freebsd-dev/sys/dev/sfxge/sfxge_tx.c
Andrew Rybchenko 93929f253d sfxge: Separate software Tx queue limit for non-TCP traffic
Add separate software Tx queue limit for non-TCP traffic to make total
limit higher and avoid local drops of TCP packets because of no
backpressure.
There is no point to make non-TCP limit high since without backpressure
UDP stream easily overflows any sensible limit.

Split early drops statistics since it is better to have separate counter
for each drop reason to make it unabmiguous.

Add software Tx queue high watermark. The information is very useful to
understand how big queues grow under traffic load.

Sponsored by:   Solarflare Communications, Inc.
Approved by:    gnn (mentor)
2015-01-29 19:11:37 +00:00

1635 lines
40 KiB
C

/*-
* Copyright (c) 2010-2011 Solarflare Communications, Inc.
* All rights reserved.
*
* This software was developed in part by Philip Paeps under contract for
* Solarflare Communications, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* Theory of operation:
*
* Tx queues allocation and mapping
*
* One Tx queue with enabled checksum offload is allocated per Rx channel
* (event queue). Also 2 Tx queues (one without checksum offload and one
* with IP checksum offload only) are allocated and bound to event queue 0.
* sfxge_txq_type is used as Tx queue label.
*
* So, event queue plus label mapping to Tx queue index is:
* if event queue index is 0, TxQ-index = TxQ-label * [0..SFXGE_TXQ_NTYPES)
* else TxQ-index = SFXGE_TXQ_NTYPES + EvQ-index - 1
* See sfxge_get_txq_by_label() sfxge_ev.c
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/types.h>
#include <sys/mbuf.h>
#include <sys/smp.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <sys/syslog.h>
#include <net/bpf.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_vlan_var.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet/tcp.h>
#include "common/efx.h"
#include "sfxge.h"
#include "sfxge_tx.h"
/* Set the block level to ensure there is space to generate a
* large number of descriptors for TSO. With minimum MSS and
* maximum mbuf length we might need more than a ring-ful of
* descriptors, but this should not happen in practice except
* due to deliberate attack. In that case we will truncate
* the output at a packet boundary. Allow for a reasonable
* minimum MSS of 512.
*/
#define SFXGE_TSO_MAX_DESC ((65535 / 512) * 2 + SFXGE_TX_MAPPING_MAX_SEG - 1)
#define SFXGE_TXQ_BLOCK_LEVEL(_entries) ((_entries) - SFXGE_TSO_MAX_DESC)
#ifdef SFXGE_HAVE_MQ
#define SFXGE_PARAM_TX_DPL_GET_MAX SFXGE_PARAM(tx_dpl_get_max)
static int sfxge_tx_dpl_get_max = SFXGE_TX_DPL_GET_PKT_LIMIT_DEFAULT;
TUNABLE_INT(SFXGE_PARAM_TX_DPL_GET_MAX, &sfxge_tx_dpl_get_max);
SYSCTL_INT(_hw_sfxge, OID_AUTO, tx_dpl_get_max, CTLFLAG_RDTUN,
&sfxge_tx_dpl_get_max, 0,
"Maximum number of any packets in deferred packet get-list");
#define SFXGE_PARAM_TX_DPL_GET_NON_TCP_MAX \
SFXGE_PARAM(tx_dpl_get_non_tcp_max)
static int sfxge_tx_dpl_get_non_tcp_max =
SFXGE_TX_DPL_GET_NON_TCP_PKT_LIMIT_DEFAULT;
TUNABLE_INT(SFXGE_PARAM_TX_DPL_GET_NON_TCP_MAX, &sfxge_tx_dpl_get_non_tcp_max);
SYSCTL_INT(_hw_sfxge, OID_AUTO, tx_dpl_get_non_tcp_max, CTLFLAG_RDTUN,
&sfxge_tx_dpl_get_non_tcp_max, 0,
"Maximum number of non-TCP packets in deferred packet get-list");
#define SFXGE_PARAM_TX_DPL_PUT_MAX SFXGE_PARAM(tx_dpl_put_max)
static int sfxge_tx_dpl_put_max = SFXGE_TX_DPL_PUT_PKT_LIMIT_DEFAULT;
TUNABLE_INT(SFXGE_PARAM_TX_DPL_PUT_MAX, &sfxge_tx_dpl_put_max);
SYSCTL_INT(_hw_sfxge, OID_AUTO, tx_dpl_put_max, CTLFLAG_RDTUN,
&sfxge_tx_dpl_put_max, 0,
"Maximum number of any packets in deferred packet put-list");
#endif
/* Forward declarations. */
static inline void sfxge_tx_qdpl_service(struct sfxge_txq *txq);
static void sfxge_tx_qlist_post(struct sfxge_txq *txq);
static void sfxge_tx_qunblock(struct sfxge_txq *txq);
static int sfxge_tx_queue_tso(struct sfxge_txq *txq, struct mbuf *mbuf,
const bus_dma_segment_t *dma_seg, int n_dma_seg);
void
sfxge_tx_qcomplete(struct sfxge_txq *txq, struct sfxge_evq *evq)
{
unsigned int completed;
mtx_assert(&evq->lock, MA_OWNED);
completed = txq->completed;
while (completed != txq->pending) {
struct sfxge_tx_mapping *stmp;
unsigned int id;
id = completed++ & txq->ptr_mask;
stmp = &txq->stmp[id];
if (stmp->flags & TX_BUF_UNMAP) {
bus_dmamap_unload(txq->packet_dma_tag, stmp->map);
if (stmp->flags & TX_BUF_MBUF) {
struct mbuf *m = stmp->u.mbuf;
do
m = m_free(m);
while (m != NULL);
} else {
free(stmp->u.heap_buf, M_SFXGE);
}
stmp->flags = 0;
}
}
txq->completed = completed;
/* Check whether we need to unblock the queue. */
mb();
if (txq->blocked) {
unsigned int level;
level = txq->added - txq->completed;
if (level <= SFXGE_TXQ_UNBLOCK_LEVEL(txq->entries))
sfxge_tx_qunblock(txq);
}
}
#ifdef SFXGE_HAVE_MQ
static inline unsigned int
sfxge_is_mbuf_non_tcp(struct mbuf *mbuf)
{
/* Absense of TCP checksum flags does not mean that it is non-TCP
* but it should be true if user wants to achieve high throughput.
*/
return (!(mbuf->m_pkthdr.csum_flags & (CSUM_IP_TCP | CSUM_IP6_TCP)));
}
/*
* Reorder the put list and append it to the get list.
*/
static void
sfxge_tx_qdpl_swizzle(struct sfxge_txq *txq)
{
struct sfxge_tx_dpl *stdp;
struct mbuf *mbuf, *get_next, **get_tailp;
volatile uintptr_t *putp;
uintptr_t put;
unsigned int count;
unsigned int non_tcp_count;
mtx_assert(&txq->lock, MA_OWNED);
stdp = &txq->dpl;
/* Acquire the put list. */
putp = &stdp->std_put;
put = atomic_readandclear_ptr(putp);
mbuf = (void *)put;
if (mbuf == NULL)
return;
/* Reverse the put list. */
get_tailp = &mbuf->m_nextpkt;
get_next = NULL;
count = 0;
non_tcp_count = 0;
do {
struct mbuf *put_next;
non_tcp_count += sfxge_is_mbuf_non_tcp(mbuf);
put_next = mbuf->m_nextpkt;
mbuf->m_nextpkt = get_next;
get_next = mbuf;
mbuf = put_next;
count++;
} while (mbuf != NULL);
/* Append the reversed put list to the get list. */
KASSERT(*get_tailp == NULL, ("*get_tailp != NULL"));
*stdp->std_getp = get_next;
stdp->std_getp = get_tailp;
stdp->std_get_count += count;
stdp->std_get_non_tcp_count += non_tcp_count;
}
#endif /* SFXGE_HAVE_MQ */
static void
sfxge_tx_qreap(struct sfxge_txq *txq)
{
mtx_assert(SFXGE_TXQ_LOCK(txq), MA_OWNED);
txq->reaped = txq->completed;
}
static void
sfxge_tx_qlist_post(struct sfxge_txq *txq)
{
unsigned int old_added;
unsigned int level;
int rc;
mtx_assert(SFXGE_TXQ_LOCK(txq), MA_OWNED);
KASSERT(txq->n_pend_desc != 0, ("txq->n_pend_desc == 0"));
KASSERT(txq->n_pend_desc <= SFXGE_TSO_MAX_DESC,
("txq->n_pend_desc too large"));
KASSERT(!txq->blocked, ("txq->blocked"));
old_added = txq->added;
/* Post the fragment list. */
rc = efx_tx_qpost(txq->common, txq->pend_desc, txq->n_pend_desc,
txq->reaped, &txq->added);
KASSERT(rc == 0, ("efx_tx_qpost() failed"));
/* If efx_tx_qpost() had to refragment, our information about
* buffers to free may be associated with the wrong
* descriptors.
*/
KASSERT(txq->added - old_added == txq->n_pend_desc,
("efx_tx_qpost() refragmented descriptors"));
level = txq->added - txq->reaped;
KASSERT(level <= txq->entries, ("overfilled TX queue"));
/* Clear the fragment list. */
txq->n_pend_desc = 0;
/* Have we reached the block level? */
if (level < SFXGE_TXQ_BLOCK_LEVEL(txq->entries))
return;
/* Reap, and check again */
sfxge_tx_qreap(txq);
level = txq->added - txq->reaped;
if (level < SFXGE_TXQ_BLOCK_LEVEL(txq->entries))
return;
txq->blocked = 1;
/*
* Avoid a race with completion interrupt handling that could leave
* the queue blocked.
*/
mb();
sfxge_tx_qreap(txq);
level = txq->added - txq->reaped;
if (level < SFXGE_TXQ_BLOCK_LEVEL(txq->entries)) {
mb();
txq->blocked = 0;
}
}
static int sfxge_tx_queue_mbuf(struct sfxge_txq *txq, struct mbuf *mbuf)
{
bus_dmamap_t *used_map;
bus_dmamap_t map;
bus_dma_segment_t dma_seg[SFXGE_TX_MAPPING_MAX_SEG];
unsigned int id;
struct sfxge_tx_mapping *stmp;
efx_buffer_t *desc;
int n_dma_seg;
int rc;
int i;
KASSERT(!txq->blocked, ("txq->blocked"));
if (mbuf->m_pkthdr.csum_flags & CSUM_TSO)
prefetch_read_many(mbuf->m_data);
if (txq->init_state != SFXGE_TXQ_STARTED) {
rc = EINTR;
goto reject;
}
/* Load the packet for DMA. */
id = txq->added & txq->ptr_mask;
stmp = &txq->stmp[id];
rc = bus_dmamap_load_mbuf_sg(txq->packet_dma_tag, stmp->map,
mbuf, dma_seg, &n_dma_seg, 0);
if (rc == EFBIG) {
/* Try again. */
struct mbuf *new_mbuf = m_collapse(mbuf, M_NOWAIT,
SFXGE_TX_MAPPING_MAX_SEG);
if (new_mbuf == NULL)
goto reject;
++txq->collapses;
mbuf = new_mbuf;
rc = bus_dmamap_load_mbuf_sg(txq->packet_dma_tag,
stmp->map, mbuf,
dma_seg, &n_dma_seg, 0);
}
if (rc != 0)
goto reject;
/* Make the packet visible to the hardware. */
bus_dmamap_sync(txq->packet_dma_tag, stmp->map, BUS_DMASYNC_PREWRITE);
used_map = &stmp->map;
if (mbuf->m_pkthdr.csum_flags & CSUM_TSO) {
rc = sfxge_tx_queue_tso(txq, mbuf, dma_seg, n_dma_seg);
if (rc < 0)
goto reject_mapped;
stmp = &txq->stmp[rc];
} else {
/* Add the mapping to the fragment list, and set flags
* for the buffer.
*/
i = 0;
for (;;) {
desc = &txq->pend_desc[i];
desc->eb_addr = dma_seg[i].ds_addr;
desc->eb_size = dma_seg[i].ds_len;
if (i == n_dma_seg - 1) {
desc->eb_eop = 1;
break;
}
desc->eb_eop = 0;
i++;
stmp->flags = 0;
if (__predict_false(stmp ==
&txq->stmp[txq->ptr_mask]))
stmp = &txq->stmp[0];
else
stmp++;
}
txq->n_pend_desc = n_dma_seg;
}
/*
* If the mapping required more than one descriptor
* then we need to associate the DMA map with the last
* descriptor, not the first.
*/
if (used_map != &stmp->map) {
map = stmp->map;
stmp->map = *used_map;
*used_map = map;
}
stmp->u.mbuf = mbuf;
stmp->flags = TX_BUF_UNMAP | TX_BUF_MBUF;
/* Post the fragment list. */
sfxge_tx_qlist_post(txq);
return (0);
reject_mapped:
bus_dmamap_unload(txq->packet_dma_tag, *used_map);
reject:
/* Drop the packet on the floor. */
m_freem(mbuf);
++txq->drops;
return (rc);
}
#ifdef SFXGE_HAVE_MQ
/*
* Drain the deferred packet list into the transmit queue.
*/
static void
sfxge_tx_qdpl_drain(struct sfxge_txq *txq)
{
struct sfxge_softc *sc;
struct sfxge_tx_dpl *stdp;
struct mbuf *mbuf, *next;
unsigned int count;
unsigned int non_tcp_count;
unsigned int pushed;
int rc;
mtx_assert(&txq->lock, MA_OWNED);
sc = txq->sc;
stdp = &txq->dpl;
pushed = txq->added;
prefetch_read_many(sc->enp);
prefetch_read_many(txq->common);
mbuf = stdp->std_get;
count = stdp->std_get_count;
non_tcp_count = stdp->std_get_non_tcp_count;
if (count > stdp->std_get_hiwat)
stdp->std_get_hiwat = count;
while (count != 0) {
KASSERT(mbuf != NULL, ("mbuf == NULL"));
next = mbuf->m_nextpkt;
mbuf->m_nextpkt = NULL;
ETHER_BPF_MTAP(sc->ifnet, mbuf); /* packet capture */
if (next != NULL)
prefetch_read_many(next);
rc = sfxge_tx_queue_mbuf(txq, mbuf);
--count;
non_tcp_count -= sfxge_is_mbuf_non_tcp(mbuf);
mbuf = next;
if (rc != 0)
continue;
if (txq->blocked)
break;
/* Push the fragments to the hardware in batches. */
if (txq->added - pushed >= SFXGE_TX_BATCH) {
efx_tx_qpush(txq->common, txq->added);
pushed = txq->added;
}
}
if (count == 0) {
KASSERT(mbuf == NULL, ("mbuf != NULL"));
KASSERT(non_tcp_count == 0,
("inconsistent TCP/non-TCP detection"));
stdp->std_get = NULL;
stdp->std_get_count = 0;
stdp->std_get_non_tcp_count = 0;
stdp->std_getp = &stdp->std_get;
} else {
stdp->std_get = mbuf;
stdp->std_get_count = count;
stdp->std_get_non_tcp_count = non_tcp_count;
}
if (txq->added != pushed)
efx_tx_qpush(txq->common, txq->added);
KASSERT(txq->blocked || stdp->std_get_count == 0,
("queue unblocked but count is non-zero"));
}
#define SFXGE_TX_QDPL_PENDING(_txq) \
((_txq)->dpl.std_put != 0)
/*
* Service the deferred packet list.
*
* NOTE: drops the txq mutex!
*/
static inline void
sfxge_tx_qdpl_service(struct sfxge_txq *txq)
{
mtx_assert(&txq->lock, MA_OWNED);
do {
if (SFXGE_TX_QDPL_PENDING(txq))
sfxge_tx_qdpl_swizzle(txq);
if (!txq->blocked)
sfxge_tx_qdpl_drain(txq);
mtx_unlock(&txq->lock);
} while (SFXGE_TX_QDPL_PENDING(txq) &&
mtx_trylock(&txq->lock));
}
/*
* Put a packet on the deferred packet list.
*
* If we are called with the txq lock held, we put the packet on the "get
* list", otherwise we atomically push it on the "put list". The swizzle
* function takes care of ordering.
*
* The length of the put list is bounded by SFXGE_TX_MAX_DEFFERED. We
* overload the csum_data field in the mbuf to keep track of this length
* because there is no cheap alternative to avoid races.
*/
static inline int
sfxge_tx_qdpl_put(struct sfxge_txq *txq, struct mbuf *mbuf, int locked)
{
struct sfxge_tx_dpl *stdp;
stdp = &txq->dpl;
KASSERT(mbuf->m_nextpkt == NULL, ("mbuf->m_nextpkt != NULL"));
if (locked) {
mtx_assert(&txq->lock, MA_OWNED);
sfxge_tx_qdpl_swizzle(txq);
if (stdp->std_get_count >= stdp->std_get_max) {
txq->get_overflow++;
return (ENOBUFS);
}
if (sfxge_is_mbuf_non_tcp(mbuf)) {
if (stdp->std_get_non_tcp_count >=
stdp->std_get_non_tcp_max) {
txq->get_non_tcp_overflow++;
return (ENOBUFS);
}
stdp->std_get_non_tcp_count++;
}
*(stdp->std_getp) = mbuf;
stdp->std_getp = &mbuf->m_nextpkt;
stdp->std_get_count++;
} else {
volatile uintptr_t *putp;
uintptr_t old;
uintptr_t new;
unsigned old_len;
putp = &stdp->std_put;
new = (uintptr_t)mbuf;
do {
old = *putp;
if (old != 0) {
struct mbuf *mp = (struct mbuf *)old;
old_len = mp->m_pkthdr.csum_data;
} else
old_len = 0;
if (old_len >= stdp->std_put_max) {
atomic_add_long(&txq->put_overflow, 1);
return (ENOBUFS);
}
mbuf->m_pkthdr.csum_data = old_len + 1;
mbuf->m_nextpkt = (void *)old;
} while (atomic_cmpset_ptr(putp, old, new) == 0);
}
return (0);
}
/*
* Called from if_transmit - will try to grab the txq lock and enqueue to the
* put list if it succeeds, otherwise will push onto the defer list.
*/
int
sfxge_tx_packet_add(struct sfxge_txq *txq, struct mbuf *m)
{
int locked;
int rc;
if (!SFXGE_LINK_UP(txq->sc)) {
rc = ENETDOWN;
atomic_add_long(&txq->netdown_drops, 1);
goto fail;
}
/*
* Try to grab the txq lock. If we are able to get the lock,
* the packet will be appended to the "get list" of the deferred
* packet list. Otherwise, it will be pushed on the "put list".
*/
locked = mtx_trylock(&txq->lock);
if (sfxge_tx_qdpl_put(txq, m, locked) != 0) {
if (locked)
mtx_unlock(&txq->lock);
rc = ENOBUFS;
goto fail;
}
/*
* Try to grab the lock again.
*
* If we are able to get the lock, we need to process the deferred
* packet list. If we are not able to get the lock, another thread
* is processing the list.
*/
if (!locked)
locked = mtx_trylock(&txq->lock);
if (locked) {
/* Try to service the list. */
sfxge_tx_qdpl_service(txq);
/* Lock has been dropped. */
}
return (0);
fail:
m_freem(m);
return (rc);
}
static void
sfxge_tx_qdpl_flush(struct sfxge_txq *txq)
{
struct sfxge_tx_dpl *stdp = &txq->dpl;
struct mbuf *mbuf, *next;
mtx_lock(&txq->lock);
sfxge_tx_qdpl_swizzle(txq);
for (mbuf = stdp->std_get; mbuf != NULL; mbuf = next) {
next = mbuf->m_nextpkt;
m_freem(mbuf);
}
stdp->std_get = NULL;
stdp->std_get_count = 0;
stdp->std_get_non_tcp_count = 0;
stdp->std_getp = &stdp->std_get;
mtx_unlock(&txq->lock);
}
void
sfxge_if_qflush(struct ifnet *ifp)
{
struct sfxge_softc *sc;
int i;
sc = ifp->if_softc;
for (i = 0; i < SFXGE_TX_SCALE(sc); i++)
sfxge_tx_qdpl_flush(sc->txq[i]);
}
/*
* TX start -- called by the stack.
*/
int
sfxge_if_transmit(struct ifnet *ifp, struct mbuf *m)
{
struct sfxge_softc *sc;
struct sfxge_txq *txq;
int rc;
sc = (struct sfxge_softc *)ifp->if_softc;
KASSERT(ifp->if_flags & IFF_UP, ("interface not up"));
/* Pick the desired transmit queue. */
if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_TSO)) {
int index = 0;
/* check if flowid is set */
if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
uint32_t hash = m->m_pkthdr.flowid;
index = sc->rx_indir_table[hash % SFXGE_RX_SCALE_MAX];
}
txq = sc->txq[SFXGE_TXQ_IP_TCP_UDP_CKSUM + index];
} else if (m->m_pkthdr.csum_flags & CSUM_DELAY_IP) {
txq = sc->txq[SFXGE_TXQ_IP_CKSUM];
} else {
txq = sc->txq[SFXGE_TXQ_NON_CKSUM];
}
rc = sfxge_tx_packet_add(txq, m);
return (rc);
}
#else /* !SFXGE_HAVE_MQ */
static void sfxge_if_start_locked(struct ifnet *ifp)
{
struct sfxge_softc *sc = ifp->if_softc;
struct sfxge_txq *txq;
struct mbuf *mbuf;
unsigned int pushed[SFXGE_TXQ_NTYPES];
unsigned int q_index;
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING)
return;
if (!sc->port.link_up)
return;
for (q_index = 0; q_index < SFXGE_TXQ_NTYPES; q_index++) {
txq = sc->txq[q_index];
pushed[q_index] = txq->added;
}
while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, mbuf);
if (mbuf == NULL)
break;
ETHER_BPF_MTAP(ifp, mbuf); /* packet capture */
/* Pick the desired transmit queue. */
if (mbuf->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_TSO))
q_index = SFXGE_TXQ_IP_TCP_UDP_CKSUM;
else if (mbuf->m_pkthdr.csum_flags & CSUM_DELAY_IP)
q_index = SFXGE_TXQ_IP_CKSUM;
else
q_index = SFXGE_TXQ_NON_CKSUM;
txq = sc->txq[q_index];
if (sfxge_tx_queue_mbuf(txq, mbuf) != 0)
continue;
if (txq->blocked) {
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
/* Push the fragments to the hardware in batches. */
if (txq->added - pushed[q_index] >= SFXGE_TX_BATCH) {
efx_tx_qpush(txq->common, txq->added);
pushed[q_index] = txq->added;
}
}
for (q_index = 0; q_index < SFXGE_TXQ_NTYPES; q_index++) {
txq = sc->txq[q_index];
if (txq->added != pushed[q_index])
efx_tx_qpush(txq->common, txq->added);
}
}
void sfxge_if_start(struct ifnet *ifp)
{
struct sfxge_softc *sc = ifp->if_softc;
mtx_lock(&sc->tx_lock);
sfxge_if_start_locked(ifp);
mtx_unlock(&sc->tx_lock);
}
static inline void
sfxge_tx_qdpl_service(struct sfxge_txq *txq)
{
struct sfxge_softc *sc = txq->sc;
struct ifnet *ifp = sc->ifnet;
mtx_assert(&sc->tx_lock, MA_OWNED);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
sfxge_if_start_locked(ifp);
mtx_unlock(&sc->tx_lock);
}
#endif /* SFXGE_HAVE_MQ */
/*
* Software "TSO". Not quite as good as doing it in hardware, but
* still faster than segmenting in the stack.
*/
struct sfxge_tso_state {
/* Output position */
unsigned out_len; /* Remaining length in current segment */
unsigned seqnum; /* Current sequence number */
unsigned packet_space; /* Remaining space in current packet */
/* Input position */
unsigned dma_seg_i; /* Current DMA segment number */
uint64_t dma_addr; /* DMA address of current position */
unsigned in_len; /* Remaining length in current mbuf */
const struct mbuf *mbuf; /* Input mbuf (head of chain) */
u_short protocol; /* Network protocol (after VLAN decap) */
ssize_t nh_off; /* Offset of network header */
ssize_t tcph_off; /* Offset of TCP header */
unsigned header_len; /* Number of bytes of header */
int full_packet_size; /* Number of bytes to put in each outgoing
* segment */
};
static inline const struct ip *tso_iph(const struct sfxge_tso_state *tso)
{
KASSERT(tso->protocol == htons(ETHERTYPE_IP),
("tso_iph() in non-IPv4 state"));
return (const struct ip *)(tso->mbuf->m_data + tso->nh_off);
}
static inline const struct ip6_hdr *tso_ip6h(const struct sfxge_tso_state *tso)
{
KASSERT(tso->protocol == htons(ETHERTYPE_IPV6),
("tso_ip6h() in non-IPv6 state"));
return (const struct ip6_hdr *)(tso->mbuf->m_data + tso->nh_off);
}
static inline const struct tcphdr *tso_tcph(const struct sfxge_tso_state *tso)
{
return (const struct tcphdr *)(tso->mbuf->m_data + tso->tcph_off);
}
/* Size of preallocated TSO header buffers. Larger blocks must be
* allocated from the heap.
*/
#define TSOH_STD_SIZE 128
/* At most half the descriptors in the queue at any time will refer to
* a TSO header buffer, since they must always be followed by a
* payload descriptor referring to an mbuf.
*/
#define TSOH_COUNT(_txq_entries) ((_txq_entries) / 2u)
#define TSOH_PER_PAGE (PAGE_SIZE / TSOH_STD_SIZE)
#define TSOH_PAGE_COUNT(_txq_entries) \
((TSOH_COUNT(_txq_entries) + TSOH_PER_PAGE - 1) / TSOH_PER_PAGE)
static int tso_init(struct sfxge_txq *txq)
{
struct sfxge_softc *sc = txq->sc;
unsigned int tsoh_page_count = TSOH_PAGE_COUNT(sc->txq_entries);
int i, rc;
/* Allocate TSO header buffers */
txq->tsoh_buffer = malloc(tsoh_page_count * sizeof(txq->tsoh_buffer[0]),
M_SFXGE, M_WAITOK);
for (i = 0; i < tsoh_page_count; i++) {
rc = sfxge_dma_alloc(sc, PAGE_SIZE, &txq->tsoh_buffer[i]);
if (rc != 0)
goto fail;
}
return (0);
fail:
while (i-- > 0)
sfxge_dma_free(&txq->tsoh_buffer[i]);
free(txq->tsoh_buffer, M_SFXGE);
txq->tsoh_buffer = NULL;
return (rc);
}
static void tso_fini(struct sfxge_txq *txq)
{
int i;
if (txq->tsoh_buffer != NULL) {
for (i = 0; i < TSOH_PAGE_COUNT(txq->sc->txq_entries); i++)
sfxge_dma_free(&txq->tsoh_buffer[i]);
free(txq->tsoh_buffer, M_SFXGE);
}
}
static void tso_start(struct sfxge_tso_state *tso, struct mbuf *mbuf)
{
struct ether_header *eh = mtod(mbuf, struct ether_header *);
tso->mbuf = mbuf;
/* Find network protocol and header */
tso->protocol = eh->ether_type;
if (tso->protocol == htons(ETHERTYPE_VLAN)) {
struct ether_vlan_header *veh =
mtod(mbuf, struct ether_vlan_header *);
tso->protocol = veh->evl_proto;
tso->nh_off = sizeof(*veh);
} else {
tso->nh_off = sizeof(*eh);
}
/* Find TCP header */
if (tso->protocol == htons(ETHERTYPE_IP)) {
KASSERT(tso_iph(tso)->ip_p == IPPROTO_TCP,
("TSO required on non-TCP packet"));
tso->tcph_off = tso->nh_off + 4 * tso_iph(tso)->ip_hl;
} else {
KASSERT(tso->protocol == htons(ETHERTYPE_IPV6),
("TSO required on non-IP packet"));
KASSERT(tso_ip6h(tso)->ip6_nxt == IPPROTO_TCP,
("TSO required on non-TCP packet"));
tso->tcph_off = tso->nh_off + sizeof(struct ip6_hdr);
}
tso->header_len = tso->tcph_off + 4 * tso_tcph(tso)->th_off;
tso->full_packet_size = tso->header_len + mbuf->m_pkthdr.tso_segsz;
tso->seqnum = ntohl(tso_tcph(tso)->th_seq);
/* These flags must not be duplicated */
KASSERT(!(tso_tcph(tso)->th_flags & (TH_URG | TH_SYN | TH_RST)),
("incompatible TCP flag on TSO packet"));
tso->out_len = mbuf->m_pkthdr.len - tso->header_len;
}
/*
* tso_fill_packet_with_fragment - form descriptors for the current fragment
*
* Form descriptors for the current fragment, until we reach the end
* of fragment or end-of-packet. Return 0 on success, 1 if not enough
* space.
*/
static void tso_fill_packet_with_fragment(struct sfxge_txq *txq,
struct sfxge_tso_state *tso)
{
efx_buffer_t *desc;
int n;
if (tso->in_len == 0 || tso->packet_space == 0)
return;
KASSERT(tso->in_len > 0, ("TSO input length went negative"));
KASSERT(tso->packet_space > 0, ("TSO packet space went negative"));
n = min(tso->in_len, tso->packet_space);
tso->packet_space -= n;
tso->out_len -= n;
tso->in_len -= n;
desc = &txq->pend_desc[txq->n_pend_desc++];
desc->eb_addr = tso->dma_addr;
desc->eb_size = n;
desc->eb_eop = tso->out_len == 0 || tso->packet_space == 0;
tso->dma_addr += n;
}
/* Callback from bus_dmamap_load() for long TSO headers. */
static void tso_map_long_header(void *dma_addr_ret,
bus_dma_segment_t *segs, int nseg,
int error)
{
*(uint64_t *)dma_addr_ret = ((__predict_true(error == 0) &&
__predict_true(nseg == 1)) ?
segs->ds_addr : 0);
}
/*
* tso_start_new_packet - generate a new header and prepare for the new packet
*
* Generate a new header and prepare for the new packet. Return 0 on
* success, or an error code if failed to alloc header.
*/
static int tso_start_new_packet(struct sfxge_txq *txq,
struct sfxge_tso_state *tso,
unsigned int id)
{
struct sfxge_tx_mapping *stmp = &txq->stmp[id];
struct tcphdr *tsoh_th;
unsigned ip_length;
caddr_t header;
uint64_t dma_addr;
bus_dmamap_t map;
efx_buffer_t *desc;
int rc;
/* Allocate a DMA-mapped header buffer. */
if (__predict_true(tso->header_len <= TSOH_STD_SIZE)) {
unsigned int page_index = (id / 2) / TSOH_PER_PAGE;
unsigned int buf_index = (id / 2) % TSOH_PER_PAGE;
header = (txq->tsoh_buffer[page_index].esm_base +
buf_index * TSOH_STD_SIZE);
dma_addr = (txq->tsoh_buffer[page_index].esm_addr +
buf_index * TSOH_STD_SIZE);
map = txq->tsoh_buffer[page_index].esm_map;
stmp->flags = 0;
} else {
/* We cannot use bus_dmamem_alloc() as that may sleep */
header = malloc(tso->header_len, M_SFXGE, M_NOWAIT);
if (__predict_false(!header))
return (ENOMEM);
rc = bus_dmamap_load(txq->packet_dma_tag, stmp->map,
header, tso->header_len,
tso_map_long_header, &dma_addr,
BUS_DMA_NOWAIT);
if (__predict_false(dma_addr == 0)) {
if (rc == 0) {
/* Succeeded but got >1 segment */
bus_dmamap_unload(txq->packet_dma_tag,
stmp->map);
rc = EINVAL;
}
free(header, M_SFXGE);
return (rc);
}
map = stmp->map;
txq->tso_long_headers++;
stmp->u.heap_buf = header;
stmp->flags = TX_BUF_UNMAP;
}
tsoh_th = (struct tcphdr *)(header + tso->tcph_off);
/* Copy and update the headers. */
m_copydata(tso->mbuf, 0, tso->header_len, header);
tsoh_th->th_seq = htonl(tso->seqnum);
tso->seqnum += tso->mbuf->m_pkthdr.tso_segsz;
if (tso->out_len > tso->mbuf->m_pkthdr.tso_segsz) {
/* This packet will not finish the TSO burst. */
ip_length = tso->full_packet_size - tso->nh_off;
tsoh_th->th_flags &= ~(TH_FIN | TH_PUSH);
} else {
/* This packet will be the last in the TSO burst. */
ip_length = tso->header_len - tso->nh_off + tso->out_len;
}
if (tso->protocol == htons(ETHERTYPE_IP)) {
struct ip *tsoh_iph = (struct ip *)(header + tso->nh_off);
tsoh_iph->ip_len = htons(ip_length);
/* XXX We should increment ip_id, but FreeBSD doesn't
* currently allocate extra IDs for multiple segments.
*/
} else {
struct ip6_hdr *tsoh_iph =
(struct ip6_hdr *)(header + tso->nh_off);
tsoh_iph->ip6_plen = htons(ip_length - sizeof(*tsoh_iph));
}
/* Make the header visible to the hardware. */
bus_dmamap_sync(txq->packet_dma_tag, map, BUS_DMASYNC_PREWRITE);
tso->packet_space = tso->mbuf->m_pkthdr.tso_segsz;
txq->tso_packets++;
/* Form a descriptor for this header. */
desc = &txq->pend_desc[txq->n_pend_desc++];
desc->eb_addr = dma_addr;
desc->eb_size = tso->header_len;
desc->eb_eop = 0;
return (0);
}
static int
sfxge_tx_queue_tso(struct sfxge_txq *txq, struct mbuf *mbuf,
const bus_dma_segment_t *dma_seg, int n_dma_seg)
{
struct sfxge_tso_state tso;
unsigned int id, next_id;
unsigned skipped = 0;
tso_start(&tso, mbuf);
while (dma_seg->ds_len + skipped <= tso.header_len) {
skipped += dma_seg->ds_len;
--n_dma_seg;
KASSERT(n_dma_seg, ("no payload found in TSO packet"));
++dma_seg;
}
tso.in_len = dma_seg->ds_len + (tso.header_len - skipped);
tso.dma_addr = dma_seg->ds_addr + (tso.header_len - skipped);
id = txq->added & txq->ptr_mask;
if (__predict_false(tso_start_new_packet(txq, &tso, id)))
return (-1);
while (1) {
id = (id + 1) & txq->ptr_mask;
tso_fill_packet_with_fragment(txq, &tso);
/* Move onto the next fragment? */
if (tso.in_len == 0) {
--n_dma_seg;
if (n_dma_seg == 0)
break;
++dma_seg;
tso.in_len = dma_seg->ds_len;
tso.dma_addr = dma_seg->ds_addr;
}
/* End of packet? */
if (tso.packet_space == 0) {
/* If the queue is now full due to tiny MSS,
* or we can't create another header, discard
* the remainder of the input mbuf but do not
* roll back the work we have done.
*/
if (txq->n_pend_desc >
SFXGE_TSO_MAX_DESC - (1 + SFXGE_TX_MAPPING_MAX_SEG))
break;
next_id = (id + 1) & txq->ptr_mask;
if (__predict_false(tso_start_new_packet(txq, &tso,
next_id)))
break;
id = next_id;
}
}
txq->tso_bursts++;
return (id);
}
static void
sfxge_tx_qunblock(struct sfxge_txq *txq)
{
struct sfxge_softc *sc;
struct sfxge_evq *evq;
sc = txq->sc;
evq = sc->evq[txq->evq_index];
mtx_assert(&evq->lock, MA_OWNED);
if (txq->init_state != SFXGE_TXQ_STARTED)
return;
mtx_lock(SFXGE_TXQ_LOCK(txq));
if (txq->blocked) {
unsigned int level;
level = txq->added - txq->completed;
if (level <= SFXGE_TXQ_UNBLOCK_LEVEL(txq->entries))
txq->blocked = 0;
}
sfxge_tx_qdpl_service(txq);
/* note: lock has been dropped */
}
void
sfxge_tx_qflush_done(struct sfxge_txq *txq)
{
txq->flush_state = SFXGE_FLUSH_DONE;
}
static void
sfxge_tx_qstop(struct sfxge_softc *sc, unsigned int index)
{
struct sfxge_txq *txq;
struct sfxge_evq *evq;
unsigned int count;
txq = sc->txq[index];
evq = sc->evq[txq->evq_index];
mtx_lock(SFXGE_TXQ_LOCK(txq));
KASSERT(txq->init_state == SFXGE_TXQ_STARTED,
("txq->init_state != SFXGE_TXQ_STARTED"));
txq->init_state = SFXGE_TXQ_INITIALIZED;
txq->flush_state = SFXGE_FLUSH_PENDING;
/* Flush the transmit queue. */
efx_tx_qflush(txq->common);
mtx_unlock(SFXGE_TXQ_LOCK(txq));
count = 0;
do {
/* Spin for 100ms. */
DELAY(100000);
if (txq->flush_state != SFXGE_FLUSH_PENDING)
break;
} while (++count < 20);
mtx_lock(&evq->lock);
mtx_lock(SFXGE_TXQ_LOCK(txq));
KASSERT(txq->flush_state != SFXGE_FLUSH_FAILED,
("txq->flush_state == SFXGE_FLUSH_FAILED"));
txq->flush_state = SFXGE_FLUSH_DONE;
txq->blocked = 0;
txq->pending = txq->added;
sfxge_tx_qcomplete(txq, evq);
KASSERT(txq->completed == txq->added,
("txq->completed != txq->added"));
sfxge_tx_qreap(txq);
KASSERT(txq->reaped == txq->completed,
("txq->reaped != txq->completed"));
txq->added = 0;
txq->pending = 0;
txq->completed = 0;
txq->reaped = 0;
/* Destroy the common code transmit queue. */
efx_tx_qdestroy(txq->common);
txq->common = NULL;
efx_sram_buf_tbl_clear(sc->enp, txq->buf_base_id,
EFX_TXQ_NBUFS(sc->txq_entries));
mtx_unlock(&evq->lock);
mtx_unlock(SFXGE_TXQ_LOCK(txq));
}
static int
sfxge_tx_qstart(struct sfxge_softc *sc, unsigned int index)
{
struct sfxge_txq *txq;
efsys_mem_t *esmp;
uint16_t flags;
struct sfxge_evq *evq;
int rc;
txq = sc->txq[index];
esmp = &txq->mem;
evq = sc->evq[txq->evq_index];
KASSERT(txq->init_state == SFXGE_TXQ_INITIALIZED,
("txq->init_state != SFXGE_TXQ_INITIALIZED"));
KASSERT(evq->init_state == SFXGE_EVQ_STARTED,
("evq->init_state != SFXGE_EVQ_STARTED"));
/* Program the buffer table. */
if ((rc = efx_sram_buf_tbl_set(sc->enp, txq->buf_base_id, esmp,
EFX_TXQ_NBUFS(sc->txq_entries))) != 0)
return (rc);
/* Determine the kind of queue we are creating. */
switch (txq->type) {
case SFXGE_TXQ_NON_CKSUM:
flags = 0;
break;
case SFXGE_TXQ_IP_CKSUM:
flags = EFX_CKSUM_IPV4;
break;
case SFXGE_TXQ_IP_TCP_UDP_CKSUM:
flags = EFX_CKSUM_IPV4 | EFX_CKSUM_TCPUDP;
break;
default:
KASSERT(0, ("Impossible TX queue"));
flags = 0;
break;
}
/* Create the common code transmit queue. */
if ((rc = efx_tx_qcreate(sc->enp, index, txq->type, esmp,
sc->txq_entries, txq->buf_base_id, flags, evq->common,
&txq->common)) != 0)
goto fail;
mtx_lock(SFXGE_TXQ_LOCK(txq));
/* Enable the transmit queue. */
efx_tx_qenable(txq->common);
txq->init_state = SFXGE_TXQ_STARTED;
mtx_unlock(SFXGE_TXQ_LOCK(txq));
return (0);
fail:
efx_sram_buf_tbl_clear(sc->enp, txq->buf_base_id,
EFX_TXQ_NBUFS(sc->txq_entries));
return (rc);
}
void
sfxge_tx_stop(struct sfxge_softc *sc)
{
const efx_nic_cfg_t *encp;
int index;
index = SFXGE_TX_SCALE(sc);
while (--index >= 0)
sfxge_tx_qstop(sc, SFXGE_TXQ_IP_TCP_UDP_CKSUM + index);
sfxge_tx_qstop(sc, SFXGE_TXQ_IP_CKSUM);
encp = efx_nic_cfg_get(sc->enp);
sfxge_tx_qstop(sc, SFXGE_TXQ_NON_CKSUM);
/* Tear down the transmit module */
efx_tx_fini(sc->enp);
}
int
sfxge_tx_start(struct sfxge_softc *sc)
{
int index;
int rc;
/* Initialize the common code transmit module. */
if ((rc = efx_tx_init(sc->enp)) != 0)
return (rc);
if ((rc = sfxge_tx_qstart(sc, SFXGE_TXQ_NON_CKSUM)) != 0)
goto fail;
if ((rc = sfxge_tx_qstart(sc, SFXGE_TXQ_IP_CKSUM)) != 0)
goto fail2;
for (index = 0; index < SFXGE_TX_SCALE(sc); index++) {
if ((rc = sfxge_tx_qstart(sc, SFXGE_TXQ_IP_TCP_UDP_CKSUM +
index)) != 0)
goto fail3;
}
return (0);
fail3:
while (--index >= 0)
sfxge_tx_qstop(sc, SFXGE_TXQ_IP_TCP_UDP_CKSUM + index);
sfxge_tx_qstop(sc, SFXGE_TXQ_IP_CKSUM);
fail2:
sfxge_tx_qstop(sc, SFXGE_TXQ_NON_CKSUM);
fail:
efx_tx_fini(sc->enp);
return (rc);
}
/**
* Destroy a transmit queue.
*/
static void
sfxge_tx_qfini(struct sfxge_softc *sc, unsigned int index)
{
struct sfxge_txq *txq;
unsigned int nmaps;
txq = sc->txq[index];
KASSERT(txq->init_state == SFXGE_TXQ_INITIALIZED,
("txq->init_state != SFXGE_TXQ_INITIALIZED"));
if (txq->type == SFXGE_TXQ_IP_TCP_UDP_CKSUM)
tso_fini(txq);
/* Free the context arrays. */
free(txq->pend_desc, M_SFXGE);
nmaps = sc->txq_entries;
while (nmaps-- != 0)
bus_dmamap_destroy(txq->packet_dma_tag, txq->stmp[nmaps].map);
free(txq->stmp, M_SFXGE);
/* Release DMA memory mapping. */
sfxge_dma_free(&txq->mem);
sc->txq[index] = NULL;
#ifdef SFXGE_HAVE_MQ
mtx_destroy(&txq->lock);
#endif
free(txq, M_SFXGE);
}
static int
sfxge_tx_qinit(struct sfxge_softc *sc, unsigned int txq_index,
enum sfxge_txq_type type, unsigned int evq_index)
{
char name[16];
struct sysctl_oid *txq_node;
struct sfxge_txq *txq;
struct sfxge_evq *evq;
#ifdef SFXGE_HAVE_MQ
struct sfxge_tx_dpl *stdp;
#endif
efsys_mem_t *esmp;
unsigned int nmaps;
int rc;
txq = malloc(sizeof(struct sfxge_txq), M_SFXGE, M_ZERO | M_WAITOK);
txq->sc = sc;
txq->entries = sc->txq_entries;
txq->ptr_mask = txq->entries - 1;
sc->txq[txq_index] = txq;
esmp = &txq->mem;
evq = sc->evq[evq_index];
/* Allocate and zero DMA space for the descriptor ring. */
if ((rc = sfxge_dma_alloc(sc, EFX_TXQ_SIZE(sc->txq_entries), esmp)) != 0)
return (rc);
(void)memset(esmp->esm_base, 0, EFX_TXQ_SIZE(sc->txq_entries));
/* Allocate buffer table entries. */
sfxge_sram_buf_tbl_alloc(sc, EFX_TXQ_NBUFS(sc->txq_entries),
&txq->buf_base_id);
/* Create a DMA tag for packet mappings. */
if (bus_dma_tag_create(sc->parent_dma_tag, 1, 0x1000,
MIN(0x3FFFFFFFFFFFUL, BUS_SPACE_MAXADDR), BUS_SPACE_MAXADDR, NULL,
NULL, 0x11000, SFXGE_TX_MAPPING_MAX_SEG, 0x1000, 0, NULL, NULL,
&txq->packet_dma_tag) != 0) {
device_printf(sc->dev, "Couldn't allocate txq DMA tag\n");
rc = ENOMEM;
goto fail;
}
/* Allocate pending descriptor array for batching writes. */
txq->pend_desc = malloc(sizeof(efx_buffer_t) * sc->txq_entries,
M_SFXGE, M_ZERO | M_WAITOK);
/* Allocate and initialise mbuf DMA mapping array. */
txq->stmp = malloc(sizeof(struct sfxge_tx_mapping) * sc->txq_entries,
M_SFXGE, M_ZERO | M_WAITOK);
for (nmaps = 0; nmaps < sc->txq_entries; nmaps++) {
rc = bus_dmamap_create(txq->packet_dma_tag, 0,
&txq->stmp[nmaps].map);
if (rc != 0)
goto fail2;
}
snprintf(name, sizeof(name), "%u", txq_index);
txq_node = SYSCTL_ADD_NODE(
device_get_sysctl_ctx(sc->dev),
SYSCTL_CHILDREN(sc->txqs_node),
OID_AUTO, name, CTLFLAG_RD, NULL, "");
if (txq_node == NULL) {
rc = ENOMEM;
goto fail_txq_node;
}
if (type == SFXGE_TXQ_IP_TCP_UDP_CKSUM &&
(rc = tso_init(txq)) != 0)
goto fail3;
#ifdef SFXGE_HAVE_MQ
if (sfxge_tx_dpl_get_max <= 0) {
log(LOG_ERR, "%s=%d must be greater than 0",
SFXGE_PARAM_TX_DPL_GET_MAX, sfxge_tx_dpl_get_max);
rc = EINVAL;
goto fail_tx_dpl_get_max;
}
if (sfxge_tx_dpl_get_non_tcp_max <= 0) {
log(LOG_ERR, "%s=%d must be greater than 0",
SFXGE_PARAM_TX_DPL_GET_NON_TCP_MAX,
sfxge_tx_dpl_get_non_tcp_max);
rc = EINVAL;
goto fail_tx_dpl_get_max;
}
if (sfxge_tx_dpl_put_max < 0) {
log(LOG_ERR, "%s=%d must be greater or equal to 0",
SFXGE_PARAM_TX_DPL_PUT_MAX, sfxge_tx_dpl_put_max);
rc = EINVAL;
goto fail_tx_dpl_put_max;
}
/* Initialize the deferred packet list. */
stdp = &txq->dpl;
stdp->std_put_max = sfxge_tx_dpl_put_max;
stdp->std_get_max = sfxge_tx_dpl_get_max;
stdp->std_get_non_tcp_max = sfxge_tx_dpl_get_non_tcp_max;
stdp->std_getp = &stdp->std_get;
mtx_init(&txq->lock, "txq", NULL, MTX_DEF);
SYSCTL_ADD_UINT(device_get_sysctl_ctx(sc->dev),
SYSCTL_CHILDREN(txq_node), OID_AUTO,
"dpl_get_count", CTLFLAG_RD | CTLFLAG_STATS,
&stdp->std_get_count, 0, "");
SYSCTL_ADD_UINT(device_get_sysctl_ctx(sc->dev),
SYSCTL_CHILDREN(txq_node), OID_AUTO,
"dpl_get_non_tcp_count", CTLFLAG_RD | CTLFLAG_STATS,
&stdp->std_get_non_tcp_count, 0, "");
SYSCTL_ADD_UINT(device_get_sysctl_ctx(sc->dev),
SYSCTL_CHILDREN(txq_node), OID_AUTO,
"dpl_get_hiwat", CTLFLAG_RD | CTLFLAG_STATS,
&stdp->std_get_hiwat, 0, "");
#endif
txq->type = type;
txq->evq_index = evq_index;
txq->txq_index = txq_index;
txq->init_state = SFXGE_TXQ_INITIALIZED;
return (0);
fail_tx_dpl_put_max:
fail_tx_dpl_get_max:
fail3:
fail_txq_node:
free(txq->pend_desc, M_SFXGE);
fail2:
while (nmaps-- != 0)
bus_dmamap_destroy(txq->packet_dma_tag, txq->stmp[nmaps].map);
free(txq->stmp, M_SFXGE);
bus_dma_tag_destroy(txq->packet_dma_tag);
fail:
sfxge_dma_free(esmp);
return (rc);
}
static const struct {
const char *name;
size_t offset;
} sfxge_tx_stats[] = {
#define SFXGE_TX_STAT(name, member) \
{ #name, offsetof(struct sfxge_txq, member) }
SFXGE_TX_STAT(tso_bursts, tso_bursts),
SFXGE_TX_STAT(tso_packets, tso_packets),
SFXGE_TX_STAT(tso_long_headers, tso_long_headers),
SFXGE_TX_STAT(tx_collapses, collapses),
SFXGE_TX_STAT(tx_drops, drops),
SFXGE_TX_STAT(tx_get_overflow, get_overflow),
SFXGE_TX_STAT(tx_get_non_tcp_overflow, get_non_tcp_overflow),
SFXGE_TX_STAT(tx_put_overflow, put_overflow),
SFXGE_TX_STAT(tx_netdown_drops, netdown_drops),
};
static int
sfxge_tx_stat_handler(SYSCTL_HANDLER_ARGS)
{
struct sfxge_softc *sc = arg1;
unsigned int id = arg2;
unsigned long sum;
unsigned int index;
/* Sum across all TX queues */
sum = 0;
for (index = 0;
index < SFXGE_TXQ_IP_TCP_UDP_CKSUM + SFXGE_TX_SCALE(sc);
index++)
sum += *(unsigned long *)((caddr_t)sc->txq[index] +
sfxge_tx_stats[id].offset);
return (SYSCTL_OUT(req, &sum, sizeof(sum)));
}
static void
sfxge_tx_stat_init(struct sfxge_softc *sc)
{
struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->dev);
struct sysctl_oid_list *stat_list;
unsigned int id;
stat_list = SYSCTL_CHILDREN(sc->stats_node);
for (id = 0;
id < sizeof(sfxge_tx_stats) / sizeof(sfxge_tx_stats[0]);
id++) {
SYSCTL_ADD_PROC(
ctx, stat_list,
OID_AUTO, sfxge_tx_stats[id].name,
CTLTYPE_ULONG|CTLFLAG_RD,
sc, id, sfxge_tx_stat_handler, "LU",
"");
}
}
void
sfxge_tx_fini(struct sfxge_softc *sc)
{
int index;
index = SFXGE_TX_SCALE(sc);
while (--index >= 0)
sfxge_tx_qfini(sc, SFXGE_TXQ_IP_TCP_UDP_CKSUM + index);
sfxge_tx_qfini(sc, SFXGE_TXQ_IP_CKSUM);
sfxge_tx_qfini(sc, SFXGE_TXQ_NON_CKSUM);
}
int
sfxge_tx_init(struct sfxge_softc *sc)
{
struct sfxge_intr *intr;
int index;
int rc;
intr = &sc->intr;
KASSERT(intr->state == SFXGE_INTR_INITIALIZED,
("intr->state != SFXGE_INTR_INITIALIZED"));
sc->txqs_node = SYSCTL_ADD_NODE(
device_get_sysctl_ctx(sc->dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)),
OID_AUTO, "txq", CTLFLAG_RD, NULL, "Tx queues");
if (sc->txqs_node == NULL) {
rc = ENOMEM;
goto fail_txq_node;
}
/* Initialize the transmit queues */
if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_NON_CKSUM,
SFXGE_TXQ_NON_CKSUM, 0)) != 0)
goto fail;
if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_IP_CKSUM,
SFXGE_TXQ_IP_CKSUM, 0)) != 0)
goto fail2;
for (index = 0; index < SFXGE_TX_SCALE(sc); index++) {
if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_IP_TCP_UDP_CKSUM + index,
SFXGE_TXQ_IP_TCP_UDP_CKSUM, index)) != 0)
goto fail3;
}
sfxge_tx_stat_init(sc);
return (0);
fail3:
sfxge_tx_qfini(sc, SFXGE_TXQ_IP_CKSUM);
while (--index >= 0)
sfxge_tx_qfini(sc, SFXGE_TXQ_IP_TCP_UDP_CKSUM + index);
fail2:
sfxge_tx_qfini(sc, SFXGE_TXQ_NON_CKSUM);
fail:
fail_txq_node:
return (rc);
}