freebsd-dev/sys/alpha/pci/lca.c
Poul-Henning Kamp 923502ff91 useracc() the prequel:
Merge the contents (less some trivial bordering the silly comments)
of <vm/vm_prot.h> and <vm/vm_inherit.h> into <vm/vm.h>.  This puts
the #defines for the vm_inherit_t and vm_prot_t types next to their
typedefs.

This paves the road for the commit to follow shortly: change
useracc() to use VM_PROT_{READ|WRITE} rather than B_{READ|WRITE}
as argument.
1999-10-29 18:09:36 +00:00

509 lines
11 KiB
C

/*-
* Copyright (c) 1998 Doug Rabson
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/malloc.h>
#include <sys/bus.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <alpha/pci/lcareg.h>
#include <alpha/pci/lcavar.h>
#include <alpha/pci/pcibus.h>
#include <alpha/isa/isavar.h>
#include <machine/intr.h>
#include <machine/resource.h>
#include <machine/cpuconf.h>
#include <machine/swiz.h>
#include <machine/sgmap.h>
#include <vm/vm.h>
#include <vm/vm_page.h>
#define KV(pa) ALPHA_PHYS_TO_K0SEG(pa)
static devclass_t lca_devclass;
static device_t lca0; /* XXX only one for now */
struct lca_softc {
int junk;
};
#define LCA_SOFTC(dev) (struct lca_softc*) device_get_softc(dev)
static alpha_chipset_inb_t lca_inb;
static alpha_chipset_inw_t lca_inw;
static alpha_chipset_inl_t lca_inl;
static alpha_chipset_outb_t lca_outb;
static alpha_chipset_outw_t lca_outw;
static alpha_chipset_outl_t lca_outl;
static alpha_chipset_readb_t lca_readb;
static alpha_chipset_readw_t lca_readw;
static alpha_chipset_readl_t lca_readl;
static alpha_chipset_writeb_t lca_writeb;
static alpha_chipset_writew_t lca_writew;
static alpha_chipset_writel_t lca_writel;
static alpha_chipset_maxdevs_t lca_maxdevs;
static alpha_chipset_cfgreadb_t lca_cfgreadb;
static alpha_chipset_cfgreadw_t lca_cfgreadw;
static alpha_chipset_cfgreadl_t lca_cfgreadl;
static alpha_chipset_cfgwriteb_t lca_cfgwriteb;
static alpha_chipset_cfgwritew_t lca_cfgwritew;
static alpha_chipset_cfgwritel_t lca_cfgwritel;
static alpha_chipset_addrcvt_t lca_cvt_dense;
static alpha_chipset_read_hae_t lca_read_hae;
static alpha_chipset_write_hae_t lca_write_hae;
static alpha_chipset_t lca_chipset = {
lca_inb,
lca_inw,
lca_inl,
lca_outb,
lca_outw,
lca_outl,
lca_readb,
lca_readw,
lca_readl,
lca_writeb,
lca_writew,
lca_writel,
lca_maxdevs,
lca_cfgreadb,
lca_cfgreadw,
lca_cfgreadl,
lca_cfgwriteb,
lca_cfgwritew,
lca_cfgwritel,
lca_cvt_dense,
NULL,
lca_read_hae,
lca_write_hae,
};
static u_int8_t
lca_inb(u_int32_t port)
{
alpha_mb();
return SPARSE_READ_BYTE(KV(LCA_PCI_SIO), port);
}
static u_int16_t
lca_inw(u_int32_t port)
{
alpha_mb();
return SPARSE_READ_WORD(KV(LCA_PCI_SIO), port);
}
static u_int32_t
lca_inl(u_int32_t port)
{
alpha_mb();
return SPARSE_READ_LONG(KV(LCA_PCI_SIO), port);
}
static void
lca_outb(u_int32_t port, u_int8_t data)
{
SPARSE_WRITE_BYTE(KV(LCA_PCI_SIO), port, data);
alpha_wmb();
}
static void
lca_outw(u_int32_t port, u_int16_t data)
{
SPARSE_WRITE_WORD(KV(LCA_PCI_SIO), port, data);
alpha_wmb();
}
static void
lca_outl(u_int32_t port, u_int32_t data)
{
SPARSE_WRITE_LONG(KV(LCA_PCI_SIO), port, data);
alpha_wmb();
}
/*
* The LCA HAE is write-only. According to NetBSD, this is where it starts.
*/
static u_int32_t lca_hae_mem = 0x80000000;
/*
* The first 16Mb ignores the HAE. The next 112Mb uses the HAE to set
* the high bits of the PCI address.
*/
#define REG1 (1UL << 24)
static __inline void
lca_set_hae_mem(u_int32_t *pa)
{
int s;
u_int32_t msb;
if(*pa >= REG1){
msb = *pa & 0xf8000000;
*pa -= msb;
s = splhigh();
if (msb != lca_hae_mem) {
lca_hae_mem = msb;
REGVAL(LCA_IOC_HAE) = lca_hae_mem;
alpha_mb();
alpha_mb();
}
splx(s);
}
}
static u_int8_t
lca_readb(u_int32_t pa)
{
alpha_mb();
lca_set_hae_mem(&pa);
return SPARSE_READ_BYTE(KV(LCA_PCI_SPARSE), pa);
}
static u_int16_t
lca_readw(u_int32_t pa)
{
alpha_mb();
lca_set_hae_mem(&pa);
return SPARSE_READ_WORD(KV(LCA_PCI_SPARSE), pa);
}
static u_int32_t
lca_readl(u_int32_t pa)
{
alpha_mb();
lca_set_hae_mem(&pa);
return SPARSE_READ_LONG(KV(LCA_PCI_SPARSE), pa);
}
static void
lca_writeb(u_int32_t pa, u_int8_t data)
{
lca_set_hae_mem(&pa);
SPARSE_WRITE_BYTE(KV(LCA_PCI_SPARSE), pa, data);
alpha_wmb();
}
static void
lca_writew(u_int32_t pa, u_int16_t data)
{
lca_set_hae_mem(&pa);
SPARSE_WRITE_WORD(KV(LCA_PCI_SPARSE), pa, data);
alpha_wmb();
}
static void
lca_writel(u_int32_t pa, u_int32_t data)
{
lca_set_hae_mem(&pa);
SPARSE_WRITE_LONG(KV(LCA_PCI_SPARSE), pa, data);
alpha_wmb();
}
static int
lca_maxdevs(u_int b)
{
return 12; /* XXX */
}
#define LCA_CFGOFF(b, s, f, r) \
((b) ? (((b) << 16) | ((s) << 11) | ((f) << 8) | (r)) \
: ((1 << ((s) + 11)) | ((f) << 8) | (r)))
#define LCA_TYPE1_SETUP(b,s) if ((b)) { \
do { \
(s) = splhigh(); \
alpha_mb(); \
REGVAL(LCA_IOC_CONF) = 1; \
alpha_mb(); \
} while(0); \
}
#define LCA_TYPE1_TEARDOWN(b,s) if ((b)) { \
do { \
alpha_mb(); \
REGVAL(LCA_IOC_CONF) = 0; \
alpha_mb(); \
splx((s)); \
} while(0); \
}
#define CFGREAD(b, s, f, r, width, type) \
type val = ~0; \
int ipl = 0; \
vm_offset_t off = LCA_CFGOFF(b, s, f, r); \
vm_offset_t kv = SPARSE_##width##_ADDRESS(KV(LCA_PCI_CONF), off); \
alpha_mb(); \
LCA_TYPE1_SETUP(b,ipl); \
if (!badaddr((caddr_t)kv, sizeof(type))) { \
val = SPARSE_##width##_EXTRACT(off, SPARSE_READ(kv)); \
} \
LCA_TYPE1_TEARDOWN(b,ipl); \
return val
#define CFGWRITE(b, s, f, r, data, width, type) \
int ipl = 0; \
vm_offset_t off = LCA_CFGOFF(b, s, f, r); \
vm_offset_t kv = SPARSE_##width##_ADDRESS(KV(LCA_PCI_CONF), off); \
alpha_mb(); \
LCA_TYPE1_SETUP(b,ipl); \
if (!badaddr((caddr_t)kv, sizeof(type))) { \
SPARSE_WRITE(kv, SPARSE_##width##_INSERT(off, data)); \
alpha_wmb(); \
} \
LCA_TYPE1_TEARDOWN(b,ipl); \
return
static u_int8_t
lca_cfgreadb(u_int h, u_int b, u_int s, u_int f, u_int r)
{
CFGREAD(b, s, f, r, BYTE, u_int8_t);
}
static u_int16_t
lca_cfgreadw(u_int h, u_int b, u_int s, u_int f, u_int r)
{
CFGREAD(b, s, f, r, WORD, u_int16_t);
}
static u_int32_t
lca_cfgreadl(u_int h, u_int b, u_int s, u_int f, u_int r)
{
CFGREAD(b, s, f, r, LONG, u_int32_t);
}
static void
lca_cfgwriteb(u_int h, u_int b, u_int s, u_int f, u_int r, u_int8_t data)
{
CFGWRITE(b, s, f, r, data, BYTE, u_int8_t);
}
static void
lca_cfgwritew(u_int h, u_int b, u_int s, u_int f, u_int r, u_int16_t data)
{
CFGWRITE(b, s, f, r, data, WORD, u_int16_t);
}
static void
lca_cfgwritel(u_int h, u_int b, u_int s, u_int f, u_int r, u_int32_t data)
{
CFGWRITE(b, s, f, r, data, LONG, u_int16_t);
}
static vm_offset_t
lca_cvt_dense(vm_offset_t addr)
{
addr &= 0xffffffffUL;
return (addr | LCA_PCI_DENSE);
}
static u_int64_t
lca_read_hae(void)
{
return lca_hae_mem & 0xf8000000;
}
static void
lca_write_hae(u_int64_t hae)
{
u_int32_t pa = hae;
lca_set_hae_mem(&pa);
}
static int lca_probe(device_t dev);
static int lca_attach(device_t dev);
static struct resource *lca_alloc_resource(device_t bus, device_t child,
int type, int *rid, u_long start,
u_long end, u_long count,
u_int flags);
static int lca_release_resource(device_t bus, device_t child,
int type, int rid, struct resource *r);
static device_method_t lca_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, lca_probe),
DEVMETHOD(device_attach, lca_attach),
/* Bus interface */
DEVMETHOD(bus_alloc_resource, lca_alloc_resource),
DEVMETHOD(bus_release_resource, lca_release_resource),
DEVMETHOD(bus_activate_resource, pci_activate_resource),
DEVMETHOD(bus_deactivate_resource, pci_deactivate_resource),
DEVMETHOD(bus_setup_intr, isa_setup_intr),
DEVMETHOD(bus_teardown_intr, isa_teardown_intr),
{ 0, 0 }
};
static driver_t lca_driver = {
"lca",
lca_methods,
sizeof(struct lca_softc),
};
#define LCA_SGMAP_BASE (8*1024*1024)
#define LCA_SGMAP_SIZE (8*1024*1024)
static void
lca_sgmap_invalidate(void)
{
alpha_mb();
REGVAL(LCA_IOC_TBIA) = 0;
alpha_mb();
}
static void
lca_sgmap_map(void *arg, vm_offset_t ba, vm_offset_t pa)
{
u_int64_t *sgtable = arg;
int index = alpha_btop(ba - LCA_SGMAP_BASE);
if (pa) {
if (pa > (1L<<32))
panic("lca_sgmap_map: can't map address 0x%lx", pa);
sgtable[index] = ((pa >> 13) << 1) | 1;
} else {
sgtable[index] = 0;
}
alpha_mb();
lca_sgmap_invalidate();
}
static void
lca_init_sgmap(void)
{
void *sgtable;
/*
* First setup Window 0 to map 8Mb to 16Mb with an
* sgmap. Allocate the map aligned to a 32 boundary.
*/
REGVAL64(LCA_IOC_W_BASE0) = LCA_SGMAP_BASE |
IOC_W_BASE_SG | IOC_W_BASE_WEN;
alpha_mb();
REGVAL64(LCA_IOC_W_MASK0) = IOC_W_MASK_8M;
alpha_mb();
sgtable = contigmalloc(8192, M_DEVBUF, M_NOWAIT,
0, (1L<<34),
32*1024, (1L<<34));
if (!sgtable)
panic("lca_init_sgmap: can't allocate page table");
chipset.sgmap = sgmap_map_create(LCA_SGMAP_BASE,
LCA_SGMAP_BASE + LCA_SGMAP_SIZE,
lca_sgmap_map, sgtable);
REGVAL64(LCA_IOC_W_T_BASE0) = pmap_kextract((vm_offset_t) sgtable);
alpha_mb();
REGVAL64(LCA_IOC_TB_ENA) = IOC_TB_ENA_TEN;
alpha_mb();
lca_sgmap_invalidate();
}
void
lca_init()
{
static int initted = 0;
if (initted) return;
initted = 1;
/* Type 0 PCI conf access. */
REGVAL64(LCA_IOC_CONF) = 0;
if (platform.pci_intr_init)
platform.pci_intr_init();
chipset = lca_chipset;
}
static int
lca_probe(device_t dev)
{
if (lca0)
return ENXIO;
lca0 = dev;
device_set_desc(dev, "21066 Core Logic chipset"); /* XXX */
pci_init_resources();
isa_init_intr();
lca_init_sgmap();
device_add_child(dev, "pcib", 0, 0);
return 0;
}
static int
lca_attach(device_t dev)
{
lca_init();
set_iointr(alpha_dispatch_intr);
snprintf(chipset_type, sizeof(chipset_type), "lca");
chipset_bwx = 0;
chipset_ports = LCA_PCI_SIO;
chipset_memory = LCA_PCI_SPARSE;
chipset_dense = LCA_PCI_DENSE;
chipset_hae_mask = IOC_HAE_ADDREXT;
bus_generic_attach(dev);
return 0;
}
static struct resource *
lca_alloc_resource(device_t bus, device_t child, int type, int *rid,
u_long start, u_long end, u_long count, u_int flags)
{
if (type == SYS_RES_IRQ)
return isa_alloc_intr(bus, child, start);
else
return pci_alloc_resource(bus, child, type, rid,
start, end, count, flags);
}
static int
lca_release_resource(device_t bus, device_t child, int type, int rid,
struct resource *r)
{
if (type == SYS_RES_IRQ)
return isa_release_intr(bus, child, r);
else
return pci_release_resource(bus, child, type, rid, r);
}
DRIVER_MODULE(lca, root, lca_driver, lca_devclass, 0, 0);