __func__));
if (__predict_false(++toep->txsd_cidx == toep->txsd_total)) {
txsd = &toep->txsd[0];
toep->txsd_cidx = 0;
}
}
if (toep->tx_credits == toep->tx_total) {
toep->tx_nocompl = 0;
toep->plen_nocompl = 0;
}
if (toep->flags & TPF_TX_SUSPENDED &&
toep->tx_credits >= toep->tx_total / 4) {
#ifdef VERBOSE_TRACES
CTR2(KTR_CXGBE, "%s: tid %d calling t4_push_frames", __func__,
tid);
#endif
toep->flags &= ~TPF_TX_SUSPENDED;
CURVNET_SET(toep->vnet);
if (toep->ulp_mode == ULP_MODE_ISCSI)
t4_push_pdus(sc, toep, plen);
else
t4_push_frames(sc, toep, plen);
CURVNET_RESTORE();
} else if (plen > 0) {
struct sockbuf *sb = &so->so_snd;
int sbu;
SOCKBUF_LOCK(sb);
sbu = sbused(sb);
if (toep->ulp_mode == ULP_MODE_ISCSI) {
if (__predict_false(sbu > 0)) {
/*
* The data trasmitted before the tid's ULP mode
* changed to ISCSI is still in so_snd.
* Incoming credits should account for so_snd
* first.
*/
sbdrop_locked(sb, min(sbu, plen));
plen -= min(sbu, plen);
}
sowwakeup_locked(so); /* unlocks so_snd */
rqdrop_locked(&toep->ulp_pdu_reclaimq, plen);
} else {
#ifdef VERBOSE_TRACES
CTR3(KTR_CXGBE, "%s: tid %d dropped %d bytes", __func__,
tid, plen);
#endif
sbdrop_locked(sb, plen);
if (!TAILQ_EMPTY(&toep->aiotx_jobq))
t4_aiotx_queue_toep(toep);
sowwakeup_locked(so); /* unlocks so_snd */
}
SOCKBUF_UNLOCK_ASSERT(sb);
}
INP_WUNLOCK(inp);
return (0);
}
int
do_set_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
{
struct adapter *sc = iq->adapter;
const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1);
unsigned int tid = GET_TID(cpl);
struct toepcb *toep;
#ifdef INVARIANTS
unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl)));
#endif
KASSERT(opcode == CPL_SET_TCB_RPL,
("%s: unexpected opcode 0x%x", __func__, opcode));
KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
MPASS(iq != &sc->sge.fwq);
toep = lookup_tid(sc, tid);
if (toep->ulp_mode == ULP_MODE_TCPDDP) {
handle_ddp_tcb_rpl(toep, cpl);
return (0);
}
/*
* TOM and/or other ULPs don't request replies for CPL_SET_TCB or
* CPL_SET_TCB_FIELD requests. This can easily change and when it does
* the dispatch code will go here.
*/
#ifdef INVARIANTS
panic("%s: Unexpected CPL_SET_TCB_RPL for tid %u on iq %p", __func__,
tid, iq);
#else
log(LOG_ERR, "%s: Unexpected CPL_SET_TCB_RPL for tid %u on iq %p\n",
__func__, tid, iq);
#endif
return (0);
}
void
t4_set_tcb_field(struct adapter *sc, struct sge_wrq *wrq, int tid,
uint16_t word, uint64_t mask, uint64_t val, int reply, int cookie, int iqid)
{
struct wrqe *wr;
struct cpl_set_tcb_field *req;
MPASS((cookie & ~M_COOKIE) == 0);
MPASS((iqid & ~M_QUEUENO) == 0);
wr = alloc_wrqe(sizeof(*req), wrq);
if (wr == NULL) {
/* XXX */
panic("%s: allocation failure.", __func__);
}
req = wrtod(wr);
INIT_TP_WR_MIT_CPL(req, CPL_SET_TCB_FIELD, tid);
req->reply_ctrl = htobe16(V_QUEUENO(iqid));
if (reply == 0)
req->reply_ctrl |= htobe16(F_NO_REPLY);
req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(cookie));
req->mask = htobe64(mask);
req->val = htobe64(val);
t4_wrq_tx(sc, wr);
}
void
t4_init_cpl_io_handlers(void)
{
t4_register_cpl_handler(CPL_PEER_CLOSE, do_peer_close);
t4_register_cpl_handler(CPL_CLOSE_CON_RPL, do_close_con_rpl);
t4_register_cpl_handler(CPL_ABORT_REQ_RSS, do_abort_req);
t4_register_cpl_handler(CPL_ABORT_RPL_RSS, do_abort_rpl);
t4_register_cpl_handler(CPL_RX_DATA, do_rx_data);
t4_register_cpl_handler(CPL_FW4_ACK, do_fw4_ack);
}
void
t4_uninit_cpl_io_handlers(void)
{
t4_register_cpl_handler(CPL_PEER_CLOSE, NULL);
t4_register_cpl_handler(CPL_CLOSE_CON_RPL, NULL);
t4_register_cpl_handler(CPL_ABORT_REQ_RSS, NULL);
t4_register_cpl_handler(CPL_ABORT_RPL_RSS, NULL);
t4_register_cpl_handler(CPL_RX_DATA, NULL);
t4_register_cpl_handler(CPL_FW4_ACK, NULL);
}
/*
* Use the 'backend3' field in AIO jobs to store the amount of data
* sent by the AIO job so far and the 'backend4' field to hold an
* error that should be reported when the job is completed.
*/
#define aio_sent backend3
#define aio_error backend4
#define jobtotid(job) \
(((struct toepcb *)(so_sototcpcb((job)->fd_file->f_data)->t_toe))->tid)
static void
free_aiotx_buffer(struct aiotx_buffer *ab)
{
struct kaiocb *job;
long status;
int error;
if (refcount_release(&ab->refcount) == 0)
return;
job = ab->job;
error = job->aio_error;
status = job->aio_sent;
vm_page_unhold_pages(ab->ps.pages, ab->ps.npages);
free(ab, M_CXGBE);
#ifdef VERBOSE_TRACES
CTR5(KTR_CXGBE, "%s: tid %d completed %p len %ld, error %d", __func__,
jobtotid(job), job, status, error);
#endif
if (error == ECANCELED && status != 0)
error = 0;
if (error == ECANCELED)
aio_cancel(job);
else if (error)
aio_complete(job, -1, error);
else
aio_complete(job, status, 0);
}
static void
t4_aiotx_mbuf_free(struct mbuf *m, void *buffer, void *arg)
{
struct aiotx_buffer *ab = buffer;
#ifdef VERBOSE_TRACES
CTR3(KTR_CXGBE, "%s: completed %d bytes for tid %d", __func__,
m->m_len, jobtotid(ab->job));
#endif
free_aiotx_buffer(ab);
}
/*
* Hold the buffer backing an AIO request and return an AIO transmit
* buffer.
*/
static int
hold_aio(struct kaiocb *job)
{
struct aiotx_buffer *ab;
struct vmspace *vm;
vm_map_t map;
vm_offset_t start, end, pgoff;
int n;
MPASS(job->backend1 == NULL);
/*
* The AIO subsystem will cancel and drain all requests before
* permitting a process to exit or exec, so p_vmspace should
* be stable here.
*/
vm = job->userproc->p_vmspace;
map = &vm->vm_map;
start = (uintptr_t)job->uaiocb.aio_buf;
pgoff = start & PAGE_MASK;
end = round_page(start + job->uaiocb.aio_nbytes);
start = trunc_page(start);
n = atop(end - start);
ab = malloc(sizeof(*ab) + n * sizeof(vm_page_t), M_CXGBE, M_WAITOK |
M_ZERO);
refcount_init(&ab->refcount, 1);
ab->ps.pages = (vm_page_t *)(ab + 1);
ab->ps.npages = vm_fault_quick_hold_pages(map, start, end - start,
VM_PROT_WRITE, ab->ps.pages, n);
if (ab->ps.npages < 0) {
free(ab, M_CXGBE);
return (EFAULT);
}
KASSERT(ab->ps.npages == n,
("hold_aio: page count mismatch: %d vs %d", ab->ps.npages, n));
ab->ps.offset = pgoff;
ab->ps.len = job->uaiocb.aio_nbytes;
ab->job = job;
job->backend1 = ab;
#ifdef VERBOSE_TRACES
CTR5(KTR_CXGBE, "%s: tid %d, new pageset %p for job %p, npages %d",
__func__, jobtotid(job), &ab->ps, job, ab->ps.npages);
#endif
return (0);
}
static void
t4_aiotx_process_job(struct toepcb *toep, struct socket *so, struct kaiocb *job)
{
struct adapter *sc;
struct sockbuf *sb;
struct file *fp;
struct aiotx_buffer *ab;
struct inpcb *inp;
struct tcpcb *tp;
struct mbuf *m;
int error;
bool moretocome, sendmore;
sc = td_adapter(toep->td);
sb = &so->so_snd;
SOCKBUF_UNLOCK(sb);
fp = job->fd_file;
ab = job->backend1;
m = NULL;
#ifdef MAC
error = mac_socket_check_send(fp->f_cred, so);
if (error != 0)
goto out;
#endif
if (ab == NULL) {
error = hold_aio(job);
if (error != 0)
goto out;
ab = job->backend1;
}
/* Inline sosend_generic(). */
job->msgsnd = 1;
error = sblock(sb, SBL_WAIT);
MPASS(error == 0);
sendanother:
m = m_get(M_WAITOK, MT_DATA);
SOCKBUF_LOCK(sb);
if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
SOCKBUF_UNLOCK(sb);
sbunlock(sb);
if ((so->so_options & SO_NOSIGPIPE) == 0) {
PROC_LOCK(job->userproc);
kern_psignal(job->userproc, SIGPIPE);
PROC_UNLOCK(job->userproc);
}
error = EPIPE;
goto out;
}
if (so->so_error) {
error = so->so_error;
so->so_error = 0;
SOCKBUF_UNLOCK(sb);
sbunlock(sb);
goto out;
}
if ((so->so_state & SS_ISCONNECTED) == 0) {
SOCKBUF_UNLOCK(sb);
sbunlock(sb);
error = ENOTCONN;
goto out;
}
if (sbspace(sb) < sb->sb_lowat) {
MPASS(job->aio_sent == 0 || !(so->so_state & SS_NBIO));
/*
* Don't block if there is too little room in the socket
* buffer. Instead, requeue the request.
*/
if (!aio_set_cancel_function(job, t4_aiotx_cancel)) {
SOCKBUF_UNLOCK(sb);
sbunlock(sb);
error = ECANCELED;
goto out;
}
TAILQ_INSERT_HEAD(&toep->aiotx_jobq, job, list);
SOCKBUF_UNLOCK(sb);
sbunlock(sb);
goto out;
}
/*
* Write as much data as the socket permits, but no more than a
* a single sndbuf at a time.
*/
m->m_len = sbspace(sb);
if (m->m_len > ab->ps.len - job->aio_sent) {
m->m_len = ab->ps.len - job->aio_sent;
moretocome = false;
} else
moretocome = true;
if (m->m_len > sc->tt.sndbuf) {
m->m_len = sc->tt.sndbuf;
sendmore = true;
} else
sendmore = false;
if (!TAILQ_EMPTY(&toep->aiotx_jobq))
moretocome = true;
SOCKBUF_UNLOCK(sb);
MPASS(m->m_len != 0);
/* Inlined tcp_usr_send(). */
inp = toep->inp;
INP_WLOCK(inp);
if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
INP_WUNLOCK(inp);
sbunlock(sb);
error = ECONNRESET;
goto out;
}
refcount_acquire(&ab->refcount);
m_extadd(m, NULL, ab->ps.len, t4_aiotx_mbuf_free, ab,
(void *)(uintptr_t)job->aio_sent, 0, EXT_NET_DRV);
m->m_ext.ext_flags |= EXT_FLAG_AIOTX;
job->aio_sent += m->m_len;
sbappendstream(sb, m, 0);
m = NULL;
if (!(inp->inp_flags & INP_DROPPED)) {
tp = intotcpcb(inp);
if (moretocome)
tp->t_flags |= TF_MORETOCOME;
error = tp->t_fb->tfb_tcp_output(tp);
if (moretocome)
tp->t_flags &= ~TF_MORETOCOME;
}
INP_WUNLOCK(inp);
if (sendmore)
goto sendanother;
sbunlock(sb);
if (error)
goto out;
/*
* If this is a non-blocking socket and the request has not
* been fully completed, requeue it until the socket is ready
* again.
*/
if (job->aio_sent < job->uaiocb.aio_nbytes &&
!(so->so_state & SS_NBIO)) {
SOCKBUF_LOCK(sb);
if (!aio_set_cancel_function(job, t4_aiotx_cancel)) {
SOCKBUF_UNLOCK(sb);
error = ECANCELED;
goto out;
}
TAILQ_INSERT_HEAD(&toep->aiotx_jobq, job, list);
return;
}
/*
* If the request will not be requeued, drop a reference on
* the aiotx buffer. Any mbufs in flight should still
* contain a reference, but this drops the reference that the
* job owns while it is waiting to queue mbufs to the socket.
*/
free_aiotx_buffer(ab);
out:
if (error) {
if (ab != NULL) {
job->aio_error = error;
free_aiotx_buffer(ab);
} else {
MPASS(job->aio_sent == 0);
aio_complete(job, -1, error);
}
}
if (m != NULL)
m_free(m);
SOCKBUF_LOCK(sb);
}
static void
t4_aiotx_task(void *context, int pending)
{
struct toepcb *toep = context;
struct inpcb *inp = toep->inp;
struct socket *so = inp->inp_socket;
struct kaiocb *job;
CURVNET_SET(toep->vnet);
SOCKBUF_LOCK(&so->so_snd);
while (!TAILQ_EMPTY(&toep->aiotx_jobq) && sowriteable(so)) {
job = TAILQ_FIRST(&toep->aiotx_jobq);
TAILQ_REMOVE(&toep->aiotx_jobq, job, list);
if (!aio_clear_cancel_function(job))
continue;
t4_aiotx_process_job(toep, so, job);
}
toep->aiotx_task_active = false;
SOCKBUF_UNLOCK(&so->so_snd);
CURVNET_RESTORE();
free_toepcb(toep);
}
static void
t4_aiotx_queue_toep(struct toepcb *toep)
{
SOCKBUF_LOCK_ASSERT(&toep->inp->inp_socket->so_snd);
#ifdef VERBOSE_TRACES
CTR3(KTR_CXGBE, "%s: queueing aiotx task for tid %d, active = %s",
__func__, toep->tid, toep->aiotx_task_active ? "true" : "false");
#endif
if (toep->aiotx_task_active)
return;
toep->aiotx_task_active = true;
hold_toepcb(toep);
soaio_enqueue(&toep->aiotx_task);
}
static void
t4_aiotx_cancel(struct kaiocb *job)
{
struct aiotx_buffer *ab;
struct socket *so;
struct sockbuf *sb;
struct tcpcb *tp;
struct toepcb *toep;
so = job->fd_file->f_data;
tp = so_sototcpcb(so);
toep = tp->t_toe;
MPASS(job->uaiocb.aio_lio_opcode == LIO_WRITE);
sb = &so->so_snd;
SOCKBUF_LOCK(sb);
if (!aio_cancel_cleared(job))
TAILQ_REMOVE(&toep->aiotx_jobq, job, list);
SOCKBUF_UNLOCK(sb);
ab = job->backend1;
if (ab != NULL)
free_aiotx_buffer(ab);
else
aio_cancel(job);
}
int
t4_aio_queue_aiotx(struct socket *so, struct kaiocb *job)
{
struct tcpcb *tp = so_sototcpcb(so);
struct toepcb *toep = tp->t_toe;
struct adapter *sc = td_adapter(toep->td);
/* This only handles writes. */
if (job->uaiocb.aio_lio_opcode != LIO_WRITE)
return (EOPNOTSUPP);
if (!sc->tt.tx_zcopy)
return (EOPNOTSUPP);
SOCKBUF_LOCK(&so->so_snd);
#ifdef VERBOSE_TRACES
CTR2(KTR_CXGBE, "%s: queueing %p", __func__, job);
#endif
if (!aio_set_cancel_function(job, t4_aiotx_cancel))
panic("new job was cancelled");
TAILQ_INSERT_TAIL(&toep->aiotx_jobq, job, list);
if (sowriteable(so))
t4_aiotx_queue_toep(toep);
SOCKBUF_UNLOCK(&so->so_snd);
return (0);
}
void
aiotx_init_toep(struct toepcb *toep)
{
TAILQ_INIT(&toep->aiotx_jobq);
TASK_INIT(&toep->aiotx_task, 0, t4_aiotx_task, toep);
}
#endif