freebsd-dev/lib/libvmmapi/vmmapi.c
Robert Wing 3efc45f34e libvmm: constify vm_get_name()
Allows callers of vm_get_name() to retrieve the vm name without having
to allocate a buffer.

While in the vicinity, do minor cleanup in vm_snapshot_basic_metadata().

Reviewed by:	jhb
Differential Revision:	https://reviews.freebsd.org/D34290
2022-03-17 21:38:21 -08:00

1732 lines
37 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2011 NetApp, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/sysctl.h>
#include <sys/ioctl.h>
#include <sys/linker.h>
#include <sys/mman.h>
#include <sys/module.h>
#include <sys/_iovec.h>
#include <sys/cpuset.h>
#include <x86/segments.h>
#include <machine/specialreg.h>
#include <errno.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include <libutil.h>
#include <vm/vm.h>
#include <machine/vmm.h>
#include <machine/vmm_dev.h>
#include <machine/vmm_snapshot.h>
#include "vmmapi.h"
#define MB (1024 * 1024UL)
#define GB (1024 * 1024 * 1024UL)
/*
* Size of the guard region before and after the virtual address space
* mapping the guest physical memory. This must be a multiple of the
* superpage size for performance reasons.
*/
#define VM_MMAP_GUARD_SIZE (4 * MB)
#define PROT_RW (PROT_READ | PROT_WRITE)
#define PROT_ALL (PROT_READ | PROT_WRITE | PROT_EXEC)
struct vmctx {
int fd;
uint32_t lowmem_limit;
int memflags;
size_t lowmem;
size_t highmem;
char *baseaddr;
char *name;
};
#define CREATE(x) sysctlbyname("hw.vmm.create", NULL, NULL, (x), strlen((x)))
#define DESTROY(x) sysctlbyname("hw.vmm.destroy", NULL, NULL, (x), strlen((x)))
static int
vm_device_open(const char *name)
{
int fd, len;
char *vmfile;
len = strlen("/dev/vmm/") + strlen(name) + 1;
vmfile = malloc(len);
assert(vmfile != NULL);
snprintf(vmfile, len, "/dev/vmm/%s", name);
/* Open the device file */
fd = open(vmfile, O_RDWR, 0);
free(vmfile);
return (fd);
}
int
vm_create(const char *name)
{
/* Try to load vmm(4) module before creating a guest. */
if (modfind("vmm") < 0)
kldload("vmm");
return (CREATE(name));
}
struct vmctx *
vm_open(const char *name)
{
struct vmctx *vm;
int saved_errno;
vm = malloc(sizeof(struct vmctx) + strlen(name) + 1);
assert(vm != NULL);
vm->fd = -1;
vm->memflags = 0;
vm->lowmem_limit = 3 * GB;
vm->name = (char *)(vm + 1);
strcpy(vm->name, name);
if ((vm->fd = vm_device_open(vm->name)) < 0)
goto err;
return (vm);
err:
saved_errno = errno;
free(vm);
errno = saved_errno;
return (NULL);
}
void
vm_destroy(struct vmctx *vm)
{
assert(vm != NULL);
if (vm->fd >= 0)
close(vm->fd);
DESTROY(vm->name);
free(vm);
}
int
vm_parse_memsize(const char *opt, size_t *ret_memsize)
{
char *endptr;
size_t optval;
int error;
optval = strtoul(opt, &endptr, 0);
if (*opt != '\0' && *endptr == '\0') {
/*
* For the sake of backward compatibility if the memory size
* specified on the command line is less than a megabyte then
* it is interpreted as being in units of MB.
*/
if (optval < MB)
optval *= MB;
*ret_memsize = optval;
error = 0;
} else
error = expand_number(opt, ret_memsize);
return (error);
}
uint32_t
vm_get_lowmem_limit(struct vmctx *ctx)
{
return (ctx->lowmem_limit);
}
void
vm_set_lowmem_limit(struct vmctx *ctx, uint32_t limit)
{
ctx->lowmem_limit = limit;
}
void
vm_set_memflags(struct vmctx *ctx, int flags)
{
ctx->memflags = flags;
}
int
vm_get_memflags(struct vmctx *ctx)
{
return (ctx->memflags);
}
/*
* Map segment 'segid' starting at 'off' into guest address range [gpa,gpa+len).
*/
int
vm_mmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, int segid, vm_ooffset_t off,
size_t len, int prot)
{
struct vm_memmap memmap;
int error, flags;
memmap.gpa = gpa;
memmap.segid = segid;
memmap.segoff = off;
memmap.len = len;
memmap.prot = prot;
memmap.flags = 0;
if (ctx->memflags & VM_MEM_F_WIRED)
memmap.flags |= VM_MEMMAP_F_WIRED;
/*
* If this mapping already exists then don't create it again. This
* is the common case for SYSMEM mappings created by bhyveload(8).
*/
error = vm_mmap_getnext(ctx, &gpa, &segid, &off, &len, &prot, &flags);
if (error == 0 && gpa == memmap.gpa) {
if (segid != memmap.segid || off != memmap.segoff ||
prot != memmap.prot || flags != memmap.flags) {
errno = EEXIST;
return (-1);
} else {
return (0);
}
}
error = ioctl(ctx->fd, VM_MMAP_MEMSEG, &memmap);
return (error);
}
int
vm_get_guestmem_from_ctx(struct vmctx *ctx, char **guest_baseaddr,
size_t *lowmem_size, size_t *highmem_size)
{
*guest_baseaddr = ctx->baseaddr;
*lowmem_size = ctx->lowmem;
*highmem_size = ctx->highmem;
return (0);
}
int
vm_munmap_memseg(struct vmctx *ctx, vm_paddr_t gpa, size_t len)
{
struct vm_munmap munmap;
int error;
munmap.gpa = gpa;
munmap.len = len;
error = ioctl(ctx->fd, VM_MUNMAP_MEMSEG, &munmap);
return (error);
}
int
vm_mmap_getnext(struct vmctx *ctx, vm_paddr_t *gpa, int *segid,
vm_ooffset_t *segoff, size_t *len, int *prot, int *flags)
{
struct vm_memmap memmap;
int error;
bzero(&memmap, sizeof(struct vm_memmap));
memmap.gpa = *gpa;
error = ioctl(ctx->fd, VM_MMAP_GETNEXT, &memmap);
if (error == 0) {
*gpa = memmap.gpa;
*segid = memmap.segid;
*segoff = memmap.segoff;
*len = memmap.len;
*prot = memmap.prot;
*flags = memmap.flags;
}
return (error);
}
/*
* Return 0 if the segments are identical and non-zero otherwise.
*
* This is slightly complicated by the fact that only device memory segments
* are named.
*/
static int
cmpseg(size_t len, const char *str, size_t len2, const char *str2)
{
if (len == len2) {
if ((!str && !str2) || (str && str2 && !strcmp(str, str2)))
return (0);
}
return (-1);
}
static int
vm_alloc_memseg(struct vmctx *ctx, int segid, size_t len, const char *name)
{
struct vm_memseg memseg;
size_t n;
int error;
/*
* If the memory segment has already been created then just return.
* This is the usual case for the SYSMEM segment created by userspace
* loaders like bhyveload(8).
*/
error = vm_get_memseg(ctx, segid, &memseg.len, memseg.name,
sizeof(memseg.name));
if (error)
return (error);
if (memseg.len != 0) {
if (cmpseg(len, name, memseg.len, VM_MEMSEG_NAME(&memseg))) {
errno = EINVAL;
return (-1);
} else {
return (0);
}
}
bzero(&memseg, sizeof(struct vm_memseg));
memseg.segid = segid;
memseg.len = len;
if (name != NULL) {
n = strlcpy(memseg.name, name, sizeof(memseg.name));
if (n >= sizeof(memseg.name)) {
errno = ENAMETOOLONG;
return (-1);
}
}
error = ioctl(ctx->fd, VM_ALLOC_MEMSEG, &memseg);
return (error);
}
int
vm_get_memseg(struct vmctx *ctx, int segid, size_t *lenp, char *namebuf,
size_t bufsize)
{
struct vm_memseg memseg;
size_t n;
int error;
memseg.segid = segid;
error = ioctl(ctx->fd, VM_GET_MEMSEG, &memseg);
if (error == 0) {
*lenp = memseg.len;
n = strlcpy(namebuf, memseg.name, bufsize);
if (n >= bufsize) {
errno = ENAMETOOLONG;
error = -1;
}
}
return (error);
}
static int
setup_memory_segment(struct vmctx *ctx, vm_paddr_t gpa, size_t len, char *base)
{
char *ptr;
int error, flags;
/* Map 'len' bytes starting at 'gpa' in the guest address space */
error = vm_mmap_memseg(ctx, gpa, VM_SYSMEM, gpa, len, PROT_ALL);
if (error)
return (error);
flags = MAP_SHARED | MAP_FIXED;
if ((ctx->memflags & VM_MEM_F_INCORE) == 0)
flags |= MAP_NOCORE;
/* mmap into the process address space on the host */
ptr = mmap(base + gpa, len, PROT_RW, flags, ctx->fd, gpa);
if (ptr == MAP_FAILED)
return (-1);
return (0);
}
int
vm_setup_memory(struct vmctx *ctx, size_t memsize, enum vm_mmap_style vms)
{
size_t objsize, len;
vm_paddr_t gpa;
char *baseaddr, *ptr;
int error;
assert(vms == VM_MMAP_ALL);
/*
* If 'memsize' cannot fit entirely in the 'lowmem' segment then
* create another 'highmem' segment above 4GB for the remainder.
*/
if (memsize > ctx->lowmem_limit) {
ctx->lowmem = ctx->lowmem_limit;
ctx->highmem = memsize - ctx->lowmem_limit;
objsize = 4*GB + ctx->highmem;
} else {
ctx->lowmem = memsize;
ctx->highmem = 0;
objsize = ctx->lowmem;
}
error = vm_alloc_memseg(ctx, VM_SYSMEM, objsize, NULL);
if (error)
return (error);
/*
* Stake out a contiguous region covering the guest physical memory
* and the adjoining guard regions.
*/
len = VM_MMAP_GUARD_SIZE + objsize + VM_MMAP_GUARD_SIZE;
ptr = mmap(NULL, len, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1, 0);
if (ptr == MAP_FAILED)
return (-1);
baseaddr = ptr + VM_MMAP_GUARD_SIZE;
if (ctx->highmem > 0) {
gpa = 4*GB;
len = ctx->highmem;
error = setup_memory_segment(ctx, gpa, len, baseaddr);
if (error)
return (error);
}
if (ctx->lowmem > 0) {
gpa = 0;
len = ctx->lowmem;
error = setup_memory_segment(ctx, gpa, len, baseaddr);
if (error)
return (error);
}
ctx->baseaddr = baseaddr;
return (0);
}
/*
* Returns a non-NULL pointer if [gaddr, gaddr+len) is entirely contained in
* the lowmem or highmem regions.
*
* In particular return NULL if [gaddr, gaddr+len) falls in guest MMIO region.
* The instruction emulation code depends on this behavior.
*/
void *
vm_map_gpa(struct vmctx *ctx, vm_paddr_t gaddr, size_t len)
{
if (ctx->lowmem > 0) {
if (gaddr < ctx->lowmem && len <= ctx->lowmem &&
gaddr + len <= ctx->lowmem)
return (ctx->baseaddr + gaddr);
}
if (ctx->highmem > 0) {
if (gaddr >= 4*GB) {
if (gaddr < 4*GB + ctx->highmem &&
len <= ctx->highmem &&
gaddr + len <= 4*GB + ctx->highmem)
return (ctx->baseaddr + gaddr);
}
}
return (NULL);
}
vm_paddr_t
vm_rev_map_gpa(struct vmctx *ctx, void *addr)
{
vm_paddr_t offaddr;
offaddr = (char *)addr - ctx->baseaddr;
if (ctx->lowmem > 0)
if (offaddr <= ctx->lowmem)
return (offaddr);
if (ctx->highmem > 0)
if (offaddr >= 4*GB && offaddr < 4*GB + ctx->highmem)
return (offaddr);
return ((vm_paddr_t)-1);
}
const char *
vm_get_name(struct vmctx *ctx)
{
return (ctx->name);
}
size_t
vm_get_lowmem_size(struct vmctx *ctx)
{
return (ctx->lowmem);
}
size_t
vm_get_highmem_size(struct vmctx *ctx)
{
return (ctx->highmem);
}
void *
vm_create_devmem(struct vmctx *ctx, int segid, const char *name, size_t len)
{
char pathname[MAXPATHLEN];
size_t len2;
char *base, *ptr;
int fd, error, flags;
fd = -1;
ptr = MAP_FAILED;
if (name == NULL || strlen(name) == 0) {
errno = EINVAL;
goto done;
}
error = vm_alloc_memseg(ctx, segid, len, name);
if (error)
goto done;
strlcpy(pathname, "/dev/vmm.io/", sizeof(pathname));
strlcat(pathname, ctx->name, sizeof(pathname));
strlcat(pathname, ".", sizeof(pathname));
strlcat(pathname, name, sizeof(pathname));
fd = open(pathname, O_RDWR);
if (fd < 0)
goto done;
/*
* Stake out a contiguous region covering the device memory and the
* adjoining guard regions.
*/
len2 = VM_MMAP_GUARD_SIZE + len + VM_MMAP_GUARD_SIZE;
base = mmap(NULL, len2, PROT_NONE, MAP_GUARD | MAP_ALIGNED_SUPER, -1,
0);
if (base == MAP_FAILED)
goto done;
flags = MAP_SHARED | MAP_FIXED;
if ((ctx->memflags & VM_MEM_F_INCORE) == 0)
flags |= MAP_NOCORE;
/* mmap the devmem region in the host address space */
ptr = mmap(base + VM_MMAP_GUARD_SIZE, len, PROT_RW, flags, fd, 0);
done:
if (fd >= 0)
close(fd);
return (ptr);
}
int
vm_set_desc(struct vmctx *ctx, int vcpu, int reg,
uint64_t base, uint32_t limit, uint32_t access)
{
int error;
struct vm_seg_desc vmsegdesc;
bzero(&vmsegdesc, sizeof(vmsegdesc));
vmsegdesc.cpuid = vcpu;
vmsegdesc.regnum = reg;
vmsegdesc.desc.base = base;
vmsegdesc.desc.limit = limit;
vmsegdesc.desc.access = access;
error = ioctl(ctx->fd, VM_SET_SEGMENT_DESCRIPTOR, &vmsegdesc);
return (error);
}
int
vm_get_desc(struct vmctx *ctx, int vcpu, int reg,
uint64_t *base, uint32_t *limit, uint32_t *access)
{
int error;
struct vm_seg_desc vmsegdesc;
bzero(&vmsegdesc, sizeof(vmsegdesc));
vmsegdesc.cpuid = vcpu;
vmsegdesc.regnum = reg;
error = ioctl(ctx->fd, VM_GET_SEGMENT_DESCRIPTOR, &vmsegdesc);
if (error == 0) {
*base = vmsegdesc.desc.base;
*limit = vmsegdesc.desc.limit;
*access = vmsegdesc.desc.access;
}
return (error);
}
int
vm_get_seg_desc(struct vmctx *ctx, int vcpu, int reg, struct seg_desc *seg_desc)
{
int error;
error = vm_get_desc(ctx, vcpu, reg, &seg_desc->base, &seg_desc->limit,
&seg_desc->access);
return (error);
}
int
vm_set_register(struct vmctx *ctx, int vcpu, int reg, uint64_t val)
{
int error;
struct vm_register vmreg;
bzero(&vmreg, sizeof(vmreg));
vmreg.cpuid = vcpu;
vmreg.regnum = reg;
vmreg.regval = val;
error = ioctl(ctx->fd, VM_SET_REGISTER, &vmreg);
return (error);
}
int
vm_get_register(struct vmctx *ctx, int vcpu, int reg, uint64_t *ret_val)
{
int error;
struct vm_register vmreg;
bzero(&vmreg, sizeof(vmreg));
vmreg.cpuid = vcpu;
vmreg.regnum = reg;
error = ioctl(ctx->fd, VM_GET_REGISTER, &vmreg);
*ret_val = vmreg.regval;
return (error);
}
int
vm_set_register_set(struct vmctx *ctx, int vcpu, unsigned int count,
const int *regnums, uint64_t *regvals)
{
int error;
struct vm_register_set vmregset;
bzero(&vmregset, sizeof(vmregset));
vmregset.cpuid = vcpu;
vmregset.count = count;
vmregset.regnums = regnums;
vmregset.regvals = regvals;
error = ioctl(ctx->fd, VM_SET_REGISTER_SET, &vmregset);
return (error);
}
int
vm_get_register_set(struct vmctx *ctx, int vcpu, unsigned int count,
const int *regnums, uint64_t *regvals)
{
int error;
struct vm_register_set vmregset;
bzero(&vmregset, sizeof(vmregset));
vmregset.cpuid = vcpu;
vmregset.count = count;
vmregset.regnums = regnums;
vmregset.regvals = regvals;
error = ioctl(ctx->fd, VM_GET_REGISTER_SET, &vmregset);
return (error);
}
int
vm_run(struct vmctx *ctx, int vcpu, struct vm_exit *vmexit)
{
int error;
struct vm_run vmrun;
bzero(&vmrun, sizeof(vmrun));
vmrun.cpuid = vcpu;
error = ioctl(ctx->fd, VM_RUN, &vmrun);
bcopy(&vmrun.vm_exit, vmexit, sizeof(struct vm_exit));
return (error);
}
int
vm_suspend(struct vmctx *ctx, enum vm_suspend_how how)
{
struct vm_suspend vmsuspend;
bzero(&vmsuspend, sizeof(vmsuspend));
vmsuspend.how = how;
return (ioctl(ctx->fd, VM_SUSPEND, &vmsuspend));
}
int
vm_reinit(struct vmctx *ctx)
{
return (ioctl(ctx->fd, VM_REINIT, 0));
}
int
vm_inject_exception(struct vmctx *ctx, int vcpu, int vector, int errcode_valid,
uint32_t errcode, int restart_instruction)
{
struct vm_exception exc;
exc.cpuid = vcpu;
exc.vector = vector;
exc.error_code = errcode;
exc.error_code_valid = errcode_valid;
exc.restart_instruction = restart_instruction;
return (ioctl(ctx->fd, VM_INJECT_EXCEPTION, &exc));
}
int
vm_apicid2vcpu(struct vmctx *ctx __unused, int apicid)
{
/*
* The apic id associated with the 'vcpu' has the same numerical value
* as the 'vcpu' itself.
*/
return (apicid);
}
int
vm_lapic_irq(struct vmctx *ctx, int vcpu, int vector)
{
struct vm_lapic_irq vmirq;
bzero(&vmirq, sizeof(vmirq));
vmirq.cpuid = vcpu;
vmirq.vector = vector;
return (ioctl(ctx->fd, VM_LAPIC_IRQ, &vmirq));
}
int
vm_lapic_local_irq(struct vmctx *ctx, int vcpu, int vector)
{
struct vm_lapic_irq vmirq;
bzero(&vmirq, sizeof(vmirq));
vmirq.cpuid = vcpu;
vmirq.vector = vector;
return (ioctl(ctx->fd, VM_LAPIC_LOCAL_IRQ, &vmirq));
}
int
vm_lapic_msi(struct vmctx *ctx, uint64_t addr, uint64_t msg)
{
struct vm_lapic_msi vmmsi;
bzero(&vmmsi, sizeof(vmmsi));
vmmsi.addr = addr;
vmmsi.msg = msg;
return (ioctl(ctx->fd, VM_LAPIC_MSI, &vmmsi));
}
int
vm_ioapic_assert_irq(struct vmctx *ctx, int irq)
{
struct vm_ioapic_irq ioapic_irq;
bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
ioapic_irq.irq = irq;
return (ioctl(ctx->fd, VM_IOAPIC_ASSERT_IRQ, &ioapic_irq));
}
int
vm_ioapic_deassert_irq(struct vmctx *ctx, int irq)
{
struct vm_ioapic_irq ioapic_irq;
bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
ioapic_irq.irq = irq;
return (ioctl(ctx->fd, VM_IOAPIC_DEASSERT_IRQ, &ioapic_irq));
}
int
vm_ioapic_pulse_irq(struct vmctx *ctx, int irq)
{
struct vm_ioapic_irq ioapic_irq;
bzero(&ioapic_irq, sizeof(struct vm_ioapic_irq));
ioapic_irq.irq = irq;
return (ioctl(ctx->fd, VM_IOAPIC_PULSE_IRQ, &ioapic_irq));
}
int
vm_ioapic_pincount(struct vmctx *ctx, int *pincount)
{
return (ioctl(ctx->fd, VM_IOAPIC_PINCOUNT, pincount));
}
int
vm_readwrite_kernemu_device(struct vmctx *ctx, int vcpu, vm_paddr_t gpa,
bool write, int size, uint64_t *value)
{
struct vm_readwrite_kernemu_device irp = {
.vcpuid = vcpu,
.access_width = fls(size) - 1,
.gpa = gpa,
.value = write ? *value : ~0ul,
};
long cmd = (write ? VM_SET_KERNEMU_DEV : VM_GET_KERNEMU_DEV);
int rc;
rc = ioctl(ctx->fd, cmd, &irp);
if (rc == 0 && !write)
*value = irp.value;
return (rc);
}
int
vm_isa_assert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
{
struct vm_isa_irq isa_irq;
bzero(&isa_irq, sizeof(struct vm_isa_irq));
isa_irq.atpic_irq = atpic_irq;
isa_irq.ioapic_irq = ioapic_irq;
return (ioctl(ctx->fd, VM_ISA_ASSERT_IRQ, &isa_irq));
}
int
vm_isa_deassert_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
{
struct vm_isa_irq isa_irq;
bzero(&isa_irq, sizeof(struct vm_isa_irq));
isa_irq.atpic_irq = atpic_irq;
isa_irq.ioapic_irq = ioapic_irq;
return (ioctl(ctx->fd, VM_ISA_DEASSERT_IRQ, &isa_irq));
}
int
vm_isa_pulse_irq(struct vmctx *ctx, int atpic_irq, int ioapic_irq)
{
struct vm_isa_irq isa_irq;
bzero(&isa_irq, sizeof(struct vm_isa_irq));
isa_irq.atpic_irq = atpic_irq;
isa_irq.ioapic_irq = ioapic_irq;
return (ioctl(ctx->fd, VM_ISA_PULSE_IRQ, &isa_irq));
}
int
vm_isa_set_irq_trigger(struct vmctx *ctx, int atpic_irq,
enum vm_intr_trigger trigger)
{
struct vm_isa_irq_trigger isa_irq_trigger;
bzero(&isa_irq_trigger, sizeof(struct vm_isa_irq_trigger));
isa_irq_trigger.atpic_irq = atpic_irq;
isa_irq_trigger.trigger = trigger;
return (ioctl(ctx->fd, VM_ISA_SET_IRQ_TRIGGER, &isa_irq_trigger));
}
int
vm_inject_nmi(struct vmctx *ctx, int vcpu)
{
struct vm_nmi vmnmi;
bzero(&vmnmi, sizeof(vmnmi));
vmnmi.cpuid = vcpu;
return (ioctl(ctx->fd, VM_INJECT_NMI, &vmnmi));
}
static const char *capstrmap[] = {
[VM_CAP_HALT_EXIT] = "hlt_exit",
[VM_CAP_MTRAP_EXIT] = "mtrap_exit",
[VM_CAP_PAUSE_EXIT] = "pause_exit",
[VM_CAP_UNRESTRICTED_GUEST] = "unrestricted_guest",
[VM_CAP_ENABLE_INVPCID] = "enable_invpcid",
[VM_CAP_BPT_EXIT] = "bpt_exit",
};
int
vm_capability_name2type(const char *capname)
{
int i;
for (i = 0; i < (int)nitems(capstrmap); i++) {
if (strcmp(capstrmap[i], capname) == 0)
return (i);
}
return (-1);
}
const char *
vm_capability_type2name(int type)
{
if (type >= 0 && type < (int)nitems(capstrmap))
return (capstrmap[type]);
return (NULL);
}
int
vm_get_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap,
int *retval)
{
int error;
struct vm_capability vmcap;
bzero(&vmcap, sizeof(vmcap));
vmcap.cpuid = vcpu;
vmcap.captype = cap;
error = ioctl(ctx->fd, VM_GET_CAPABILITY, &vmcap);
*retval = vmcap.capval;
return (error);
}
int
vm_set_capability(struct vmctx *ctx, int vcpu, enum vm_cap_type cap, int val)
{
struct vm_capability vmcap;
bzero(&vmcap, sizeof(vmcap));
vmcap.cpuid = vcpu;
vmcap.captype = cap;
vmcap.capval = val;
return (ioctl(ctx->fd, VM_SET_CAPABILITY, &vmcap));
}
int
vm_assign_pptdev(struct vmctx *ctx, int bus, int slot, int func)
{
struct vm_pptdev pptdev;
bzero(&pptdev, sizeof(pptdev));
pptdev.bus = bus;
pptdev.slot = slot;
pptdev.func = func;
return (ioctl(ctx->fd, VM_BIND_PPTDEV, &pptdev));
}
int
vm_unassign_pptdev(struct vmctx *ctx, int bus, int slot, int func)
{
struct vm_pptdev pptdev;
bzero(&pptdev, sizeof(pptdev));
pptdev.bus = bus;
pptdev.slot = slot;
pptdev.func = func;
return (ioctl(ctx->fd, VM_UNBIND_PPTDEV, &pptdev));
}
int
vm_map_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func,
vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
{
struct vm_pptdev_mmio pptmmio;
bzero(&pptmmio, sizeof(pptmmio));
pptmmio.bus = bus;
pptmmio.slot = slot;
pptmmio.func = func;
pptmmio.gpa = gpa;
pptmmio.len = len;
pptmmio.hpa = hpa;
return (ioctl(ctx->fd, VM_MAP_PPTDEV_MMIO, &pptmmio));
}
int
vm_unmap_pptdev_mmio(struct vmctx *ctx, int bus, int slot, int func,
vm_paddr_t gpa, size_t len)
{
struct vm_pptdev_mmio pptmmio;
bzero(&pptmmio, sizeof(pptmmio));
pptmmio.bus = bus;
pptmmio.slot = slot;
pptmmio.func = func;
pptmmio.gpa = gpa;
pptmmio.len = len;
return (ioctl(ctx->fd, VM_UNMAP_PPTDEV_MMIO, &pptmmio));
}
int
vm_setup_pptdev_msi(struct vmctx *ctx, int vcpu, int bus, int slot, int func,
uint64_t addr, uint64_t msg, int numvec)
{
struct vm_pptdev_msi pptmsi;
bzero(&pptmsi, sizeof(pptmsi));
pptmsi.vcpu = vcpu;
pptmsi.bus = bus;
pptmsi.slot = slot;
pptmsi.func = func;
pptmsi.msg = msg;
pptmsi.addr = addr;
pptmsi.numvec = numvec;
return (ioctl(ctx->fd, VM_PPTDEV_MSI, &pptmsi));
}
int
vm_setup_pptdev_msix(struct vmctx *ctx, int vcpu, int bus, int slot, int func,
int idx, uint64_t addr, uint64_t msg, uint32_t vector_control)
{
struct vm_pptdev_msix pptmsix;
bzero(&pptmsix, sizeof(pptmsix));
pptmsix.vcpu = vcpu;
pptmsix.bus = bus;
pptmsix.slot = slot;
pptmsix.func = func;
pptmsix.idx = idx;
pptmsix.msg = msg;
pptmsix.addr = addr;
pptmsix.vector_control = vector_control;
return ioctl(ctx->fd, VM_PPTDEV_MSIX, &pptmsix);
}
int
vm_disable_pptdev_msix(struct vmctx *ctx, int bus, int slot, int func)
{
struct vm_pptdev ppt;
bzero(&ppt, sizeof(ppt));
ppt.bus = bus;
ppt.slot = slot;
ppt.func = func;
return ioctl(ctx->fd, VM_PPTDEV_DISABLE_MSIX, &ppt);
}
uint64_t *
vm_get_stats(struct vmctx *ctx, int vcpu, struct timeval *ret_tv,
int *ret_entries)
{
static _Thread_local uint64_t *stats_buf;
static _Thread_local u_int stats_count;
uint64_t *new_stats;
struct vm_stats vmstats;
u_int count, index;
bool have_stats;
have_stats = false;
vmstats.cpuid = vcpu;
count = 0;
for (index = 0;; index += nitems(vmstats.statbuf)) {
vmstats.index = index;
if (ioctl(ctx->fd, VM_STATS, &vmstats) != 0)
break;
if (stats_count < index + vmstats.num_entries) {
new_stats = realloc(stats_buf,
(index + vmstats.num_entries) * sizeof(uint64_t));
if (new_stats == NULL) {
errno = ENOMEM;
return (NULL);
}
stats_count = index + vmstats.num_entries;
stats_buf = new_stats;
}
memcpy(stats_buf + index, vmstats.statbuf,
vmstats.num_entries * sizeof(uint64_t));
count += vmstats.num_entries;
have_stats = true;
if (vmstats.num_entries != nitems(vmstats.statbuf))
break;
}
if (have_stats) {
if (ret_entries)
*ret_entries = count;
if (ret_tv)
*ret_tv = vmstats.tv;
return (stats_buf);
} else
return (NULL);
}
const char *
vm_get_stat_desc(struct vmctx *ctx, int index)
{
static struct vm_stat_desc statdesc;
statdesc.index = index;
if (ioctl(ctx->fd, VM_STAT_DESC, &statdesc) == 0)
return (statdesc.desc);
else
return (NULL);
}
int
vm_get_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state *state)
{
int error;
struct vm_x2apic x2apic;
bzero(&x2apic, sizeof(x2apic));
x2apic.cpuid = vcpu;
error = ioctl(ctx->fd, VM_GET_X2APIC_STATE, &x2apic);
*state = x2apic.state;
return (error);
}
int
vm_set_x2apic_state(struct vmctx *ctx, int vcpu, enum x2apic_state state)
{
int error;
struct vm_x2apic x2apic;
bzero(&x2apic, sizeof(x2apic));
x2apic.cpuid = vcpu;
x2apic.state = state;
error = ioctl(ctx->fd, VM_SET_X2APIC_STATE, &x2apic);
return (error);
}
/*
* From Intel Vol 3a:
* Table 9-1. IA-32 Processor States Following Power-up, Reset or INIT
*/
int
vcpu_reset(struct vmctx *vmctx, int vcpu)
{
int error;
uint64_t rflags, rip, cr0, cr4, zero, desc_base, rdx;
uint32_t desc_access, desc_limit;
uint16_t sel;
zero = 0;
rflags = 0x2;
error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RFLAGS, rflags);
if (error)
goto done;
rip = 0xfff0;
if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RIP, rip)) != 0)
goto done;
cr0 = CR0_NE;
if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR0, cr0)) != 0)
goto done;
if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR3, zero)) != 0)
goto done;
cr4 = 0;
if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CR4, cr4)) != 0)
goto done;
/*
* CS: present, r/w, accessed, 16-bit, byte granularity, usable
*/
desc_base = 0xffff0000;
desc_limit = 0xffff;
desc_access = 0x0093;
error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_CS,
desc_base, desc_limit, desc_access);
if (error)
goto done;
sel = 0xf000;
if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_CS, sel)) != 0)
goto done;
/*
* SS,DS,ES,FS,GS: present, r/w, accessed, 16-bit, byte granularity
*/
desc_base = 0;
desc_limit = 0xffff;
desc_access = 0x0093;
error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_SS,
desc_base, desc_limit, desc_access);
if (error)
goto done;
error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_DS,
desc_base, desc_limit, desc_access);
if (error)
goto done;
error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_ES,
desc_base, desc_limit, desc_access);
if (error)
goto done;
error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_FS,
desc_base, desc_limit, desc_access);
if (error)
goto done;
error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GS,
desc_base, desc_limit, desc_access);
if (error)
goto done;
sel = 0;
if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_SS, sel)) != 0)
goto done;
if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_DS, sel)) != 0)
goto done;
if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_ES, sel)) != 0)
goto done;
if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_FS, sel)) != 0)
goto done;
if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_GS, sel)) != 0)
goto done;
/* General purpose registers */
rdx = 0xf00;
if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RAX, zero)) != 0)
goto done;
if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBX, zero)) != 0)
goto done;
if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RCX, zero)) != 0)
goto done;
if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDX, rdx)) != 0)
goto done;
if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSI, zero)) != 0)
goto done;
if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RDI, zero)) != 0)
goto done;
if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RBP, zero)) != 0)
goto done;
if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_RSP, zero)) != 0)
goto done;
/* GDTR, IDTR */
desc_base = 0;
desc_limit = 0xffff;
desc_access = 0;
error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_GDTR,
desc_base, desc_limit, desc_access);
if (error != 0)
goto done;
error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_IDTR,
desc_base, desc_limit, desc_access);
if (error != 0)
goto done;
/* TR */
desc_base = 0;
desc_limit = 0xffff;
desc_access = 0x0000008b;
error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_TR, 0, 0, desc_access);
if (error)
goto done;
sel = 0;
if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_TR, sel)) != 0)
goto done;
/* LDTR */
desc_base = 0;
desc_limit = 0xffff;
desc_access = 0x00000082;
error = vm_set_desc(vmctx, vcpu, VM_REG_GUEST_LDTR, desc_base,
desc_limit, desc_access);
if (error)
goto done;
sel = 0;
if ((error = vm_set_register(vmctx, vcpu, VM_REG_GUEST_LDTR, 0)) != 0)
goto done;
/* XXX cr2, debug registers */
error = 0;
done:
return (error);
}
int
vm_get_gpa_pmap(struct vmctx *ctx, uint64_t gpa, uint64_t *pte, int *num)
{
int error, i;
struct vm_gpa_pte gpapte;
bzero(&gpapte, sizeof(gpapte));
gpapte.gpa = gpa;
error = ioctl(ctx->fd, VM_GET_GPA_PMAP, &gpapte);
if (error == 0) {
*num = gpapte.ptenum;
for (i = 0; i < gpapte.ptenum; i++)
pte[i] = gpapte.pte[i];
}
return (error);
}
int
vm_get_hpet_capabilities(struct vmctx *ctx, uint32_t *capabilities)
{
int error;
struct vm_hpet_cap cap;
bzero(&cap, sizeof(struct vm_hpet_cap));
error = ioctl(ctx->fd, VM_GET_HPET_CAPABILITIES, &cap);
if (capabilities != NULL)
*capabilities = cap.capabilities;
return (error);
}
int
vm_gla2gpa(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
uint64_t gla, int prot, uint64_t *gpa, int *fault)
{
struct vm_gla2gpa gg;
int error;
bzero(&gg, sizeof(struct vm_gla2gpa));
gg.vcpuid = vcpu;
gg.prot = prot;
gg.gla = gla;
gg.paging = *paging;
error = ioctl(ctx->fd, VM_GLA2GPA, &gg);
if (error == 0) {
*fault = gg.fault;
*gpa = gg.gpa;
}
return (error);
}
int
vm_gla2gpa_nofault(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
uint64_t gla, int prot, uint64_t *gpa, int *fault)
{
struct vm_gla2gpa gg;
int error;
bzero(&gg, sizeof(struct vm_gla2gpa));
gg.vcpuid = vcpu;
gg.prot = prot;
gg.gla = gla;
gg.paging = *paging;
error = ioctl(ctx->fd, VM_GLA2GPA_NOFAULT, &gg);
if (error == 0) {
*fault = gg.fault;
*gpa = gg.gpa;
}
return (error);
}
#ifndef min
#define min(a,b) (((a) < (b)) ? (a) : (b))
#endif
int
vm_copy_setup(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
uint64_t gla, size_t len, int prot, struct iovec *iov, int iovcnt,
int *fault)
{
void *va;
uint64_t gpa, off;
int error, i, n;
for (i = 0; i < iovcnt; i++) {
iov[i].iov_base = 0;
iov[i].iov_len = 0;
}
while (len) {
assert(iovcnt > 0);
error = vm_gla2gpa(ctx, vcpu, paging, gla, prot, &gpa, fault);
if (error || *fault)
return (error);
off = gpa & PAGE_MASK;
n = MIN(len, PAGE_SIZE - off);
va = vm_map_gpa(ctx, gpa, n);
if (va == NULL)
return (EFAULT);
iov->iov_base = va;
iov->iov_len = n;
iov++;
iovcnt--;
gla += n;
len -= n;
}
return (0);
}
void
vm_copy_teardown(struct vmctx *ctx __unused, int vcpu __unused,
struct iovec *iov __unused, int iovcnt __unused)
{
}
void
vm_copyin(struct vmctx *ctx __unused, int vcpu __unused, struct iovec *iov,
void *vp, size_t len)
{
const char *src;
char *dst;
size_t n;
dst = vp;
while (len) {
assert(iov->iov_len);
n = min(len, iov->iov_len);
src = iov->iov_base;
bcopy(src, dst, n);
iov++;
dst += n;
len -= n;
}
}
void
vm_copyout(struct vmctx *ctx __unused, int vcpu __unused, const void *vp,
struct iovec *iov, size_t len)
{
const char *src;
char *dst;
size_t n;
src = vp;
while (len) {
assert(iov->iov_len);
n = min(len, iov->iov_len);
dst = iov->iov_base;
bcopy(src, dst, n);
iov++;
src += n;
len -= n;
}
}
static int
vm_get_cpus(struct vmctx *ctx, int which, cpuset_t *cpus)
{
struct vm_cpuset vm_cpuset;
int error;
bzero(&vm_cpuset, sizeof(struct vm_cpuset));
vm_cpuset.which = which;
vm_cpuset.cpusetsize = sizeof(cpuset_t);
vm_cpuset.cpus = cpus;
error = ioctl(ctx->fd, VM_GET_CPUS, &vm_cpuset);
return (error);
}
int
vm_active_cpus(struct vmctx *ctx, cpuset_t *cpus)
{
return (vm_get_cpus(ctx, VM_ACTIVE_CPUS, cpus));
}
int
vm_suspended_cpus(struct vmctx *ctx, cpuset_t *cpus)
{
return (vm_get_cpus(ctx, VM_SUSPENDED_CPUS, cpus));
}
int
vm_debug_cpus(struct vmctx *ctx, cpuset_t *cpus)
{
return (vm_get_cpus(ctx, VM_DEBUG_CPUS, cpus));
}
int
vm_activate_cpu(struct vmctx *ctx, int vcpu)
{
struct vm_activate_cpu ac;
int error;
bzero(&ac, sizeof(struct vm_activate_cpu));
ac.vcpuid = vcpu;
error = ioctl(ctx->fd, VM_ACTIVATE_CPU, &ac);
return (error);
}
int
vm_suspend_cpu(struct vmctx *ctx, int vcpu)
{
struct vm_activate_cpu ac;
int error;
bzero(&ac, sizeof(struct vm_activate_cpu));
ac.vcpuid = vcpu;
error = ioctl(ctx->fd, VM_SUSPEND_CPU, &ac);
return (error);
}
int
vm_resume_cpu(struct vmctx *ctx, int vcpu)
{
struct vm_activate_cpu ac;
int error;
bzero(&ac, sizeof(struct vm_activate_cpu));
ac.vcpuid = vcpu;
error = ioctl(ctx->fd, VM_RESUME_CPU, &ac);
return (error);
}
int
vm_get_intinfo(struct vmctx *ctx, int vcpu, uint64_t *info1, uint64_t *info2)
{
struct vm_intinfo vmii;
int error;
bzero(&vmii, sizeof(struct vm_intinfo));
vmii.vcpuid = vcpu;
error = ioctl(ctx->fd, VM_GET_INTINFO, &vmii);
if (error == 0) {
*info1 = vmii.info1;
*info2 = vmii.info2;
}
return (error);
}
int
vm_set_intinfo(struct vmctx *ctx, int vcpu, uint64_t info1)
{
struct vm_intinfo vmii;
int error;
bzero(&vmii, sizeof(struct vm_intinfo));
vmii.vcpuid = vcpu;
vmii.info1 = info1;
error = ioctl(ctx->fd, VM_SET_INTINFO, &vmii);
return (error);
}
int
vm_rtc_write(struct vmctx *ctx, int offset, uint8_t value)
{
struct vm_rtc_data rtcdata;
int error;
bzero(&rtcdata, sizeof(struct vm_rtc_data));
rtcdata.offset = offset;
rtcdata.value = value;
error = ioctl(ctx->fd, VM_RTC_WRITE, &rtcdata);
return (error);
}
int
vm_rtc_read(struct vmctx *ctx, int offset, uint8_t *retval)
{
struct vm_rtc_data rtcdata;
int error;
bzero(&rtcdata, sizeof(struct vm_rtc_data));
rtcdata.offset = offset;
error = ioctl(ctx->fd, VM_RTC_READ, &rtcdata);
if (error == 0)
*retval = rtcdata.value;
return (error);
}
int
vm_rtc_settime(struct vmctx *ctx, time_t secs)
{
struct vm_rtc_time rtctime;
int error;
bzero(&rtctime, sizeof(struct vm_rtc_time));
rtctime.secs = secs;
error = ioctl(ctx->fd, VM_RTC_SETTIME, &rtctime);
return (error);
}
int
vm_rtc_gettime(struct vmctx *ctx, time_t *secs)
{
struct vm_rtc_time rtctime;
int error;
bzero(&rtctime, sizeof(struct vm_rtc_time));
error = ioctl(ctx->fd, VM_RTC_GETTIME, &rtctime);
if (error == 0)
*secs = rtctime.secs;
return (error);
}
int
vm_restart_instruction(void *arg, int vcpu)
{
struct vmctx *ctx = arg;
return (ioctl(ctx->fd, VM_RESTART_INSTRUCTION, &vcpu));
}
int
vm_snapshot_req(struct vm_snapshot_meta *meta)
{
if (ioctl(meta->ctx->fd, VM_SNAPSHOT_REQ, meta) == -1) {
#ifdef SNAPSHOT_DEBUG
fprintf(stderr, "%s: snapshot failed for %s: %d\r\n",
__func__, meta->dev_name, errno);
#endif
return (-1);
}
return (0);
}
int
vm_restore_time(struct vmctx *ctx)
{
int dummy;
dummy = 0;
return (ioctl(ctx->fd, VM_RESTORE_TIME, &dummy));
}
int
vm_set_topology(struct vmctx *ctx,
uint16_t sockets, uint16_t cores, uint16_t threads, uint16_t maxcpus)
{
struct vm_cpu_topology topology;
bzero(&topology, sizeof (struct vm_cpu_topology));
topology.sockets = sockets;
topology.cores = cores;
topology.threads = threads;
topology.maxcpus = maxcpus;
return (ioctl(ctx->fd, VM_SET_TOPOLOGY, &topology));
}
int
vm_get_topology(struct vmctx *ctx,
uint16_t *sockets, uint16_t *cores, uint16_t *threads, uint16_t *maxcpus)
{
struct vm_cpu_topology topology;
int error;
bzero(&topology, sizeof (struct vm_cpu_topology));
error = ioctl(ctx->fd, VM_GET_TOPOLOGY, &topology);
if (error == 0) {
*sockets = topology.sockets;
*cores = topology.cores;
*threads = topology.threads;
*maxcpus = topology.maxcpus;
}
return (error);
}
int
vm_get_device_fd(struct vmctx *ctx)
{
return (ctx->fd);
}
const cap_ioctl_t *
vm_get_ioctls(size_t *len)
{
cap_ioctl_t *cmds;
/* keep in sync with machine/vmm_dev.h */
static const cap_ioctl_t vm_ioctl_cmds[] = { VM_RUN, VM_SUSPEND, VM_REINIT,
VM_ALLOC_MEMSEG, VM_GET_MEMSEG, VM_MMAP_MEMSEG, VM_MMAP_MEMSEG,
VM_MMAP_GETNEXT, VM_MUNMAP_MEMSEG, VM_SET_REGISTER, VM_GET_REGISTER,
VM_SET_SEGMENT_DESCRIPTOR, VM_GET_SEGMENT_DESCRIPTOR,
VM_SET_REGISTER_SET, VM_GET_REGISTER_SET,
VM_SET_KERNEMU_DEV, VM_GET_KERNEMU_DEV,
VM_INJECT_EXCEPTION, VM_LAPIC_IRQ, VM_LAPIC_LOCAL_IRQ,
VM_LAPIC_MSI, VM_IOAPIC_ASSERT_IRQ, VM_IOAPIC_DEASSERT_IRQ,
VM_IOAPIC_PULSE_IRQ, VM_IOAPIC_PINCOUNT, VM_ISA_ASSERT_IRQ,
VM_ISA_DEASSERT_IRQ, VM_ISA_PULSE_IRQ, VM_ISA_SET_IRQ_TRIGGER,
VM_SET_CAPABILITY, VM_GET_CAPABILITY, VM_BIND_PPTDEV,
VM_UNBIND_PPTDEV, VM_MAP_PPTDEV_MMIO, VM_PPTDEV_MSI,
VM_PPTDEV_MSIX, VM_UNMAP_PPTDEV_MMIO, VM_PPTDEV_DISABLE_MSIX,
VM_INJECT_NMI, VM_STATS, VM_STAT_DESC,
VM_SET_X2APIC_STATE, VM_GET_X2APIC_STATE,
VM_GET_HPET_CAPABILITIES, VM_GET_GPA_PMAP, VM_GLA2GPA,
VM_GLA2GPA_NOFAULT,
VM_ACTIVATE_CPU, VM_GET_CPUS, VM_SUSPEND_CPU, VM_RESUME_CPU,
VM_SET_INTINFO, VM_GET_INTINFO,
VM_RTC_WRITE, VM_RTC_READ, VM_RTC_SETTIME, VM_RTC_GETTIME,
VM_RESTART_INSTRUCTION, VM_SET_TOPOLOGY, VM_GET_TOPOLOGY };
if (len == NULL) {
cmds = malloc(sizeof(vm_ioctl_cmds));
if (cmds == NULL)
return (NULL);
bcopy(vm_ioctl_cmds, cmds, sizeof(vm_ioctl_cmds));
return (cmds);
}
*len = nitems(vm_ioctl_cmds);
return (NULL);
}