freebsd-dev/sys/dev/qlxgb/qla_hw.c
Bjoern A. Zeeb 0bc7cf6fde Add QLogic 10 Gigabit Ethernet & CNA Adapter Driver version 1.30
for 3200 and 8200 series cards.

Submitted by:	David C Somayajulu (david.somayajulu@qlogic.com),
		Qlogic Corporation
MFC After:	3 days
2011-11-03 21:20:22 +00:00

1777 lines
42 KiB
C

/*
* Copyright (c) 2010-2011 Qlogic Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* File: qla_hw.c
* Author : David C Somayajulu, Qlogic Corporation, Aliso Viejo, CA 92656.
* Content: Contains Hardware dependant functions
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "qla_os.h"
#include "qla_reg.h"
#include "qla_hw.h"
#include "qla_def.h"
#include "qla_inline.h"
#include "qla_ver.h"
#include "qla_glbl.h"
#include "qla_dbg.h"
static uint32_t sysctl_num_rds_rings = 2;
static uint32_t sysctl_num_sds_rings = 4;
/*
* Static Functions
*/
static void qla_init_cntxt_regions(qla_host_t *ha);
static int qla_issue_cmd(qla_host_t *ha, qla_cdrp_t *cdrp);
static int qla_fw_cmd(qla_host_t *ha, void *fw_cmd, uint32_t size);
static int qla_config_mac_addr(qla_host_t *ha, uint8_t *mac_addr,
uint16_t cntxt_id, uint32_t add_multi);
static void qla_del_rcv_cntxt(qla_host_t *ha);
static int qla_init_rcv_cntxt(qla_host_t *ha);
static void qla_del_xmt_cntxt(qla_host_t *ha);
static int qla_init_xmt_cntxt(qla_host_t *ha);
static int qla_get_max_rds(qla_host_t *ha);
static int qla_get_max_sds(qla_host_t *ha);
static int qla_get_max_rules(qla_host_t *ha);
static int qla_get_max_rcv_cntxts(qla_host_t *ha);
static int qla_get_max_tx_cntxts(qla_host_t *ha);
static int qla_get_max_mtu(qla_host_t *ha);
static int qla_get_max_lro(qla_host_t *ha);
static int qla_get_flow_control(qla_host_t *ha);
static void qla_hw_tx_done_locked(qla_host_t *ha);
int
qla_get_msix_count(qla_host_t *ha)
{
return (sysctl_num_sds_rings);
}
/*
* Name: qla_hw_add_sysctls
* Function: Add P3Plus specific sysctls
*/
void
qla_hw_add_sysctls(qla_host_t *ha)
{
device_t dev;
dev = ha->pci_dev;
SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "num_rds_rings", CTLFLAG_RD, &sysctl_num_rds_rings,
sysctl_num_rds_rings, "Number of Rcv Descriptor Rings");
SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
OID_AUTO, "num_sds_rings", CTLFLAG_RD, &sysctl_num_sds_rings,
sysctl_num_sds_rings, "Number of Status Descriptor Rings");
}
/*
* Name: qla_free_dma
* Function: Frees the DMA'able memory allocated in qla_alloc_dma()
*/
void
qla_free_dma(qla_host_t *ha)
{
uint32_t i;
if (ha->hw.dma_buf.flags.context) {
qla_free_dmabuf(ha, &ha->hw.dma_buf.context);
ha->hw.dma_buf.flags.context = 0;
}
if (ha->hw.dma_buf.flags.sds_ring) {
for (i = 0; i < ha->hw.num_sds_rings; i++)
qla_free_dmabuf(ha, &ha->hw.dma_buf.sds_ring[i]);
ha->hw.dma_buf.flags.sds_ring = 0;
}
if (ha->hw.dma_buf.flags.rds_ring) {
for (i = 0; i < ha->hw.num_rds_rings; i++)
qla_free_dmabuf(ha, &ha->hw.dma_buf.rds_ring[i]);
ha->hw.dma_buf.flags.rds_ring = 0;
}
if (ha->hw.dma_buf.flags.tx_ring) {
qla_free_dmabuf(ha, &ha->hw.dma_buf.tx_ring);
ha->hw.dma_buf.flags.tx_ring = 0;
}
}
/*
* Name: qla_alloc_dma
* Function: Allocates DMA'able memory for Tx/Rx Rings, Tx/Rx Contexts.
*/
int
qla_alloc_dma(qla_host_t *ha)
{
device_t dev;
uint32_t i, j, size;
dev = ha->pci_dev;
QL_DPRINT2((dev, "%s: enter\n", __func__));
ha->hw.num_rds_rings = (uint16_t)sysctl_num_rds_rings;
ha->hw.num_sds_rings = (uint16_t)sysctl_num_sds_rings;
/*
* Allocate Transmit Ring
*/
ha->hw.dma_buf.tx_ring.alignment = 8;
ha->hw.dma_buf.tx_ring.size =
(sizeof(q80_tx_cmd_t)) * NUM_TX_DESCRIPTORS;
if (qla_alloc_dmabuf(ha, &ha->hw.dma_buf.tx_ring)) {
device_printf(dev, "%s: tx ring alloc failed\n", __func__);
goto qla_alloc_dma_exit;
}
ha->hw.dma_buf.flags.tx_ring = 1;
QL_DPRINT2((dev, "%s: tx_ring phys %p virt %p\n",
__func__, (void *)(ha->hw.dma_buf.tx_ring.dma_addr),
ha->hw.dma_buf.tx_ring.dma_b));
/*
* Allocate Receive Descriptor Rings
*/
for (i = 0; i < ha->hw.num_rds_rings; i++) {
ha->hw.dma_buf.rds_ring[i].alignment = 8;
if (i == RDS_RING_INDEX_NORMAL) {
ha->hw.dma_buf.rds_ring[i].size =
(sizeof(q80_recv_desc_t)) * NUM_RX_DESCRIPTORS;
} else if (i == RDS_RING_INDEX_JUMBO) {
ha->hw.dma_buf.rds_ring[i].size =
(sizeof(q80_recv_desc_t)) *
NUM_RX_JUMBO_DESCRIPTORS;
} else
break;
if (qla_alloc_dmabuf(ha, &ha->hw.dma_buf.rds_ring[i])) {
QL_DPRINT4((dev, "%s: rds ring alloc failed\n",
__func__));
for (j = 0; j < i; j++)
qla_free_dmabuf(ha,
&ha->hw.dma_buf.rds_ring[j]);
goto qla_alloc_dma_exit;
}
QL_DPRINT4((dev, "%s: rx_ring[%d] phys %p virt %p\n",
__func__, i,
(void *)(ha->hw.dma_buf.rds_ring[i].dma_addr),
ha->hw.dma_buf.rds_ring[i].dma_b));
}
ha->hw.dma_buf.flags.rds_ring = 1;
/*
* Allocate Status Descriptor Rings
*/
for (i = 0; i < ha->hw.num_sds_rings; i++) {
ha->hw.dma_buf.sds_ring[i].alignment = 8;
ha->hw.dma_buf.sds_ring[i].size =
(sizeof(q80_stat_desc_t)) * NUM_STATUS_DESCRIPTORS;
if (qla_alloc_dmabuf(ha, &ha->hw.dma_buf.sds_ring[i])) {
device_printf(dev, "%s: sds ring alloc failed\n",
__func__);
for (j = 0; j < i; j++)
qla_free_dmabuf(ha,
&ha->hw.dma_buf.sds_ring[j]);
goto qla_alloc_dma_exit;
}
QL_DPRINT4((dev, "%s: sds_ring[%d] phys %p virt %p\n",
__func__, i,
(void *)(ha->hw.dma_buf.sds_ring[i].dma_addr),
ha->hw.dma_buf.sds_ring[i].dma_b));
}
ha->hw.dma_buf.flags.sds_ring = 1;
/*
* Allocate Context Area
*/
size = QL_ALIGN((sizeof (q80_tx_cntxt_req_t)), QL_BUFFER_ALIGN);
size += QL_ALIGN((sizeof (q80_tx_cntxt_rsp_t)), QL_BUFFER_ALIGN);
size += QL_ALIGN((sizeof (q80_rcv_cntxt_req_t)), QL_BUFFER_ALIGN);
size += QL_ALIGN((sizeof (q80_rcv_cntxt_rsp_t)), QL_BUFFER_ALIGN);
size += sizeof (uint32_t); /* for tx consumer index */
size = QL_ALIGN(size, PAGE_SIZE);
ha->hw.dma_buf.context.alignment = 8;
ha->hw.dma_buf.context.size = size;
if (qla_alloc_dmabuf(ha, &ha->hw.dma_buf.context)) {
device_printf(dev, "%s: context alloc failed\n", __func__);
goto qla_alloc_dma_exit;
}
ha->hw.dma_buf.flags.context = 1;
QL_DPRINT2((dev, "%s: context phys %p virt %p\n",
__func__, (void *)(ha->hw.dma_buf.context.dma_addr),
ha->hw.dma_buf.context.dma_b));
qla_init_cntxt_regions(ha);
return 0;
qla_alloc_dma_exit:
qla_free_dma(ha);
return -1;
}
/*
* Name: qla_init_cntxt_regions
* Function: Initializes Tx/Rx Contexts.
*/
static void
qla_init_cntxt_regions(qla_host_t *ha)
{
qla_hw_t *hw;
q80_tx_cntxt_req_t *tx_cntxt_req;
q80_rcv_cntxt_req_t *rx_cntxt_req;
bus_addr_t phys_addr;
uint32_t i;
device_t dev;
uint32_t size;
dev = ha->pci_dev;
hw = &ha->hw;
hw->tx_ring_base = hw->dma_buf.tx_ring.dma_b;
for (i = 0; i < ha->hw.num_sds_rings; i++)
hw->sds[i].sds_ring_base =
(q80_stat_desc_t *)hw->dma_buf.sds_ring[i].dma_b;
phys_addr = hw->dma_buf.context.dma_addr;
memset((void *)hw->dma_buf.context.dma_b, 0,
ha->hw.dma_buf.context.size);
hw->tx_cntxt_req =
(q80_tx_cntxt_req_t *)hw->dma_buf.context.dma_b;
hw->tx_cntxt_req_paddr = phys_addr;
size = QL_ALIGN((sizeof (q80_tx_cntxt_req_t)), QL_BUFFER_ALIGN);
hw->tx_cntxt_rsp =
(q80_tx_cntxt_rsp_t *)((uint8_t *)hw->tx_cntxt_req + size);
hw->tx_cntxt_rsp_paddr = hw->tx_cntxt_req_paddr + size;
size = QL_ALIGN((sizeof (q80_tx_cntxt_rsp_t)), QL_BUFFER_ALIGN);
hw->rx_cntxt_req =
(q80_rcv_cntxt_req_t *)((uint8_t *)hw->tx_cntxt_rsp + size);
hw->rx_cntxt_req_paddr = hw->tx_cntxt_rsp_paddr + size;
size = QL_ALIGN((sizeof (q80_rcv_cntxt_req_t)), QL_BUFFER_ALIGN);
hw->rx_cntxt_rsp =
(q80_rcv_cntxt_rsp_t *)((uint8_t *)hw->rx_cntxt_req + size);
hw->rx_cntxt_rsp_paddr = hw->rx_cntxt_req_paddr + size;
size = QL_ALIGN((sizeof (q80_rcv_cntxt_rsp_t)), QL_BUFFER_ALIGN);
hw->tx_cons = (uint32_t *)((uint8_t *)hw->rx_cntxt_rsp + size);
hw->tx_cons_paddr = hw->rx_cntxt_rsp_paddr + size;
/*
* Initialize the Transmit Context Request so that we don't need to
* do it everytime we need to create a context
*/
tx_cntxt_req = hw->tx_cntxt_req;
tx_cntxt_req->rsp_dma_addr = qla_host_to_le64(hw->tx_cntxt_rsp_paddr);
tx_cntxt_req->cmd_cons_dma_addr = qla_host_to_le64(hw->tx_cons_paddr);
tx_cntxt_req->caps[0] = qla_host_to_le32((CNTXT_CAP0_BASEFW |
CNTXT_CAP0_LEGACY_MN | CNTXT_CAP0_LSO));
tx_cntxt_req->intr_mode = qla_host_to_le32(CNTXT_INTR_MODE_SHARED);
tx_cntxt_req->phys_addr =
qla_host_to_le64(hw->dma_buf.tx_ring.dma_addr);
tx_cntxt_req->num_entries = qla_host_to_le32(NUM_TX_DESCRIPTORS);
/*
* Initialize the Receive Context Request
*/
rx_cntxt_req = hw->rx_cntxt_req;
rx_cntxt_req->rx_req.rsp_dma_addr =
qla_host_to_le64(hw->rx_cntxt_rsp_paddr);
rx_cntxt_req->rx_req.caps[0] = qla_host_to_le32(CNTXT_CAP0_BASEFW |
CNTXT_CAP0_LEGACY_MN |
CNTXT_CAP0_JUMBO |
CNTXT_CAP0_LRO|
CNTXT_CAP0_HW_LRO);
rx_cntxt_req->rx_req.intr_mode =
qla_host_to_le32(CNTXT_INTR_MODE_SHARED);
rx_cntxt_req->rx_req.rds_intr_mode =
qla_host_to_le32(CNTXT_INTR_MODE_UNIQUE);
rx_cntxt_req->rx_req.rds_ring_offset = 0;
rx_cntxt_req->rx_req.sds_ring_offset = qla_host_to_le32(
(hw->num_rds_rings * sizeof(q80_rq_rds_ring_t)));
rx_cntxt_req->rx_req.num_rds_rings =
qla_host_to_le16(hw->num_rds_rings);
rx_cntxt_req->rx_req.num_sds_rings =
qla_host_to_le16(hw->num_sds_rings);
for (i = 0; i < hw->num_rds_rings; i++) {
rx_cntxt_req->rds_req[i].phys_addr =
qla_host_to_le64(hw->dma_buf.rds_ring[i].dma_addr);
if (i == RDS_RING_INDEX_NORMAL) {
rx_cntxt_req->rds_req[i].buf_size =
qla_host_to_le64(MCLBYTES);
rx_cntxt_req->rds_req[i].size =
qla_host_to_le32(NUM_RX_DESCRIPTORS);
} else {
rx_cntxt_req->rds_req[i].buf_size =
qla_host_to_le64(MJUM9BYTES);
rx_cntxt_req->rds_req[i].size =
qla_host_to_le32(NUM_RX_JUMBO_DESCRIPTORS);
}
}
for (i = 0; i < hw->num_sds_rings; i++) {
rx_cntxt_req->sds_req[i].phys_addr =
qla_host_to_le64(hw->dma_buf.sds_ring[i].dma_addr);
rx_cntxt_req->sds_req[i].size =
qla_host_to_le32(NUM_STATUS_DESCRIPTORS);
rx_cntxt_req->sds_req[i].msi_index = qla_host_to_le16(i);
}
QL_DPRINT2((ha->pci_dev, "%s: tx_cntxt_req = %p paddr %p\n",
__func__, hw->tx_cntxt_req, (void *)hw->tx_cntxt_req_paddr));
QL_DPRINT2((ha->pci_dev, "%s: tx_cntxt_rsp = %p paddr %p\n",
__func__, hw->tx_cntxt_rsp, (void *)hw->tx_cntxt_rsp_paddr));
QL_DPRINT2((ha->pci_dev, "%s: rx_cntxt_req = %p paddr %p\n",
__func__, hw->rx_cntxt_req, (void *)hw->rx_cntxt_req_paddr));
QL_DPRINT2((ha->pci_dev, "%s: rx_cntxt_rsp = %p paddr %p\n",
__func__, hw->rx_cntxt_rsp, (void *)hw->rx_cntxt_rsp_paddr));
QL_DPRINT2((ha->pci_dev, "%s: tx_cons = %p paddr %p\n",
__func__, hw->tx_cons, (void *)hw->tx_cons_paddr));
}
/*
* Name: qla_issue_cmd
* Function: Issues commands on the CDRP interface and returns responses.
*/
static int
qla_issue_cmd(qla_host_t *ha, qla_cdrp_t *cdrp)
{
int ret = 0;
uint32_t signature;
uint32_t count = 400; /* 4 seconds or 400 10ms intervals */
uint32_t data;
device_t dev;
dev = ha->pci_dev;
signature = 0xcafe0000 | 0x0100 | ha->pci_func;
ret = qla_sem_lock(ha, Q8_SEM5_LOCK, 0, (uint32_t)ha->pci_func);
if (ret) {
device_printf(dev, "%s: SEM5_LOCK lock failed\n", __func__);
return (ret);
}
WRITE_OFFSET32(ha, Q8_NX_CDRP_SIGNATURE, signature);
WRITE_OFFSET32(ha, Q8_NX_CDRP_ARG1, (cdrp->cmd_arg1));
WRITE_OFFSET32(ha, Q8_NX_CDRP_ARG2, (cdrp->cmd_arg2));
WRITE_OFFSET32(ha, Q8_NX_CDRP_ARG3, (cdrp->cmd_arg3));
WRITE_OFFSET32(ha, Q8_NX_CDRP_CMD_RSP, cdrp->cmd);
while (count) {
qla_mdelay(__func__, 10);
data = READ_REG32(ha, Q8_NX_CDRP_CMD_RSP);
if ((!(data & 0x80000000)))
break;
count--;
}
if ((!count) || (data != 1))
ret = -1;
cdrp->rsp = READ_REG32(ha, Q8_NX_CDRP_CMD_RSP);
cdrp->rsp_arg1 = READ_REG32(ha, Q8_NX_CDRP_ARG1);
cdrp->rsp_arg2 = READ_REG32(ha, Q8_NX_CDRP_ARG2);
cdrp->rsp_arg3 = READ_REG32(ha, Q8_NX_CDRP_ARG3);
qla_sem_unlock(ha, Q8_SEM5_UNLOCK);
if (ret) {
device_printf(dev, "%s: "
"cmd[0x%08x] = 0x%08x\n"
"\tsig[0x%08x] = 0x%08x\n"
"\targ1[0x%08x] = 0x%08x\n"
"\targ2[0x%08x] = 0x%08x\n"
"\targ3[0x%08x] = 0x%08x\n",
__func__, Q8_NX_CDRP_CMD_RSP, cdrp->cmd,
Q8_NX_CDRP_SIGNATURE, signature,
Q8_NX_CDRP_ARG1, cdrp->cmd_arg1,
Q8_NX_CDRP_ARG2, cdrp->cmd_arg2,
Q8_NX_CDRP_ARG3, cdrp->cmd_arg3);
device_printf(dev, "%s: exit (ret = 0x%x)\n"
"\t\t rsp = 0x%08x\n"
"\t\t arg1 = 0x%08x\n"
"\t\t arg2 = 0x%08x\n"
"\t\t arg3 = 0x%08x\n",
__func__, ret, cdrp->rsp,
cdrp->rsp_arg1, cdrp->rsp_arg2, cdrp->rsp_arg3);
}
return (ret);
}
#define QLA_TX_MIN_FREE 2
/*
* Name: qla_fw_cmd
* Function: Issues firmware control commands on the Tx Ring.
*/
static int
qla_fw_cmd(qla_host_t *ha, void *fw_cmd, uint32_t size)
{
device_t dev;
q80_tx_cmd_t *tx_cmd;
qla_hw_t *hw = &ha->hw;
int count = 100;
dev = ha->pci_dev;
QLA_TX_LOCK(ha);
if (hw->txr_free <= QLA_TX_MIN_FREE) {
while (count--) {
qla_hw_tx_done_locked(ha);
if (hw->txr_free > QLA_TX_MIN_FREE)
break;
QLA_TX_UNLOCK(ha);
qla_mdelay(__func__, 10);
QLA_TX_LOCK(ha);
}
if (hw->txr_free <= QLA_TX_MIN_FREE) {
QLA_TX_UNLOCK(ha);
device_printf(dev, "%s: xmit queue full\n", __func__);
return (-1);
}
}
tx_cmd = &hw->tx_ring_base[hw->txr_next];
bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
bcopy(fw_cmd, tx_cmd, size);
hw->txr_next = (hw->txr_next + 1) & (NUM_TX_DESCRIPTORS - 1);
hw->txr_free--;
QL_UPDATE_TX_PRODUCER_INDEX(ha, hw->txr_next);
QLA_TX_UNLOCK(ha);
return (0);
}
/*
* Name: qla_config_rss
* Function: Configure RSS for the context/interface.
*/
const uint64_t rss_key[] = { 0xbeac01fa6a42b73bULL, 0x8030f20c77cb2da3ULL,
0xae7b30b4d0ca2bcbULL, 0x43a38fb04167253dULL,
0x255b0ec26d5a56daULL };
static int
qla_config_rss(qla_host_t *ha, uint16_t cntxt_id)
{
qla_fw_cds_config_rss_t rss_config;
int ret, i;
bzero(&rss_config, sizeof(qla_fw_cds_config_rss_t));
rss_config.hdr.cmd = Q8_FWCD_CNTRL_REQ;
rss_config.hdr.opcode = Q8_FWCD_OPCODE_CONFIG_RSS;
rss_config.hdr.cntxt_id = cntxt_id;
rss_config.hash_type = (Q8_FWCD_RSS_HASH_TYPE_IPV4_TCP_IP |
Q8_FWCD_RSS_HASH_TYPE_IPV6_TCP_IP);
rss_config.flags = Q8_FWCD_RSS_FLAGS_ENABLE_RSS;
rss_config.ind_tbl_mask = 0x7;
for (i = 0; i < 5; i++)
rss_config.rss_key[i] = rss_key[i];
ret = qla_fw_cmd(ha, &rss_config, sizeof(qla_fw_cds_config_rss_t));
return ret;
}
/*
* Name: qla_config_intr_coalesce
* Function: Configure Interrupt Coalescing.
*/
static int
qla_config_intr_coalesce(qla_host_t *ha, uint16_t cntxt_id, int tenable)
{
qla_fw_cds_config_intr_coalesc_t intr_coalesce;
int ret;
bzero(&intr_coalesce, sizeof(qla_fw_cds_config_intr_coalesc_t));
intr_coalesce.hdr.cmd = Q8_FWCD_CNTRL_REQ;
intr_coalesce.hdr.opcode = Q8_FWCD_OPCODE_CONFIG_INTR_COALESCING;
intr_coalesce.hdr.cntxt_id = cntxt_id;
intr_coalesce.flags = 0x04;
intr_coalesce.max_rcv_pkts = 256;
intr_coalesce.max_rcv_usecs = 3;
intr_coalesce.max_snd_pkts = 64;
intr_coalesce.max_snd_usecs = 4;
if (tenable) {
intr_coalesce.usecs_to = 1000; /* 1 millisecond */
intr_coalesce.timer_type = Q8_FWCMD_INTR_COALESC_TIMER_PERIODIC;
intr_coalesce.sds_ring_bitmask =
Q8_FWCMD_INTR_COALESC_SDS_RING_0;
}
ret = qla_fw_cmd(ha, &intr_coalesce,
sizeof(qla_fw_cds_config_intr_coalesc_t));
return ret;
}
/*
* Name: qla_config_mac_addr
* Function: binds a MAC address to the context/interface.
* Can be unicast, multicast or broadcast.
*/
static int
qla_config_mac_addr(qla_host_t *ha, uint8_t *mac_addr, uint16_t cntxt_id,
uint32_t add_multi)
{
qla_fw_cds_config_mac_addr_t mac_config;
int ret;
// device_printf(ha->pci_dev,
// "%s: mac_addr %02x:%02x:%02x:%02x:%02x:%02x\n", __func__,
// mac_addr[0], mac_addr[1], mac_addr[2],
// mac_addr[3], mac_addr[4], mac_addr[5]);
bzero(&mac_config, sizeof(qla_fw_cds_config_mac_addr_t));
mac_config.hdr.cmd = Q8_FWCD_CNTRL_REQ;
mac_config.hdr.opcode = Q8_FWCD_OPCODE_CONFIG_MAC_ADDR;
mac_config.hdr.cntxt_id = cntxt_id;
if (add_multi)
mac_config.cmd = Q8_FWCD_ADD_MAC_ADDR;
else
mac_config.cmd = Q8_FWCD_DEL_MAC_ADDR;
bcopy(mac_addr, mac_config.mac_addr,6);
ret = qla_fw_cmd(ha, &mac_config, sizeof(qla_fw_cds_config_mac_addr_t));
return ret;
}
/*
* Name: qla_set_mac_rcv_mode
* Function: Enable/Disable AllMulticast and Promiscous Modes.
*/
static int
qla_set_mac_rcv_mode(qla_host_t *ha, uint16_t cntxt_id, uint32_t mode)
{
qla_set_mac_rcv_mode_t rcv_mode;
int ret;
bzero(&rcv_mode, sizeof(qla_set_mac_rcv_mode_t));
rcv_mode.hdr.cmd = Q8_FWCD_CNTRL_REQ;
rcv_mode.hdr.opcode = Q8_FWCD_OPCODE_CONFIG_MAC_RCV_MODE;
rcv_mode.hdr.cntxt_id = cntxt_id;
rcv_mode.mode = mode;
ret = qla_fw_cmd(ha, &rcv_mode, sizeof(qla_set_mac_rcv_mode_t));
return ret;
}
void
qla_set_promisc(qla_host_t *ha)
{
(void)qla_set_mac_rcv_mode(ha,
(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id,
Q8_MAC_RCV_ENABLE_PROMISCUOUS);
}
void
qla_set_allmulti(qla_host_t *ha)
{
(void)qla_set_mac_rcv_mode(ha,
(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id,
Q8_MAC_RCV_ENABLE_ALLMULTI);
}
void
qla_reset_promisc_allmulti(qla_host_t *ha)
{
(void)qla_set_mac_rcv_mode(ha,
(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id,
Q8_MAC_RCV_RESET_PROMISC_ALLMULTI);
}
/*
* Name: qla_config_ipv4_addr
* Function: Configures the Destination IP Addr for LRO.
*/
void
qla_config_ipv4_addr(qla_host_t *ha, uint32_t ipv4_addr)
{
qla_config_ipv4_t ip_conf;
bzero(&ip_conf, sizeof(qla_config_ipv4_t));
ip_conf.hdr.cmd = Q8_FWCD_CNTRL_REQ;
ip_conf.hdr.opcode = Q8_FWCD_OPCODE_CONFIG_IPADDR;
ip_conf.hdr.cntxt_id = (ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id;
ip_conf.cmd = (uint64_t)Q8_CONFIG_CMD_IP_ENABLE;
ip_conf.ipv4_addr = (uint64_t)ipv4_addr;
(void)qla_fw_cmd(ha, &ip_conf, sizeof(qla_config_ipv4_t));
return;
}
/*
* Name: qla_tx_tso
* Function: Checks if the packet to be transmitted is a candidate for
* Large TCP Segment Offload. If yes, the appropriate fields in the Tx
* Ring Structure are plugged in.
*/
static int
qla_tx_tso(qla_host_t *ha, struct mbuf *mp, q80_tx_cmd_t *tx_cmd)
{
struct ether_vlan_header *eh;
struct ip *ip = NULL;
struct tcphdr *th = NULL;
uint32_t ehdrlen, hdrlen, ip_hlen, tcp_hlen;
uint16_t etype, opcode, offload = 1;
device_t dev;
dev = ha->pci_dev;
if (mp->m_pkthdr.len <= ha->max_frame_size)
return (-1);
eh = mtod(mp, struct ether_vlan_header *);
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
etype = ntohs(eh->evl_proto);
} else {
ehdrlen = ETHER_HDR_LEN;
etype = ntohs(eh->evl_encap_proto);
}
switch (etype) {
case ETHERTYPE_IP:
ip = (struct ip *)(mp->m_data + ehdrlen);
ip_hlen = ip->ip_hl << 2;
opcode = Q8_TX_CMD_OP_XMT_TCP_LSO;
if (ip->ip_p != IPPROTO_TCP) {
offload = 0;
} else
th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
break;
default:
QL_DPRINT8((dev, "%s: type!=ip\n", __func__));
offload = 0;
break;
}
if (!offload)
return (-1);
tcp_hlen = th->th_off << 2;
hdrlen = ehdrlen + ip_hlen + tcp_hlen;
if (mp->m_len < hdrlen) {
device_printf(dev, "%s: (mp->m_len < hdrlen)\n", __func__);
return (-1);
}
tx_cmd->flags_opcode = opcode ;
tx_cmd->tcp_hdr_off = ip_hlen + ehdrlen;
tx_cmd->ip_hdr_off = ehdrlen;
tx_cmd->mss = mp->m_pkthdr.tso_segsz;
tx_cmd->total_hdr_len = hdrlen;
/* Check for Multicast least significant bit of MSB == 1 */
if (eh->evl_dhost[0] & 0x01) {
tx_cmd->flags_opcode = Q8_TX_CMD_FLAGS_MULTICAST;
}
return (0);
}
/*
* Name: qla_tx_chksum
* Function: Checks if the packet to be transmitted is a candidate for
* TCP/UDP Checksum offload. If yes, the appropriate fields in the Tx
* Ring Structure are plugged in.
*/
static int
qla_tx_chksum(qla_host_t *ha, struct mbuf *mp, q80_tx_cmd_t *tx_cmd)
{
struct ether_vlan_header *eh;
struct ip *ip;
struct ip6_hdr *ip6;
uint32_t ehdrlen, ip_hlen;
uint16_t etype, opcode, offload = 1;
device_t dev;
dev = ha->pci_dev;
if ((mp->m_pkthdr.csum_flags & (CSUM_TCP|CSUM_UDP)) == 0)
return (-1);
eh = mtod(mp, struct ether_vlan_header *);
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
etype = ntohs(eh->evl_proto);
} else {
ehdrlen = ETHER_HDR_LEN;
etype = ntohs(eh->evl_encap_proto);
}
switch (etype) {
case ETHERTYPE_IP:
ip = (struct ip *)(mp->m_data + ehdrlen);
ip_hlen = ip->ip_hl << 2;
if (mp->m_len < (ehdrlen + ip_hlen)) {
device_printf(dev, "%s: ipv4 mlen\n", __func__);
offload = 0;
break;
}
if (ip->ip_p == IPPROTO_TCP)
opcode = Q8_TX_CMD_OP_XMT_TCP_CHKSUM;
else if (ip->ip_p == IPPROTO_UDP)
opcode = Q8_TX_CMD_OP_XMT_UDP_CHKSUM;
else {
device_printf(dev, "%s: ipv4\n", __func__);
offload = 0;
}
break;
case ETHERTYPE_IPV6:
ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen);
ip_hlen = sizeof(struct ip6_hdr);
if (mp->m_len < (ehdrlen + ip_hlen)) {
device_printf(dev, "%s: ipv6 mlen\n", __func__);
offload = 0;
break;
}
if (ip6->ip6_nxt == IPPROTO_TCP)
opcode = Q8_TX_CMD_OP_XMT_TCP_CHKSUM_IPV6;
else if (ip6->ip6_nxt == IPPROTO_UDP)
opcode = Q8_TX_CMD_OP_XMT_UDP_CHKSUM_IPV6;
else {
device_printf(dev, "%s: ipv6\n", __func__);
offload = 0;
}
break;
default:
offload = 0;
break;
}
if (!offload)
return (-1);
tx_cmd->flags_opcode = opcode;
tx_cmd->tcp_hdr_off = ip_hlen + ehdrlen;
return (0);
}
/*
* Name: qla_hw_send
* Function: Transmits a packet. It first checks if the packet is a
* candidate for Large TCP Segment Offload and then for UDP/TCP checksum
* offload. If either of these creteria are not met, it is transmitted
* as a regular ethernet frame.
*/
int
qla_hw_send(qla_host_t *ha, bus_dma_segment_t *segs, int nsegs,
uint32_t *tx_idx, struct mbuf *mp)
{
struct ether_vlan_header *eh;
qla_hw_t *hw = &ha->hw;
q80_tx_cmd_t *tx_cmd, tso_cmd;
bus_dma_segment_t *c_seg;
uint32_t num_tx_cmds, hdr_len = 0;
uint32_t total_length = 0, bytes, tx_cmd_count = 0;
device_t dev;
int i;
dev = ha->pci_dev;
/*
* Always make sure there is atleast one empty slot in the tx_ring
* tx_ring is considered full when there only one entry available
*/
num_tx_cmds = (nsegs + (Q8_TX_CMD_MAX_SEGMENTS - 1)) >> 2;
total_length = mp->m_pkthdr.len;
if (total_length > QLA_MAX_TSO_FRAME_SIZE) {
device_printf(dev, "%s: total length exceeds maxlen(%d)\n",
__func__, total_length);
return (-1);
}
bzero((void *)&tso_cmd, sizeof(q80_tx_cmd_t));
if (qla_tx_tso(ha, mp, &tso_cmd) == 0) {
/* find the additional tx_cmd descriptors required */
hdr_len = tso_cmd.total_hdr_len;
bytes = sizeof(q80_tx_cmd_t) - Q8_TX_CMD_TSO_ALIGN;
bytes = QL_MIN(bytes, hdr_len);
num_tx_cmds++;
hdr_len -= bytes;
while (hdr_len) {
bytes = QL_MIN((sizeof(q80_tx_cmd_t)), hdr_len);
hdr_len -= bytes;
num_tx_cmds++;
}
hdr_len = tso_cmd.total_hdr_len;
}
if (hw->txr_free <= (num_tx_cmds + QLA_TX_MIN_FREE)) {
qla_hw_tx_done_locked(ha);
if (hw->txr_free <= (num_tx_cmds + QLA_TX_MIN_FREE)) {
QL_DPRINT8((dev, "%s: (hw->txr_free <= "
"(num_tx_cmds + QLA_TX_MIN_FREE))\n",
__func__));
return (-1);
}
}
*tx_idx = hw->txr_next;
tx_cmd = &hw->tx_ring_base[hw->txr_next];
if (hdr_len == 0) {
if ((nsegs > Q8_TX_MAX_SEGMENTS) ||
(mp->m_pkthdr.len > ha->max_frame_size)){
/* TBD: copy into private buffer and send it */
device_printf(dev,
"%s: (nsegs[%d, %d, 0x%x] > Q8_TX_MAX_SEGMENTS)\n",
__func__, nsegs, mp->m_pkthdr.len,
mp->m_pkthdr.csum_flags);
qla_dump_buf8(ha, "qla_hw_send: wrong pkt",
mtod(mp, char *), mp->m_len);
return (EINVAL);
}
bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
if (qla_tx_chksum(ha, mp, tx_cmd) != 0)
tx_cmd->flags_opcode = Q8_TX_CMD_OP_XMT_ETHER;
} else {
bcopy(&tso_cmd, tx_cmd, sizeof(q80_tx_cmd_t));
}
eh = mtod(mp, struct ether_vlan_header *);
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN))
tx_cmd->flags_opcode |= Q8_TX_CMD_FLAGS_VLAN_TAGGED;
else if (mp->m_flags & M_VLANTAG) {
tx_cmd->flags_opcode |= (Q8_TX_CMD_FLAGS_VLAN_TAGGED |
Q8_TX_CMD_FLAGS_HW_VLAN_ID);
tx_cmd->vlan_tci = mp->m_pkthdr.ether_vtag;
}
tx_cmd->n_bufs = (uint8_t)nsegs;
tx_cmd->data_len_lo = (uint8_t)(total_length & 0xFF);
tx_cmd->data_len_hi = qla_host_to_le16(((uint16_t)(total_length >> 8)));
tx_cmd->port_cntxtid = Q8_TX_CMD_PORT_CNXTID(ha->pci_func);
c_seg = segs;
while (1) {
for (i = 0; ((i < Q8_TX_CMD_MAX_SEGMENTS) && nsegs); i++) {
switch (i) {
case 0:
tx_cmd->buf1_addr = c_seg->ds_addr;
tx_cmd->buf1_len = c_seg->ds_len;
break;
case 1:
tx_cmd->buf2_addr = c_seg->ds_addr;
tx_cmd->buf2_len = c_seg->ds_len;
break;
case 2:
tx_cmd->buf3_addr = c_seg->ds_addr;
tx_cmd->buf3_len = c_seg->ds_len;
break;
case 3:
tx_cmd->buf4_addr = c_seg->ds_addr;
tx_cmd->buf4_len = c_seg->ds_len;
break;
}
c_seg++;
nsegs--;
}
hw->txr_next = (hw->txr_next + 1) & (NUM_TX_DESCRIPTORS - 1);
tx_cmd_count++;
if (!nsegs)
break;
tx_cmd = &hw->tx_ring_base[hw->txr_next];
bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
}
if (hdr_len) {
/* TSO : Copy the header in the following tx cmd descriptors */
uint8_t *src, *dst;
src = (uint8_t *)eh;
tx_cmd = &hw->tx_ring_base[hw->txr_next];
bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
bytes = sizeof(q80_tx_cmd_t) - Q8_TX_CMD_TSO_ALIGN;
bytes = QL_MIN(bytes, hdr_len);
dst = (uint8_t *)tx_cmd + Q8_TX_CMD_TSO_ALIGN;
if (mp->m_flags & M_VLANTAG) {
/* first copy the src/dst MAC addresses */
bcopy(src, dst, (ETHER_ADDR_LEN * 2));
dst += (ETHER_ADDR_LEN * 2);
src += (ETHER_ADDR_LEN * 2);
hdr_len -= (ETHER_ADDR_LEN * 2);
*((uint16_t *)dst) = htons(ETHERTYPE_VLAN);
dst += 2;
*((uint16_t *)dst) = mp->m_pkthdr.ether_vtag;
dst += 2;
bytes -= ((ETHER_ADDR_LEN * 2) + 4);
bcopy(src, dst, bytes);
src += bytes;
hdr_len -= bytes;
} else {
bcopy(src, dst, bytes);
src += bytes;
hdr_len -= bytes;
}
hw->txr_next = (hw->txr_next + 1) & (NUM_TX_DESCRIPTORS - 1);
tx_cmd_count++;
while (hdr_len) {
tx_cmd = &hw->tx_ring_base[hw->txr_next];
bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
bytes = QL_MIN((sizeof(q80_tx_cmd_t)), hdr_len);
bcopy(src, tx_cmd, bytes);
src += bytes;
hdr_len -= bytes;
hw->txr_next =
(hw->txr_next + 1) & (NUM_TX_DESCRIPTORS - 1);
tx_cmd_count++;
}
}
hw->txr_free = hw->txr_free - tx_cmd_count;
QL_UPDATE_TX_PRODUCER_INDEX(ha, hw->txr_next);
QL_DPRINT8((dev, "%s: return\n", __func__));
return (0);
}
/*
* Name: qla_del_hw_if
* Function: Destroys the hardware specific entities corresponding to an
* Ethernet Interface
*/
void
qla_del_hw_if(qla_host_t *ha)
{
int i;
for (i = 0; i < ha->hw.num_sds_rings; i++)
QL_DISABLE_INTERRUPTS(ha, i);
qla_del_rcv_cntxt(ha);
qla_del_xmt_cntxt(ha);
ha->hw.flags.lro = 0;
}
/*
* Name: qla_init_hw_if
* Function: Creates the hardware specific entities corresponding to an
* Ethernet Interface - Transmit and Receive Contexts. Sets the MAC Address
* corresponding to the interface. Enables LRO if allowed.
*/
int
qla_init_hw_if(qla_host_t *ha)
{
device_t dev;
int i;
uint8_t bcast_mac[6];
qla_get_hw_caps(ha);
dev = ha->pci_dev;
for (i = 0; i < ha->hw.num_sds_rings; i++) {
bzero(ha->hw.dma_buf.sds_ring[i].dma_b,
ha->hw.dma_buf.sds_ring[i].size);
}
/*
* Create Receive Context
*/
if (qla_init_rcv_cntxt(ha)) {
return (-1);
}
ha->hw.rx_next = NUM_RX_DESCRIPTORS - 2;
ha->hw.rxj_next = NUM_RX_JUMBO_DESCRIPTORS - 2;
ha->hw.rx_in = ha->hw.rxj_in = 0;
/* Update the RDS Producer Indices */
QL_UPDATE_RDS_PRODUCER_INDEX(ha, 0, ha->hw.rx_next);
QL_UPDATE_RDS_PRODUCER_INDEX(ha, 1, ha->hw.rxj_next);
/*
* Create Transmit Context
*/
if (qla_init_xmt_cntxt(ha)) {
qla_del_rcv_cntxt(ha);
return (-1);
}
qla_config_mac_addr(ha, ha->hw.mac_addr,
(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id, 1);
bcast_mac[0] = 0xFF; bcast_mac[1] = 0xFF; bcast_mac[2] = 0xFF;
bcast_mac[3] = 0xFF; bcast_mac[4] = 0xFF; bcast_mac[5] = 0xFF;
qla_config_mac_addr(ha, bcast_mac,
(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id, 1);
qla_config_rss(ha, (ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id);
qla_config_intr_coalesce(ha, (ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id, 0);
for (i = 0; i < ha->hw.num_sds_rings; i++)
QL_ENABLE_INTERRUPTS(ha, i);
return (0);
}
/*
* Name: qla_init_rcv_cntxt
* Function: Creates the Receive Context.
*/
static int
qla_init_rcv_cntxt(qla_host_t *ha)
{
device_t dev;
qla_cdrp_t cdrp;
q80_rcv_cntxt_rsp_t *rsp;
q80_stat_desc_t *sdesc;
bus_addr_t phys_addr;
int i, j;
qla_hw_t *hw = &ha->hw;
dev = ha->pci_dev;
/*
* Create Receive Context
*/
for (i = 0; i < hw->num_sds_rings; i++) {
sdesc = (q80_stat_desc_t *)&hw->sds[i].sds_ring_base[0];
for (j = 0; j < NUM_STATUS_DESCRIPTORS; j++) {
sdesc->data[0] =
Q8_STAT_DESC_SET_OWNER(Q8_STAT_DESC_OWNER_FW);
}
}
phys_addr = ha->hw.rx_cntxt_req_paddr;
bzero(&cdrp, sizeof(qla_cdrp_t));
cdrp.cmd = Q8_CMD_CREATE_RX_CNTXT;
cdrp.cmd_arg1 = (uint32_t)(phys_addr >> 32);
cdrp.cmd_arg2 = (uint32_t)(phys_addr);
cdrp.cmd_arg3 = (uint32_t)(sizeof (q80_rcv_cntxt_req_t));
if (qla_issue_cmd(ha, &cdrp)) {
device_printf(dev, "%s: Q8_CMD_CREATE_RX_CNTXT failed\n",
__func__);
return (-1);
} else {
rsp = ha->hw.rx_cntxt_rsp;
QL_DPRINT2((dev, "%s: rcv cntxt successful"
" rds_ring_offset = 0x%08x"
" sds_ring_offset = 0x%08x"
" cntxt_state = 0x%08x"
" funcs_per_port = 0x%08x"
" num_rds_rings = 0x%04x"
" num_sds_rings = 0x%04x"
" cntxt_id = 0x%04x"
" phys_port = 0x%02x"
" virt_port = 0x%02x\n",
__func__,
rsp->rx_rsp.rds_ring_offset,
rsp->rx_rsp.sds_ring_offset,
rsp->rx_rsp.cntxt_state,
rsp->rx_rsp.funcs_per_port,
rsp->rx_rsp.num_rds_rings,
rsp->rx_rsp.num_sds_rings,
rsp->rx_rsp.cntxt_id,
rsp->rx_rsp.phys_port,
rsp->rx_rsp.virt_port));
for (i = 0; i < ha->hw.num_rds_rings; i++) {
QL_DPRINT2((dev,
"%s: rcv cntxt rds[%i].producer_reg = 0x%08x\n",
__func__, i, rsp->rds_rsp[i].producer_reg));
}
for (i = 0; i < ha->hw.num_sds_rings; i++) {
QL_DPRINT2((dev,
"%s: rcv cntxt sds[%i].consumer_reg = 0x%08x"
" sds[%i].intr_mask_reg = 0x%08x\n",
__func__, i, rsp->sds_rsp[i].consumer_reg,
i, rsp->sds_rsp[i].intr_mask_reg));
}
}
ha->hw.flags.init_rx_cnxt = 1;
return (0);
}
/*
* Name: qla_del_rcv_cntxt
* Function: Destroys the Receive Context.
*/
void
qla_del_rcv_cntxt(qla_host_t *ha)
{
qla_cdrp_t cdrp;
device_t dev = ha->pci_dev;
if (!ha->hw.flags.init_rx_cnxt)
return;
bzero(&cdrp, sizeof(qla_cdrp_t));
cdrp.cmd = Q8_CMD_DESTROY_RX_CNTXT;
cdrp.cmd_arg1 = (uint32_t) (ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id;
if (qla_issue_cmd(ha, &cdrp)) {
device_printf(dev, "%s: Q8_CMD_DESTROY_RX_CNTXT failed\n",
__func__);
}
ha->hw.flags.init_rx_cnxt = 0;
}
/*
* Name: qla_init_xmt_cntxt
* Function: Creates the Transmit Context.
*/
static int
qla_init_xmt_cntxt(qla_host_t *ha)
{
bus_addr_t phys_addr;
device_t dev;
q80_tx_cntxt_rsp_t *tx_rsp;
qla_cdrp_t cdrp;
qla_hw_t *hw = &ha->hw;
dev = ha->pci_dev;
/*
* Create Transmit Context
*/
phys_addr = ha->hw.tx_cntxt_req_paddr;
tx_rsp = ha->hw.tx_cntxt_rsp;
hw->txr_comp = hw->txr_next = 0;
*(hw->tx_cons) = 0;
bzero(&cdrp, sizeof(qla_cdrp_t));
cdrp.cmd = Q8_CMD_CREATE_TX_CNTXT;
cdrp.cmd_arg1 = (uint32_t)(phys_addr >> 32);
cdrp.cmd_arg2 = (uint32_t)(phys_addr);
cdrp.cmd_arg3 = (uint32_t)(sizeof (q80_tx_cntxt_req_t));
if (qla_issue_cmd(ha, &cdrp)) {
device_printf(dev, "%s: Q8_CMD_CREATE_TX_CNTXT failed\n",
__func__);
return (-1);
} else {
ha->hw.tx_prod_reg = tx_rsp->producer_reg;
QL_DPRINT2((dev, "%s: tx cntxt successful"
" cntxt_state = 0x%08x "
" cntxt_id = 0x%04x "
" phys_port_id = 0x%02x "
" virt_port_id = 0x%02x "
" producer_reg = 0x%08x "
" intr_mask_reg = 0x%08x\n",
__func__, tx_rsp->cntxt_state, tx_rsp->cntxt_id,
tx_rsp->phys_port_id, tx_rsp->virt_port_id,
tx_rsp->producer_reg, tx_rsp->intr_mask_reg));
}
ha->hw.txr_free = NUM_TX_DESCRIPTORS;
ha->hw.flags.init_tx_cnxt = 1;
return (0);
}
/*
* Name: qla_del_xmt_cntxt
* Function: Destroys the Transmit Context.
*/
static void
qla_del_xmt_cntxt(qla_host_t *ha)
{
qla_cdrp_t cdrp;
device_t dev = ha->pci_dev;
if (!ha->hw.flags.init_tx_cnxt)
return;
bzero(&cdrp, sizeof(qla_cdrp_t));
cdrp.cmd = Q8_CMD_DESTROY_TX_CNTXT;
cdrp.cmd_arg1 = (uint32_t) (ha->hw.tx_cntxt_rsp)->cntxt_id;
if (qla_issue_cmd(ha, &cdrp)) {
device_printf(dev, "%s: Q8_CMD_DESTROY_TX_CNTXT failed\n",
__func__);
}
ha->hw.flags.init_tx_cnxt = 0;
}
/*
* Name: qla_get_max_rds
* Function: Returns the maximum number of Receive Descriptor Rings per context.
*/
static int
qla_get_max_rds(qla_host_t *ha)
{
qla_cdrp_t cdrp;
device_t dev;
dev = ha->pci_dev;
bzero(&cdrp, sizeof(qla_cdrp_t));
cdrp.cmd = Q8_CMD_RD_MAX_RDS_PER_CNTXT;
if (qla_issue_cmd(ha, &cdrp)) {
device_printf(dev, "%s: Q8_CMD_RD_MAX_RDS_PER_CNTXT failed\n",
__func__);
return (-1);
} else {
ha->hw.max_rds_per_cntxt = cdrp.rsp_arg1;
QL_DPRINT2((dev, "%s: max_rds_per_context 0x%08x\n",
__func__, ha->hw.max_rds_per_cntxt));
}
return 0;
}
/*
* Name: qla_get_max_sds
* Function: Returns the maximum number of Status Descriptor Rings per context.
*/
static int
qla_get_max_sds(qla_host_t *ha)
{
qla_cdrp_t cdrp;
device_t dev;
dev = ha->pci_dev;
bzero(&cdrp, sizeof(qla_cdrp_t));
cdrp.cmd = Q8_CMD_RD_MAX_SDS_PER_CNTXT;
if (qla_issue_cmd(ha, &cdrp)) {
device_printf(dev, "%s: Q8_CMD_RD_MAX_RDS_PER_CNTXT failed\n",
__func__);
return (-1);
} else {
ha->hw.max_sds_per_cntxt = cdrp.rsp_arg1;
QL_DPRINT2((dev, "%s: max_sds_per_context 0x%08x\n",
__func__, ha->hw.max_sds_per_cntxt));
}
return 0;
}
/*
* Name: qla_get_max_rules
* Function: Returns the maximum number of Rules per context.
*/
static int
qla_get_max_rules(qla_host_t *ha)
{
qla_cdrp_t cdrp;
device_t dev;
dev = ha->pci_dev;
bzero(&cdrp, sizeof(qla_cdrp_t));
cdrp.cmd = Q8_CMD_RD_MAX_RULES_PER_CNTXT;
if (qla_issue_cmd(ha, &cdrp)) {
device_printf(dev, "%s: Q8_CMD_RD_MAX_RULES_PER_CNTXT failed\n",
__func__);
return (-1);
} else {
ha->hw.max_rules_per_cntxt = cdrp.rsp_arg1;
QL_DPRINT2((dev, "%s: max_rules_per_cntxt 0x%08x\n",
__func__, ha->hw.max_rules_per_cntxt));
}
return 0;
}
/*
* Name: qla_get_max_rcv_cntxts
* Function: Returns the maximum number of Receive Contexts supported.
*/
static int
qla_get_max_rcv_cntxts(qla_host_t *ha)
{
qla_cdrp_t cdrp;
device_t dev;
dev = ha->pci_dev;
bzero(&cdrp, sizeof(qla_cdrp_t));
cdrp.cmd = Q8_CMD_RD_MAX_RX_CNTXT;
if (qla_issue_cmd(ha, &cdrp)) {
device_printf(dev, "%s: Q8_CMD_RD_MAX_RX_CNTXT failed\n",
__func__);
return (-1);
} else {
ha->hw.max_rcv_cntxts = cdrp.rsp_arg1;
QL_DPRINT2((dev, "%s: max_rcv_cntxts 0x%08x\n",
__func__, ha->hw.max_rcv_cntxts));
}
return 0;
}
/*
* Name: qla_get_max_tx_cntxts
* Function: Returns the maximum number of Transmit Contexts supported.
*/
static int
qla_get_max_tx_cntxts(qla_host_t *ha)
{
qla_cdrp_t cdrp;
device_t dev;
dev = ha->pci_dev;
bzero(&cdrp, sizeof(qla_cdrp_t));
cdrp.cmd = Q8_CMD_RD_MAX_TX_CNTXT;
if (qla_issue_cmd(ha, &cdrp)) {
device_printf(dev, "%s: Q8_CMD_RD_MAX_TX_CNTXT failed\n",
__func__);
return (-1);
} else {
ha->hw.max_xmt_cntxts = cdrp.rsp_arg1;
QL_DPRINT2((dev, "%s: max_xmt_cntxts 0x%08x\n",
__func__, ha->hw.max_xmt_cntxts));
}
return 0;
}
/*
* Name: qla_get_max_mtu
* Function: Returns the MTU supported for a context.
*/
static int
qla_get_max_mtu(qla_host_t *ha)
{
qla_cdrp_t cdrp;
device_t dev;
dev = ha->pci_dev;
bzero(&cdrp, sizeof(qla_cdrp_t));
cdrp.cmd = Q8_CMD_RD_MAX_MTU;
if (qla_issue_cmd(ha, &cdrp)) {
device_printf(dev, "%s: Q8_CMD_RD_MAX_MTU failed\n", __func__);
return (-1);
} else {
ha->hw.max_mtu = cdrp.rsp_arg1;
QL_DPRINT2((dev, "%s: max_mtu 0x%08x\n", __func__,
ha->hw.max_mtu));
}
return 0;
}
/*
* Name: qla_set_max_mtu
* Function:
* Sets the maximum transfer unit size for the specified rcv context.
*/
int
qla_set_max_mtu(qla_host_t *ha, uint32_t mtu, uint16_t cntxt_id)
{
qla_cdrp_t cdrp;
device_t dev;
dev = ha->pci_dev;
bzero(&cdrp, sizeof(qla_cdrp_t));
cdrp.cmd = Q8_CMD_SET_MTU;
cdrp.cmd_arg1 = (uint32_t)cntxt_id;
cdrp.cmd_arg2 = mtu;
if (qla_issue_cmd(ha, &cdrp)) {
device_printf(dev, "%s: Q8_CMD_RD_MAX_MTU failed\n", __func__);
return (-1);
} else {
ha->hw.max_mtu = cdrp.rsp_arg1;
}
return 0;
}
/*
* Name: qla_get_max_lro
* Function: Returns the maximum number of TCP Connection which can be supported
* with LRO.
*/
static int
qla_get_max_lro(qla_host_t *ha)
{
qla_cdrp_t cdrp;
device_t dev;
dev = ha->pci_dev;
bzero(&cdrp, sizeof(qla_cdrp_t));
cdrp.cmd = Q8_CMD_RD_MAX_LRO;
if (qla_issue_cmd(ha, &cdrp)) {
device_printf(dev, "%s: Q8_CMD_RD_MAX_LRO failed\n", __func__);
return (-1);
} else {
ha->hw.max_lro = cdrp.rsp_arg1;
QL_DPRINT2((dev, "%s: max_lro 0x%08x\n", __func__,
ha->hw.max_lro));
}
return 0;
}
/*
* Name: qla_get_flow_control
* Function: Returns the Receive/Transmit Flow Control (PAUSE) settings for
* PCI function.
*/
static int
qla_get_flow_control(qla_host_t *ha)
{
qla_cdrp_t cdrp;
device_t dev;
dev = ha->pci_dev;
bzero(&cdrp, sizeof(qla_cdrp_t));
cdrp.cmd = Q8_CMD_GET_FLOW_CNTRL;
if (qla_issue_cmd(ha, &cdrp)) {
device_printf(dev, "%s: Q8_CMD_GET_FLOW_CNTRL failed\n",
__func__);
return (-1);
} else {
QL_DPRINT2((dev, "%s: flow control 0x%08x\n", __func__,
cdrp.rsp_arg1));
}
return 0;
}
/*
* Name: qla_get_flow_control
* Function: Retrieves hardware capabilities
*/
void
qla_get_hw_caps(qla_host_t *ha)
{
//qla_read_mac_addr(ha);
qla_get_max_rds(ha);
qla_get_max_sds(ha);
qla_get_max_rules(ha);
qla_get_max_rcv_cntxts(ha);
qla_get_max_tx_cntxts(ha);
qla_get_max_mtu(ha);
qla_get_max_lro(ha);
qla_get_flow_control(ha);
return;
}
/*
* Name: qla_hw_set_multi
* Function: Sets the Multicast Addresses provided the host O.S into the
* hardware (for the given interface)
*/
void
qla_hw_set_multi(qla_host_t *ha, uint8_t *mta, uint32_t mcnt,
uint32_t add_multi)
{
q80_rcv_cntxt_rsp_t *rsp;
int i;
rsp = ha->hw.rx_cntxt_rsp;
for (i = 0; i < mcnt; i++) {
qla_config_mac_addr(ha, mta, rsp->rx_rsp.cntxt_id, add_multi);
mta += Q8_MAC_ADDR_LEN;
}
return;
}
/*
* Name: qla_hw_tx_done_locked
* Function: Handle Transmit Completions
*/
static void
qla_hw_tx_done_locked(qla_host_t *ha)
{
qla_tx_buf_t *txb;
qla_hw_t *hw = &ha->hw;
uint32_t comp_idx, comp_count = 0;
/* retrieve index of last entry in tx ring completed */
comp_idx = qla_le32_to_host(*(hw->tx_cons));
while (comp_idx != hw->txr_comp) {
txb = &ha->tx_buf[hw->txr_comp];
hw->txr_comp++;
if (hw->txr_comp == NUM_TX_DESCRIPTORS)
hw->txr_comp = 0;
comp_count++;
if (txb->m_head) {
bus_dmamap_sync(ha->tx_tag, txb->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ha->tx_tag, txb->map);
bus_dmamap_destroy(ha->tx_tag, txb->map);
m_freem(txb->m_head);
txb->map = (bus_dmamap_t)0;
txb->m_head = NULL;
}
}
hw->txr_free += comp_count;
QL_DPRINT8((ha->pci_dev, "%s: return [c,f, p, pn][%d, %d, %d, %d]\n", __func__,
hw->txr_comp, hw->txr_free, hw->txr_next, READ_REG32(ha, (ha->hw.tx_prod_reg + 0x1b2000))));
return;
}
/*
* Name: qla_hw_tx_done
* Function: Handle Transmit Completions
*/
void
qla_hw_tx_done(qla_host_t *ha)
{
if (!mtx_trylock(&ha->tx_lock)) {
QL_DPRINT8((ha->pci_dev,
"%s: !mtx_trylock(&ha->tx_lock)\n", __func__));
return;
}
qla_hw_tx_done_locked(ha);
if (ha->hw.txr_free > free_pkt_thres)
ha->ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
mtx_unlock(&ha->tx_lock);
return;
}
void
qla_update_link_state(qla_host_t *ha)
{
uint32_t link_state;
if (!(ha->ifp->if_drv_flags & IFF_DRV_RUNNING)) {
ha->hw.flags.link_up = 0;
return;
}
link_state = READ_REG32(ha, Q8_LINK_STATE);
if (ha->pci_func == 0)
ha->hw.flags.link_up = (((link_state & 0xF) == 1)? 1 : 0);
else
ha->hw.flags.link_up = ((((link_state >> 4)& 0xF) == 1)? 1 : 0);
}
int
qla_config_lro(qla_host_t *ha)
{
int i;
qla_hw_t *hw = &ha->hw;
struct lro_ctrl *lro;
for (i = 0; i < hw->num_sds_rings; i++) {
lro = &hw->sds[i].lro;
if (tcp_lro_init(lro)) {
device_printf(ha->pci_dev, "%s: tcp_lro_init failed\n",
__func__);
return (-1);
}
lro->ifp = ha->ifp;
}
ha->flags.lro_init = 1;
QL_DPRINT2((ha->pci_dev, "%s: LRO initialized\n", __func__));
return (0);
}
void
qla_free_lro(qla_host_t *ha)
{
int i;
qla_hw_t *hw = &ha->hw;
struct lro_ctrl *lro;
if (!ha->flags.lro_init)
return;
for (i = 0; i < hw->num_sds_rings; i++) {
lro = &hw->sds[i].lro;
tcp_lro_free(lro);
}
ha->flags.lro_init = 0;
}
void
qla_hw_stop_rcv(qla_host_t *ha)
{
int i, done, count = 100;
while (count--) {
done = 1;
for (i = 0; i < ha->hw.num_sds_rings; i++) {
if (ha->hw.sds[i].rcv_active)
done = 0;
}
if (done)
break;
else
qla_mdelay(__func__, 10);
}
}