93ce2b4ca5
Minimal changes required to integrate the SPL sources in to the ZFS repository build infrastructure and packaging. Build system and packaging: * Renamed SPL_* autoconf m4 macros to ZFS_*. * Removed redundant SPL_* autoconf m4 macros. * Updated the RPM spec files to remove SPL package dependency. * The zfs package obsoletes the spl package, and the zfs-kmod package obsoletes the spl-kmod package. * The zfs-kmod-devel* packages were updated to add compatibility symlinks under /usr/src/spl-x.y.z until all dependent packages can be updated. They will be removed in a future release. * Updated copy-builtin script for in-kernel builds. * Updated DKMS package to include the spl.ko. * Updated stale AUTHORS file to include all contributors. * Updated stale COPYRIGHT and included the SPL as an exception. * Renamed README.markdown to README.md * Renamed OPENSOLARIS.LICENSE to LICENSE. * Renamed DISCLAIMER to NOTICE. Required code changes: * Removed redundant HAVE_SPL macro. * Removed _BOOT from nvpairs since it doesn't apply for Linux. * Initial header cleanup (removal of empty headers, refactoring). * Remove SPL repository clone/build from zimport.sh. * Use of DEFINE_RATELIMIT_STATE and DEFINE_SPINLOCK removed due to build issues when forcing C99 compilation. * Replaced legacy ACCESS_ONCE with READ_ONCE. * Include needed headers for `current` and `EXPORT_SYMBOL`. Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: Olaf Faaland <faaland1@llnl.gov> Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> TEST_ZIMPORT_SKIP="yes" Closes #7556
923 lines
24 KiB
C
923 lines
24 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
* Copyright (C) 2016 Gvozden Nešković. All rights reserved.
|
|
*/
|
|
/*
|
|
* Copyright 2013 Saso Kiselkov. All rights reserved.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2016 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
/*
|
|
* Fletcher Checksums
|
|
* ------------------
|
|
*
|
|
* ZFS's 2nd and 4th order Fletcher checksums are defined by the following
|
|
* recurrence relations:
|
|
*
|
|
* a = a + f
|
|
* i i-1 i-1
|
|
*
|
|
* b = b + a
|
|
* i i-1 i
|
|
*
|
|
* c = c + b (fletcher-4 only)
|
|
* i i-1 i
|
|
*
|
|
* d = d + c (fletcher-4 only)
|
|
* i i-1 i
|
|
*
|
|
* Where
|
|
* a_0 = b_0 = c_0 = d_0 = 0
|
|
* and
|
|
* f_0 .. f_(n-1) are the input data.
|
|
*
|
|
* Using standard techniques, these translate into the following series:
|
|
*
|
|
* __n_ __n_
|
|
* \ | \ |
|
|
* a = > f b = > i * f
|
|
* n /___| n - i n /___| n - i
|
|
* i = 1 i = 1
|
|
*
|
|
*
|
|
* __n_ __n_
|
|
* \ | i*(i+1) \ | i*(i+1)*(i+2)
|
|
* c = > ------- f d = > ------------- f
|
|
* n /___| 2 n - i n /___| 6 n - i
|
|
* i = 1 i = 1
|
|
*
|
|
* For fletcher-2, the f_is are 64-bit, and [ab]_i are 64-bit accumulators.
|
|
* Since the additions are done mod (2^64), errors in the high bits may not
|
|
* be noticed. For this reason, fletcher-2 is deprecated.
|
|
*
|
|
* For fletcher-4, the f_is are 32-bit, and [abcd]_i are 64-bit accumulators.
|
|
* A conservative estimate of how big the buffer can get before we overflow
|
|
* can be estimated using f_i = 0xffffffff for all i:
|
|
*
|
|
* % bc
|
|
* f=2^32-1;d=0; for (i = 1; d<2^64; i++) { d += f*i*(i+1)*(i+2)/6 }; (i-1)*4
|
|
* 2264
|
|
* quit
|
|
* %
|
|
*
|
|
* So blocks of up to 2k will not overflow. Our largest block size is
|
|
* 128k, which has 32k 4-byte words, so we can compute the largest possible
|
|
* accumulators, then divide by 2^64 to figure the max amount of overflow:
|
|
*
|
|
* % bc
|
|
* a=b=c=d=0; f=2^32-1; for (i=1; i<=32*1024; i++) { a+=f; b+=a; c+=b; d+=c }
|
|
* a/2^64;b/2^64;c/2^64;d/2^64
|
|
* 0
|
|
* 0
|
|
* 1365
|
|
* 11186858
|
|
* quit
|
|
* %
|
|
*
|
|
* So a and b cannot overflow. To make sure each bit of input has some
|
|
* effect on the contents of c and d, we can look at what the factors of
|
|
* the coefficients in the equations for c_n and d_n are. The number of 2s
|
|
* in the factors determines the lowest set bit in the multiplier. Running
|
|
* through the cases for n*(n+1)/2 reveals that the highest power of 2 is
|
|
* 2^14, and for n*(n+1)*(n+2)/6 it is 2^15. So while some data may overflow
|
|
* the 64-bit accumulators, every bit of every f_i effects every accumulator,
|
|
* even for 128k blocks.
|
|
*
|
|
* If we wanted to make a stronger version of fletcher4 (fletcher4c?),
|
|
* we could do our calculations mod (2^32 - 1) by adding in the carries
|
|
* periodically, and store the number of carries in the top 32-bits.
|
|
*
|
|
* --------------------
|
|
* Checksum Performance
|
|
* --------------------
|
|
*
|
|
* There are two interesting components to checksum performance: cached and
|
|
* uncached performance. With cached data, fletcher-2 is about four times
|
|
* faster than fletcher-4. With uncached data, the performance difference is
|
|
* negligible, since the cost of a cache fill dominates the processing time.
|
|
* Even though fletcher-4 is slower than fletcher-2, it is still a pretty
|
|
* efficient pass over the data.
|
|
*
|
|
* In normal operation, the data which is being checksummed is in a buffer
|
|
* which has been filled either by:
|
|
*
|
|
* 1. a compression step, which will be mostly cached, or
|
|
* 2. a bcopy() or copyin(), which will be uncached (because the
|
|
* copy is cache-bypassing).
|
|
*
|
|
* For both cached and uncached data, both fletcher checksums are much faster
|
|
* than sha-256, and slower than 'off', which doesn't touch the data at all.
|
|
*/
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/sysmacros.h>
|
|
#include <sys/byteorder.h>
|
|
#include <sys/spa.h>
|
|
#include <sys/zio_checksum.h>
|
|
#include <sys/zfs_context.h>
|
|
#include <zfs_fletcher.h>
|
|
|
|
#define FLETCHER_MIN_SIMD_SIZE 64
|
|
|
|
static void fletcher_4_scalar_init(fletcher_4_ctx_t *ctx);
|
|
static void fletcher_4_scalar_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp);
|
|
static void fletcher_4_scalar_native(fletcher_4_ctx_t *ctx,
|
|
const void *buf, uint64_t size);
|
|
static void fletcher_4_scalar_byteswap(fletcher_4_ctx_t *ctx,
|
|
const void *buf, uint64_t size);
|
|
static boolean_t fletcher_4_scalar_valid(void);
|
|
|
|
static const fletcher_4_ops_t fletcher_4_scalar_ops = {
|
|
.init_native = fletcher_4_scalar_init,
|
|
.fini_native = fletcher_4_scalar_fini,
|
|
.compute_native = fletcher_4_scalar_native,
|
|
.init_byteswap = fletcher_4_scalar_init,
|
|
.fini_byteswap = fletcher_4_scalar_fini,
|
|
.compute_byteswap = fletcher_4_scalar_byteswap,
|
|
.valid = fletcher_4_scalar_valid,
|
|
.name = "scalar"
|
|
};
|
|
|
|
static fletcher_4_ops_t fletcher_4_fastest_impl = {
|
|
.name = "fastest",
|
|
.valid = fletcher_4_scalar_valid
|
|
};
|
|
|
|
static const fletcher_4_ops_t *fletcher_4_impls[] = {
|
|
&fletcher_4_scalar_ops,
|
|
&fletcher_4_superscalar_ops,
|
|
&fletcher_4_superscalar4_ops,
|
|
#if defined(HAVE_SSE2)
|
|
&fletcher_4_sse2_ops,
|
|
#endif
|
|
#if defined(HAVE_SSE2) && defined(HAVE_SSSE3)
|
|
&fletcher_4_ssse3_ops,
|
|
#endif
|
|
#if defined(HAVE_AVX) && defined(HAVE_AVX2)
|
|
&fletcher_4_avx2_ops,
|
|
#endif
|
|
#if defined(__x86_64) && defined(HAVE_AVX512F)
|
|
&fletcher_4_avx512f_ops,
|
|
#endif
|
|
#if defined(__aarch64__)
|
|
&fletcher_4_aarch64_neon_ops,
|
|
#endif
|
|
};
|
|
|
|
/* Hold all supported implementations */
|
|
static uint32_t fletcher_4_supp_impls_cnt = 0;
|
|
static fletcher_4_ops_t *fletcher_4_supp_impls[ARRAY_SIZE(fletcher_4_impls)];
|
|
|
|
/* Select fletcher4 implementation */
|
|
#define IMPL_FASTEST (UINT32_MAX)
|
|
#define IMPL_CYCLE (UINT32_MAX - 1)
|
|
#define IMPL_SCALAR (0)
|
|
|
|
static uint32_t fletcher_4_impl_chosen = IMPL_FASTEST;
|
|
|
|
#define IMPL_READ(i) (*(volatile uint32_t *) &(i))
|
|
|
|
static struct fletcher_4_impl_selector {
|
|
const char *fis_name;
|
|
uint32_t fis_sel;
|
|
} fletcher_4_impl_selectors[] = {
|
|
#if !defined(_KERNEL)
|
|
{ "cycle", IMPL_CYCLE },
|
|
#endif
|
|
{ "fastest", IMPL_FASTEST },
|
|
{ "scalar", IMPL_SCALAR }
|
|
};
|
|
|
|
#if defined(_KERNEL)
|
|
static kstat_t *fletcher_4_kstat;
|
|
#endif
|
|
|
|
static struct fletcher_4_kstat {
|
|
uint64_t native;
|
|
uint64_t byteswap;
|
|
} fletcher_4_stat_data[ARRAY_SIZE(fletcher_4_impls) + 1];
|
|
|
|
/* Indicate that benchmark has been completed */
|
|
static boolean_t fletcher_4_initialized = B_FALSE;
|
|
|
|
/*ARGSUSED*/
|
|
void
|
|
fletcher_init(zio_cksum_t *zcp)
|
|
{
|
|
ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
|
|
}
|
|
|
|
int
|
|
fletcher_2_incremental_native(void *buf, size_t size, void *data)
|
|
{
|
|
zio_cksum_t *zcp = data;
|
|
|
|
const uint64_t *ip = buf;
|
|
const uint64_t *ipend = ip + (size / sizeof (uint64_t));
|
|
uint64_t a0, b0, a1, b1;
|
|
|
|
a0 = zcp->zc_word[0];
|
|
a1 = zcp->zc_word[1];
|
|
b0 = zcp->zc_word[2];
|
|
b1 = zcp->zc_word[3];
|
|
|
|
for (; ip < ipend; ip += 2) {
|
|
a0 += ip[0];
|
|
a1 += ip[1];
|
|
b0 += a0;
|
|
b1 += a1;
|
|
}
|
|
|
|
ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1);
|
|
return (0);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
void
|
|
fletcher_2_native(const void *buf, uint64_t size,
|
|
const void *ctx_template, zio_cksum_t *zcp)
|
|
{
|
|
fletcher_init(zcp);
|
|
(void) fletcher_2_incremental_native((void *) buf, size, zcp);
|
|
}
|
|
|
|
int
|
|
fletcher_2_incremental_byteswap(void *buf, size_t size, void *data)
|
|
{
|
|
zio_cksum_t *zcp = data;
|
|
|
|
const uint64_t *ip = buf;
|
|
const uint64_t *ipend = ip + (size / sizeof (uint64_t));
|
|
uint64_t a0, b0, a1, b1;
|
|
|
|
a0 = zcp->zc_word[0];
|
|
a1 = zcp->zc_word[1];
|
|
b0 = zcp->zc_word[2];
|
|
b1 = zcp->zc_word[3];
|
|
|
|
for (; ip < ipend; ip += 2) {
|
|
a0 += BSWAP_64(ip[0]);
|
|
a1 += BSWAP_64(ip[1]);
|
|
b0 += a0;
|
|
b1 += a1;
|
|
}
|
|
|
|
ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1);
|
|
return (0);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
void
|
|
fletcher_2_byteswap(const void *buf, uint64_t size,
|
|
const void *ctx_template, zio_cksum_t *zcp)
|
|
{
|
|
fletcher_init(zcp);
|
|
(void) fletcher_2_incremental_byteswap((void *) buf, size, zcp);
|
|
}
|
|
|
|
static void
|
|
fletcher_4_scalar_init(fletcher_4_ctx_t *ctx)
|
|
{
|
|
ZIO_SET_CHECKSUM(&ctx->scalar, 0, 0, 0, 0);
|
|
}
|
|
|
|
static void
|
|
fletcher_4_scalar_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp)
|
|
{
|
|
memcpy(zcp, &ctx->scalar, sizeof (zio_cksum_t));
|
|
}
|
|
|
|
static void
|
|
fletcher_4_scalar_native(fletcher_4_ctx_t *ctx, const void *buf,
|
|
uint64_t size)
|
|
{
|
|
const uint32_t *ip = buf;
|
|
const uint32_t *ipend = ip + (size / sizeof (uint32_t));
|
|
uint64_t a, b, c, d;
|
|
|
|
a = ctx->scalar.zc_word[0];
|
|
b = ctx->scalar.zc_word[1];
|
|
c = ctx->scalar.zc_word[2];
|
|
d = ctx->scalar.zc_word[3];
|
|
|
|
for (; ip < ipend; ip++) {
|
|
a += ip[0];
|
|
b += a;
|
|
c += b;
|
|
d += c;
|
|
}
|
|
|
|
ZIO_SET_CHECKSUM(&ctx->scalar, a, b, c, d);
|
|
}
|
|
|
|
static void
|
|
fletcher_4_scalar_byteswap(fletcher_4_ctx_t *ctx, const void *buf,
|
|
uint64_t size)
|
|
{
|
|
const uint32_t *ip = buf;
|
|
const uint32_t *ipend = ip + (size / sizeof (uint32_t));
|
|
uint64_t a, b, c, d;
|
|
|
|
a = ctx->scalar.zc_word[0];
|
|
b = ctx->scalar.zc_word[1];
|
|
c = ctx->scalar.zc_word[2];
|
|
d = ctx->scalar.zc_word[3];
|
|
|
|
for (; ip < ipend; ip++) {
|
|
a += BSWAP_32(ip[0]);
|
|
b += a;
|
|
c += b;
|
|
d += c;
|
|
}
|
|
|
|
ZIO_SET_CHECKSUM(&ctx->scalar, a, b, c, d);
|
|
}
|
|
|
|
static boolean_t
|
|
fletcher_4_scalar_valid(void)
|
|
{
|
|
return (B_TRUE);
|
|
}
|
|
|
|
int
|
|
fletcher_4_impl_set(const char *val)
|
|
{
|
|
int err = -EINVAL;
|
|
uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
|
|
size_t i, val_len;
|
|
|
|
val_len = strlen(val);
|
|
while ((val_len > 0) && !!isspace(val[val_len-1])) /* trim '\n' */
|
|
val_len--;
|
|
|
|
/* check mandatory implementations */
|
|
for (i = 0; i < ARRAY_SIZE(fletcher_4_impl_selectors); i++) {
|
|
const char *name = fletcher_4_impl_selectors[i].fis_name;
|
|
|
|
if (val_len == strlen(name) &&
|
|
strncmp(val, name, val_len) == 0) {
|
|
impl = fletcher_4_impl_selectors[i].fis_sel;
|
|
err = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (err != 0 && fletcher_4_initialized) {
|
|
/* check all supported implementations */
|
|
for (i = 0; i < fletcher_4_supp_impls_cnt; i++) {
|
|
const char *name = fletcher_4_supp_impls[i]->name;
|
|
|
|
if (val_len == strlen(name) &&
|
|
strncmp(val, name, val_len) == 0) {
|
|
impl = i;
|
|
err = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (err == 0) {
|
|
atomic_swap_32(&fletcher_4_impl_chosen, impl);
|
|
membar_producer();
|
|
}
|
|
|
|
return (err);
|
|
}
|
|
|
|
static inline const fletcher_4_ops_t *
|
|
fletcher_4_impl_get(void)
|
|
{
|
|
fletcher_4_ops_t *ops = NULL;
|
|
const uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
|
|
|
|
switch (impl) {
|
|
case IMPL_FASTEST:
|
|
ASSERT(fletcher_4_initialized);
|
|
ops = &fletcher_4_fastest_impl;
|
|
break;
|
|
#if !defined(_KERNEL)
|
|
case IMPL_CYCLE: {
|
|
ASSERT(fletcher_4_initialized);
|
|
ASSERT3U(fletcher_4_supp_impls_cnt, >, 0);
|
|
|
|
static uint32_t cycle_count = 0;
|
|
uint32_t idx = (++cycle_count) % fletcher_4_supp_impls_cnt;
|
|
ops = fletcher_4_supp_impls[idx];
|
|
}
|
|
break;
|
|
#endif
|
|
default:
|
|
ASSERT3U(fletcher_4_supp_impls_cnt, >, 0);
|
|
ASSERT3U(impl, <, fletcher_4_supp_impls_cnt);
|
|
|
|
ops = fletcher_4_supp_impls[impl];
|
|
break;
|
|
}
|
|
|
|
ASSERT3P(ops, !=, NULL);
|
|
|
|
return (ops);
|
|
}
|
|
|
|
static inline void
|
|
fletcher_4_native_impl(const void *buf, uint64_t size, zio_cksum_t *zcp)
|
|
{
|
|
fletcher_4_ctx_t ctx;
|
|
const fletcher_4_ops_t *ops = fletcher_4_impl_get();
|
|
|
|
ops->init_native(&ctx);
|
|
ops->compute_native(&ctx, buf, size);
|
|
ops->fini_native(&ctx, zcp);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
void
|
|
fletcher_4_native(const void *buf, uint64_t size,
|
|
const void *ctx_template, zio_cksum_t *zcp)
|
|
{
|
|
const uint64_t p2size = P2ALIGN(size, FLETCHER_MIN_SIMD_SIZE);
|
|
|
|
ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t)));
|
|
|
|
if (size == 0 || p2size == 0) {
|
|
ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
|
|
|
|
if (size > 0)
|
|
fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp,
|
|
buf, size);
|
|
} else {
|
|
fletcher_4_native_impl(buf, p2size, zcp);
|
|
|
|
if (p2size < size)
|
|
fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp,
|
|
(char *)buf + p2size, size - p2size);
|
|
}
|
|
}
|
|
|
|
void
|
|
fletcher_4_native_varsize(const void *buf, uint64_t size, zio_cksum_t *zcp)
|
|
{
|
|
ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
|
|
fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp, buf, size);
|
|
}
|
|
|
|
static inline void
|
|
fletcher_4_byteswap_impl(const void *buf, uint64_t size, zio_cksum_t *zcp)
|
|
{
|
|
fletcher_4_ctx_t ctx;
|
|
const fletcher_4_ops_t *ops = fletcher_4_impl_get();
|
|
|
|
ops->init_byteswap(&ctx);
|
|
ops->compute_byteswap(&ctx, buf, size);
|
|
ops->fini_byteswap(&ctx, zcp);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
void
|
|
fletcher_4_byteswap(const void *buf, uint64_t size,
|
|
const void *ctx_template, zio_cksum_t *zcp)
|
|
{
|
|
const uint64_t p2size = P2ALIGN(size, FLETCHER_MIN_SIMD_SIZE);
|
|
|
|
ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t)));
|
|
|
|
if (size == 0 || p2size == 0) {
|
|
ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
|
|
|
|
if (size > 0)
|
|
fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp,
|
|
buf, size);
|
|
} else {
|
|
fletcher_4_byteswap_impl(buf, p2size, zcp);
|
|
|
|
if (p2size < size)
|
|
fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp,
|
|
(char *)buf + p2size, size - p2size);
|
|
}
|
|
}
|
|
|
|
/* Incremental Fletcher 4 */
|
|
|
|
#define ZFS_FLETCHER_4_INC_MAX_SIZE (8ULL << 20)
|
|
|
|
static inline void
|
|
fletcher_4_incremental_combine(zio_cksum_t *zcp, const uint64_t size,
|
|
const zio_cksum_t *nzcp)
|
|
{
|
|
const uint64_t c1 = size / sizeof (uint32_t);
|
|
const uint64_t c2 = c1 * (c1 + 1) / 2;
|
|
const uint64_t c3 = c2 * (c1 + 2) / 3;
|
|
|
|
/*
|
|
* Value of 'c3' overflows on buffer sizes close to 16MiB. For that
|
|
* reason we split incremental fletcher4 computation of large buffers
|
|
* to steps of (ZFS_FLETCHER_4_INC_MAX_SIZE) size.
|
|
*/
|
|
ASSERT3U(size, <=, ZFS_FLETCHER_4_INC_MAX_SIZE);
|
|
|
|
zcp->zc_word[3] += nzcp->zc_word[3] + c1 * zcp->zc_word[2] +
|
|
c2 * zcp->zc_word[1] + c3 * zcp->zc_word[0];
|
|
zcp->zc_word[2] += nzcp->zc_word[2] + c1 * zcp->zc_word[1] +
|
|
c2 * zcp->zc_word[0];
|
|
zcp->zc_word[1] += nzcp->zc_word[1] + c1 * zcp->zc_word[0];
|
|
zcp->zc_word[0] += nzcp->zc_word[0];
|
|
}
|
|
|
|
static inline void
|
|
fletcher_4_incremental_impl(boolean_t native, const void *buf, uint64_t size,
|
|
zio_cksum_t *zcp)
|
|
{
|
|
while (size > 0) {
|
|
zio_cksum_t nzc;
|
|
uint64_t len = MIN(size, ZFS_FLETCHER_4_INC_MAX_SIZE);
|
|
|
|
if (native)
|
|
fletcher_4_native(buf, len, NULL, &nzc);
|
|
else
|
|
fletcher_4_byteswap(buf, len, NULL, &nzc);
|
|
|
|
fletcher_4_incremental_combine(zcp, len, &nzc);
|
|
|
|
size -= len;
|
|
buf += len;
|
|
}
|
|
}
|
|
|
|
int
|
|
fletcher_4_incremental_native(void *buf, size_t size, void *data)
|
|
{
|
|
zio_cksum_t *zcp = data;
|
|
/* Use scalar impl to directly update cksum of small blocks */
|
|
if (size < SPA_MINBLOCKSIZE)
|
|
fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp, buf, size);
|
|
else
|
|
fletcher_4_incremental_impl(B_TRUE, buf, size, zcp);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
fletcher_4_incremental_byteswap(void *buf, size_t size, void *data)
|
|
{
|
|
zio_cksum_t *zcp = data;
|
|
/* Use scalar impl to directly update cksum of small blocks */
|
|
if (size < SPA_MINBLOCKSIZE)
|
|
fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp, buf, size);
|
|
else
|
|
fletcher_4_incremental_impl(B_FALSE, buf, size, zcp);
|
|
return (0);
|
|
}
|
|
|
|
#if defined(_KERNEL)
|
|
/* Fletcher 4 kstats */
|
|
|
|
static int
|
|
fletcher_4_kstat_headers(char *buf, size_t size)
|
|
{
|
|
ssize_t off = 0;
|
|
|
|
off += snprintf(buf + off, size, "%-17s", "implementation");
|
|
off += snprintf(buf + off, size - off, "%-15s", "native");
|
|
(void) snprintf(buf + off, size - off, "%-15s\n", "byteswap");
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
fletcher_4_kstat_data(char *buf, size_t size, void *data)
|
|
{
|
|
struct fletcher_4_kstat *fastest_stat =
|
|
&fletcher_4_stat_data[fletcher_4_supp_impls_cnt];
|
|
struct fletcher_4_kstat *curr_stat = (struct fletcher_4_kstat *)data;
|
|
ssize_t off = 0;
|
|
|
|
if (curr_stat == fastest_stat) {
|
|
off += snprintf(buf + off, size - off, "%-17s", "fastest");
|
|
off += snprintf(buf + off, size - off, "%-15s",
|
|
fletcher_4_supp_impls[fastest_stat->native]->name);
|
|
off += snprintf(buf + off, size - off, "%-15s\n",
|
|
fletcher_4_supp_impls[fastest_stat->byteswap]->name);
|
|
} else {
|
|
ptrdiff_t id = curr_stat - fletcher_4_stat_data;
|
|
|
|
off += snprintf(buf + off, size - off, "%-17s",
|
|
fletcher_4_supp_impls[id]->name);
|
|
off += snprintf(buf + off, size - off, "%-15llu",
|
|
(u_longlong_t)curr_stat->native);
|
|
off += snprintf(buf + off, size - off, "%-15llu\n",
|
|
(u_longlong_t)curr_stat->byteswap);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void *
|
|
fletcher_4_kstat_addr(kstat_t *ksp, loff_t n)
|
|
{
|
|
if (n <= fletcher_4_supp_impls_cnt)
|
|
ksp->ks_private = (void *) (fletcher_4_stat_data + n);
|
|
else
|
|
ksp->ks_private = NULL;
|
|
|
|
return (ksp->ks_private);
|
|
}
|
|
#endif
|
|
|
|
#define FLETCHER_4_FASTEST_FN_COPY(type, src) \
|
|
{ \
|
|
fletcher_4_fastest_impl.init_ ## type = src->init_ ## type; \
|
|
fletcher_4_fastest_impl.fini_ ## type = src->fini_ ## type; \
|
|
fletcher_4_fastest_impl.compute_ ## type = src->compute_ ## type; \
|
|
}
|
|
|
|
#define FLETCHER_4_BENCH_NS (MSEC2NSEC(50)) /* 50ms */
|
|
|
|
typedef void fletcher_checksum_func_t(const void *, uint64_t, const void *,
|
|
zio_cksum_t *);
|
|
|
|
static void
|
|
fletcher_4_benchmark_impl(boolean_t native, char *data, uint64_t data_size)
|
|
{
|
|
|
|
struct fletcher_4_kstat *fastest_stat =
|
|
&fletcher_4_stat_data[fletcher_4_supp_impls_cnt];
|
|
hrtime_t start;
|
|
uint64_t run_bw, run_time_ns, best_run = 0;
|
|
zio_cksum_t zc;
|
|
uint32_t i, l, sel_save = IMPL_READ(fletcher_4_impl_chosen);
|
|
|
|
|
|
fletcher_checksum_func_t *fletcher_4_test = native ?
|
|
fletcher_4_native : fletcher_4_byteswap;
|
|
|
|
for (i = 0; i < fletcher_4_supp_impls_cnt; i++) {
|
|
struct fletcher_4_kstat *stat = &fletcher_4_stat_data[i];
|
|
uint64_t run_count = 0;
|
|
|
|
/* temporary set an implementation */
|
|
fletcher_4_impl_chosen = i;
|
|
|
|
kpreempt_disable();
|
|
start = gethrtime();
|
|
do {
|
|
for (l = 0; l < 32; l++, run_count++)
|
|
fletcher_4_test(data, data_size, NULL, &zc);
|
|
|
|
run_time_ns = gethrtime() - start;
|
|
} while (run_time_ns < FLETCHER_4_BENCH_NS);
|
|
kpreempt_enable();
|
|
|
|
run_bw = data_size * run_count * NANOSEC;
|
|
run_bw /= run_time_ns; /* B/s */
|
|
|
|
if (native)
|
|
stat->native = run_bw;
|
|
else
|
|
stat->byteswap = run_bw;
|
|
|
|
if (run_bw > best_run) {
|
|
best_run = run_bw;
|
|
|
|
if (native) {
|
|
fastest_stat->native = i;
|
|
FLETCHER_4_FASTEST_FN_COPY(native,
|
|
fletcher_4_supp_impls[i]);
|
|
} else {
|
|
fastest_stat->byteswap = i;
|
|
FLETCHER_4_FASTEST_FN_COPY(byteswap,
|
|
fletcher_4_supp_impls[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* restore original selection */
|
|
atomic_swap_32(&fletcher_4_impl_chosen, sel_save);
|
|
}
|
|
|
|
void
|
|
fletcher_4_init(void)
|
|
{
|
|
static const size_t data_size = 1 << SPA_OLD_MAXBLOCKSHIFT; /* 128kiB */
|
|
fletcher_4_ops_t *curr_impl;
|
|
char *databuf;
|
|
int i, c;
|
|
|
|
/* move supported impl into fletcher_4_supp_impls */
|
|
for (i = 0, c = 0; i < ARRAY_SIZE(fletcher_4_impls); i++) {
|
|
curr_impl = (fletcher_4_ops_t *)fletcher_4_impls[i];
|
|
|
|
if (curr_impl->valid && curr_impl->valid())
|
|
fletcher_4_supp_impls[c++] = curr_impl;
|
|
}
|
|
membar_producer(); /* complete fletcher_4_supp_impls[] init */
|
|
fletcher_4_supp_impls_cnt = c; /* number of supported impl */
|
|
|
|
#if !defined(_KERNEL)
|
|
/* Skip benchmarking and use last implementation as fastest */
|
|
memcpy(&fletcher_4_fastest_impl,
|
|
fletcher_4_supp_impls[fletcher_4_supp_impls_cnt-1],
|
|
sizeof (fletcher_4_fastest_impl));
|
|
fletcher_4_fastest_impl.name = "fastest";
|
|
membar_producer();
|
|
|
|
fletcher_4_initialized = B_TRUE;
|
|
return;
|
|
#endif
|
|
/* Benchmark all supported implementations */
|
|
databuf = vmem_alloc(data_size, KM_SLEEP);
|
|
for (i = 0; i < data_size / sizeof (uint64_t); i++)
|
|
((uint64_t *)databuf)[i] = (uintptr_t)(databuf+i); /* warm-up */
|
|
|
|
fletcher_4_benchmark_impl(B_FALSE, databuf, data_size);
|
|
fletcher_4_benchmark_impl(B_TRUE, databuf, data_size);
|
|
|
|
vmem_free(databuf, data_size);
|
|
|
|
#if defined(_KERNEL)
|
|
/* install kstats for all implementations */
|
|
fletcher_4_kstat = kstat_create("zfs", 0, "fletcher_4_bench", "misc",
|
|
KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VIRTUAL);
|
|
if (fletcher_4_kstat != NULL) {
|
|
fletcher_4_kstat->ks_data = NULL;
|
|
fletcher_4_kstat->ks_ndata = UINT32_MAX;
|
|
kstat_set_raw_ops(fletcher_4_kstat,
|
|
fletcher_4_kstat_headers,
|
|
fletcher_4_kstat_data,
|
|
fletcher_4_kstat_addr);
|
|
kstat_install(fletcher_4_kstat);
|
|
}
|
|
#endif
|
|
|
|
/* Finish initialization */
|
|
fletcher_4_initialized = B_TRUE;
|
|
}
|
|
|
|
void
|
|
fletcher_4_fini(void)
|
|
{
|
|
#if defined(_KERNEL)
|
|
if (fletcher_4_kstat != NULL) {
|
|
kstat_delete(fletcher_4_kstat);
|
|
fletcher_4_kstat = NULL;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* ABD adapters */
|
|
|
|
static void
|
|
abd_fletcher_4_init(zio_abd_checksum_data_t *cdp)
|
|
{
|
|
const fletcher_4_ops_t *ops = fletcher_4_impl_get();
|
|
cdp->acd_private = (void *) ops;
|
|
|
|
if (cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE)
|
|
ops->init_native(cdp->acd_ctx);
|
|
else
|
|
ops->init_byteswap(cdp->acd_ctx);
|
|
}
|
|
|
|
static void
|
|
abd_fletcher_4_fini(zio_abd_checksum_data_t *cdp)
|
|
{
|
|
fletcher_4_ops_t *ops = (fletcher_4_ops_t *)cdp->acd_private;
|
|
|
|
ASSERT(ops);
|
|
|
|
if (cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE)
|
|
ops->fini_native(cdp->acd_ctx, cdp->acd_zcp);
|
|
else
|
|
ops->fini_byteswap(cdp->acd_ctx, cdp->acd_zcp);
|
|
}
|
|
|
|
static void
|
|
abd_fletcher_4_simd2scalar(boolean_t native, void *data, size_t size,
|
|
zio_abd_checksum_data_t *cdp)
|
|
{
|
|
zio_cksum_t *zcp = cdp->acd_zcp;
|
|
|
|
ASSERT3U(size, <, FLETCHER_MIN_SIMD_SIZE);
|
|
|
|
abd_fletcher_4_fini(cdp);
|
|
cdp->acd_private = (void *)&fletcher_4_scalar_ops;
|
|
|
|
if (native)
|
|
fletcher_4_incremental_native(data, size, zcp);
|
|
else
|
|
fletcher_4_incremental_byteswap(data, size, zcp);
|
|
}
|
|
|
|
static int
|
|
abd_fletcher_4_iter(void *data, size_t size, void *private)
|
|
{
|
|
zio_abd_checksum_data_t *cdp = (zio_abd_checksum_data_t *)private;
|
|
fletcher_4_ctx_t *ctx = cdp->acd_ctx;
|
|
fletcher_4_ops_t *ops = (fletcher_4_ops_t *)cdp->acd_private;
|
|
boolean_t native = cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE;
|
|
uint64_t asize = P2ALIGN(size, FLETCHER_MIN_SIMD_SIZE);
|
|
|
|
ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t)));
|
|
|
|
if (asize > 0) {
|
|
if (native)
|
|
ops->compute_native(ctx, data, asize);
|
|
else
|
|
ops->compute_byteswap(ctx, data, asize);
|
|
|
|
size -= asize;
|
|
data = (char *)data + asize;
|
|
}
|
|
|
|
if (size > 0) {
|
|
ASSERT3U(size, <, FLETCHER_MIN_SIMD_SIZE);
|
|
/* At this point we have to switch to scalar impl */
|
|
abd_fletcher_4_simd2scalar(native, data, size, cdp);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
zio_abd_checksum_func_t fletcher_4_abd_ops = {
|
|
.acf_init = abd_fletcher_4_init,
|
|
.acf_fini = abd_fletcher_4_fini,
|
|
.acf_iter = abd_fletcher_4_iter
|
|
};
|
|
|
|
|
|
#if defined(_KERNEL)
|
|
#include <linux/mod_compat.h>
|
|
|
|
static int
|
|
fletcher_4_param_get(char *buffer, zfs_kernel_param_t *unused)
|
|
{
|
|
const uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
|
|
char *fmt;
|
|
int i, cnt = 0;
|
|
|
|
/* list fastest */
|
|
fmt = (impl == IMPL_FASTEST) ? "[%s] " : "%s ";
|
|
cnt += sprintf(buffer + cnt, fmt, "fastest");
|
|
|
|
/* list all supported implementations */
|
|
for (i = 0; i < fletcher_4_supp_impls_cnt; i++) {
|
|
fmt = (i == impl) ? "[%s] " : "%s ";
|
|
cnt += sprintf(buffer + cnt, fmt,
|
|
fletcher_4_supp_impls[i]->name);
|
|
}
|
|
|
|
return (cnt);
|
|
}
|
|
|
|
static int
|
|
fletcher_4_param_set(const char *val, zfs_kernel_param_t *unused)
|
|
{
|
|
return (fletcher_4_impl_set(val));
|
|
}
|
|
|
|
/*
|
|
* Choose a fletcher 4 implementation in ZFS.
|
|
* Users can choose "cycle" to exercise all implementations, but this is
|
|
* for testing purpose therefore it can only be set in user space.
|
|
*/
|
|
module_param_call(zfs_fletcher_4_impl,
|
|
fletcher_4_param_set, fletcher_4_param_get, NULL, 0644);
|
|
MODULE_PARM_DESC(zfs_fletcher_4_impl, "Select fletcher 4 implementation.");
|
|
|
|
EXPORT_SYMBOL(fletcher_init);
|
|
EXPORT_SYMBOL(fletcher_2_incremental_native);
|
|
EXPORT_SYMBOL(fletcher_2_incremental_byteswap);
|
|
EXPORT_SYMBOL(fletcher_4_init);
|
|
EXPORT_SYMBOL(fletcher_4_fini);
|
|
EXPORT_SYMBOL(fletcher_2_native);
|
|
EXPORT_SYMBOL(fletcher_2_byteswap);
|
|
EXPORT_SYMBOL(fletcher_4_native);
|
|
EXPORT_SYMBOL(fletcher_4_native_varsize);
|
|
EXPORT_SYMBOL(fletcher_4_byteswap);
|
|
EXPORT_SYMBOL(fletcher_4_incremental_native);
|
|
EXPORT_SYMBOL(fletcher_4_incremental_byteswap);
|
|
EXPORT_SYMBOL(fletcher_4_abd_ops);
|
|
#endif
|