3c78771400
Reviewed by: kevans Differential Revision: https://reviews.freebsd.org/D21760
1982 lines
48 KiB
C
1982 lines
48 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Copyright (c) 1992, 1993, 1994 Henry Spencer.
|
|
* Copyright (c) 1992, 1993, 1994
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Copyright (c) 2011 The FreeBSD Foundation
|
|
* All rights reserved.
|
|
* Portions of this software were developed by David Chisnall
|
|
* under sponsorship from the FreeBSD Foundation.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* Henry Spencer.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)regcomp.c 8.5 (Berkeley) 3/20/94
|
|
*/
|
|
|
|
#if defined(LIBC_SCCS) && !defined(lint)
|
|
static char sccsid[] = "@(#)regcomp.c 8.5 (Berkeley) 3/20/94";
|
|
#endif /* LIBC_SCCS and not lint */
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/types.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <ctype.h>
|
|
#include <limits.h>
|
|
#include <stdlib.h>
|
|
#include <regex.h>
|
|
#include <stdbool.h>
|
|
#include <wchar.h>
|
|
#include <wctype.h>
|
|
|
|
#ifndef LIBREGEX
|
|
#include "collate.h"
|
|
#endif
|
|
|
|
#include "utils.h"
|
|
#include "regex2.h"
|
|
|
|
#include "cname.h"
|
|
|
|
/*
|
|
* Branching context, used to keep track of branch state for all of the branch-
|
|
* aware functions. In addition to keeping track of branch positions for the
|
|
* p_branch_* functions, we use this to simplify some clumsiness in BREs for
|
|
* detection of whether ^ is acting as an anchor or being used erroneously and
|
|
* also for whether we're in a sub-expression or not.
|
|
*/
|
|
struct branchc {
|
|
sopno start;
|
|
sopno back;
|
|
sopno fwd;
|
|
|
|
int nbranch;
|
|
int nchain;
|
|
bool outer;
|
|
bool terminate;
|
|
};
|
|
|
|
/*
|
|
* parse structure, passed up and down to avoid global variables and
|
|
* other clumsinesses
|
|
*/
|
|
struct parse {
|
|
const char *next; /* next character in RE */
|
|
const char *end; /* end of string (-> NUL normally) */
|
|
int error; /* has an error been seen? */
|
|
sop *strip; /* malloced strip */
|
|
sopno ssize; /* malloced strip size (allocated) */
|
|
sopno slen; /* malloced strip length (used) */
|
|
int ncsalloc; /* number of csets allocated */
|
|
struct re_guts *g;
|
|
# define NPAREN 10 /* we need to remember () 1-9 for back refs */
|
|
sopno pbegin[NPAREN]; /* -> ( ([0] unused) */
|
|
sopno pend[NPAREN]; /* -> ) ([0] unused) */
|
|
bool allowbranch; /* can this expression branch? */
|
|
bool bre; /* convenience; is this a BRE? */
|
|
bool (*parse_expr)(struct parse *, struct branchc *);
|
|
void (*pre_parse)(struct parse *, struct branchc *);
|
|
void (*post_parse)(struct parse *, struct branchc *);
|
|
};
|
|
|
|
/* ========= begin header generated by ./mkh ========= */
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
/* === regcomp.c === */
|
|
static bool p_ere_exp(struct parse *p, struct branchc *bc);
|
|
static void p_str(struct parse *p);
|
|
static int p_branch_eat_delim(struct parse *p, struct branchc *bc);
|
|
static void p_branch_ins_offset(struct parse *p, struct branchc *bc);
|
|
static void p_branch_fix_tail(struct parse *p, struct branchc *bc);
|
|
static bool p_branch_empty(struct parse *p, struct branchc *bc);
|
|
static bool p_branch_do(struct parse *p, struct branchc *bc);
|
|
static void p_bre_pre_parse(struct parse *p, struct branchc *bc);
|
|
static void p_bre_post_parse(struct parse *p, struct branchc *bc);
|
|
static void p_re(struct parse *p, int end1, int end2);
|
|
static bool p_simp_re(struct parse *p, struct branchc *bc);
|
|
static int p_count(struct parse *p);
|
|
static void p_bracket(struct parse *p);
|
|
static int p_range_cmp(wchar_t c1, wchar_t c2);
|
|
static void p_b_term(struct parse *p, cset *cs);
|
|
static void p_b_cclass(struct parse *p, cset *cs);
|
|
static void p_b_eclass(struct parse *p, cset *cs);
|
|
static wint_t p_b_symbol(struct parse *p);
|
|
static wint_t p_b_coll_elem(struct parse *p, wint_t endc);
|
|
static wint_t othercase(wint_t ch);
|
|
static void bothcases(struct parse *p, wint_t ch);
|
|
static void ordinary(struct parse *p, wint_t ch);
|
|
static void nonnewline(struct parse *p);
|
|
static void repeat(struct parse *p, sopno start, int from, int to);
|
|
static int seterr(struct parse *p, int e);
|
|
static cset *allocset(struct parse *p);
|
|
static void freeset(struct parse *p, cset *cs);
|
|
static void CHadd(struct parse *p, cset *cs, wint_t ch);
|
|
static void CHaddrange(struct parse *p, cset *cs, wint_t min, wint_t max);
|
|
static void CHaddtype(struct parse *p, cset *cs, wctype_t wct);
|
|
static wint_t singleton(cset *cs);
|
|
static sopno dupl(struct parse *p, sopno start, sopno finish);
|
|
static void doemit(struct parse *p, sop op, size_t opnd);
|
|
static void doinsert(struct parse *p, sop op, size_t opnd, sopno pos);
|
|
static void dofwd(struct parse *p, sopno pos, sop value);
|
|
static int enlarge(struct parse *p, sopno size);
|
|
static void stripsnug(struct parse *p, struct re_guts *g);
|
|
static void findmust(struct parse *p, struct re_guts *g);
|
|
static int altoffset(sop *scan, int offset);
|
|
static void computejumps(struct parse *p, struct re_guts *g);
|
|
static void computematchjumps(struct parse *p, struct re_guts *g);
|
|
static sopno pluscount(struct parse *p, struct re_guts *g);
|
|
static wint_t wgetnext(struct parse *p);
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
/* ========= end header generated by ./mkh ========= */
|
|
|
|
static char nuls[10]; /* place to point scanner in event of error */
|
|
|
|
/*
|
|
* macros for use with parse structure
|
|
* BEWARE: these know that the parse structure is named `p' !!!
|
|
*/
|
|
#define PEEK() (*p->next)
|
|
#define PEEK2() (*(p->next+1))
|
|
#define MORE() (p->next < p->end)
|
|
#define MORE2() (p->next+1 < p->end)
|
|
#define SEE(c) (MORE() && PEEK() == (c))
|
|
#define SEETWO(a, b) (MORE() && MORE2() && PEEK() == (a) && PEEK2() == (b))
|
|
#define SEESPEC(a) (p->bre ? SEETWO('\\', a) : SEE(a))
|
|
#define EAT(c) ((SEE(c)) ? (NEXT(), 1) : 0)
|
|
#define EATTWO(a, b) ((SEETWO(a, b)) ? (NEXT2(), 1) : 0)
|
|
#define NEXT() (p->next++)
|
|
#define NEXT2() (p->next += 2)
|
|
#define NEXTn(n) (p->next += (n))
|
|
#define GETNEXT() (*p->next++)
|
|
#define WGETNEXT() wgetnext(p)
|
|
#define SETERROR(e) seterr(p, (e))
|
|
#define REQUIRE(co, e) ((co) || SETERROR(e))
|
|
#define MUSTSEE(c, e) (REQUIRE(MORE() && PEEK() == (c), e))
|
|
#define MUSTEAT(c, e) (REQUIRE(MORE() && GETNEXT() == (c), e))
|
|
#define MUSTNOTSEE(c, e) (REQUIRE(!MORE() || PEEK() != (c), e))
|
|
#define EMIT(op, sopnd) doemit(p, (sop)(op), (size_t)(sopnd))
|
|
#define INSERT(op, pos) doinsert(p, (sop)(op), HERE()-(pos)+1, pos)
|
|
#define AHEAD(pos) dofwd(p, pos, HERE()-(pos))
|
|
#define ASTERN(sop, pos) EMIT(sop, HERE()-pos)
|
|
#define HERE() (p->slen)
|
|
#define THERE() (p->slen - 1)
|
|
#define THERETHERE() (p->slen - 2)
|
|
#define DROP(n) (p->slen -= (n))
|
|
|
|
/* Macro used by computejump()/computematchjump() */
|
|
#define MIN(a,b) ((a)<(b)?(a):(b))
|
|
|
|
/*
|
|
- regcomp - interface for parser and compilation
|
|
= extern int regcomp(regex_t *, const char *, int);
|
|
= #define REG_BASIC 0000
|
|
= #define REG_EXTENDED 0001
|
|
= #define REG_ICASE 0002
|
|
= #define REG_NOSUB 0004
|
|
= #define REG_NEWLINE 0010
|
|
= #define REG_NOSPEC 0020
|
|
= #define REG_PEND 0040
|
|
= #define REG_DUMP 0200
|
|
*/
|
|
int /* 0 success, otherwise REG_something */
|
|
regcomp(regex_t * __restrict preg,
|
|
const char * __restrict pattern,
|
|
int cflags)
|
|
{
|
|
struct parse pa;
|
|
struct re_guts *g;
|
|
struct parse *p = &pa;
|
|
int i;
|
|
size_t len;
|
|
size_t maxlen;
|
|
#ifdef REDEBUG
|
|
# define GOODFLAGS(f) (f)
|
|
#else
|
|
# define GOODFLAGS(f) ((f)&~REG_DUMP)
|
|
#endif
|
|
|
|
cflags = GOODFLAGS(cflags);
|
|
if ((cflags®_EXTENDED) && (cflags®_NOSPEC))
|
|
return(REG_INVARG);
|
|
|
|
if (cflags®_PEND) {
|
|
if (preg->re_endp < pattern)
|
|
return(REG_INVARG);
|
|
len = preg->re_endp - pattern;
|
|
} else
|
|
len = strlen(pattern);
|
|
|
|
/* do the mallocs early so failure handling is easy */
|
|
g = (struct re_guts *)malloc(sizeof(struct re_guts));
|
|
if (g == NULL)
|
|
return(REG_ESPACE);
|
|
/*
|
|
* Limit the pattern space to avoid a 32-bit overflow on buffer
|
|
* extension. Also avoid any signed overflow in case of conversion
|
|
* so make the real limit based on a 31-bit overflow.
|
|
*
|
|
* Likely not applicable on 64-bit systems but handle the case
|
|
* generically (who are we to stop people from using ~715MB+
|
|
* patterns?).
|
|
*/
|
|
maxlen = ((size_t)-1 >> 1) / sizeof(sop) * 2 / 3;
|
|
if (len >= maxlen) {
|
|
free((char *)g);
|
|
return(REG_ESPACE);
|
|
}
|
|
p->ssize = len/(size_t)2*(size_t)3 + (size_t)1; /* ugh */
|
|
assert(p->ssize >= len);
|
|
|
|
p->strip = (sop *)malloc(p->ssize * sizeof(sop));
|
|
p->slen = 0;
|
|
if (p->strip == NULL) {
|
|
free((char *)g);
|
|
return(REG_ESPACE);
|
|
}
|
|
|
|
/* set things up */
|
|
p->g = g;
|
|
p->next = pattern; /* convenience; we do not modify it */
|
|
p->end = p->next + len;
|
|
p->error = 0;
|
|
p->ncsalloc = 0;
|
|
for (i = 0; i < NPAREN; i++) {
|
|
p->pbegin[i] = 0;
|
|
p->pend[i] = 0;
|
|
}
|
|
if (cflags & REG_EXTENDED) {
|
|
p->allowbranch = true;
|
|
p->bre = false;
|
|
p->parse_expr = p_ere_exp;
|
|
p->pre_parse = NULL;
|
|
p->post_parse = NULL;
|
|
} else {
|
|
p->allowbranch = false;
|
|
p->bre = true;
|
|
p->parse_expr = p_simp_re;
|
|
p->pre_parse = p_bre_pre_parse;
|
|
p->post_parse = p_bre_post_parse;
|
|
}
|
|
g->sets = NULL;
|
|
g->ncsets = 0;
|
|
g->cflags = cflags;
|
|
g->iflags = 0;
|
|
g->nbol = 0;
|
|
g->neol = 0;
|
|
g->must = NULL;
|
|
g->moffset = -1;
|
|
g->charjump = NULL;
|
|
g->matchjump = NULL;
|
|
g->mlen = 0;
|
|
g->nsub = 0;
|
|
g->backrefs = 0;
|
|
|
|
/* do it */
|
|
EMIT(OEND, 0);
|
|
g->firststate = THERE();
|
|
if (cflags & REG_NOSPEC)
|
|
p_str(p);
|
|
else
|
|
p_re(p, OUT, OUT);
|
|
EMIT(OEND, 0);
|
|
g->laststate = THERE();
|
|
|
|
/* tidy up loose ends and fill things in */
|
|
stripsnug(p, g);
|
|
findmust(p, g);
|
|
/* only use Boyer-Moore algorithm if the pattern is bigger
|
|
* than three characters
|
|
*/
|
|
if(g->mlen > 3) {
|
|
computejumps(p, g);
|
|
computematchjumps(p, g);
|
|
if(g->matchjump == NULL && g->charjump != NULL) {
|
|
free(g->charjump);
|
|
g->charjump = NULL;
|
|
}
|
|
}
|
|
g->nplus = pluscount(p, g);
|
|
g->magic = MAGIC2;
|
|
preg->re_nsub = g->nsub;
|
|
preg->re_g = g;
|
|
preg->re_magic = MAGIC1;
|
|
#ifndef REDEBUG
|
|
/* not debugging, so can't rely on the assert() in regexec() */
|
|
if (g->iflags&BAD)
|
|
SETERROR(REG_ASSERT);
|
|
#endif
|
|
|
|
/* win or lose, we're done */
|
|
if (p->error != 0) /* lose */
|
|
regfree(preg);
|
|
return(p->error);
|
|
}
|
|
|
|
/*
|
|
- p_ere_exp - parse one subERE, an atom possibly followed by a repetition op,
|
|
- return whether we should terminate or not
|
|
== static bool p_ere_exp(struct parse *p);
|
|
*/
|
|
static bool
|
|
p_ere_exp(struct parse *p, struct branchc *bc)
|
|
{
|
|
char c;
|
|
wint_t wc;
|
|
sopno pos;
|
|
int count;
|
|
int count2;
|
|
sopno subno;
|
|
int wascaret = 0;
|
|
|
|
(void)bc;
|
|
assert(MORE()); /* caller should have ensured this */
|
|
c = GETNEXT();
|
|
|
|
pos = HERE();
|
|
switch (c) {
|
|
case '(':
|
|
(void)REQUIRE(MORE(), REG_EPAREN);
|
|
p->g->nsub++;
|
|
subno = p->g->nsub;
|
|
if (subno < NPAREN)
|
|
p->pbegin[subno] = HERE();
|
|
EMIT(OLPAREN, subno);
|
|
if (!SEE(')'))
|
|
p_re(p, ')', IGN);
|
|
if (subno < NPAREN) {
|
|
p->pend[subno] = HERE();
|
|
assert(p->pend[subno] != 0);
|
|
}
|
|
EMIT(ORPAREN, subno);
|
|
(void)MUSTEAT(')', REG_EPAREN);
|
|
break;
|
|
#ifndef POSIX_MISTAKE
|
|
case ')': /* happens only if no current unmatched ( */
|
|
/*
|
|
* You may ask, why the ifndef? Because I didn't notice
|
|
* this until slightly too late for 1003.2, and none of the
|
|
* other 1003.2 regular-expression reviewers noticed it at
|
|
* all. So an unmatched ) is legal POSIX, at least until
|
|
* we can get it fixed.
|
|
*/
|
|
SETERROR(REG_EPAREN);
|
|
break;
|
|
#endif
|
|
case '^':
|
|
EMIT(OBOL, 0);
|
|
p->g->iflags |= USEBOL;
|
|
p->g->nbol++;
|
|
wascaret = 1;
|
|
break;
|
|
case '$':
|
|
EMIT(OEOL, 0);
|
|
p->g->iflags |= USEEOL;
|
|
p->g->neol++;
|
|
break;
|
|
case '|':
|
|
SETERROR(REG_EMPTY);
|
|
break;
|
|
case '*':
|
|
case '+':
|
|
case '?':
|
|
case '{':
|
|
SETERROR(REG_BADRPT);
|
|
break;
|
|
case '.':
|
|
if (p->g->cflags®_NEWLINE)
|
|
nonnewline(p);
|
|
else
|
|
EMIT(OANY, 0);
|
|
break;
|
|
case '[':
|
|
p_bracket(p);
|
|
break;
|
|
case '\\':
|
|
(void)REQUIRE(MORE(), REG_EESCAPE);
|
|
wc = WGETNEXT();
|
|
switch (wc) {
|
|
case '<':
|
|
EMIT(OBOW, 0);
|
|
break;
|
|
case '>':
|
|
EMIT(OEOW, 0);
|
|
break;
|
|
default:
|
|
ordinary(p, wc);
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
if (p->error != 0)
|
|
return (false);
|
|
p->next--;
|
|
wc = WGETNEXT();
|
|
ordinary(p, wc);
|
|
break;
|
|
}
|
|
|
|
if (!MORE())
|
|
return (false);
|
|
c = PEEK();
|
|
/* we call { a repetition if followed by a digit */
|
|
if (!( c == '*' || c == '+' || c == '?' || c == '{'))
|
|
return (false); /* no repetition, we're done */
|
|
else if (c == '{')
|
|
(void)REQUIRE(MORE2() && \
|
|
(isdigit((uch)PEEK2()) || PEEK2() == ','), REG_BADRPT);
|
|
NEXT();
|
|
|
|
(void)REQUIRE(!wascaret, REG_BADRPT);
|
|
switch (c) {
|
|
case '*': /* implemented as +? */
|
|
/* this case does not require the (y|) trick, noKLUDGE */
|
|
INSERT(OPLUS_, pos);
|
|
ASTERN(O_PLUS, pos);
|
|
INSERT(OQUEST_, pos);
|
|
ASTERN(O_QUEST, pos);
|
|
break;
|
|
case '+':
|
|
INSERT(OPLUS_, pos);
|
|
ASTERN(O_PLUS, pos);
|
|
break;
|
|
case '?':
|
|
/* KLUDGE: emit y? as (y|) until subtle bug gets fixed */
|
|
INSERT(OCH_, pos); /* offset slightly wrong */
|
|
ASTERN(OOR1, pos); /* this one's right */
|
|
AHEAD(pos); /* fix the OCH_ */
|
|
EMIT(OOR2, 0); /* offset very wrong... */
|
|
AHEAD(THERE()); /* ...so fix it */
|
|
ASTERN(O_CH, THERETHERE());
|
|
break;
|
|
case '{':
|
|
count = p_count(p);
|
|
if (EAT(',')) {
|
|
if (isdigit((uch)PEEK())) {
|
|
count2 = p_count(p);
|
|
(void)REQUIRE(count <= count2, REG_BADBR);
|
|
} else /* single number with comma */
|
|
count2 = INFINITY;
|
|
} else /* just a single number */
|
|
count2 = count;
|
|
repeat(p, pos, count, count2);
|
|
if (!EAT('}')) { /* error heuristics */
|
|
while (MORE() && PEEK() != '}')
|
|
NEXT();
|
|
(void)REQUIRE(MORE(), REG_EBRACE);
|
|
SETERROR(REG_BADBR);
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (!MORE())
|
|
return (false);
|
|
c = PEEK();
|
|
if (!( c == '*' || c == '+' || c == '?' ||
|
|
(c == '{' && MORE2() && isdigit((uch)PEEK2())) ) )
|
|
return (false);
|
|
SETERROR(REG_BADRPT);
|
|
return (false);
|
|
}
|
|
|
|
/*
|
|
- p_str - string (no metacharacters) "parser"
|
|
== static void p_str(struct parse *p);
|
|
*/
|
|
static void
|
|
p_str(struct parse *p)
|
|
{
|
|
(void)REQUIRE(MORE(), REG_EMPTY);
|
|
while (MORE())
|
|
ordinary(p, WGETNEXT());
|
|
}
|
|
|
|
/*
|
|
* Eat consecutive branch delimiters for the kind of expression that we are
|
|
* parsing, return the number of delimiters that we ate.
|
|
*/
|
|
static int
|
|
p_branch_eat_delim(struct parse *p, struct branchc *bc)
|
|
{
|
|
int nskip;
|
|
|
|
(void)bc;
|
|
nskip = 0;
|
|
while (EAT('|'))
|
|
++nskip;
|
|
return (nskip);
|
|
}
|
|
|
|
/*
|
|
* Insert necessary branch book-keeping operations. This emits a
|
|
* bogus 'next' offset, since we still have more to parse
|
|
*/
|
|
static void
|
|
p_branch_ins_offset(struct parse *p, struct branchc *bc)
|
|
{
|
|
|
|
if (bc->nbranch == 0) {
|
|
INSERT(OCH_, bc->start); /* offset is wrong */
|
|
bc->fwd = bc->start;
|
|
bc->back = bc->start;
|
|
}
|
|
|
|
ASTERN(OOR1, bc->back);
|
|
bc->back = THERE();
|
|
AHEAD(bc->fwd); /* fix previous offset */
|
|
bc->fwd = HERE();
|
|
EMIT(OOR2, 0); /* offset is very wrong */
|
|
++bc->nbranch;
|
|
}
|
|
|
|
/*
|
|
* Fix the offset of the tail branch, if we actually had any branches.
|
|
* This is to correct the bogus placeholder offset that we use.
|
|
*/
|
|
static void
|
|
p_branch_fix_tail(struct parse *p, struct branchc *bc)
|
|
{
|
|
|
|
/* Fix bogus offset at the tail if we actually have branches */
|
|
if (bc->nbranch > 0) {
|
|
AHEAD(bc->fwd);
|
|
ASTERN(O_CH, bc->back);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Signal to the parser that an empty branch has been encountered; this will,
|
|
* in the future, be used to allow for more permissive behavior with empty
|
|
* branches. The return value should indicate whether parsing may continue
|
|
* or not.
|
|
*/
|
|
static bool
|
|
p_branch_empty(struct parse *p, struct branchc *bc)
|
|
{
|
|
|
|
(void)bc;
|
|
SETERROR(REG_EMPTY);
|
|
return (false);
|
|
}
|
|
|
|
/*
|
|
* Take care of any branching requirements. This includes inserting the
|
|
* appropriate branching instructions as well as eating all of the branch
|
|
* delimiters until we either run out of pattern or need to parse more pattern.
|
|
*/
|
|
static bool
|
|
p_branch_do(struct parse *p, struct branchc *bc)
|
|
{
|
|
int ate = 0;
|
|
|
|
ate = p_branch_eat_delim(p, bc);
|
|
if (ate == 0)
|
|
return (false);
|
|
else if ((ate > 1 || (bc->outer && !MORE())) && !p_branch_empty(p, bc))
|
|
/*
|
|
* Halt parsing only if we have an empty branch and p_branch_empty
|
|
* indicates that we must not continue. In the future, this will not
|
|
* necessarily be an error.
|
|
*/
|
|
return (false);
|
|
p_branch_ins_offset(p, bc);
|
|
|
|
return (true);
|
|
}
|
|
|
|
static void
|
|
p_bre_pre_parse(struct parse *p, struct branchc *bc)
|
|
{
|
|
|
|
(void) bc;
|
|
/*
|
|
* Does not move cleanly into expression parser because of
|
|
* ordinary interpration of * at the beginning position of
|
|
* an expression.
|
|
*/
|
|
if (EAT('^')) {
|
|
EMIT(OBOL, 0);
|
|
p->g->iflags |= USEBOL;
|
|
p->g->nbol++;
|
|
}
|
|
}
|
|
|
|
static void
|
|
p_bre_post_parse(struct parse *p, struct branchc *bc)
|
|
{
|
|
|
|
/* Expression is terminating due to EOL token */
|
|
if (bc->terminate) {
|
|
DROP(1);
|
|
EMIT(OEOL, 0);
|
|
p->g->iflags |= USEEOL;
|
|
p->g->neol++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
- p_re - Top level parser, concatenation and BRE anchoring
|
|
== static void p_re(struct parse *p, int end1, int end2);
|
|
* Giving end1 as OUT essentially eliminates the end1/end2 check.
|
|
*
|
|
* This implementation is a bit of a kludge, in that a trailing $ is first
|
|
* taken as an ordinary character and then revised to be an anchor.
|
|
* The amount of lookahead needed to avoid this kludge is excessive.
|
|
*/
|
|
static void
|
|
p_re(struct parse *p,
|
|
int end1, /* first terminating character */
|
|
int end2) /* second terminating character; ignored for EREs */
|
|
{
|
|
struct branchc bc;
|
|
|
|
bc.nbranch = 0;
|
|
if (end1 == OUT && end2 == OUT)
|
|
bc.outer = true;
|
|
else
|
|
bc.outer = false;
|
|
#define SEEEND() (!p->bre ? SEE(end1) : SEETWO(end1, end2))
|
|
for (;;) {
|
|
bc.start = HERE();
|
|
bc.nchain = 0;
|
|
bc.terminate = false;
|
|
if (p->pre_parse != NULL)
|
|
p->pre_parse(p, &bc);
|
|
while (MORE() && (!p->allowbranch || !SEESPEC('|')) && !SEEEND()) {
|
|
bc.terminate = p->parse_expr(p, &bc);
|
|
++bc.nchain;
|
|
}
|
|
if (p->post_parse != NULL)
|
|
p->post_parse(p, &bc);
|
|
(void) REQUIRE(HERE() != bc.start, REG_EMPTY);
|
|
if (!p->allowbranch)
|
|
break;
|
|
/*
|
|
* p_branch_do's return value indicates whether we should
|
|
* continue parsing or not. This is both for correctness and
|
|
* a slight optimization, because it will check if we've
|
|
* encountered an empty branch or the end of the string
|
|
* immediately following a branch delimiter.
|
|
*/
|
|
if (!p_branch_do(p, &bc))
|
|
break;
|
|
}
|
|
#undef SEE_END
|
|
if (p->allowbranch)
|
|
p_branch_fix_tail(p, &bc);
|
|
assert(!MORE() || SEE(end1));
|
|
}
|
|
|
|
/*
|
|
- p_simp_re - parse a simple RE, an atom possibly followed by a repetition
|
|
== static bool p_simp_re(struct parse *p, struct branchc *bc);
|
|
*/
|
|
static bool /* was the simple RE an unbackslashed $? */
|
|
p_simp_re(struct parse *p, struct branchc *bc)
|
|
{
|
|
int c;
|
|
int count;
|
|
int count2;
|
|
sopno pos;
|
|
int i;
|
|
wint_t wc;
|
|
sopno subno;
|
|
# define BACKSL (1<<CHAR_BIT)
|
|
|
|
pos = HERE(); /* repetition op, if any, covers from here */
|
|
|
|
assert(MORE()); /* caller should have ensured this */
|
|
c = GETNEXT();
|
|
if (c == '\\') {
|
|
(void)REQUIRE(MORE(), REG_EESCAPE);
|
|
c = BACKSL | GETNEXT();
|
|
}
|
|
switch (c) {
|
|
case '.':
|
|
if (p->g->cflags®_NEWLINE)
|
|
nonnewline(p);
|
|
else
|
|
EMIT(OANY, 0);
|
|
break;
|
|
case '[':
|
|
p_bracket(p);
|
|
break;
|
|
case BACKSL|'<':
|
|
EMIT(OBOW, 0);
|
|
break;
|
|
case BACKSL|'>':
|
|
EMIT(OEOW, 0);
|
|
break;
|
|
case BACKSL|'{':
|
|
SETERROR(REG_BADRPT);
|
|
break;
|
|
case BACKSL|'(':
|
|
p->g->nsub++;
|
|
subno = p->g->nsub;
|
|
if (subno < NPAREN)
|
|
p->pbegin[subno] = HERE();
|
|
EMIT(OLPAREN, subno);
|
|
/* the MORE here is an error heuristic */
|
|
if (MORE() && !SEETWO('\\', ')'))
|
|
p_re(p, '\\', ')');
|
|
if (subno < NPAREN) {
|
|
p->pend[subno] = HERE();
|
|
assert(p->pend[subno] != 0);
|
|
}
|
|
EMIT(ORPAREN, subno);
|
|
(void)REQUIRE(EATTWO('\\', ')'), REG_EPAREN);
|
|
break;
|
|
case BACKSL|')': /* should not get here -- must be user */
|
|
SETERROR(REG_EPAREN);
|
|
break;
|
|
case BACKSL|'1':
|
|
case BACKSL|'2':
|
|
case BACKSL|'3':
|
|
case BACKSL|'4':
|
|
case BACKSL|'5':
|
|
case BACKSL|'6':
|
|
case BACKSL|'7':
|
|
case BACKSL|'8':
|
|
case BACKSL|'9':
|
|
i = (c&~BACKSL) - '0';
|
|
assert(i < NPAREN);
|
|
if (p->pend[i] != 0) {
|
|
assert(i <= p->g->nsub);
|
|
EMIT(OBACK_, i);
|
|
assert(p->pbegin[i] != 0);
|
|
assert(OP(p->strip[p->pbegin[i]]) == OLPAREN);
|
|
assert(OP(p->strip[p->pend[i]]) == ORPAREN);
|
|
(void) dupl(p, p->pbegin[i]+1, p->pend[i]);
|
|
EMIT(O_BACK, i);
|
|
} else
|
|
SETERROR(REG_ESUBREG);
|
|
p->g->backrefs = 1;
|
|
break;
|
|
case '*':
|
|
/*
|
|
* Ordinary if used as the first character beyond BOL anchor of
|
|
* a (sub-)expression, counts as a bad repetition operator if it
|
|
* appears otherwise.
|
|
*/
|
|
(void)REQUIRE(bc->nchain == 0, REG_BADRPT);
|
|
/* FALLTHROUGH */
|
|
default:
|
|
if (p->error != 0)
|
|
return (false); /* Definitely not $... */
|
|
p->next--;
|
|
wc = WGETNEXT();
|
|
ordinary(p, wc);
|
|
break;
|
|
}
|
|
|
|
if (EAT('*')) { /* implemented as +? */
|
|
/* this case does not require the (y|) trick, noKLUDGE */
|
|
INSERT(OPLUS_, pos);
|
|
ASTERN(O_PLUS, pos);
|
|
INSERT(OQUEST_, pos);
|
|
ASTERN(O_QUEST, pos);
|
|
} else if (EATTWO('\\', '{')) {
|
|
count = p_count(p);
|
|
if (EAT(',')) {
|
|
if (MORE() && isdigit((uch)PEEK())) {
|
|
count2 = p_count(p);
|
|
(void)REQUIRE(count <= count2, REG_BADBR);
|
|
} else /* single number with comma */
|
|
count2 = INFINITY;
|
|
} else /* just a single number */
|
|
count2 = count;
|
|
repeat(p, pos, count, count2);
|
|
if (!EATTWO('\\', '}')) { /* error heuristics */
|
|
while (MORE() && !SEETWO('\\', '}'))
|
|
NEXT();
|
|
(void)REQUIRE(MORE(), REG_EBRACE);
|
|
SETERROR(REG_BADBR);
|
|
}
|
|
} else if (c == '$') /* $ (but not \$) ends it */
|
|
return (true);
|
|
|
|
return (false);
|
|
}
|
|
|
|
/*
|
|
- p_count - parse a repetition count
|
|
== static int p_count(struct parse *p);
|
|
*/
|
|
static int /* the value */
|
|
p_count(struct parse *p)
|
|
{
|
|
int count = 0;
|
|
int ndigits = 0;
|
|
|
|
while (MORE() && isdigit((uch)PEEK()) && count <= DUPMAX) {
|
|
count = count*10 + (GETNEXT() - '0');
|
|
ndigits++;
|
|
}
|
|
|
|
(void)REQUIRE(ndigits > 0 && count <= DUPMAX, REG_BADBR);
|
|
return(count);
|
|
}
|
|
|
|
/*
|
|
- p_bracket - parse a bracketed character list
|
|
== static void p_bracket(struct parse *p);
|
|
*/
|
|
static void
|
|
p_bracket(struct parse *p)
|
|
{
|
|
cset *cs;
|
|
wint_t ch;
|
|
|
|
/* Dept of Truly Sickening Special-Case Kludges */
|
|
if (p->next + 5 < p->end && strncmp(p->next, "[:<:]]", 6) == 0) {
|
|
EMIT(OBOW, 0);
|
|
NEXTn(6);
|
|
return;
|
|
}
|
|
if (p->next + 5 < p->end && strncmp(p->next, "[:>:]]", 6) == 0) {
|
|
EMIT(OEOW, 0);
|
|
NEXTn(6);
|
|
return;
|
|
}
|
|
|
|
if ((cs = allocset(p)) == NULL)
|
|
return;
|
|
|
|
if (p->g->cflags®_ICASE)
|
|
cs->icase = 1;
|
|
if (EAT('^'))
|
|
cs->invert = 1;
|
|
if (EAT(']'))
|
|
CHadd(p, cs, ']');
|
|
else if (EAT('-'))
|
|
CHadd(p, cs, '-');
|
|
while (MORE() && PEEK() != ']' && !SEETWO('-', ']'))
|
|
p_b_term(p, cs);
|
|
if (EAT('-'))
|
|
CHadd(p, cs, '-');
|
|
(void)MUSTEAT(']', REG_EBRACK);
|
|
|
|
if (p->error != 0) /* don't mess things up further */
|
|
return;
|
|
|
|
if (cs->invert && p->g->cflags®_NEWLINE)
|
|
cs->bmp['\n' >> 3] |= 1 << ('\n' & 7);
|
|
|
|
if ((ch = singleton(cs)) != OUT) { /* optimize singleton sets */
|
|
ordinary(p, ch);
|
|
freeset(p, cs);
|
|
} else
|
|
EMIT(OANYOF, (int)(cs - p->g->sets));
|
|
}
|
|
|
|
static int
|
|
p_range_cmp(wchar_t c1, wchar_t c2)
|
|
{
|
|
#ifndef LIBREGEX
|
|
return __wcollate_range_cmp(c1, c2);
|
|
#else
|
|
/* Copied from libc/collate __wcollate_range_cmp */
|
|
wchar_t s1[2], s2[2];
|
|
|
|
s1[0] = c1;
|
|
s1[1] = L'\0';
|
|
s2[0] = c2;
|
|
s2[1] = L'\0';
|
|
return (wcscoll(s1, s2));
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
- p_b_term - parse one term of a bracketed character list
|
|
== static void p_b_term(struct parse *p, cset *cs);
|
|
*/
|
|
static void
|
|
p_b_term(struct parse *p, cset *cs)
|
|
{
|
|
char c;
|
|
wint_t start, finish;
|
|
wint_t i;
|
|
#ifndef LIBREGEX
|
|
struct xlocale_collate *table =
|
|
(struct xlocale_collate*)__get_locale()->components[XLC_COLLATE];
|
|
#endif
|
|
/* classify what we've got */
|
|
switch ((MORE()) ? PEEK() : '\0') {
|
|
case '[':
|
|
c = (MORE2()) ? PEEK2() : '\0';
|
|
break;
|
|
case '-':
|
|
SETERROR(REG_ERANGE);
|
|
return; /* NOTE RETURN */
|
|
default:
|
|
c = '\0';
|
|
break;
|
|
}
|
|
|
|
switch (c) {
|
|
case ':': /* character class */
|
|
NEXT2();
|
|
(void)REQUIRE(MORE(), REG_EBRACK);
|
|
c = PEEK();
|
|
(void)REQUIRE(c != '-' && c != ']', REG_ECTYPE);
|
|
p_b_cclass(p, cs);
|
|
(void)REQUIRE(MORE(), REG_EBRACK);
|
|
(void)REQUIRE(EATTWO(':', ']'), REG_ECTYPE);
|
|
break;
|
|
case '=': /* equivalence class */
|
|
NEXT2();
|
|
(void)REQUIRE(MORE(), REG_EBRACK);
|
|
c = PEEK();
|
|
(void)REQUIRE(c != '-' && c != ']', REG_ECOLLATE);
|
|
p_b_eclass(p, cs);
|
|
(void)REQUIRE(MORE(), REG_EBRACK);
|
|
(void)REQUIRE(EATTWO('=', ']'), REG_ECOLLATE);
|
|
break;
|
|
default: /* symbol, ordinary character, or range */
|
|
start = p_b_symbol(p);
|
|
if (SEE('-') && MORE2() && PEEK2() != ']') {
|
|
/* range */
|
|
NEXT();
|
|
if (EAT('-'))
|
|
finish = '-';
|
|
else
|
|
finish = p_b_symbol(p);
|
|
} else
|
|
finish = start;
|
|
if (start == finish)
|
|
CHadd(p, cs, start);
|
|
else {
|
|
#ifndef LIBREGEX
|
|
if (table->__collate_load_error || MB_CUR_MAX > 1) {
|
|
#else
|
|
if (MB_CUR_MAX > 1) {
|
|
#endif
|
|
(void)REQUIRE(start <= finish, REG_ERANGE);
|
|
CHaddrange(p, cs, start, finish);
|
|
} else {
|
|
(void)REQUIRE(p_range_cmp(start, finish) <= 0, REG_ERANGE);
|
|
for (i = 0; i <= UCHAR_MAX; i++) {
|
|
if (p_range_cmp(start, i) <= 0 &&
|
|
p_range_cmp(i, finish) <= 0 )
|
|
CHadd(p, cs, i);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
- p_b_cclass - parse a character-class name and deal with it
|
|
== static void p_b_cclass(struct parse *p, cset *cs);
|
|
*/
|
|
static void
|
|
p_b_cclass(struct parse *p, cset *cs)
|
|
{
|
|
const char *sp = p->next;
|
|
size_t len;
|
|
wctype_t wct;
|
|
char clname[16];
|
|
|
|
while (MORE() && isalpha((uch)PEEK()))
|
|
NEXT();
|
|
len = p->next - sp;
|
|
if (len >= sizeof(clname) - 1) {
|
|
SETERROR(REG_ECTYPE);
|
|
return;
|
|
}
|
|
memcpy(clname, sp, len);
|
|
clname[len] = '\0';
|
|
if ((wct = wctype(clname)) == 0) {
|
|
SETERROR(REG_ECTYPE);
|
|
return;
|
|
}
|
|
CHaddtype(p, cs, wct);
|
|
}
|
|
|
|
/*
|
|
- p_b_eclass - parse an equivalence-class name and deal with it
|
|
== static void p_b_eclass(struct parse *p, cset *cs);
|
|
*
|
|
* This implementation is incomplete. xxx
|
|
*/
|
|
static void
|
|
p_b_eclass(struct parse *p, cset *cs)
|
|
{
|
|
wint_t c;
|
|
|
|
c = p_b_coll_elem(p, '=');
|
|
CHadd(p, cs, c);
|
|
}
|
|
|
|
/*
|
|
- p_b_symbol - parse a character or [..]ed multicharacter collating symbol
|
|
== static wint_t p_b_symbol(struct parse *p);
|
|
*/
|
|
static wint_t /* value of symbol */
|
|
p_b_symbol(struct parse *p)
|
|
{
|
|
wint_t value;
|
|
|
|
(void)REQUIRE(MORE(), REG_EBRACK);
|
|
if (!EATTWO('[', '.'))
|
|
return(WGETNEXT());
|
|
|
|
/* collating symbol */
|
|
value = p_b_coll_elem(p, '.');
|
|
(void)REQUIRE(EATTWO('.', ']'), REG_ECOLLATE);
|
|
return(value);
|
|
}
|
|
|
|
/*
|
|
- p_b_coll_elem - parse a collating-element name and look it up
|
|
== static wint_t p_b_coll_elem(struct parse *p, wint_t endc);
|
|
*/
|
|
static wint_t /* value of collating element */
|
|
p_b_coll_elem(struct parse *p,
|
|
wint_t endc) /* name ended by endc,']' */
|
|
{
|
|
const char *sp = p->next;
|
|
struct cname *cp;
|
|
mbstate_t mbs;
|
|
wchar_t wc;
|
|
size_t clen, len;
|
|
|
|
while (MORE() && !SEETWO(endc, ']'))
|
|
NEXT();
|
|
if (!MORE()) {
|
|
SETERROR(REG_EBRACK);
|
|
return(0);
|
|
}
|
|
len = p->next - sp;
|
|
for (cp = cnames; cp->name != NULL; cp++)
|
|
if (strncmp(cp->name, sp, len) == 0 && strlen(cp->name) == len)
|
|
return(cp->code); /* known name */
|
|
memset(&mbs, 0, sizeof(mbs));
|
|
if ((clen = mbrtowc(&wc, sp, len, &mbs)) == len)
|
|
return (wc); /* single character */
|
|
else if (clen == (size_t)-1 || clen == (size_t)-2)
|
|
SETERROR(REG_ILLSEQ);
|
|
else
|
|
SETERROR(REG_ECOLLATE); /* neither */
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
- othercase - return the case counterpart of an alphabetic
|
|
== static wint_t othercase(wint_t ch);
|
|
*/
|
|
static wint_t /* if no counterpart, return ch */
|
|
othercase(wint_t ch)
|
|
{
|
|
assert(iswalpha(ch));
|
|
if (iswupper(ch))
|
|
return(towlower(ch));
|
|
else if (iswlower(ch))
|
|
return(towupper(ch));
|
|
else /* peculiar, but could happen */
|
|
return(ch);
|
|
}
|
|
|
|
/*
|
|
- bothcases - emit a dualcase version of a two-case character
|
|
== static void bothcases(struct parse *p, wint_t ch);
|
|
*
|
|
* Boy, is this implementation ever a kludge...
|
|
*/
|
|
static void
|
|
bothcases(struct parse *p, wint_t ch)
|
|
{
|
|
const char *oldnext = p->next;
|
|
const char *oldend = p->end;
|
|
char bracket[3 + MB_LEN_MAX];
|
|
size_t n;
|
|
mbstate_t mbs;
|
|
|
|
assert(othercase(ch) != ch); /* p_bracket() would recurse */
|
|
p->next = bracket;
|
|
memset(&mbs, 0, sizeof(mbs));
|
|
n = wcrtomb(bracket, ch, &mbs);
|
|
assert(n != (size_t)-1);
|
|
bracket[n] = ']';
|
|
bracket[n + 1] = '\0';
|
|
p->end = bracket+n+1;
|
|
p_bracket(p);
|
|
assert(p->next == p->end);
|
|
p->next = oldnext;
|
|
p->end = oldend;
|
|
}
|
|
|
|
/*
|
|
- ordinary - emit an ordinary character
|
|
== static void ordinary(struct parse *p, wint_t ch);
|
|
*/
|
|
static void
|
|
ordinary(struct parse *p, wint_t ch)
|
|
{
|
|
cset *cs;
|
|
|
|
if ((p->g->cflags®_ICASE) && iswalpha(ch) && othercase(ch) != ch)
|
|
bothcases(p, ch);
|
|
else if ((ch & OPDMASK) == ch)
|
|
EMIT(OCHAR, ch);
|
|
else {
|
|
/*
|
|
* Kludge: character is too big to fit into an OCHAR operand.
|
|
* Emit a singleton set.
|
|
*/
|
|
if ((cs = allocset(p)) == NULL)
|
|
return;
|
|
CHadd(p, cs, ch);
|
|
EMIT(OANYOF, (int)(cs - p->g->sets));
|
|
}
|
|
}
|
|
|
|
/*
|
|
- nonnewline - emit REG_NEWLINE version of OANY
|
|
== static void nonnewline(struct parse *p);
|
|
*
|
|
* Boy, is this implementation ever a kludge...
|
|
*/
|
|
static void
|
|
nonnewline(struct parse *p)
|
|
{
|
|
const char *oldnext = p->next;
|
|
const char *oldend = p->end;
|
|
char bracket[4];
|
|
|
|
p->next = bracket;
|
|
p->end = bracket+3;
|
|
bracket[0] = '^';
|
|
bracket[1] = '\n';
|
|
bracket[2] = ']';
|
|
bracket[3] = '\0';
|
|
p_bracket(p);
|
|
assert(p->next == bracket+3);
|
|
p->next = oldnext;
|
|
p->end = oldend;
|
|
}
|
|
|
|
/*
|
|
- repeat - generate code for a bounded repetition, recursively if needed
|
|
== static void repeat(struct parse *p, sopno start, int from, int to);
|
|
*/
|
|
static void
|
|
repeat(struct parse *p,
|
|
sopno start, /* operand from here to end of strip */
|
|
int from, /* repeated from this number */
|
|
int to) /* to this number of times (maybe INFINITY) */
|
|
{
|
|
sopno finish = HERE();
|
|
# define N 2
|
|
# define INF 3
|
|
# define REP(f, t) ((f)*8 + (t))
|
|
# define MAP(n) (((n) <= 1) ? (n) : ((n) == INFINITY) ? INF : N)
|
|
sopno copy;
|
|
|
|
if (p->error != 0) /* head off possible runaway recursion */
|
|
return;
|
|
|
|
assert(from <= to);
|
|
|
|
switch (REP(MAP(from), MAP(to))) {
|
|
case REP(0, 0): /* must be user doing this */
|
|
DROP(finish-start); /* drop the operand */
|
|
break;
|
|
case REP(0, 1): /* as x{1,1}? */
|
|
case REP(0, N): /* as x{1,n}? */
|
|
case REP(0, INF): /* as x{1,}? */
|
|
/* KLUDGE: emit y? as (y|) until subtle bug gets fixed */
|
|
INSERT(OCH_, start); /* offset is wrong... */
|
|
repeat(p, start+1, 1, to);
|
|
ASTERN(OOR1, start);
|
|
AHEAD(start); /* ... fix it */
|
|
EMIT(OOR2, 0);
|
|
AHEAD(THERE());
|
|
ASTERN(O_CH, THERETHERE());
|
|
break;
|
|
case REP(1, 1): /* trivial case */
|
|
/* done */
|
|
break;
|
|
case REP(1, N): /* as x?x{1,n-1} */
|
|
/* KLUDGE: emit y? as (y|) until subtle bug gets fixed */
|
|
INSERT(OCH_, start);
|
|
ASTERN(OOR1, start);
|
|
AHEAD(start);
|
|
EMIT(OOR2, 0); /* offset very wrong... */
|
|
AHEAD(THERE()); /* ...so fix it */
|
|
ASTERN(O_CH, THERETHERE());
|
|
copy = dupl(p, start+1, finish+1);
|
|
assert(copy == finish+4);
|
|
repeat(p, copy, 1, to-1);
|
|
break;
|
|
case REP(1, INF): /* as x+ */
|
|
INSERT(OPLUS_, start);
|
|
ASTERN(O_PLUS, start);
|
|
break;
|
|
case REP(N, N): /* as xx{m-1,n-1} */
|
|
copy = dupl(p, start, finish);
|
|
repeat(p, copy, from-1, to-1);
|
|
break;
|
|
case REP(N, INF): /* as xx{n-1,INF} */
|
|
copy = dupl(p, start, finish);
|
|
repeat(p, copy, from-1, to);
|
|
break;
|
|
default: /* "can't happen" */
|
|
SETERROR(REG_ASSERT); /* just in case */
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
- wgetnext - helper function for WGETNEXT() macro. Gets the next wide
|
|
- character from the parse struct, signals a REG_ILLSEQ error if the
|
|
- character can't be converted. Returns the number of bytes consumed.
|
|
*/
|
|
static wint_t
|
|
wgetnext(struct parse *p)
|
|
{
|
|
mbstate_t mbs;
|
|
wchar_t wc;
|
|
size_t n;
|
|
|
|
memset(&mbs, 0, sizeof(mbs));
|
|
n = mbrtowc(&wc, p->next, p->end - p->next, &mbs);
|
|
if (n == (size_t)-1 || n == (size_t)-2) {
|
|
SETERROR(REG_ILLSEQ);
|
|
return (0);
|
|
}
|
|
if (n == 0)
|
|
n = 1;
|
|
p->next += n;
|
|
return (wc);
|
|
}
|
|
|
|
/*
|
|
- seterr - set an error condition
|
|
== static int seterr(struct parse *p, int e);
|
|
*/
|
|
static int /* useless but makes type checking happy */
|
|
seterr(struct parse *p, int e)
|
|
{
|
|
if (p->error == 0) /* keep earliest error condition */
|
|
p->error = e;
|
|
p->next = nuls; /* try to bring things to a halt */
|
|
p->end = nuls;
|
|
return(0); /* make the return value well-defined */
|
|
}
|
|
|
|
/*
|
|
- allocset - allocate a set of characters for []
|
|
== static cset *allocset(struct parse *p);
|
|
*/
|
|
static cset *
|
|
allocset(struct parse *p)
|
|
{
|
|
cset *cs, *ncs;
|
|
|
|
ncs = reallocarray(p->g->sets, p->g->ncsets + 1, sizeof(*ncs));
|
|
if (ncs == NULL) {
|
|
SETERROR(REG_ESPACE);
|
|
return (NULL);
|
|
}
|
|
p->g->sets = ncs;
|
|
cs = &p->g->sets[p->g->ncsets++];
|
|
memset(cs, 0, sizeof(*cs));
|
|
|
|
return(cs);
|
|
}
|
|
|
|
/*
|
|
- freeset - free a now-unused set
|
|
== static void freeset(struct parse *p, cset *cs);
|
|
*/
|
|
static void
|
|
freeset(struct parse *p, cset *cs)
|
|
{
|
|
cset *top = &p->g->sets[p->g->ncsets];
|
|
|
|
free(cs->wides);
|
|
free(cs->ranges);
|
|
free(cs->types);
|
|
memset(cs, 0, sizeof(*cs));
|
|
if (cs == top-1) /* recover only the easy case */
|
|
p->g->ncsets--;
|
|
}
|
|
|
|
/*
|
|
- singleton - Determine whether a set contains only one character,
|
|
- returning it if so, otherwise returning OUT.
|
|
*/
|
|
static wint_t
|
|
singleton(cset *cs)
|
|
{
|
|
wint_t i, s, n;
|
|
|
|
for (i = n = 0; i < NC; i++)
|
|
if (CHIN(cs, i)) {
|
|
n++;
|
|
s = i;
|
|
}
|
|
if (n == 1)
|
|
return (s);
|
|
if (cs->nwides == 1 && cs->nranges == 0 && cs->ntypes == 0 &&
|
|
cs->icase == 0)
|
|
return (cs->wides[0]);
|
|
/* Don't bother handling the other cases. */
|
|
return (OUT);
|
|
}
|
|
|
|
/*
|
|
- CHadd - add character to character set.
|
|
*/
|
|
static void
|
|
CHadd(struct parse *p, cset *cs, wint_t ch)
|
|
{
|
|
wint_t nch, *newwides;
|
|
assert(ch >= 0);
|
|
if (ch < NC)
|
|
cs->bmp[ch >> 3] |= 1 << (ch & 7);
|
|
else {
|
|
newwides = reallocarray(cs->wides, cs->nwides + 1,
|
|
sizeof(*cs->wides));
|
|
if (newwides == NULL) {
|
|
SETERROR(REG_ESPACE);
|
|
return;
|
|
}
|
|
cs->wides = newwides;
|
|
cs->wides[cs->nwides++] = ch;
|
|
}
|
|
if (cs->icase) {
|
|
if ((nch = towlower(ch)) < NC)
|
|
cs->bmp[nch >> 3] |= 1 << (nch & 7);
|
|
if ((nch = towupper(ch)) < NC)
|
|
cs->bmp[nch >> 3] |= 1 << (nch & 7);
|
|
}
|
|
}
|
|
|
|
/*
|
|
- CHaddrange - add all characters in the range [min,max] to a character set.
|
|
*/
|
|
static void
|
|
CHaddrange(struct parse *p, cset *cs, wint_t min, wint_t max)
|
|
{
|
|
crange *newranges;
|
|
|
|
for (; min < NC && min <= max; min++)
|
|
CHadd(p, cs, min);
|
|
if (min >= max)
|
|
return;
|
|
newranges = reallocarray(cs->ranges, cs->nranges + 1,
|
|
sizeof(*cs->ranges));
|
|
if (newranges == NULL) {
|
|
SETERROR(REG_ESPACE);
|
|
return;
|
|
}
|
|
cs->ranges = newranges;
|
|
cs->ranges[cs->nranges].min = min;
|
|
cs->ranges[cs->nranges].max = max;
|
|
cs->nranges++;
|
|
}
|
|
|
|
/*
|
|
- CHaddtype - add all characters of a certain type to a character set.
|
|
*/
|
|
static void
|
|
CHaddtype(struct parse *p, cset *cs, wctype_t wct)
|
|
{
|
|
wint_t i;
|
|
wctype_t *newtypes;
|
|
|
|
for (i = 0; i < NC; i++)
|
|
if (iswctype(i, wct))
|
|
CHadd(p, cs, i);
|
|
newtypes = reallocarray(cs->types, cs->ntypes + 1,
|
|
sizeof(*cs->types));
|
|
if (newtypes == NULL) {
|
|
SETERROR(REG_ESPACE);
|
|
return;
|
|
}
|
|
cs->types = newtypes;
|
|
cs->types[cs->ntypes++] = wct;
|
|
}
|
|
|
|
/*
|
|
- dupl - emit a duplicate of a bunch of sops
|
|
== static sopno dupl(struct parse *p, sopno start, sopno finish);
|
|
*/
|
|
static sopno /* start of duplicate */
|
|
dupl(struct parse *p,
|
|
sopno start, /* from here */
|
|
sopno finish) /* to this less one */
|
|
{
|
|
sopno ret = HERE();
|
|
sopno len = finish - start;
|
|
|
|
assert(finish >= start);
|
|
if (len == 0)
|
|
return(ret);
|
|
if (!enlarge(p, p->ssize + len)) /* this many unexpected additions */
|
|
return(ret);
|
|
(void) memcpy((char *)(p->strip + p->slen),
|
|
(char *)(p->strip + start), (size_t)len*sizeof(sop));
|
|
p->slen += len;
|
|
return(ret);
|
|
}
|
|
|
|
/*
|
|
- doemit - emit a strip operator
|
|
== static void doemit(struct parse *p, sop op, size_t opnd);
|
|
*
|
|
* It might seem better to implement this as a macro with a function as
|
|
* hard-case backup, but it's just too big and messy unless there are
|
|
* some changes to the data structures. Maybe later.
|
|
*/
|
|
static void
|
|
doemit(struct parse *p, sop op, size_t opnd)
|
|
{
|
|
/* avoid making error situations worse */
|
|
if (p->error != 0)
|
|
return;
|
|
|
|
/* deal with oversize operands ("can't happen", more or less) */
|
|
assert(opnd < 1<<OPSHIFT);
|
|
|
|
/* deal with undersized strip */
|
|
if (p->slen >= p->ssize)
|
|
if (!enlarge(p, (p->ssize+1) / 2 * 3)) /* +50% */
|
|
return;
|
|
|
|
/* finally, it's all reduced to the easy case */
|
|
p->strip[p->slen++] = SOP(op, opnd);
|
|
}
|
|
|
|
/*
|
|
- doinsert - insert a sop into the strip
|
|
== static void doinsert(struct parse *p, sop op, size_t opnd, sopno pos);
|
|
*/
|
|
static void
|
|
doinsert(struct parse *p, sop op, size_t opnd, sopno pos)
|
|
{
|
|
sopno sn;
|
|
sop s;
|
|
int i;
|
|
|
|
/* avoid making error situations worse */
|
|
if (p->error != 0)
|
|
return;
|
|
|
|
sn = HERE();
|
|
EMIT(op, opnd); /* do checks, ensure space */
|
|
assert(HERE() == sn+1);
|
|
s = p->strip[sn];
|
|
|
|
/* adjust paren pointers */
|
|
assert(pos > 0);
|
|
for (i = 1; i < NPAREN; i++) {
|
|
if (p->pbegin[i] >= pos) {
|
|
p->pbegin[i]++;
|
|
}
|
|
if (p->pend[i] >= pos) {
|
|
p->pend[i]++;
|
|
}
|
|
}
|
|
|
|
memmove((char *)&p->strip[pos+1], (char *)&p->strip[pos],
|
|
(HERE()-pos-1)*sizeof(sop));
|
|
p->strip[pos] = s;
|
|
}
|
|
|
|
/*
|
|
- dofwd - complete a forward reference
|
|
== static void dofwd(struct parse *p, sopno pos, sop value);
|
|
*/
|
|
static void
|
|
dofwd(struct parse *p, sopno pos, sop value)
|
|
{
|
|
/* avoid making error situations worse */
|
|
if (p->error != 0)
|
|
return;
|
|
|
|
assert(value < 1<<OPSHIFT);
|
|
p->strip[pos] = OP(p->strip[pos]) | value;
|
|
}
|
|
|
|
/*
|
|
- enlarge - enlarge the strip
|
|
== static int enlarge(struct parse *p, sopno size);
|
|
*/
|
|
static int
|
|
enlarge(struct parse *p, sopno size)
|
|
{
|
|
sop *sp;
|
|
|
|
if (p->ssize >= size)
|
|
return 1;
|
|
|
|
sp = reallocarray(p->strip, size, sizeof(sop));
|
|
if (sp == NULL) {
|
|
SETERROR(REG_ESPACE);
|
|
return 0;
|
|
}
|
|
p->strip = sp;
|
|
p->ssize = size;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
- stripsnug - compact the strip
|
|
== static void stripsnug(struct parse *p, struct re_guts *g);
|
|
*/
|
|
static void
|
|
stripsnug(struct parse *p, struct re_guts *g)
|
|
{
|
|
g->nstates = p->slen;
|
|
g->strip = reallocarray((char *)p->strip, p->slen, sizeof(sop));
|
|
if (g->strip == NULL) {
|
|
SETERROR(REG_ESPACE);
|
|
g->strip = p->strip;
|
|
}
|
|
}
|
|
|
|
/*
|
|
- findmust - fill in must and mlen with longest mandatory literal string
|
|
== static void findmust(struct parse *p, struct re_guts *g);
|
|
*
|
|
* This algorithm could do fancy things like analyzing the operands of |
|
|
* for common subsequences. Someday. This code is simple and finds most
|
|
* of the interesting cases.
|
|
*
|
|
* Note that must and mlen got initialized during setup.
|
|
*/
|
|
static void
|
|
findmust(struct parse *p, struct re_guts *g)
|
|
{
|
|
sop *scan;
|
|
sop *start = NULL;
|
|
sop *newstart = NULL;
|
|
sopno newlen;
|
|
sop s;
|
|
char *cp;
|
|
int offset;
|
|
char buf[MB_LEN_MAX];
|
|
size_t clen;
|
|
mbstate_t mbs;
|
|
|
|
/* avoid making error situations worse */
|
|
if (p->error != 0)
|
|
return;
|
|
|
|
/*
|
|
* It's not generally safe to do a ``char'' substring search on
|
|
* multibyte character strings, but it's safe for at least
|
|
* UTF-8 (see RFC 3629).
|
|
*/
|
|
if (MB_CUR_MAX > 1 &&
|
|
strcmp(_CurrentRuneLocale->__encoding, "UTF-8") != 0)
|
|
return;
|
|
|
|
/* find the longest OCHAR sequence in strip */
|
|
newlen = 0;
|
|
offset = 0;
|
|
g->moffset = 0;
|
|
scan = g->strip + 1;
|
|
do {
|
|
s = *scan++;
|
|
switch (OP(s)) {
|
|
case OCHAR: /* sequence member */
|
|
if (newlen == 0) { /* new sequence */
|
|
memset(&mbs, 0, sizeof(mbs));
|
|
newstart = scan - 1;
|
|
}
|
|
clen = wcrtomb(buf, OPND(s), &mbs);
|
|
if (clen == (size_t)-1)
|
|
goto toohard;
|
|
newlen += clen;
|
|
break;
|
|
case OPLUS_: /* things that don't break one */
|
|
case OLPAREN:
|
|
case ORPAREN:
|
|
break;
|
|
case OQUEST_: /* things that must be skipped */
|
|
case OCH_:
|
|
offset = altoffset(scan, offset);
|
|
scan--;
|
|
do {
|
|
scan += OPND(s);
|
|
s = *scan;
|
|
/* assert() interferes w debug printouts */
|
|
if (OP(s) != (sop)O_QUEST &&
|
|
OP(s) != (sop)O_CH && OP(s) != (sop)OOR2) {
|
|
g->iflags |= BAD;
|
|
return;
|
|
}
|
|
} while (OP(s) != (sop)O_QUEST && OP(s) != (sop)O_CH);
|
|
/* FALLTHROUGH */
|
|
case OBOW: /* things that break a sequence */
|
|
case OEOW:
|
|
case OBOL:
|
|
case OEOL:
|
|
case O_QUEST:
|
|
case O_CH:
|
|
case OEND:
|
|
if (newlen > (sopno)g->mlen) { /* ends one */
|
|
start = newstart;
|
|
g->mlen = newlen;
|
|
if (offset > -1) {
|
|
g->moffset += offset;
|
|
offset = newlen;
|
|
} else
|
|
g->moffset = offset;
|
|
} else {
|
|
if (offset > -1)
|
|
offset += newlen;
|
|
}
|
|
newlen = 0;
|
|
break;
|
|
case OANY:
|
|
if (newlen > (sopno)g->mlen) { /* ends one */
|
|
start = newstart;
|
|
g->mlen = newlen;
|
|
if (offset > -1) {
|
|
g->moffset += offset;
|
|
offset = newlen;
|
|
} else
|
|
g->moffset = offset;
|
|
} else {
|
|
if (offset > -1)
|
|
offset += newlen;
|
|
}
|
|
if (offset > -1)
|
|
offset++;
|
|
newlen = 0;
|
|
break;
|
|
case OANYOF: /* may or may not invalidate offset */
|
|
/* First, everything as OANY */
|
|
if (newlen > (sopno)g->mlen) { /* ends one */
|
|
start = newstart;
|
|
g->mlen = newlen;
|
|
if (offset > -1) {
|
|
g->moffset += offset;
|
|
offset = newlen;
|
|
} else
|
|
g->moffset = offset;
|
|
} else {
|
|
if (offset > -1)
|
|
offset += newlen;
|
|
}
|
|
if (offset > -1)
|
|
offset++;
|
|
newlen = 0;
|
|
break;
|
|
toohard:
|
|
default:
|
|
/* Anything here makes it impossible or too hard
|
|
* to calculate the offset -- so we give up;
|
|
* save the last known good offset, in case the
|
|
* must sequence doesn't occur later.
|
|
*/
|
|
if (newlen > (sopno)g->mlen) { /* ends one */
|
|
start = newstart;
|
|
g->mlen = newlen;
|
|
if (offset > -1)
|
|
g->moffset += offset;
|
|
else
|
|
g->moffset = offset;
|
|
}
|
|
offset = -1;
|
|
newlen = 0;
|
|
break;
|
|
}
|
|
} while (OP(s) != OEND);
|
|
|
|
if (g->mlen == 0) { /* there isn't one */
|
|
g->moffset = -1;
|
|
return;
|
|
}
|
|
|
|
/* turn it into a character string */
|
|
g->must = malloc((size_t)g->mlen + 1);
|
|
if (g->must == NULL) { /* argh; just forget it */
|
|
g->mlen = 0;
|
|
g->moffset = -1;
|
|
return;
|
|
}
|
|
cp = g->must;
|
|
scan = start;
|
|
memset(&mbs, 0, sizeof(mbs));
|
|
while (cp < g->must + g->mlen) {
|
|
while (OP(s = *scan++) != OCHAR)
|
|
continue;
|
|
clen = wcrtomb(cp, OPND(s), &mbs);
|
|
assert(clen != (size_t)-1);
|
|
cp += clen;
|
|
}
|
|
assert(cp == g->must + g->mlen);
|
|
*cp++ = '\0'; /* just on general principles */
|
|
}
|
|
|
|
/*
|
|
- altoffset - choose biggest offset among multiple choices
|
|
== static int altoffset(sop *scan, int offset);
|
|
*
|
|
* Compute, recursively if necessary, the largest offset among multiple
|
|
* re paths.
|
|
*/
|
|
static int
|
|
altoffset(sop *scan, int offset)
|
|
{
|
|
int largest;
|
|
int try;
|
|
sop s;
|
|
|
|
/* If we gave up already on offsets, return */
|
|
if (offset == -1)
|
|
return -1;
|
|
|
|
largest = 0;
|
|
try = 0;
|
|
s = *scan++;
|
|
while (OP(s) != (sop)O_QUEST && OP(s) != (sop)O_CH) {
|
|
switch (OP(s)) {
|
|
case OOR1:
|
|
if (try > largest)
|
|
largest = try;
|
|
try = 0;
|
|
break;
|
|
case OQUEST_:
|
|
case OCH_:
|
|
try = altoffset(scan, try);
|
|
if (try == -1)
|
|
return -1;
|
|
scan--;
|
|
do {
|
|
scan += OPND(s);
|
|
s = *scan;
|
|
if (OP(s) != (sop)O_QUEST &&
|
|
OP(s) != (sop)O_CH && OP(s) != (sop)OOR2)
|
|
return -1;
|
|
} while (OP(s) != (sop)O_QUEST && OP(s) != (sop)O_CH);
|
|
/* We must skip to the next position, or we'll
|
|
* leave altoffset() too early.
|
|
*/
|
|
scan++;
|
|
break;
|
|
case OANYOF:
|
|
case OCHAR:
|
|
case OANY:
|
|
try++;
|
|
case OBOW:
|
|
case OEOW:
|
|
case OLPAREN:
|
|
case ORPAREN:
|
|
case OOR2:
|
|
break;
|
|
default:
|
|
try = -1;
|
|
break;
|
|
}
|
|
if (try == -1)
|
|
return -1;
|
|
s = *scan++;
|
|
}
|
|
|
|
if (try > largest)
|
|
largest = try;
|
|
|
|
return largest+offset;
|
|
}
|
|
|
|
/*
|
|
- computejumps - compute char jumps for BM scan
|
|
== static void computejumps(struct parse *p, struct re_guts *g);
|
|
*
|
|
* This algorithm assumes g->must exists and is has size greater than
|
|
* zero. It's based on the algorithm found on Computer Algorithms by
|
|
* Sara Baase.
|
|
*
|
|
* A char jump is the number of characters one needs to jump based on
|
|
* the value of the character from the text that was mismatched.
|
|
*/
|
|
static void
|
|
computejumps(struct parse *p, struct re_guts *g)
|
|
{
|
|
int ch;
|
|
int mindex;
|
|
|
|
/* Avoid making errors worse */
|
|
if (p->error != 0)
|
|
return;
|
|
|
|
g->charjump = (int *)malloc((NC_MAX + 1) * sizeof(int));
|
|
if (g->charjump == NULL) /* Not a fatal error */
|
|
return;
|
|
/* Adjust for signed chars, if necessary */
|
|
g->charjump = &g->charjump[-(CHAR_MIN)];
|
|
|
|
/* If the character does not exist in the pattern, the jump
|
|
* is equal to the number of characters in the pattern.
|
|
*/
|
|
for (ch = CHAR_MIN; ch < (CHAR_MAX + 1); ch++)
|
|
g->charjump[ch] = g->mlen;
|
|
|
|
/* If the character does exist, compute the jump that would
|
|
* take us to the last character in the pattern equal to it
|
|
* (notice that we match right to left, so that last character
|
|
* is the first one that would be matched).
|
|
*/
|
|
for (mindex = 0; mindex < g->mlen; mindex++)
|
|
g->charjump[(int)g->must[mindex]] = g->mlen - mindex - 1;
|
|
}
|
|
|
|
/*
|
|
- computematchjumps - compute match jumps for BM scan
|
|
== static void computematchjumps(struct parse *p, struct re_guts *g);
|
|
*
|
|
* This algorithm assumes g->must exists and is has size greater than
|
|
* zero. It's based on the algorithm found on Computer Algorithms by
|
|
* Sara Baase.
|
|
*
|
|
* A match jump is the number of characters one needs to advance based
|
|
* on the already-matched suffix.
|
|
* Notice that all values here are minus (g->mlen-1), because of the way
|
|
* the search algorithm works.
|
|
*/
|
|
static void
|
|
computematchjumps(struct parse *p, struct re_guts *g)
|
|
{
|
|
int mindex; /* General "must" iterator */
|
|
int suffix; /* Keeps track of matching suffix */
|
|
int ssuffix; /* Keeps track of suffixes' suffix */
|
|
int* pmatches; /* pmatches[k] points to the next i
|
|
* such that i+1...mlen is a substring
|
|
* of k+1...k+mlen-i-1
|
|
*/
|
|
|
|
/* Avoid making errors worse */
|
|
if (p->error != 0)
|
|
return;
|
|
|
|
pmatches = (int*) malloc(g->mlen * sizeof(int));
|
|
if (pmatches == NULL) {
|
|
g->matchjump = NULL;
|
|
return;
|
|
}
|
|
|
|
g->matchjump = (int*) malloc(g->mlen * sizeof(int));
|
|
if (g->matchjump == NULL) { /* Not a fatal error */
|
|
free(pmatches);
|
|
return;
|
|
}
|
|
|
|
/* Set maximum possible jump for each character in the pattern */
|
|
for (mindex = 0; mindex < g->mlen; mindex++)
|
|
g->matchjump[mindex] = 2*g->mlen - mindex - 1;
|
|
|
|
/* Compute pmatches[] */
|
|
for (mindex = g->mlen - 1, suffix = g->mlen; mindex >= 0;
|
|
mindex--, suffix--) {
|
|
pmatches[mindex] = suffix;
|
|
|
|
/* If a mismatch is found, interrupting the substring,
|
|
* compute the matchjump for that position. If no
|
|
* mismatch is found, then a text substring mismatched
|
|
* against the suffix will also mismatch against the
|
|
* substring.
|
|
*/
|
|
while (suffix < g->mlen
|
|
&& g->must[mindex] != g->must[suffix]) {
|
|
g->matchjump[suffix] = MIN(g->matchjump[suffix],
|
|
g->mlen - mindex - 1);
|
|
suffix = pmatches[suffix];
|
|
}
|
|
}
|
|
|
|
/* Compute the matchjump up to the last substring found to jump
|
|
* to the beginning of the largest must pattern prefix matching
|
|
* it's own suffix.
|
|
*/
|
|
for (mindex = 0; mindex <= suffix; mindex++)
|
|
g->matchjump[mindex] = MIN(g->matchjump[mindex],
|
|
g->mlen + suffix - mindex);
|
|
|
|
ssuffix = pmatches[suffix];
|
|
while (suffix < g->mlen) {
|
|
while (suffix <= ssuffix && suffix < g->mlen) {
|
|
g->matchjump[suffix] = MIN(g->matchjump[suffix],
|
|
g->mlen + ssuffix - suffix);
|
|
suffix++;
|
|
}
|
|
if (suffix < g->mlen)
|
|
ssuffix = pmatches[ssuffix];
|
|
}
|
|
|
|
free(pmatches);
|
|
}
|
|
|
|
/*
|
|
- pluscount - count + nesting
|
|
== static sopno pluscount(struct parse *p, struct re_guts *g);
|
|
*/
|
|
static sopno /* nesting depth */
|
|
pluscount(struct parse *p, struct re_guts *g)
|
|
{
|
|
sop *scan;
|
|
sop s;
|
|
sopno plusnest = 0;
|
|
sopno maxnest = 0;
|
|
|
|
if (p->error != 0)
|
|
return(0); /* there may not be an OEND */
|
|
|
|
scan = g->strip + 1;
|
|
do {
|
|
s = *scan++;
|
|
switch (OP(s)) {
|
|
case OPLUS_:
|
|
plusnest++;
|
|
break;
|
|
case O_PLUS:
|
|
if (plusnest > maxnest)
|
|
maxnest = plusnest;
|
|
plusnest--;
|
|
break;
|
|
}
|
|
} while (OP(s) != OEND);
|
|
if (plusnest != 0)
|
|
g->iflags |= BAD;
|
|
return(maxnest);
|
|
}
|