freebsd-dev/sys/crypto/ccp/ccp.c
John Baldwin 9c0e3d3a53 Add support for optional separate output buffers to in-kernel crypto.
Some crypto consumers such as GELI and KTLS for file-backed sendfile
need to store their output in a separate buffer from the input.
Currently these consumers copy the contents of the input buffer into
the output buffer and queue an in-place crypto operation on the output
buffer.  Using a separate output buffer avoids this copy.

- Create a new 'struct crypto_buffer' describing a crypto buffer
  containing a type and type-specific fields.  crp_ilen is gone,
  instead buffers that use a flat kernel buffer have a cb_buf_len
  field for their length.  The length of other buffer types is
  inferred from the backing store (e.g. uio_resid for a uio).
  Requests now have two such structures: crp_buf for the input buffer,
  and crp_obuf for the output buffer.

- Consumers now use helper functions (crypto_use_*,
  e.g. crypto_use_mbuf()) to configure the input buffer.  If an output
  buffer is not configured, the request still modifies the input
  buffer in-place.  A consumer uses a second set of helper functions
  (crypto_use_output_*) to configure an output buffer.

- Consumers must request support for separate output buffers when
  creating a crypto session via the CSP_F_SEPARATE_OUTPUT flag and are
  only permitted to queue a request with a separate output buffer on
  sessions with this flag set.  Existing drivers already reject
  sessions with unknown flags, so this permits drivers to be modified
  to support this extension without requiring all drivers to change.

- Several data-related functions now have matching versions that
  operate on an explicit buffer (e.g. crypto_apply_buf,
  crypto_contiguous_subsegment_buf, bus_dma_load_crp_buf).

- Most of the existing data-related functions operate on the input
  buffer.  However crypto_copyback always writes to the output buffer
  if a request uses a separate output buffer.

- For the regions in input/output buffers, the following conventions
  are followed:
  - AAD and IV are always present in input only and their
    fields are offsets into the input buffer.
  - payload is always present in both buffers.  If a request uses a
    separate output buffer, it must set a new crp_payload_start_output
    field to the offset of the payload in the output buffer.
  - digest is in the input buffer for verify operations, and in the
    output buffer for compute operations.  crp_digest_start is relative
    to the appropriate buffer.

- Add a crypto buffer cursor abstraction.  This is a more general form
  of some bits in the cryptosoft driver that tried to always use uio's.
  However, compared to the original code, this avoids rewalking the uio
  iovec array for requests with multiple vectors.  It also avoids
  allocate an iovec array for mbufs and populating it by instead walking
  the mbuf chain directly.

- Update the cryptosoft(4) driver to support separate output buffers
  making use of the cursor abstraction.

Sponsored by:	Netflix
Differential Revision:	https://reviews.freebsd.org/D24545
2020-05-25 22:12:04 +00:00

791 lines
17 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2017 Chelsio Communications, Inc.
* Copyright (c) 2017 Conrad Meyer <cem@FreeBSD.org>
* All rights reserved.
* Largely borrowed from ccr(4), Written by: John Baldwin <jhb@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ddb.h"
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/lock.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/module.h>
#include <sys/random.h>
#include <sys/sglist.h>
#include <sys/sysctl.h>
#ifdef DDB
#include <ddb/ddb.h>
#endif
#include <dev/pci/pcivar.h>
#include <dev/random/randomdev.h>
#include <opencrypto/cryptodev.h>
#include <opencrypto/xform.h>
#include "cryptodev_if.h"
#include "ccp.h"
#include "ccp_hardware.h"
MALLOC_DEFINE(M_CCP, "ccp", "AMD CCP crypto");
/*
* Need a global softc available for garbage random_source API, which lacks any
* context pointer. It's also handy for debugging.
*/
struct ccp_softc *g_ccp_softc;
bool g_debug_print = false;
SYSCTL_BOOL(_hw_ccp, OID_AUTO, debug, CTLFLAG_RWTUN, &g_debug_print, 0,
"Set to enable debugging log messages");
static struct pciid {
uint32_t devid;
const char *desc;
} ccp_ids[] = {
{ 0x14561022, "AMD CCP-5a" },
{ 0x14681022, "AMD CCP-5b" },
{ 0x15df1022, "AMD CCP-5a" },
};
static struct random_source random_ccp = {
.rs_ident = "AMD CCP TRNG",
.rs_source = RANDOM_PURE_CCP,
.rs_read = random_ccp_read,
};
/*
* ccp_populate_sglist() generates a scatter/gather list that covers the entire
* crypto operation buffer.
*/
static int
ccp_populate_sglist(struct sglist *sg, struct crypto_buffer *cb)
{
int error;
sglist_reset(sg);
switch (cb->cb_type) {
case CRYPTO_BUF_MBUF:
error = sglist_append_mbuf(sg, cb->cb_mbuf);
break;
case CRYPTO_BUF_UIO:
error = sglist_append_uio(sg, cb->cb_uio);
break;
case CRYPTO_BUF_CONTIG:
error = sglist_append(sg, cb->cb_buf, cb->cb_buf_len);
break;
default:
error = EINVAL;
}
return (error);
}
static int
ccp_probe(device_t dev)
{
struct pciid *ip;
uint32_t id;
id = pci_get_devid(dev);
for (ip = ccp_ids; ip < &ccp_ids[nitems(ccp_ids)]; ip++) {
if (id == ip->devid) {
device_set_desc(dev, ip->desc);
return (0);
}
}
return (ENXIO);
}
static void
ccp_initialize_queues(struct ccp_softc *sc)
{
struct ccp_queue *qp;
size_t i;
for (i = 0; i < nitems(sc->queues); i++) {
qp = &sc->queues[i];
qp->cq_softc = sc;
qp->cq_qindex = i;
mtx_init(&qp->cq_lock, "ccp queue", NULL, MTX_DEF);
/* XXX - arbitrarily chosen sizes */
qp->cq_sg_crp = sglist_alloc(32, M_WAITOK);
/* Two more SGEs than sg_crp to accommodate ipad. */
qp->cq_sg_ulptx = sglist_alloc(34, M_WAITOK);
qp->cq_sg_dst = sglist_alloc(2, M_WAITOK);
}
}
static void
ccp_free_queues(struct ccp_softc *sc)
{
struct ccp_queue *qp;
size_t i;
for (i = 0; i < nitems(sc->queues); i++) {
qp = &sc->queues[i];
mtx_destroy(&qp->cq_lock);
sglist_free(qp->cq_sg_crp);
sglist_free(qp->cq_sg_ulptx);
sglist_free(qp->cq_sg_dst);
}
}
static int
ccp_attach(device_t dev)
{
struct ccp_softc *sc;
int error;
sc = device_get_softc(dev);
sc->dev = dev;
sc->cid = crypto_get_driverid(dev, sizeof(struct ccp_session),
CRYPTOCAP_F_HARDWARE);
if (sc->cid < 0) {
device_printf(dev, "could not get crypto driver id\n");
return (ENXIO);
}
error = ccp_hw_attach(dev);
if (error != 0)
return (error);
mtx_init(&sc->lock, "ccp", NULL, MTX_DEF);
ccp_initialize_queues(sc);
if (g_ccp_softc == NULL) {
g_ccp_softc = sc;
if ((sc->hw_features & VERSION_CAP_TRNG) != 0)
random_source_register(&random_ccp);
}
return (0);
}
static int
ccp_detach(device_t dev)
{
struct ccp_softc *sc;
sc = device_get_softc(dev);
mtx_lock(&sc->lock);
sc->detaching = true;
mtx_unlock(&sc->lock);
crypto_unregister_all(sc->cid);
if (g_ccp_softc == sc && (sc->hw_features & VERSION_CAP_TRNG) != 0)
random_source_deregister(&random_ccp);
ccp_hw_detach(dev);
ccp_free_queues(sc);
if (g_ccp_softc == sc)
g_ccp_softc = NULL;
mtx_destroy(&sc->lock);
return (0);
}
static void
ccp_init_hmac_digest(struct ccp_session *s, const char *key, int klen)
{
union authctx auth_ctx;
struct auth_hash *axf;
u_int i;
/*
* If the key is larger than the block size, use the digest of
* the key as the key instead.
*/
axf = s->hmac.auth_hash;
if (klen > axf->blocksize) {
axf->Init(&auth_ctx);
axf->Update(&auth_ctx, key, klen);
axf->Final(s->hmac.ipad, &auth_ctx);
explicit_bzero(&auth_ctx, sizeof(auth_ctx));
klen = axf->hashsize;
} else
memcpy(s->hmac.ipad, key, klen);
memset(s->hmac.ipad + klen, 0, axf->blocksize - klen);
memcpy(s->hmac.opad, s->hmac.ipad, axf->blocksize);
for (i = 0; i < axf->blocksize; i++) {
s->hmac.ipad[i] ^= HMAC_IPAD_VAL;
s->hmac.opad[i] ^= HMAC_OPAD_VAL;
}
}
static bool
ccp_aes_check_keylen(int alg, int klen)
{
switch (klen * 8) {
case 128:
case 192:
if (alg == CRYPTO_AES_XTS)
return (false);
break;
case 256:
break;
case 512:
if (alg != CRYPTO_AES_XTS)
return (false);
break;
default:
return (false);
}
return (true);
}
static void
ccp_aes_setkey(struct ccp_session *s, int alg, const void *key, int klen)
{
unsigned kbits;
if (alg == CRYPTO_AES_XTS)
kbits = (klen / 2) * 8;
else
kbits = klen * 8;
switch (kbits) {
case 128:
s->blkcipher.cipher_type = CCP_AES_TYPE_128;
break;
case 192:
s->blkcipher.cipher_type = CCP_AES_TYPE_192;
break;
case 256:
s->blkcipher.cipher_type = CCP_AES_TYPE_256;
break;
default:
panic("should not get here");
}
s->blkcipher.key_len = klen;
memcpy(s->blkcipher.enckey, key, s->blkcipher.key_len);
}
static bool
ccp_auth_supported(struct ccp_softc *sc,
const struct crypto_session_params *csp)
{
if ((sc->hw_features & VERSION_CAP_SHA) == 0)
return (false);
switch (csp->csp_auth_alg) {
case CRYPTO_SHA1_HMAC:
case CRYPTO_SHA2_256_HMAC:
case CRYPTO_SHA2_384_HMAC:
case CRYPTO_SHA2_512_HMAC:
if (csp->csp_auth_key == NULL)
return (false);
break;
default:
return (false);
}
return (true);
}
static bool
ccp_cipher_supported(struct ccp_softc *sc,
const struct crypto_session_params *csp)
{
if ((sc->hw_features & VERSION_CAP_AES) == 0)
return (false);
switch (csp->csp_cipher_alg) {
case CRYPTO_AES_CBC:
if (csp->csp_ivlen != AES_BLOCK_LEN)
return (false);
break;
case CRYPTO_AES_ICM:
if (csp->csp_ivlen != AES_BLOCK_LEN)
return (false);
break;
case CRYPTO_AES_XTS:
if (csp->csp_ivlen != AES_XTS_IV_LEN)
return (false);
break;
default:
return (false);
}
return (ccp_aes_check_keylen(csp->csp_cipher_alg,
csp->csp_cipher_klen));
}
static int
ccp_probesession(device_t dev, const struct crypto_session_params *csp)
{
struct ccp_softc *sc;
if (csp->csp_flags != 0)
return (EINVAL);
sc = device_get_softc(dev);
switch (csp->csp_mode) {
case CSP_MODE_DIGEST:
if (!ccp_auth_supported(sc, csp))
return (EINVAL);
break;
case CSP_MODE_CIPHER:
if (!ccp_cipher_supported(sc, csp))
return (EINVAL);
break;
case CSP_MODE_AEAD:
switch (csp->csp_cipher_alg) {
case CRYPTO_AES_NIST_GCM_16:
if (csp->csp_ivlen != AES_GCM_IV_LEN)
return (EINVAL);
if (csp->csp_auth_mlen < 0 ||
csp->csp_auth_mlen > AES_GMAC_HASH_LEN)
return (EINVAL);
if ((sc->hw_features & VERSION_CAP_AES) == 0)
return (EINVAL);
break;
default:
return (EINVAL);
}
break;
case CSP_MODE_ETA:
if (!ccp_auth_supported(sc, csp) ||
!ccp_cipher_supported(sc, csp))
return (EINVAL);
break;
default:
return (EINVAL);
}
return (CRYPTODEV_PROBE_HARDWARE);
}
static int
ccp_newsession(device_t dev, crypto_session_t cses,
const struct crypto_session_params *csp)
{
struct ccp_softc *sc;
struct ccp_session *s;
struct auth_hash *auth_hash;
enum ccp_aes_mode cipher_mode;
unsigned auth_mode;
unsigned q;
/* XXX reconcile auth_mode with use by ccp_sha */
switch (csp->csp_auth_alg) {
case CRYPTO_SHA1_HMAC:
auth_hash = &auth_hash_hmac_sha1;
auth_mode = SHA1;
break;
case CRYPTO_SHA2_256_HMAC:
auth_hash = &auth_hash_hmac_sha2_256;
auth_mode = SHA2_256;
break;
case CRYPTO_SHA2_384_HMAC:
auth_hash = &auth_hash_hmac_sha2_384;
auth_mode = SHA2_384;
break;
case CRYPTO_SHA2_512_HMAC:
auth_hash = &auth_hash_hmac_sha2_512;
auth_mode = SHA2_512;
break;
default:
auth_hash = NULL;
auth_mode = 0;
break;
}
switch (csp->csp_cipher_alg) {
case CRYPTO_AES_CBC:
cipher_mode = CCP_AES_MODE_CBC;
break;
case CRYPTO_AES_ICM:
cipher_mode = CCP_AES_MODE_CTR;
break;
case CRYPTO_AES_NIST_GCM_16:
cipher_mode = CCP_AES_MODE_GCTR;
break;
case CRYPTO_AES_XTS:
cipher_mode = CCP_AES_MODE_XTS;
break;
default:
cipher_mode = CCP_AES_MODE_ECB;
break;
}
sc = device_get_softc(dev);
mtx_lock(&sc->lock);
if (sc->detaching) {
mtx_unlock(&sc->lock);
return (ENXIO);
}
s = crypto_get_driver_session(cses);
/* Just grab the first usable queue for now. */
for (q = 0; q < nitems(sc->queues); q++)
if ((sc->valid_queues & (1 << q)) != 0)
break;
if (q == nitems(sc->queues)) {
mtx_unlock(&sc->lock);
return (ENXIO);
}
s->queue = q;
switch (csp->csp_mode) {
case CSP_MODE_AEAD:
s->mode = GCM;
break;
case CSP_MODE_ETA:
s->mode = AUTHENC;
break;
case CSP_MODE_DIGEST:
s->mode = HMAC;
break;
case CSP_MODE_CIPHER:
s->mode = BLKCIPHER;
break;
}
if (s->mode == GCM) {
if (csp->csp_auth_mlen == 0)
s->gmac.hash_len = AES_GMAC_HASH_LEN;
else
s->gmac.hash_len = csp->csp_auth_mlen;
} else if (auth_hash != NULL) {
s->hmac.auth_hash = auth_hash;
s->hmac.auth_mode = auth_mode;
if (csp->csp_auth_mlen == 0)
s->hmac.hash_len = auth_hash->hashsize;
else
s->hmac.hash_len = csp->csp_auth_mlen;
ccp_init_hmac_digest(s, csp->csp_auth_key, csp->csp_auth_klen);
}
if (cipher_mode != CCP_AES_MODE_ECB) {
s->blkcipher.cipher_mode = cipher_mode;
if (csp->csp_cipher_key != NULL)
ccp_aes_setkey(s, csp->csp_cipher_alg,
csp->csp_cipher_key, csp->csp_cipher_klen);
}
s->active = true;
mtx_unlock(&sc->lock);
return (0);
}
static void
ccp_freesession(device_t dev, crypto_session_t cses)
{
struct ccp_session *s;
s = crypto_get_driver_session(cses);
if (s->pending != 0)
device_printf(dev,
"session %p freed with %d pending requests\n", s,
s->pending);
s->active = false;
}
static int
ccp_process(device_t dev, struct cryptop *crp, int hint)
{
const struct crypto_session_params *csp;
struct ccp_softc *sc;
struct ccp_queue *qp;
struct ccp_session *s;
int error;
bool qpheld;
qpheld = false;
qp = NULL;
csp = crypto_get_params(crp->crp_session);
s = crypto_get_driver_session(crp->crp_session);
sc = device_get_softc(dev);
mtx_lock(&sc->lock);
qp = &sc->queues[s->queue];
mtx_unlock(&sc->lock);
error = ccp_queue_acquire_reserve(qp, 1 /* placeholder */, M_NOWAIT);
if (error != 0)
goto out;
qpheld = true;
error = ccp_populate_sglist(qp->cq_sg_crp, &crp->crp_buf);
if (error != 0)
goto out;
if (crp->crp_auth_key != NULL) {
KASSERT(s->hmac.auth_hash != NULL, ("auth key without HMAC"));
ccp_init_hmac_digest(s, crp->crp_auth_key, csp->csp_auth_klen);
}
if (crp->crp_cipher_key != NULL)
ccp_aes_setkey(s, csp->csp_cipher_alg, crp->crp_cipher_key,
csp->csp_cipher_klen);
switch (s->mode) {
case HMAC:
if (s->pending != 0) {
error = EAGAIN;
break;
}
error = ccp_hmac(qp, s, crp);
break;
case BLKCIPHER:
if (s->pending != 0) {
error = EAGAIN;
break;
}
error = ccp_blkcipher(qp, s, crp);
break;
case AUTHENC:
if (s->pending != 0) {
error = EAGAIN;
break;
}
error = ccp_authenc(qp, s, crp);
break;
case GCM:
if (s->pending != 0) {
error = EAGAIN;
break;
}
error = ccp_gcm(qp, s, crp);
break;
}
if (error == 0)
s->pending++;
out:
if (qpheld) {
if (error != 0) {
/*
* Squash EAGAIN so callers don't uselessly and
* expensively retry if the ring was full.
*/
if (error == EAGAIN)
error = ENOMEM;
ccp_queue_abort(qp);
} else
ccp_queue_release(qp);
}
if (error != 0) {
DPRINTF(dev, "%s: early error:%d\n", __func__, error);
crp->crp_etype = error;
crypto_done(crp);
}
return (0);
}
static device_method_t ccp_methods[] = {
DEVMETHOD(device_probe, ccp_probe),
DEVMETHOD(device_attach, ccp_attach),
DEVMETHOD(device_detach, ccp_detach),
DEVMETHOD(cryptodev_probesession, ccp_probesession),
DEVMETHOD(cryptodev_newsession, ccp_newsession),
DEVMETHOD(cryptodev_freesession, ccp_freesession),
DEVMETHOD(cryptodev_process, ccp_process),
DEVMETHOD_END
};
static driver_t ccp_driver = {
"ccp",
ccp_methods,
sizeof(struct ccp_softc)
};
static devclass_t ccp_devclass;
DRIVER_MODULE(ccp, pci, ccp_driver, ccp_devclass, NULL, NULL);
MODULE_VERSION(ccp, 1);
MODULE_DEPEND(ccp, crypto, 1, 1, 1);
MODULE_DEPEND(ccp, random_device, 1, 1, 1);
#if 0 /* There are enough known issues that we shouldn't load automatically */
MODULE_PNP_INFO("W32:vendor/device", pci, ccp, ccp_ids,
nitems(ccp_ids));
#endif
static int
ccp_queue_reserve_space(struct ccp_queue *qp, unsigned n, int mflags)
{
struct ccp_softc *sc;
mtx_assert(&qp->cq_lock, MA_OWNED);
sc = qp->cq_softc;
if (n < 1 || n >= (1 << sc->ring_size_order))
return (EINVAL);
while (true) {
if (ccp_queue_get_ring_space(qp) >= n)
return (0);
if ((mflags & M_WAITOK) == 0)
return (EAGAIN);
qp->cq_waiting = true;
msleep(&qp->cq_tail, &qp->cq_lock, 0, "ccpqfull", 0);
}
}
int
ccp_queue_acquire_reserve(struct ccp_queue *qp, unsigned n, int mflags)
{
int error;
mtx_lock(&qp->cq_lock);
qp->cq_acq_tail = qp->cq_tail;
error = ccp_queue_reserve_space(qp, n, mflags);
if (error != 0)
mtx_unlock(&qp->cq_lock);
return (error);
}
void
ccp_queue_release(struct ccp_queue *qp)
{
mtx_assert(&qp->cq_lock, MA_OWNED);
if (qp->cq_tail != qp->cq_acq_tail) {
wmb();
ccp_queue_write_tail(qp);
}
mtx_unlock(&qp->cq_lock);
}
void
ccp_queue_abort(struct ccp_queue *qp)
{
unsigned i;
mtx_assert(&qp->cq_lock, MA_OWNED);
/* Wipe out any descriptors associated with this aborted txn. */
for (i = qp->cq_acq_tail; i != qp->cq_tail;
i = (i + 1) % (1 << qp->cq_softc->ring_size_order)) {
memset(&qp->desc_ring[i], 0, sizeof(qp->desc_ring[i]));
}
qp->cq_tail = qp->cq_acq_tail;
mtx_unlock(&qp->cq_lock);
}
#ifdef DDB
#define _db_show_lock(lo) LOCK_CLASS(lo)->lc_ddb_show(lo)
#define db_show_lock(lk) _db_show_lock(&(lk)->lock_object)
static void
db_show_ccp_sc(struct ccp_softc *sc)
{
db_printf("ccp softc at %p\n", sc);
db_printf(" cid: %d\n", (int)sc->cid);
db_printf(" lock: ");
db_show_lock(&sc->lock);
db_printf(" detaching: %d\n", (int)sc->detaching);
db_printf(" ring_size_order: %u\n", sc->ring_size_order);
db_printf(" hw_version: %d\n", (int)sc->hw_version);
db_printf(" hw_features: %b\n", (int)sc->hw_features,
"\20\24ELFC\23TRNG\22Zip_Compress\16Zip_Decompress\13ECC\12RSA"
"\11SHA\0103DES\07AES");
db_printf(" hw status:\n");
db_ccp_show_hw(sc);
}
static void
db_show_ccp_qp(struct ccp_queue *qp)
{
db_printf(" lock: ");
db_show_lock(&qp->cq_lock);
db_printf(" cq_qindex: %u\n", qp->cq_qindex);
db_printf(" cq_softc: %p\n", qp->cq_softc);
db_printf(" head: %u\n", qp->cq_head);
db_printf(" tail: %u\n", qp->cq_tail);
db_printf(" acq_tail: %u\n", qp->cq_acq_tail);
db_printf(" desc_ring: %p\n", qp->desc_ring);
db_printf(" completions_ring: %p\n", qp->completions_ring);
db_printf(" descriptors (phys): 0x%jx\n",
(uintmax_t)qp->desc_ring_bus_addr);
db_printf(" hw status:\n");
db_ccp_show_queue_hw(qp);
}
DB_SHOW_COMMAND(ccp, db_show_ccp)
{
struct ccp_softc *sc;
unsigned unit, qindex;
if (!have_addr)
goto usage;
unit = (unsigned)addr;
sc = devclass_get_softc(ccp_devclass, unit);
if (sc == NULL) {
db_printf("No such device ccp%u\n", unit);
goto usage;
}
if (count == -1) {
db_show_ccp_sc(sc);
return;
}
qindex = (unsigned)count;
if (qindex >= nitems(sc->queues)) {
db_printf("No such queue %u\n", qindex);
goto usage;
}
db_show_ccp_qp(&sc->queues[qindex]);
return;
usage:
db_printf("usage: show ccp <unit>[,<qindex>]\n");
return;
}
#endif /* DDB */