freebsd-dev/sys/net/if.c
Sepherosa Ziehau 368bf0c2c6 ifnet: Use if_link_state snapshot to invoke ifnet_link_event
So that everyone in this task have consistent view of link state.

Reviewed by:	ae
MFC after:	1 week
Sponsored by:	Microsoft
Differential Revision:	https://reviews.freebsd.org/D8214
2016-10-12 01:52:29 +00:00

4165 lines
97 KiB
C

/*-
* Copyright (c) 1980, 1986, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)if.c 8.5 (Berkeley) 1/9/95
* $FreeBSD$
*/
#include "opt_compat.h"
#include "opt_inet6.h"
#include "opt_inet.h"
#include <sys/param.h>
#include <sys/types.h>
#include <sys/conf.h>
#include <sys/malloc.h>
#include <sys/sbuf.h>
#include <sys/bus.h>
#include <sys/mbuf.h>
#include <sys/systm.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/protosw.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/refcount.h>
#include <sys/module.h>
#include <sys/rwlock.h>
#include <sys/sockio.h>
#include <sys/syslog.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <sys/domain.h>
#include <sys/jail.h>
#include <sys/priv.h>
#include <machine/stdarg.h>
#include <vm/uma.h>
#include <net/bpf.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_clone.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/if_var.h>
#include <net/if_media.h>
#include <net/if_vlan_var.h>
#include <net/radix.h>
#include <net/route.h>
#include <net/vnet.h>
#if defined(INET) || defined(INET6)
#include <net/ethernet.h>
#include <netinet/in.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/ip_carp.h>
#ifdef INET
#include <netinet/if_ether.h>
#endif /* INET */
#ifdef INET6
#include <netinet6/in6_var.h>
#include <netinet6/in6_ifattach.h>
#endif /* INET6 */
#endif /* INET || INET6 */
#include <security/mac/mac_framework.h>
#ifdef COMPAT_FREEBSD32
#include <sys/mount.h>
#include <compat/freebsd32/freebsd32.h>
#endif
SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers");
SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");
SYSCTL_INT(_net_link, OID_AUTO, ifqmaxlen, CTLFLAG_RDTUN,
&ifqmaxlen, 0, "max send queue size");
/* Log link state change events */
static int log_link_state_change = 1;
SYSCTL_INT(_net_link, OID_AUTO, log_link_state_change, CTLFLAG_RW,
&log_link_state_change, 0,
"log interface link state change events");
/* Log promiscuous mode change events */
static int log_promisc_mode_change = 1;
SYSCTL_INT(_net_link, OID_AUTO, log_promisc_mode_change, CTLFLAG_RDTUN,
&log_promisc_mode_change, 1,
"log promiscuous mode change events");
/* Interface description */
static unsigned int ifdescr_maxlen = 1024;
SYSCTL_UINT(_net, OID_AUTO, ifdescr_maxlen, CTLFLAG_RW,
&ifdescr_maxlen, 0,
"administrative maximum length for interface description");
static MALLOC_DEFINE(M_IFDESCR, "ifdescr", "ifnet descriptions");
/* global sx for non-critical path ifdescr */
static struct sx ifdescr_sx;
SX_SYSINIT(ifdescr_sx, &ifdescr_sx, "ifnet descr");
void (*bridge_linkstate_p)(struct ifnet *ifp);
void (*ng_ether_link_state_p)(struct ifnet *ifp, int state);
void (*lagg_linkstate_p)(struct ifnet *ifp, int state);
/* These are external hooks for CARP. */
void (*carp_linkstate_p)(struct ifnet *ifp);
void (*carp_demote_adj_p)(int, char *);
int (*carp_master_p)(struct ifaddr *);
#if defined(INET) || defined(INET6)
int (*carp_forus_p)(struct ifnet *ifp, u_char *dhost);
int (*carp_output_p)(struct ifnet *ifp, struct mbuf *m,
const struct sockaddr *sa);
int (*carp_ioctl_p)(struct ifreq *, u_long, struct thread *);
int (*carp_attach_p)(struct ifaddr *, int);
void (*carp_detach_p)(struct ifaddr *);
#endif
#ifdef INET
int (*carp_iamatch_p)(struct ifaddr *, uint8_t **);
#endif
#ifdef INET6
struct ifaddr *(*carp_iamatch6_p)(struct ifnet *ifp, struct in6_addr *taddr6);
caddr_t (*carp_macmatch6_p)(struct ifnet *ifp, struct mbuf *m,
const struct in6_addr *taddr);
#endif
struct mbuf *(*tbr_dequeue_ptr)(struct ifaltq *, int) = NULL;
/*
* XXX: Style; these should be sorted alphabetically, and unprototyped
* static functions should be prototyped. Currently they are sorted by
* declaration order.
*/
static void if_attachdomain(void *);
static void if_attachdomain1(struct ifnet *);
static int ifconf(u_long, caddr_t);
static void if_freemulti(struct ifmultiaddr *);
static void if_grow(void);
static void if_input_default(struct ifnet *, struct mbuf *);
static int if_requestencap_default(struct ifnet *, struct if_encap_req *);
static void if_route(struct ifnet *, int flag, int fam);
static int if_setflag(struct ifnet *, int, int, int *, int);
static int if_transmit(struct ifnet *ifp, struct mbuf *m);
static void if_unroute(struct ifnet *, int flag, int fam);
static void link_rtrequest(int, struct rtentry *, struct rt_addrinfo *);
static int ifhwioctl(u_long, struct ifnet *, caddr_t, struct thread *);
static int if_delmulti_locked(struct ifnet *, struct ifmultiaddr *, int);
static void do_link_state_change(void *, int);
static int if_getgroup(struct ifgroupreq *, struct ifnet *);
static int if_getgroupmembers(struct ifgroupreq *);
static void if_delgroups(struct ifnet *);
static void if_attach_internal(struct ifnet *, int, struct if_clone *);
static int if_detach_internal(struct ifnet *, int, struct if_clone **);
#ifdef VIMAGE
static void if_vmove(struct ifnet *, struct vnet *);
#endif
#ifdef INET6
/*
* XXX: declare here to avoid to include many inet6 related files..
* should be more generalized?
*/
extern void nd6_setmtu(struct ifnet *);
#endif
/* ipsec helper hooks */
VNET_DEFINE(struct hhook_head *, ipsec_hhh_in[HHOOK_IPSEC_COUNT]);
VNET_DEFINE(struct hhook_head *, ipsec_hhh_out[HHOOK_IPSEC_COUNT]);
VNET_DEFINE(int, if_index);
int ifqmaxlen = IFQ_MAXLEN;
VNET_DEFINE(struct ifnethead, ifnet); /* depend on static init XXX */
VNET_DEFINE(struct ifgrouphead, ifg_head);
static VNET_DEFINE(int, if_indexlim) = 8;
/* Table of ifnet by index. */
VNET_DEFINE(struct ifnet **, ifindex_table);
#define V_if_indexlim VNET(if_indexlim)
#define V_ifindex_table VNET(ifindex_table)
/*
* The global network interface list (V_ifnet) and related state (such as
* if_index, if_indexlim, and ifindex_table) are protected by an sxlock and
* an rwlock. Either may be acquired shared to stablize the list, but both
* must be acquired writable to modify the list. This model allows us to
* both stablize the interface list during interrupt thread processing, but
* also to stablize it over long-running ioctls, without introducing priority
* inversions and deadlocks.
*/
struct rwlock ifnet_rwlock;
RW_SYSINIT_FLAGS(ifnet_rw, &ifnet_rwlock, "ifnet_rw", RW_RECURSE);
struct sx ifnet_sxlock;
SX_SYSINIT_FLAGS(ifnet_sx, &ifnet_sxlock, "ifnet_sx", SX_RECURSE);
/*
* The allocation of network interfaces is a rather non-atomic affair; we
* need to select an index before we are ready to expose the interface for
* use, so will use this pointer value to indicate reservation.
*/
#define IFNET_HOLD (void *)(uintptr_t)(-1)
static if_com_alloc_t *if_com_alloc[256];
static if_com_free_t *if_com_free[256];
static MALLOC_DEFINE(M_IFNET, "ifnet", "interface internals");
MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
struct ifnet *
ifnet_byindex_locked(u_short idx)
{
if (idx > V_if_index)
return (NULL);
if (V_ifindex_table[idx] == IFNET_HOLD)
return (NULL);
return (V_ifindex_table[idx]);
}
struct ifnet *
ifnet_byindex(u_short idx)
{
struct ifnet *ifp;
IFNET_RLOCK_NOSLEEP();
ifp = ifnet_byindex_locked(idx);
IFNET_RUNLOCK_NOSLEEP();
return (ifp);
}
struct ifnet *
ifnet_byindex_ref(u_short idx)
{
struct ifnet *ifp;
IFNET_RLOCK_NOSLEEP();
ifp = ifnet_byindex_locked(idx);
if (ifp == NULL || (ifp->if_flags & IFF_DYING)) {
IFNET_RUNLOCK_NOSLEEP();
return (NULL);
}
if_ref(ifp);
IFNET_RUNLOCK_NOSLEEP();
return (ifp);
}
/*
* Allocate an ifindex array entry; return 0 on success or an error on
* failure.
*/
static u_short
ifindex_alloc(void)
{
u_short idx;
IFNET_WLOCK_ASSERT();
retry:
/*
* Try to find an empty slot below V_if_index. If we fail, take the
* next slot.
*/
for (idx = 1; idx <= V_if_index; idx++) {
if (V_ifindex_table[idx] == NULL)
break;
}
/* Catch if_index overflow. */
if (idx >= V_if_indexlim) {
if_grow();
goto retry;
}
if (idx > V_if_index)
V_if_index = idx;
return (idx);
}
static void
ifindex_free_locked(u_short idx)
{
IFNET_WLOCK_ASSERT();
V_ifindex_table[idx] = NULL;
while (V_if_index > 0 &&
V_ifindex_table[V_if_index] == NULL)
V_if_index--;
}
static void
ifindex_free(u_short idx)
{
IFNET_WLOCK();
ifindex_free_locked(idx);
IFNET_WUNLOCK();
}
static void
ifnet_setbyindex_locked(u_short idx, struct ifnet *ifp)
{
IFNET_WLOCK_ASSERT();
V_ifindex_table[idx] = ifp;
}
static void
ifnet_setbyindex(u_short idx, struct ifnet *ifp)
{
IFNET_WLOCK();
ifnet_setbyindex_locked(idx, ifp);
IFNET_WUNLOCK();
}
struct ifaddr *
ifaddr_byindex(u_short idx)
{
struct ifnet *ifp;
struct ifaddr *ifa = NULL;
IFNET_RLOCK_NOSLEEP();
ifp = ifnet_byindex_locked(idx);
if (ifp != NULL && (ifa = ifp->if_addr) != NULL)
ifa_ref(ifa);
IFNET_RUNLOCK_NOSLEEP();
return (ifa);
}
/*
* Network interface utility routines.
*
* Routines with ifa_ifwith* names take sockaddr *'s as
* parameters.
*/
static void
vnet_if_init(const void *unused __unused)
{
TAILQ_INIT(&V_ifnet);
TAILQ_INIT(&V_ifg_head);
IFNET_WLOCK();
if_grow(); /* create initial table */
IFNET_WUNLOCK();
vnet_if_clone_init();
}
VNET_SYSINIT(vnet_if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, vnet_if_init,
NULL);
#ifdef VIMAGE
static void
vnet_if_uninit(const void *unused __unused)
{
VNET_ASSERT(TAILQ_EMPTY(&V_ifnet), ("%s:%d tailq &V_ifnet=%p "
"not empty", __func__, __LINE__, &V_ifnet));
VNET_ASSERT(TAILQ_EMPTY(&V_ifg_head), ("%s:%d tailq &V_ifg_head=%p "
"not empty", __func__, __LINE__, &V_ifg_head));
free((caddr_t)V_ifindex_table, M_IFNET);
}
VNET_SYSUNINIT(vnet_if_uninit, SI_SUB_INIT_IF, SI_ORDER_FIRST,
vnet_if_uninit, NULL);
static void
vnet_if_return(const void *unused __unused)
{
struct ifnet *ifp, *nifp;
/* Return all inherited interfaces to their parent vnets. */
TAILQ_FOREACH_SAFE(ifp, &V_ifnet, if_link, nifp) {
if (ifp->if_home_vnet != ifp->if_vnet)
if_vmove(ifp, ifp->if_home_vnet);
}
}
VNET_SYSUNINIT(vnet_if_return, SI_SUB_VNET_DONE, SI_ORDER_ANY,
vnet_if_return, NULL);
#endif
static void
if_grow(void)
{
int oldlim;
u_int n;
struct ifnet **e;
IFNET_WLOCK_ASSERT();
oldlim = V_if_indexlim;
IFNET_WUNLOCK();
n = (oldlim << 1) * sizeof(*e);
e = malloc(n, M_IFNET, M_WAITOK | M_ZERO);
IFNET_WLOCK();
if (V_if_indexlim != oldlim) {
free(e, M_IFNET);
return;
}
if (V_ifindex_table != NULL) {
memcpy((caddr_t)e, (caddr_t)V_ifindex_table, n/2);
free((caddr_t)V_ifindex_table, M_IFNET);
}
V_if_indexlim <<= 1;
V_ifindex_table = e;
}
/*
* Allocate a struct ifnet and an index for an interface. A layer 2
* common structure will also be allocated if an allocation routine is
* registered for the passed type.
*/
struct ifnet *
if_alloc(u_char type)
{
struct ifnet *ifp;
u_short idx;
ifp = malloc(sizeof(struct ifnet), M_IFNET, M_WAITOK|M_ZERO);
IFNET_WLOCK();
idx = ifindex_alloc();
ifnet_setbyindex_locked(idx, IFNET_HOLD);
IFNET_WUNLOCK();
ifp->if_index = idx;
ifp->if_type = type;
ifp->if_alloctype = type;
#ifdef VIMAGE
ifp->if_vnet = curvnet;
#endif
if (if_com_alloc[type] != NULL) {
ifp->if_l2com = if_com_alloc[type](type, ifp);
if (ifp->if_l2com == NULL) {
free(ifp, M_IFNET);
ifindex_free(idx);
return (NULL);
}
}
IF_ADDR_LOCK_INIT(ifp);
TASK_INIT(&ifp->if_linktask, 0, do_link_state_change, ifp);
ifp->if_afdata_initialized = 0;
IF_AFDATA_LOCK_INIT(ifp);
TAILQ_INIT(&ifp->if_addrhead);
TAILQ_INIT(&ifp->if_multiaddrs);
TAILQ_INIT(&ifp->if_groups);
#ifdef MAC
mac_ifnet_init(ifp);
#endif
ifq_init(&ifp->if_snd, ifp);
refcount_init(&ifp->if_refcount, 1); /* Index reference. */
for (int i = 0; i < IFCOUNTERS; i++)
ifp->if_counters[i] = counter_u64_alloc(M_WAITOK);
ifp->if_get_counter = if_get_counter_default;
ifnet_setbyindex(ifp->if_index, ifp);
return (ifp);
}
/*
* Do the actual work of freeing a struct ifnet, and layer 2 common
* structure. This call is made when the last reference to an
* interface is released.
*/
static void
if_free_internal(struct ifnet *ifp)
{
KASSERT((ifp->if_flags & IFF_DYING),
("if_free_internal: interface not dying"));
if (if_com_free[ifp->if_alloctype] != NULL)
if_com_free[ifp->if_alloctype](ifp->if_l2com,
ifp->if_alloctype);
#ifdef MAC
mac_ifnet_destroy(ifp);
#endif /* MAC */
if (ifp->if_description != NULL)
free(ifp->if_description, M_IFDESCR);
IF_AFDATA_DESTROY(ifp);
IF_ADDR_LOCK_DESTROY(ifp);
ifq_delete(&ifp->if_snd);
for (int i = 0; i < IFCOUNTERS; i++)
counter_u64_free(ifp->if_counters[i]);
free(ifp, M_IFNET);
}
/*
* Deregister an interface and free the associated storage.
*/
void
if_free(struct ifnet *ifp)
{
ifp->if_flags |= IFF_DYING; /* XXX: Locking */
CURVNET_SET_QUIET(ifp->if_vnet);
IFNET_WLOCK();
KASSERT(ifp == ifnet_byindex_locked(ifp->if_index),
("%s: freeing unallocated ifnet", ifp->if_xname));
ifindex_free_locked(ifp->if_index);
IFNET_WUNLOCK();
if (refcount_release(&ifp->if_refcount))
if_free_internal(ifp);
CURVNET_RESTORE();
}
/*
* Interfaces to keep an ifnet type-stable despite the possibility of the
* driver calling if_free(). If there are additional references, we defer
* freeing the underlying data structure.
*/
void
if_ref(struct ifnet *ifp)
{
/* We don't assert the ifnet list lock here, but arguably should. */
refcount_acquire(&ifp->if_refcount);
}
void
if_rele(struct ifnet *ifp)
{
if (!refcount_release(&ifp->if_refcount))
return;
if_free_internal(ifp);
}
void
ifq_init(struct ifaltq *ifq, struct ifnet *ifp)
{
mtx_init(&ifq->ifq_mtx, ifp->if_xname, "if send queue", MTX_DEF);
if (ifq->ifq_maxlen == 0)
ifq->ifq_maxlen = ifqmaxlen;
ifq->altq_type = 0;
ifq->altq_disc = NULL;
ifq->altq_flags &= ALTQF_CANTCHANGE;
ifq->altq_tbr = NULL;
ifq->altq_ifp = ifp;
}
void
ifq_delete(struct ifaltq *ifq)
{
mtx_destroy(&ifq->ifq_mtx);
}
/*
* Perform generic interface initialization tasks and attach the interface
* to the list of "active" interfaces. If vmove flag is set on entry
* to if_attach_internal(), perform only a limited subset of initialization
* tasks, given that we are moving from one vnet to another an ifnet which
* has already been fully initialized.
*
* Note that if_detach_internal() removes group membership unconditionally
* even when vmove flag is set, and if_attach_internal() adds only IFG_ALL.
* Thus, when if_vmove() is applied to a cloned interface, group membership
* is lost while a cloned one always joins a group whose name is
* ifc->ifc_name. To recover this after if_detach_internal() and
* if_attach_internal(), the cloner should be specified to
* if_attach_internal() via ifc. If it is non-NULL, if_attach_internal()
* attempts to join a group whose name is ifc->ifc_name.
*
* XXX:
* - The decision to return void and thus require this function to
* succeed is questionable.
* - We should probably do more sanity checking. For instance we don't
* do anything to insure if_xname is unique or non-empty.
*/
void
if_attach(struct ifnet *ifp)
{
if_attach_internal(ifp, 0, NULL);
}
/*
* Compute the least common TSO limit.
*/
void
if_hw_tsomax_common(if_t ifp, struct ifnet_hw_tsomax *pmax)
{
/*
* 1) If there is no limit currently, take the limit from
* the network adapter.
*
* 2) If the network adapter has a limit below the current
* limit, apply it.
*/
if (pmax->tsomaxbytes == 0 || (ifp->if_hw_tsomax != 0 &&
ifp->if_hw_tsomax < pmax->tsomaxbytes)) {
pmax->tsomaxbytes = ifp->if_hw_tsomax;
}
if (pmax->tsomaxsegcount == 0 || (ifp->if_hw_tsomaxsegcount != 0 &&
ifp->if_hw_tsomaxsegcount < pmax->tsomaxsegcount)) {
pmax->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
}
if (pmax->tsomaxsegsize == 0 || (ifp->if_hw_tsomaxsegsize != 0 &&
ifp->if_hw_tsomaxsegsize < pmax->tsomaxsegsize)) {
pmax->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
}
}
/*
* Update TSO limit of a network adapter.
*
* Returns zero if no change. Else non-zero.
*/
int
if_hw_tsomax_update(if_t ifp, struct ifnet_hw_tsomax *pmax)
{
int retval = 0;
if (ifp->if_hw_tsomax != pmax->tsomaxbytes) {
ifp->if_hw_tsomax = pmax->tsomaxbytes;
retval++;
}
if (ifp->if_hw_tsomaxsegsize != pmax->tsomaxsegsize) {
ifp->if_hw_tsomaxsegsize = pmax->tsomaxsegsize;
retval++;
}
if (ifp->if_hw_tsomaxsegcount != pmax->tsomaxsegcount) {
ifp->if_hw_tsomaxsegcount = pmax->tsomaxsegcount;
retval++;
}
return (retval);
}
static void
if_attach_internal(struct ifnet *ifp, int vmove, struct if_clone *ifc)
{
unsigned socksize, ifasize;
int namelen, masklen;
struct sockaddr_dl *sdl;
struct ifaddr *ifa;
if (ifp->if_index == 0 || ifp != ifnet_byindex(ifp->if_index))
panic ("%s: BUG: if_attach called without if_alloc'd input()\n",
ifp->if_xname);
#ifdef VIMAGE
ifp->if_vnet = curvnet;
if (ifp->if_home_vnet == NULL)
ifp->if_home_vnet = curvnet;
#endif
if_addgroup(ifp, IFG_ALL);
/* Restore group membership for cloned interfaces. */
if (vmove && ifc != NULL)
if_clone_addgroup(ifp, ifc);
getmicrotime(&ifp->if_lastchange);
ifp->if_epoch = time_uptime;
KASSERT((ifp->if_transmit == NULL && ifp->if_qflush == NULL) ||
(ifp->if_transmit != NULL && ifp->if_qflush != NULL),
("transmit and qflush must both either be set or both be NULL"));
if (ifp->if_transmit == NULL) {
ifp->if_transmit = if_transmit;
ifp->if_qflush = if_qflush;
}
if (ifp->if_input == NULL)
ifp->if_input = if_input_default;
if (ifp->if_requestencap == NULL)
ifp->if_requestencap = if_requestencap_default;
if (!vmove) {
#ifdef MAC
mac_ifnet_create(ifp);
#endif
/*
* Create a Link Level name for this device.
*/
namelen = strlen(ifp->if_xname);
/*
* Always save enough space for any possiable name so we
* can do a rename in place later.
*/
masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + IFNAMSIZ;
socksize = masklen + ifp->if_addrlen;
if (socksize < sizeof(*sdl))
socksize = sizeof(*sdl);
socksize = roundup2(socksize, sizeof(long));
ifasize = sizeof(*ifa) + 2 * socksize;
ifa = ifa_alloc(ifasize, M_WAITOK);
sdl = (struct sockaddr_dl *)(ifa + 1);
sdl->sdl_len = socksize;
sdl->sdl_family = AF_LINK;
bcopy(ifp->if_xname, sdl->sdl_data, namelen);
sdl->sdl_nlen = namelen;
sdl->sdl_index = ifp->if_index;
sdl->sdl_type = ifp->if_type;
ifp->if_addr = ifa;
ifa->ifa_ifp = ifp;
ifa->ifa_rtrequest = link_rtrequest;
ifa->ifa_addr = (struct sockaddr *)sdl;
sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
ifa->ifa_netmask = (struct sockaddr *)sdl;
sdl->sdl_len = masklen;
while (namelen != 0)
sdl->sdl_data[--namelen] = 0xff;
TAILQ_INSERT_HEAD(&ifp->if_addrhead, ifa, ifa_link);
/* Reliably crash if used uninitialized. */
ifp->if_broadcastaddr = NULL;
#if defined(INET) || defined(INET6)
/* Use defaults for TSO, if nothing is set */
if (ifp->if_hw_tsomax == 0 &&
ifp->if_hw_tsomaxsegcount == 0 &&
ifp->if_hw_tsomaxsegsize == 0) {
/*
* The TSO defaults needs to be such that an
* NFS mbuf list of 35 mbufs totalling just
* below 64K works and that a chain of mbufs
* can be defragged into at most 32 segments:
*/
ifp->if_hw_tsomax = min(IP_MAXPACKET, (32 * MCLBYTES) -
(ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN));
ifp->if_hw_tsomaxsegcount = 35;
ifp->if_hw_tsomaxsegsize = 2048; /* 2K */
/* XXX some drivers set IFCAP_TSO after ethernet attach */
if (ifp->if_capabilities & IFCAP_TSO) {
if_printf(ifp, "Using defaults for TSO: %u/%u/%u\n",
ifp->if_hw_tsomax,
ifp->if_hw_tsomaxsegcount,
ifp->if_hw_tsomaxsegsize);
}
}
#endif
}
#ifdef VIMAGE
else {
/*
* Update the interface index in the link layer address
* of the interface.
*/
for (ifa = ifp->if_addr; ifa != NULL;
ifa = TAILQ_NEXT(ifa, ifa_link)) {
if (ifa->ifa_addr->sa_family == AF_LINK) {
sdl = (struct sockaddr_dl *)ifa->ifa_addr;
sdl->sdl_index = ifp->if_index;
}
}
}
#endif
IFNET_WLOCK();
TAILQ_INSERT_TAIL(&V_ifnet, ifp, if_link);
#ifdef VIMAGE
curvnet->vnet_ifcnt++;
#endif
IFNET_WUNLOCK();
if (domain_init_status >= 2)
if_attachdomain1(ifp);
EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp);
if (IS_DEFAULT_VNET(curvnet))
devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
/* Announce the interface. */
rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
}
static void
if_attachdomain(void *dummy)
{
struct ifnet *ifp;
TAILQ_FOREACH(ifp, &V_ifnet, if_link)
if_attachdomain1(ifp);
}
SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_SECOND,
if_attachdomain, NULL);
static void
if_attachdomain1(struct ifnet *ifp)
{
struct domain *dp;
/*
* Since dp->dom_ifattach calls malloc() with M_WAITOK, we
* cannot lock ifp->if_afdata initialization, entirely.
*/
IF_AFDATA_LOCK(ifp);
if (ifp->if_afdata_initialized >= domain_init_status) {
IF_AFDATA_UNLOCK(ifp);
log(LOG_WARNING, "%s called more than once on %s\n",
__func__, ifp->if_xname);
return;
}
ifp->if_afdata_initialized = domain_init_status;
IF_AFDATA_UNLOCK(ifp);
/* address family dependent data region */
bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
for (dp = domains; dp; dp = dp->dom_next) {
if (dp->dom_ifattach)
ifp->if_afdata[dp->dom_family] =
(*dp->dom_ifattach)(ifp);
}
}
/*
* Remove any unicast or broadcast network addresses from an interface.
*/
void
if_purgeaddrs(struct ifnet *ifp)
{
struct ifaddr *ifa, *next;
/* XXX cannot hold IF_ADDR_WLOCK over called functions. */
TAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) {
if (ifa->ifa_addr->sa_family == AF_LINK)
continue;
#ifdef INET
/* XXX: Ugly!! ad hoc just for INET */
if (ifa->ifa_addr->sa_family == AF_INET) {
struct ifaliasreq ifr;
bzero(&ifr, sizeof(ifr));
ifr.ifra_addr = *ifa->ifa_addr;
if (ifa->ifa_dstaddr)
ifr.ifra_broadaddr = *ifa->ifa_dstaddr;
if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp,
NULL) == 0)
continue;
}
#endif /* INET */
#ifdef INET6
if (ifa->ifa_addr->sa_family == AF_INET6) {
in6_purgeaddr(ifa);
/* ifp_addrhead is already updated */
continue;
}
#endif /* INET6 */
IF_ADDR_WLOCK(ifp);
TAILQ_REMOVE(&ifp->if_addrhead, ifa, ifa_link);
IF_ADDR_WUNLOCK(ifp);
ifa_free(ifa);
}
}
/*
* Remove any multicast network addresses from an interface when an ifnet
* is going away.
*/
static void
if_purgemaddrs(struct ifnet *ifp)
{
struct ifmultiaddr *ifma;
struct ifmultiaddr *next;
IF_ADDR_WLOCK(ifp);
TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next)
if_delmulti_locked(ifp, ifma, 1);
IF_ADDR_WUNLOCK(ifp);
}
/*
* Detach an interface, removing it from the list of "active" interfaces.
* If vmove flag is set on entry to if_detach_internal(), perform only a
* limited subset of cleanup tasks, given that we are moving an ifnet from
* one vnet to another, where it must be fully operational.
*
* XXXRW: There are some significant questions about event ordering, and
* how to prevent things from starting to use the interface during detach.
*/
void
if_detach(struct ifnet *ifp)
{
CURVNET_SET_QUIET(ifp->if_vnet);
if_detach_internal(ifp, 0, NULL);
CURVNET_RESTORE();
}
/*
* The vmove flag, if set, indicates that we are called from a callpath
* that is moving an interface to a different vnet instance.
*
* The shutdown flag, if set, indicates that we are called in the
* process of shutting down a vnet instance. Currently only the
* vnet_if_return SYSUNINIT function sets it. Note: we can be called
* on a vnet instance shutdown without this flag being set, e.g., when
* the cloned interfaces are destoyed as first thing of teardown.
*/
static int
if_detach_internal(struct ifnet *ifp, int vmove, struct if_clone **ifcp)
{
struct ifaddr *ifa;
int i;
struct domain *dp;
struct ifnet *iter;
int found = 0;
#ifdef VIMAGE
int shutdown;
shutdown = (ifp->if_vnet->vnet_state > SI_SUB_VNET &&
ifp->if_vnet->vnet_state < SI_SUB_VNET_DONE) ? 1 : 0;
#endif
IFNET_WLOCK();
TAILQ_FOREACH(iter, &V_ifnet, if_link)
if (iter == ifp) {
TAILQ_REMOVE(&V_ifnet, ifp, if_link);
found = 1;
break;
}
IFNET_WUNLOCK();
if (!found) {
/*
* While we would want to panic here, we cannot
* guarantee that the interface is indeed still on
* the list given we don't hold locks all the way.
*/
return (ENOENT);
#if 0
if (vmove)
panic("%s: ifp=%p not on the ifnet tailq %p",
__func__, ifp, &V_ifnet);
else
return; /* XXX this should panic as well? */
#endif
}
/*
* At this point we know the interface still was on the ifnet list
* and we removed it so we are in a stable state.
*/
#ifdef VIMAGE
curvnet->vnet_ifcnt--;
#endif
/*
* In any case (destroy or vmove) detach us from the groups
* and remove/wait for pending events on the taskq.
* XXX-BZ in theory an interface could still enqueue a taskq change?
*/
if_delgroups(ifp);
taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
/*
* Check if this is a cloned interface or not. Must do even if
* shutting down as a if_vmove_reclaim() would move the ifp and
* the if_clone_addgroup() will have a corrupted string overwise
* from a gibberish pointer.
*/
if (vmove && ifcp != NULL)
*ifcp = if_clone_findifc(ifp);
if_down(ifp);
#ifdef VIMAGE
/*
* On VNET shutdown abort here as the stack teardown will do all
* the work top-down for us.
*/
if (shutdown) {
/*
* In case of a vmove we are done here without error.
* If we would signal an error it would lead to the same
* abort as if we did not find the ifnet anymore.
* if_detach() calls us in void context and does not care
* about an early abort notification, so life is splendid :)
*/
goto finish_vnet_shutdown;
}
#endif
/*
* At this point we are not tearing down a VNET and are either
* going to destroy or vmove the interface and have to cleanup
* accordingly.
*/
/*
* Remove routes and flush queues.
*/
#ifdef ALTQ
if (ALTQ_IS_ENABLED(&ifp->if_snd))
altq_disable(&ifp->if_snd);
if (ALTQ_IS_ATTACHED(&ifp->if_snd))
altq_detach(&ifp->if_snd);
#endif
if_purgeaddrs(ifp);
#ifdef INET
in_ifdetach(ifp);
#endif
#ifdef INET6
/*
* Remove all IPv6 kernel structs related to ifp. This should be done
* before removing routing entries below, since IPv6 interface direct
* routes are expected to be removed by the IPv6-specific kernel API.
* Otherwise, the kernel will detect some inconsistency and bark it.
*/
in6_ifdetach(ifp);
#endif
if_purgemaddrs(ifp);
/* Announce that the interface is gone. */
rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
EVENTHANDLER_INVOKE(ifnet_departure_event, ifp);
if (IS_DEFAULT_VNET(curvnet))
devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
if (!vmove) {
/*
* Prevent further calls into the device driver via ifnet.
*/
if_dead(ifp);
/*
* Remove link ifaddr pointer and maybe decrement if_index.
* Clean up all addresses.
*/
ifp->if_addr = NULL;
/* We can now free link ifaddr. */
IF_ADDR_WLOCK(ifp);
if (!TAILQ_EMPTY(&ifp->if_addrhead)) {
ifa = TAILQ_FIRST(&ifp->if_addrhead);
TAILQ_REMOVE(&ifp->if_addrhead, ifa, ifa_link);
IF_ADDR_WUNLOCK(ifp);
ifa_free(ifa);
} else
IF_ADDR_WUNLOCK(ifp);
}
rt_flushifroutes(ifp);
#ifdef VIMAGE
finish_vnet_shutdown:
#endif
/*
* We cannot hold the lock over dom_ifdetach calls as they might
* sleep, for example trying to drain a callout, thus open up the
* theoretical race with re-attaching.
*/
IF_AFDATA_LOCK(ifp);
i = ifp->if_afdata_initialized;
ifp->if_afdata_initialized = 0;
IF_AFDATA_UNLOCK(ifp);
for (dp = domains; i > 0 && dp; dp = dp->dom_next) {
if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) {
(*dp->dom_ifdetach)(ifp,
ifp->if_afdata[dp->dom_family]);
ifp->if_afdata[dp->dom_family] = NULL;
}
}
return (0);
}
#ifdef VIMAGE
/*
* if_vmove() performs a limited version of if_detach() in current
* vnet and if_attach()es the ifnet to the vnet specified as 2nd arg.
* An attempt is made to shrink if_index in current vnet, find an
* unused if_index in target vnet and calls if_grow() if necessary,
* and finally find an unused if_xname for the target vnet.
*/
static void
if_vmove(struct ifnet *ifp, struct vnet *new_vnet)
{
struct if_clone *ifc;
u_int bif_dlt, bif_hdrlen;
int rc;
/*
* if_detach_internal() will call the eventhandler to notify
* interface departure. That will detach if_bpf. We need to
* safe the dlt and hdrlen so we can re-attach it later.
*/
bpf_get_bp_params(ifp->if_bpf, &bif_dlt, &bif_hdrlen);
/*
* Detach from current vnet, but preserve LLADDR info, do not
* mark as dead etc. so that the ifnet can be reattached later.
* If we cannot find it, we lost the race to someone else.
*/
rc = if_detach_internal(ifp, 1, &ifc);
if (rc != 0)
return;
/*
* Unlink the ifnet from ifindex_table[] in current vnet, and shrink
* the if_index for that vnet if possible.
*
* NOTE: IFNET_WLOCK/IFNET_WUNLOCK() are assumed to be unvirtualized,
* or we'd lock on one vnet and unlock on another.
*/
IFNET_WLOCK();
ifindex_free_locked(ifp->if_index);
IFNET_WUNLOCK();
/*
* Perform interface-specific reassignment tasks, if provided by
* the driver.
*/
if (ifp->if_reassign != NULL)
ifp->if_reassign(ifp, new_vnet, NULL);
/*
* Switch to the context of the target vnet.
*/
CURVNET_SET_QUIET(new_vnet);
IFNET_WLOCK();
ifp->if_index = ifindex_alloc();
ifnet_setbyindex_locked(ifp->if_index, ifp);
IFNET_WUNLOCK();
if_attach_internal(ifp, 1, ifc);
if (ifp->if_bpf == NULL)
bpfattach(ifp, bif_dlt, bif_hdrlen);
CURVNET_RESTORE();
}
/*
* Move an ifnet to or from another child prison/vnet, specified by the jail id.
*/
static int
if_vmove_loan(struct thread *td, struct ifnet *ifp, char *ifname, int jid)
{
struct prison *pr;
struct ifnet *difp;
int shutdown;
/* Try to find the prison within our visibility. */
sx_slock(&allprison_lock);
pr = prison_find_child(td->td_ucred->cr_prison, jid);
sx_sunlock(&allprison_lock);
if (pr == NULL)
return (ENXIO);
prison_hold_locked(pr);
mtx_unlock(&pr->pr_mtx);
/* Do not try to move the iface from and to the same prison. */
if (pr->pr_vnet == ifp->if_vnet) {
prison_free(pr);
return (EEXIST);
}
/* Make sure the named iface does not exists in the dst. prison/vnet. */
/* XXX Lock interfaces to avoid races. */
CURVNET_SET_QUIET(pr->pr_vnet);
difp = ifunit(ifname);
if (difp != NULL) {
CURVNET_RESTORE();
prison_free(pr);
return (EEXIST);
}
/* Make sure the VNET is stable. */
shutdown = (ifp->if_vnet->vnet_state > SI_SUB_VNET &&
ifp->if_vnet->vnet_state < SI_SUB_VNET_DONE) ? 1 : 0;
if (shutdown) {
CURVNET_RESTORE();
prison_free(pr);
return (EBUSY);
}
CURVNET_RESTORE();
/* Move the interface into the child jail/vnet. */
if_vmove(ifp, pr->pr_vnet);
/* Report the new if_xname back to the userland. */
sprintf(ifname, "%s", ifp->if_xname);
prison_free(pr);
return (0);
}
static int
if_vmove_reclaim(struct thread *td, char *ifname, int jid)
{
struct prison *pr;
struct vnet *vnet_dst;
struct ifnet *ifp;
int shutdown;
/* Try to find the prison within our visibility. */
sx_slock(&allprison_lock);
pr = prison_find_child(td->td_ucred->cr_prison, jid);
sx_sunlock(&allprison_lock);
if (pr == NULL)
return (ENXIO);
prison_hold_locked(pr);
mtx_unlock(&pr->pr_mtx);
/* Make sure the named iface exists in the source prison/vnet. */
CURVNET_SET(pr->pr_vnet);
ifp = ifunit(ifname); /* XXX Lock to avoid races. */
if (ifp == NULL) {
CURVNET_RESTORE();
prison_free(pr);
return (ENXIO);
}
/* Do not try to move the iface from and to the same prison. */
vnet_dst = TD_TO_VNET(td);
if (vnet_dst == ifp->if_vnet) {
CURVNET_RESTORE();
prison_free(pr);
return (EEXIST);
}
/* Make sure the VNET is stable. */
shutdown = (ifp->if_vnet->vnet_state > SI_SUB_VNET &&
ifp->if_vnet->vnet_state < SI_SUB_VNET_DONE) ? 1 : 0;
if (shutdown) {
CURVNET_RESTORE();
prison_free(pr);
return (EBUSY);
}
/* Get interface back from child jail/vnet. */
if_vmove(ifp, vnet_dst);
CURVNET_RESTORE();
/* Report the new if_xname back to the userland. */
sprintf(ifname, "%s", ifp->if_xname);
prison_free(pr);
return (0);
}
#endif /* VIMAGE */
/*
* Add a group to an interface
*/
int
if_addgroup(struct ifnet *ifp, const char *groupname)
{
struct ifg_list *ifgl;
struct ifg_group *ifg = NULL;
struct ifg_member *ifgm;
int new = 0;
if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' &&
groupname[strlen(groupname) - 1] <= '9')
return (EINVAL);
IFNET_WLOCK();
TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) {
IFNET_WUNLOCK();
return (EEXIST);
}
if ((ifgl = (struct ifg_list *)malloc(sizeof(struct ifg_list), M_TEMP,
M_NOWAIT)) == NULL) {
IFNET_WUNLOCK();
return (ENOMEM);
}
if ((ifgm = (struct ifg_member *)malloc(sizeof(struct ifg_member),
M_TEMP, M_NOWAIT)) == NULL) {
free(ifgl, M_TEMP);
IFNET_WUNLOCK();
return (ENOMEM);
}
TAILQ_FOREACH(ifg, &V_ifg_head, ifg_next)
if (!strcmp(ifg->ifg_group, groupname))
break;
if (ifg == NULL) {
if ((ifg = (struct ifg_group *)malloc(sizeof(struct ifg_group),
M_TEMP, M_NOWAIT)) == NULL) {
free(ifgl, M_TEMP);
free(ifgm, M_TEMP);
IFNET_WUNLOCK();
return (ENOMEM);
}
strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group));
ifg->ifg_refcnt = 0;
TAILQ_INIT(&ifg->ifg_members);
TAILQ_INSERT_TAIL(&V_ifg_head, ifg, ifg_next);
new = 1;
}
ifg->ifg_refcnt++;
ifgl->ifgl_group = ifg;
ifgm->ifgm_ifp = ifp;
IF_ADDR_WLOCK(ifp);
TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next);
TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next);
IF_ADDR_WUNLOCK(ifp);
IFNET_WUNLOCK();
if (new)
EVENTHANDLER_INVOKE(group_attach_event, ifg);
EVENTHANDLER_INVOKE(group_change_event, groupname);
return (0);
}
/*
* Remove a group from an interface
*/
int
if_delgroup(struct ifnet *ifp, const char *groupname)
{
struct ifg_list *ifgl;
struct ifg_member *ifgm;
IFNET_WLOCK();
TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
break;
if (ifgl == NULL) {
IFNET_WUNLOCK();
return (ENOENT);
}
IF_ADDR_WLOCK(ifp);
TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next);
IF_ADDR_WUNLOCK(ifp);
TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next)
if (ifgm->ifgm_ifp == ifp)
break;
if (ifgm != NULL) {
TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next);
free(ifgm, M_TEMP);
}
if (--ifgl->ifgl_group->ifg_refcnt == 0) {
TAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_next);
IFNET_WUNLOCK();
EVENTHANDLER_INVOKE(group_detach_event, ifgl->ifgl_group);
free(ifgl->ifgl_group, M_TEMP);
} else
IFNET_WUNLOCK();
free(ifgl, M_TEMP);
EVENTHANDLER_INVOKE(group_change_event, groupname);
return (0);
}
/*
* Remove an interface from all groups
*/
static void
if_delgroups(struct ifnet *ifp)
{
struct ifg_list *ifgl;
struct ifg_member *ifgm;
char groupname[IFNAMSIZ];
IFNET_WLOCK();
while (!TAILQ_EMPTY(&ifp->if_groups)) {
ifgl = TAILQ_FIRST(&ifp->if_groups);
strlcpy(groupname, ifgl->ifgl_group->ifg_group, IFNAMSIZ);
IF_ADDR_WLOCK(ifp);
TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next);
IF_ADDR_WUNLOCK(ifp);
TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next)
if (ifgm->ifgm_ifp == ifp)
break;
if (ifgm != NULL) {
TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm,
ifgm_next);
free(ifgm, M_TEMP);
}
if (--ifgl->ifgl_group->ifg_refcnt == 0) {
TAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_next);
IFNET_WUNLOCK();
EVENTHANDLER_INVOKE(group_detach_event,
ifgl->ifgl_group);
free(ifgl->ifgl_group, M_TEMP);
} else
IFNET_WUNLOCK();
free(ifgl, M_TEMP);
EVENTHANDLER_INVOKE(group_change_event, groupname);
IFNET_WLOCK();
}
IFNET_WUNLOCK();
}
/*
* Stores all groups from an interface in memory pointed
* to by data
*/
static int
if_getgroup(struct ifgroupreq *data, struct ifnet *ifp)
{
int len, error;
struct ifg_list *ifgl;
struct ifg_req ifgrq, *ifgp;
struct ifgroupreq *ifgr = data;
if (ifgr->ifgr_len == 0) {
IF_ADDR_RLOCK(ifp);
TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
ifgr->ifgr_len += sizeof(struct ifg_req);
IF_ADDR_RUNLOCK(ifp);
return (0);
}
len = ifgr->ifgr_len;
ifgp = ifgr->ifgr_groups;
/* XXX: wire */
IF_ADDR_RLOCK(ifp);
TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
if (len < sizeof(ifgrq)) {
IF_ADDR_RUNLOCK(ifp);
return (EINVAL);
}
bzero(&ifgrq, sizeof ifgrq);
strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group,
sizeof(ifgrq.ifgrq_group));
if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) {
IF_ADDR_RUNLOCK(ifp);
return (error);
}
len -= sizeof(ifgrq);
ifgp++;
}
IF_ADDR_RUNLOCK(ifp);
return (0);
}
/*
* Stores all members of a group in memory pointed to by data
*/
static int
if_getgroupmembers(struct ifgroupreq *data)
{
struct ifgroupreq *ifgr = data;
struct ifg_group *ifg;
struct ifg_member *ifgm;
struct ifg_req ifgrq, *ifgp;
int len, error;
IFNET_RLOCK();
TAILQ_FOREACH(ifg, &V_ifg_head, ifg_next)
if (!strcmp(ifg->ifg_group, ifgr->ifgr_name))
break;
if (ifg == NULL) {
IFNET_RUNLOCK();
return (ENOENT);
}
if (ifgr->ifgr_len == 0) {
TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next)
ifgr->ifgr_len += sizeof(ifgrq);
IFNET_RUNLOCK();
return (0);
}
len = ifgr->ifgr_len;
ifgp = ifgr->ifgr_groups;
TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) {
if (len < sizeof(ifgrq)) {
IFNET_RUNLOCK();
return (EINVAL);
}
bzero(&ifgrq, sizeof ifgrq);
strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname,
sizeof(ifgrq.ifgrq_member));
if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) {
IFNET_RUNLOCK();
return (error);
}
len -= sizeof(ifgrq);
ifgp++;
}
IFNET_RUNLOCK();
return (0);
}
/*
* Return counter values from counter(9)s stored in ifnet.
*/
uint64_t
if_get_counter_default(struct ifnet *ifp, ift_counter cnt)
{
KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt));
return (counter_u64_fetch(ifp->if_counters[cnt]));
}
/*
* Increase an ifnet counter. Usually used for counters shared
* between the stack and a driver, but function supports them all.
*/
void
if_inc_counter(struct ifnet *ifp, ift_counter cnt, int64_t inc)
{
KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt));
counter_u64_add(ifp->if_counters[cnt], inc);
}
/*
* Copy data from ifnet to userland API structure if_data.
*/
void
if_data_copy(struct ifnet *ifp, struct if_data *ifd)
{
ifd->ifi_type = ifp->if_type;
ifd->ifi_physical = 0;
ifd->ifi_addrlen = ifp->if_addrlen;
ifd->ifi_hdrlen = ifp->if_hdrlen;
ifd->ifi_link_state = ifp->if_link_state;
ifd->ifi_vhid = 0;
ifd->ifi_datalen = sizeof(struct if_data);
ifd->ifi_mtu = ifp->if_mtu;
ifd->ifi_metric = ifp->if_metric;
ifd->ifi_baudrate = ifp->if_baudrate;
ifd->ifi_hwassist = ifp->if_hwassist;
ifd->ifi_epoch = ifp->if_epoch;
ifd->ifi_lastchange = ifp->if_lastchange;
ifd->ifi_ipackets = ifp->if_get_counter(ifp, IFCOUNTER_IPACKETS);
ifd->ifi_ierrors = ifp->if_get_counter(ifp, IFCOUNTER_IERRORS);
ifd->ifi_opackets = ifp->if_get_counter(ifp, IFCOUNTER_OPACKETS);
ifd->ifi_oerrors = ifp->if_get_counter(ifp, IFCOUNTER_OERRORS);
ifd->ifi_collisions = ifp->if_get_counter(ifp, IFCOUNTER_COLLISIONS);
ifd->ifi_ibytes = ifp->if_get_counter(ifp, IFCOUNTER_IBYTES);
ifd->ifi_obytes = ifp->if_get_counter(ifp, IFCOUNTER_OBYTES);
ifd->ifi_imcasts = ifp->if_get_counter(ifp, IFCOUNTER_IMCASTS);
ifd->ifi_omcasts = ifp->if_get_counter(ifp, IFCOUNTER_OMCASTS);
ifd->ifi_iqdrops = ifp->if_get_counter(ifp, IFCOUNTER_IQDROPS);
ifd->ifi_oqdrops = ifp->if_get_counter(ifp, IFCOUNTER_OQDROPS);
ifd->ifi_noproto = ifp->if_get_counter(ifp, IFCOUNTER_NOPROTO);
}
/*
* Wrapper functions for struct ifnet address list locking macros. These are
* used by kernel modules to avoid encoding programming interface or binary
* interface assumptions that may be violated when kernel-internal locking
* approaches change.
*/
void
if_addr_rlock(struct ifnet *ifp)
{
IF_ADDR_RLOCK(ifp);
}
void
if_addr_runlock(struct ifnet *ifp)
{
IF_ADDR_RUNLOCK(ifp);
}
void
if_maddr_rlock(if_t ifp)
{
IF_ADDR_RLOCK((struct ifnet *)ifp);
}
void
if_maddr_runlock(if_t ifp)
{
IF_ADDR_RUNLOCK((struct ifnet *)ifp);
}
/*
* Initialization, destruction and refcounting functions for ifaddrs.
*/
struct ifaddr *
ifa_alloc(size_t size, int flags)
{
struct ifaddr *ifa;
KASSERT(size >= sizeof(struct ifaddr),
("%s: invalid size %zu", __func__, size));
ifa = malloc(size, M_IFADDR, M_ZERO | flags);
if (ifa == NULL)
return (NULL);
if ((ifa->ifa_opackets = counter_u64_alloc(flags)) == NULL)
goto fail;
if ((ifa->ifa_ipackets = counter_u64_alloc(flags)) == NULL)
goto fail;
if ((ifa->ifa_obytes = counter_u64_alloc(flags)) == NULL)
goto fail;
if ((ifa->ifa_ibytes = counter_u64_alloc(flags)) == NULL)
goto fail;
refcount_init(&ifa->ifa_refcnt, 1);
return (ifa);
fail:
/* free(NULL) is okay */
counter_u64_free(ifa->ifa_opackets);
counter_u64_free(ifa->ifa_ipackets);
counter_u64_free(ifa->ifa_obytes);
counter_u64_free(ifa->ifa_ibytes);
free(ifa, M_IFADDR);
return (NULL);
}
void
ifa_ref(struct ifaddr *ifa)
{
refcount_acquire(&ifa->ifa_refcnt);
}
void
ifa_free(struct ifaddr *ifa)
{
if (refcount_release(&ifa->ifa_refcnt)) {
counter_u64_free(ifa->ifa_opackets);
counter_u64_free(ifa->ifa_ipackets);
counter_u64_free(ifa->ifa_obytes);
counter_u64_free(ifa->ifa_ibytes);
free(ifa, M_IFADDR);
}
}
static int
ifa_maintain_loopback_route(int cmd, const char *otype, struct ifaddr *ifa,
struct sockaddr *ia)
{
int error;
struct rt_addrinfo info;
struct sockaddr_dl null_sdl;
struct ifnet *ifp;
ifp = ifa->ifa_ifp;
bzero(&info, sizeof(info));
if (cmd != RTM_DELETE)
info.rti_ifp = V_loif;
info.rti_flags = ifa->ifa_flags | RTF_HOST | RTF_STATIC;
info.rti_info[RTAX_DST] = ia;
info.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&null_sdl;
link_init_sdl(ifp, (struct sockaddr *)&null_sdl, ifp->if_type);
error = rtrequest1_fib(cmd, &info, NULL, ifp->if_fib);
if (error != 0)
log(LOG_DEBUG, "%s: %s failed for interface %s: %u\n",
__func__, otype, if_name(ifp), error);
return (error);
}
int
ifa_add_loopback_route(struct ifaddr *ifa, struct sockaddr *ia)
{
return (ifa_maintain_loopback_route(RTM_ADD, "insertion", ifa, ia));
}
int
ifa_del_loopback_route(struct ifaddr *ifa, struct sockaddr *ia)
{
return (ifa_maintain_loopback_route(RTM_DELETE, "deletion", ifa, ia));
}
int
ifa_switch_loopback_route(struct ifaddr *ifa, struct sockaddr *ia)
{
return (ifa_maintain_loopback_route(RTM_CHANGE, "switch", ifa, ia));
}
/*
* XXX: Because sockaddr_dl has deeper structure than the sockaddr
* structs used to represent other address families, it is necessary
* to perform a different comparison.
*/
#define sa_dl_equal(a1, a2) \
((((const struct sockaddr_dl *)(a1))->sdl_len == \
((const struct sockaddr_dl *)(a2))->sdl_len) && \
(bcmp(CLLADDR((const struct sockaddr_dl *)(a1)), \
CLLADDR((const struct sockaddr_dl *)(a2)), \
((const struct sockaddr_dl *)(a1))->sdl_alen) == 0))
/*
* Locate an interface based on a complete address.
*/
/*ARGSUSED*/
static struct ifaddr *
ifa_ifwithaddr_internal(const struct sockaddr *addr, int getref)
{
struct ifnet *ifp;
struct ifaddr *ifa;
IFNET_RLOCK_NOSLEEP();
TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
IF_ADDR_RLOCK(ifp);
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
if (ifa->ifa_addr->sa_family != addr->sa_family)
continue;
if (sa_equal(addr, ifa->ifa_addr)) {
if (getref)
ifa_ref(ifa);
IF_ADDR_RUNLOCK(ifp);
goto done;
}
/* IP6 doesn't have broadcast */
if ((ifp->if_flags & IFF_BROADCAST) &&
ifa->ifa_broadaddr &&
ifa->ifa_broadaddr->sa_len != 0 &&
sa_equal(ifa->ifa_broadaddr, addr)) {
if (getref)
ifa_ref(ifa);
IF_ADDR_RUNLOCK(ifp);
goto done;
}
}
IF_ADDR_RUNLOCK(ifp);
}
ifa = NULL;
done:
IFNET_RUNLOCK_NOSLEEP();
return (ifa);
}
struct ifaddr *
ifa_ifwithaddr(const struct sockaddr *addr)
{
return (ifa_ifwithaddr_internal(addr, 1));
}
int
ifa_ifwithaddr_check(const struct sockaddr *addr)
{
return (ifa_ifwithaddr_internal(addr, 0) != NULL);
}
/*
* Locate an interface based on the broadcast address.
*/
/* ARGSUSED */
struct ifaddr *
ifa_ifwithbroadaddr(const struct sockaddr *addr, int fibnum)
{
struct ifnet *ifp;
struct ifaddr *ifa;
IFNET_RLOCK_NOSLEEP();
TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum))
continue;
IF_ADDR_RLOCK(ifp);
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
if (ifa->ifa_addr->sa_family != addr->sa_family)
continue;
if ((ifp->if_flags & IFF_BROADCAST) &&
ifa->ifa_broadaddr &&
ifa->ifa_broadaddr->sa_len != 0 &&
sa_equal(ifa->ifa_broadaddr, addr)) {
ifa_ref(ifa);
IF_ADDR_RUNLOCK(ifp);
goto done;
}
}
IF_ADDR_RUNLOCK(ifp);
}
ifa = NULL;
done:
IFNET_RUNLOCK_NOSLEEP();
return (ifa);
}
/*
* Locate the point to point interface with a given destination address.
*/
/*ARGSUSED*/
struct ifaddr *
ifa_ifwithdstaddr(const struct sockaddr *addr, int fibnum)
{
struct ifnet *ifp;
struct ifaddr *ifa;
IFNET_RLOCK_NOSLEEP();
TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
continue;
if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum))
continue;
IF_ADDR_RLOCK(ifp);
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
if (ifa->ifa_addr->sa_family != addr->sa_family)
continue;
if (ifa->ifa_dstaddr != NULL &&
sa_equal(addr, ifa->ifa_dstaddr)) {
ifa_ref(ifa);
IF_ADDR_RUNLOCK(ifp);
goto done;
}
}
IF_ADDR_RUNLOCK(ifp);
}
ifa = NULL;
done:
IFNET_RUNLOCK_NOSLEEP();
return (ifa);
}
/*
* Find an interface on a specific network. If many, choice
* is most specific found.
*/
struct ifaddr *
ifa_ifwithnet(const struct sockaddr *addr, int ignore_ptp, int fibnum)
{
struct ifnet *ifp;
struct ifaddr *ifa;
struct ifaddr *ifa_maybe = NULL;
u_int af = addr->sa_family;
const char *addr_data = addr->sa_data, *cplim;
/*
* AF_LINK addresses can be looked up directly by their index number,
* so do that if we can.
*/
if (af == AF_LINK) {
const struct sockaddr_dl *sdl = (const struct sockaddr_dl *)addr;
if (sdl->sdl_index && sdl->sdl_index <= V_if_index)
return (ifaddr_byindex(sdl->sdl_index));
}
/*
* Scan though each interface, looking for ones that have addresses
* in this address family and the requested fib. Maintain a reference
* on ifa_maybe once we find one, as we release the IF_ADDR_RLOCK() that
* kept it stable when we move onto the next interface.
*/
IFNET_RLOCK_NOSLEEP();
TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum))
continue;
IF_ADDR_RLOCK(ifp);
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
const char *cp, *cp2, *cp3;
if (ifa->ifa_addr->sa_family != af)
next: continue;
if (af == AF_INET &&
ifp->if_flags & IFF_POINTOPOINT && !ignore_ptp) {
/*
* This is a bit broken as it doesn't
* take into account that the remote end may
* be a single node in the network we are
* looking for.
* The trouble is that we don't know the
* netmask for the remote end.
*/
if (ifa->ifa_dstaddr != NULL &&
sa_equal(addr, ifa->ifa_dstaddr)) {
ifa_ref(ifa);
IF_ADDR_RUNLOCK(ifp);
goto done;
}
} else {
/*
* Scan all the bits in the ifa's address.
* If a bit dissagrees with what we are
* looking for, mask it with the netmask
* to see if it really matters.
* (A byte at a time)
*/
if (ifa->ifa_netmask == 0)
continue;
cp = addr_data;
cp2 = ifa->ifa_addr->sa_data;
cp3 = ifa->ifa_netmask->sa_data;
cplim = ifa->ifa_netmask->sa_len
+ (char *)ifa->ifa_netmask;
while (cp3 < cplim)
if ((*cp++ ^ *cp2++) & *cp3++)
goto next; /* next address! */
/*
* If the netmask of what we just found
* is more specific than what we had before
* (if we had one), or if the virtual status
* of new prefix is better than of the old one,
* then remember the new one before continuing
* to search for an even better one.
*/
if (ifa_maybe == NULL ||
ifa_preferred(ifa_maybe, ifa) ||
rn_refines((caddr_t)ifa->ifa_netmask,
(caddr_t)ifa_maybe->ifa_netmask)) {
if (ifa_maybe != NULL)
ifa_free(ifa_maybe);
ifa_maybe = ifa;
ifa_ref(ifa_maybe);
}
}
}
IF_ADDR_RUNLOCK(ifp);
}
ifa = ifa_maybe;
ifa_maybe = NULL;
done:
IFNET_RUNLOCK_NOSLEEP();
if (ifa_maybe != NULL)
ifa_free(ifa_maybe);
return (ifa);
}
/*
* Find an interface address specific to an interface best matching
* a given address.
*/
struct ifaddr *
ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
{
struct ifaddr *ifa;
const char *cp, *cp2, *cp3;
char *cplim;
struct ifaddr *ifa_maybe = NULL;
u_int af = addr->sa_family;
if (af >= AF_MAX)
return (NULL);
IF_ADDR_RLOCK(ifp);
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
if (ifa->ifa_addr->sa_family != af)
continue;
if (ifa_maybe == NULL)
ifa_maybe = ifa;
if (ifa->ifa_netmask == 0) {
if (sa_equal(addr, ifa->ifa_addr) ||
(ifa->ifa_dstaddr &&
sa_equal(addr, ifa->ifa_dstaddr)))
goto done;
continue;
}
if (ifp->if_flags & IFF_POINTOPOINT) {
if (sa_equal(addr, ifa->ifa_dstaddr))
goto done;
} else {
cp = addr->sa_data;
cp2 = ifa->ifa_addr->sa_data;
cp3 = ifa->ifa_netmask->sa_data;
cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
for (; cp3 < cplim; cp3++)
if ((*cp++ ^ *cp2++) & *cp3)
break;
if (cp3 == cplim)
goto done;
}
}
ifa = ifa_maybe;
done:
if (ifa != NULL)
ifa_ref(ifa);
IF_ADDR_RUNLOCK(ifp);
return (ifa);
}
/*
* See whether new ifa is better than current one:
* 1) A non-virtual one is preferred over virtual.
* 2) A virtual in master state preferred over any other state.
*
* Used in several address selecting functions.
*/
int
ifa_preferred(struct ifaddr *cur, struct ifaddr *next)
{
return (cur->ifa_carp && (!next->ifa_carp ||
((*carp_master_p)(next) && !(*carp_master_p)(cur))));
}
#include <net/if_llatbl.h>
/*
* Default action when installing a route with a Link Level gateway.
* Lookup an appropriate real ifa to point to.
* This should be moved to /sys/net/link.c eventually.
*/
static void
link_rtrequest(int cmd, struct rtentry *rt, struct rt_addrinfo *info)
{
struct ifaddr *ifa, *oifa;
struct sockaddr *dst;
struct ifnet *ifp;
if (cmd != RTM_ADD || ((ifa = rt->rt_ifa) == NULL) ||
((ifp = ifa->ifa_ifp) == NULL) || ((dst = rt_key(rt)) == NULL))
return;
ifa = ifaof_ifpforaddr(dst, ifp);
if (ifa) {
oifa = rt->rt_ifa;
rt->rt_ifa = ifa;
ifa_free(oifa);
if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
ifa->ifa_rtrequest(cmd, rt, info);
}
}
struct sockaddr_dl *
link_alloc_sdl(size_t size, int flags)
{
return (malloc(size, M_TEMP, flags));
}
void
link_free_sdl(struct sockaddr *sa)
{
free(sa, M_TEMP);
}
/*
* Fills in given sdl with interface basic info.
* Returns pointer to filled sdl.
*/
struct sockaddr_dl *
link_init_sdl(struct ifnet *ifp, struct sockaddr *paddr, u_char iftype)
{
struct sockaddr_dl *sdl;
sdl = (struct sockaddr_dl *)paddr;
memset(sdl, 0, sizeof(struct sockaddr_dl));
sdl->sdl_len = sizeof(struct sockaddr_dl);
sdl->sdl_family = AF_LINK;
sdl->sdl_index = ifp->if_index;
sdl->sdl_type = iftype;
return (sdl);
}
/*
* Mark an interface down and notify protocols of
* the transition.
*/
static void
if_unroute(struct ifnet *ifp, int flag, int fam)
{
struct ifaddr *ifa;
KASSERT(flag == IFF_UP, ("if_unroute: flag != IFF_UP"));
ifp->if_flags &= ~flag;
getmicrotime(&ifp->if_lastchange);
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link)
if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
ifp->if_qflush(ifp);
if (ifp->if_carp)
(*carp_linkstate_p)(ifp);
rt_ifmsg(ifp);
}
/*
* Mark an interface up and notify protocols of
* the transition.
*/
static void
if_route(struct ifnet *ifp, int flag, int fam)
{
struct ifaddr *ifa;
KASSERT(flag == IFF_UP, ("if_route: flag != IFF_UP"));
ifp->if_flags |= flag;
getmicrotime(&ifp->if_lastchange);
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link)
if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
pfctlinput(PRC_IFUP, ifa->ifa_addr);
if (ifp->if_carp)
(*carp_linkstate_p)(ifp);
rt_ifmsg(ifp);
#ifdef INET6
in6_if_up(ifp);
#endif
}
void (*vlan_link_state_p)(struct ifnet *); /* XXX: private from if_vlan */
void (*vlan_trunk_cap_p)(struct ifnet *); /* XXX: private from if_vlan */
struct ifnet *(*vlan_trunkdev_p)(struct ifnet *);
struct ifnet *(*vlan_devat_p)(struct ifnet *, uint16_t);
int (*vlan_tag_p)(struct ifnet *, uint16_t *);
int (*vlan_setcookie_p)(struct ifnet *, void *);
void *(*vlan_cookie_p)(struct ifnet *);
/*
* Handle a change in the interface link state. To avoid LORs
* between driver lock and upper layer locks, as well as possible
* recursions, we post event to taskqueue, and all job
* is done in static do_link_state_change().
*/
void
if_link_state_change(struct ifnet *ifp, int link_state)
{
/* Return if state hasn't changed. */
if (ifp->if_link_state == link_state)
return;
ifp->if_link_state = link_state;
taskqueue_enqueue(taskqueue_swi, &ifp->if_linktask);
}
static void
do_link_state_change(void *arg, int pending)
{
struct ifnet *ifp = (struct ifnet *)arg;
int link_state = ifp->if_link_state;
CURVNET_SET(ifp->if_vnet);
/* Notify that the link state has changed. */
rt_ifmsg(ifp);
if (ifp->if_vlantrunk != NULL)
(*vlan_link_state_p)(ifp);
if ((ifp->if_type == IFT_ETHER || ifp->if_type == IFT_L2VLAN) &&
ifp->if_l2com != NULL)
(*ng_ether_link_state_p)(ifp, link_state);
if (ifp->if_carp)
(*carp_linkstate_p)(ifp);
if (ifp->if_bridge)
(*bridge_linkstate_p)(ifp);
if (ifp->if_lagg)
(*lagg_linkstate_p)(ifp, link_state);
if (IS_DEFAULT_VNET(curvnet))
devctl_notify("IFNET", ifp->if_xname,
(link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN",
NULL);
if (pending > 1)
if_printf(ifp, "%d link states coalesced\n", pending);
if (log_link_state_change)
log(LOG_NOTICE, "%s: link state changed to %s\n", ifp->if_xname,
(link_state == LINK_STATE_UP) ? "UP" : "DOWN" );
EVENTHANDLER_INVOKE(ifnet_link_event, ifp, link_state);
CURVNET_RESTORE();
}
/*
* Mark an interface down and notify protocols of
* the transition.
*/
void
if_down(struct ifnet *ifp)
{
if_unroute(ifp, IFF_UP, AF_UNSPEC);
}
/*
* Mark an interface up and notify protocols of
* the transition.
*/
void
if_up(struct ifnet *ifp)
{
if_route(ifp, IFF_UP, AF_UNSPEC);
}
/*
* Flush an interface queue.
*/
void
if_qflush(struct ifnet *ifp)
{
struct mbuf *m, *n;
struct ifaltq *ifq;
ifq = &ifp->if_snd;
IFQ_LOCK(ifq);
#ifdef ALTQ
if (ALTQ_IS_ENABLED(ifq))
ALTQ_PURGE(ifq);
#endif
n = ifq->ifq_head;
while ((m = n) != NULL) {
n = m->m_nextpkt;
m_freem(m);
}
ifq->ifq_head = 0;
ifq->ifq_tail = 0;
ifq->ifq_len = 0;
IFQ_UNLOCK(ifq);
}
/*
* Map interface name to interface structure pointer, with or without
* returning a reference.
*/
struct ifnet *
ifunit_ref(const char *name)
{
struct ifnet *ifp;
IFNET_RLOCK_NOSLEEP();
TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0 &&
!(ifp->if_flags & IFF_DYING))
break;
}
if (ifp != NULL)
if_ref(ifp);
IFNET_RUNLOCK_NOSLEEP();
return (ifp);
}
struct ifnet *
ifunit(const char *name)
{
struct ifnet *ifp;
IFNET_RLOCK_NOSLEEP();
TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0)
break;
}
IFNET_RUNLOCK_NOSLEEP();
return (ifp);
}
/*
* Hardware specific interface ioctls.
*/
static int
ifhwioctl(u_long cmd, struct ifnet *ifp, caddr_t data, struct thread *td)
{
struct ifreq *ifr;
int error = 0;
int new_flags, temp_flags;
size_t namelen, onamelen;
size_t descrlen;
char *descrbuf, *odescrbuf;
char new_name[IFNAMSIZ];
struct ifaddr *ifa;
struct sockaddr_dl *sdl;
ifr = (struct ifreq *)data;
switch (cmd) {
case SIOCGIFINDEX:
ifr->ifr_index = ifp->if_index;
break;
case SIOCGIFFLAGS:
temp_flags = ifp->if_flags | ifp->if_drv_flags;
ifr->ifr_flags = temp_flags & 0xffff;
ifr->ifr_flagshigh = temp_flags >> 16;
break;
case SIOCGIFCAP:
ifr->ifr_reqcap = ifp->if_capabilities;
ifr->ifr_curcap = ifp->if_capenable;
break;
#ifdef MAC
case SIOCGIFMAC:
error = mac_ifnet_ioctl_get(td->td_ucred, ifr, ifp);
break;
#endif
case SIOCGIFMETRIC:
ifr->ifr_metric = ifp->if_metric;
break;
case SIOCGIFMTU:
ifr->ifr_mtu = ifp->if_mtu;
break;
case SIOCGIFPHYS:
/* XXXGL: did this ever worked? */
ifr->ifr_phys = 0;
break;
case SIOCGIFDESCR:
error = 0;
sx_slock(&ifdescr_sx);
if (ifp->if_description == NULL)
error = ENOMSG;
else {
/* space for terminating nul */
descrlen = strlen(ifp->if_description) + 1;
if (ifr->ifr_buffer.length < descrlen)
ifr->ifr_buffer.buffer = NULL;
else
error = copyout(ifp->if_description,
ifr->ifr_buffer.buffer, descrlen);
ifr->ifr_buffer.length = descrlen;
}
sx_sunlock(&ifdescr_sx);
break;
case SIOCSIFDESCR:
error = priv_check(td, PRIV_NET_SETIFDESCR);
if (error)
return (error);
/*
* Copy only (length-1) bytes to make sure that
* if_description is always nul terminated. The
* length parameter is supposed to count the
* terminating nul in.
*/
if (ifr->ifr_buffer.length > ifdescr_maxlen)
return (ENAMETOOLONG);
else if (ifr->ifr_buffer.length == 0)
descrbuf = NULL;
else {
descrbuf = malloc(ifr->ifr_buffer.length, M_IFDESCR,
M_WAITOK | M_ZERO);
error = copyin(ifr->ifr_buffer.buffer, descrbuf,
ifr->ifr_buffer.length - 1);
if (error) {
free(descrbuf, M_IFDESCR);
break;
}
}
sx_xlock(&ifdescr_sx);
odescrbuf = ifp->if_description;
ifp->if_description = descrbuf;
sx_xunlock(&ifdescr_sx);
getmicrotime(&ifp->if_lastchange);
free(odescrbuf, M_IFDESCR);
break;
case SIOCGIFFIB:
ifr->ifr_fib = ifp->if_fib;
break;
case SIOCSIFFIB:
error = priv_check(td, PRIV_NET_SETIFFIB);
if (error)
return (error);
if (ifr->ifr_fib >= rt_numfibs)
return (EINVAL);
ifp->if_fib = ifr->ifr_fib;
break;
case SIOCSIFFLAGS:
error = priv_check(td, PRIV_NET_SETIFFLAGS);
if (error)
return (error);
/*
* Currently, no driver owned flags pass the IFF_CANTCHANGE
* check, so we don't need special handling here yet.
*/
new_flags = (ifr->ifr_flags & 0xffff) |
(ifr->ifr_flagshigh << 16);
if (ifp->if_flags & IFF_UP &&
(new_flags & IFF_UP) == 0) {
if_down(ifp);
} else if (new_flags & IFF_UP &&
(ifp->if_flags & IFF_UP) == 0) {
if_up(ifp);
}
/* See if permanently promiscuous mode bit is about to flip */
if ((ifp->if_flags ^ new_flags) & IFF_PPROMISC) {
if (new_flags & IFF_PPROMISC)
ifp->if_flags |= IFF_PROMISC;
else if (ifp->if_pcount == 0)
ifp->if_flags &= ~IFF_PROMISC;
if (log_promisc_mode_change)
log(LOG_INFO, "%s: permanently promiscuous mode %s\n",
ifp->if_xname,
((new_flags & IFF_PPROMISC) ?
"enabled" : "disabled"));
}
ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
(new_flags &~ IFF_CANTCHANGE);
if (ifp->if_ioctl) {
(void) (*ifp->if_ioctl)(ifp, cmd, data);
}
getmicrotime(&ifp->if_lastchange);
break;
case SIOCSIFCAP:
error = priv_check(td, PRIV_NET_SETIFCAP);
if (error)
return (error);
if (ifp->if_ioctl == NULL)
return (EOPNOTSUPP);
if (ifr->ifr_reqcap & ~ifp->if_capabilities)
return (EINVAL);
error = (*ifp->if_ioctl)(ifp, cmd, data);
if (error == 0)
getmicrotime(&ifp->if_lastchange);
break;
#ifdef MAC
case SIOCSIFMAC:
error = mac_ifnet_ioctl_set(td->td_ucred, ifr, ifp);
break;
#endif
case SIOCSIFNAME:
error = priv_check(td, PRIV_NET_SETIFNAME);
if (error)
return (error);
error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL);
if (error != 0)
return (error);
if (new_name[0] == '\0')
return (EINVAL);
if (new_name[IFNAMSIZ-1] != '\0') {
new_name[IFNAMSIZ-1] = '\0';
if (strlen(new_name) == IFNAMSIZ-1)
return (EINVAL);
}
if (ifunit(new_name) != NULL)
return (EEXIST);
/*
* XXX: Locking. Nothing else seems to lock if_flags,
* and there are numerous other races with the
* ifunit() checks not being atomic with namespace
* changes (renames, vmoves, if_attach, etc).
*/
ifp->if_flags |= IFF_RENAMING;
/* Announce the departure of the interface. */
rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
EVENTHANDLER_INVOKE(ifnet_departure_event, ifp);
log(LOG_INFO, "%s: changing name to '%s'\n",
ifp->if_xname, new_name);
IF_ADDR_WLOCK(ifp);
strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
ifa = ifp->if_addr;
sdl = (struct sockaddr_dl *)ifa->ifa_addr;
namelen = strlen(new_name);
onamelen = sdl->sdl_nlen;
/*
* Move the address if needed. This is safe because we
* allocate space for a name of length IFNAMSIZ when we
* create this in if_attach().
*/
if (namelen != onamelen) {
bcopy(sdl->sdl_data + onamelen,
sdl->sdl_data + namelen, sdl->sdl_alen);
}
bcopy(new_name, sdl->sdl_data, namelen);
sdl->sdl_nlen = namelen;
sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
bzero(sdl->sdl_data, onamelen);
while (namelen != 0)
sdl->sdl_data[--namelen] = 0xff;
IF_ADDR_WUNLOCK(ifp);
EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp);
/* Announce the return of the interface. */
rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
ifp->if_flags &= ~IFF_RENAMING;
break;
#ifdef VIMAGE
case SIOCSIFVNET:
error = priv_check(td, PRIV_NET_SETIFVNET);
if (error)
return (error);
error = if_vmove_loan(td, ifp, ifr->ifr_name, ifr->ifr_jid);
break;
#endif
case SIOCSIFMETRIC:
error = priv_check(td, PRIV_NET_SETIFMETRIC);
if (error)
return (error);
ifp->if_metric = ifr->ifr_metric;
getmicrotime(&ifp->if_lastchange);
break;
case SIOCSIFPHYS:
error = priv_check(td, PRIV_NET_SETIFPHYS);
if (error)
return (error);
if (ifp->if_ioctl == NULL)
return (EOPNOTSUPP);
error = (*ifp->if_ioctl)(ifp, cmd, data);
if (error == 0)
getmicrotime(&ifp->if_lastchange);
break;
case SIOCSIFMTU:
{
u_long oldmtu = ifp->if_mtu;
error = priv_check(td, PRIV_NET_SETIFMTU);
if (error)
return (error);
if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU)
return (EINVAL);
if (ifp->if_ioctl == NULL)
return (EOPNOTSUPP);
error = (*ifp->if_ioctl)(ifp, cmd, data);
if (error == 0) {
getmicrotime(&ifp->if_lastchange);
rt_ifmsg(ifp);
}
/*
* If the link MTU changed, do network layer specific procedure.
*/
if (ifp->if_mtu != oldmtu) {
#ifdef INET6
nd6_setmtu(ifp);
#endif
rt_updatemtu(ifp);
}
break;
}
case SIOCADDMULTI:
case SIOCDELMULTI:
if (cmd == SIOCADDMULTI)
error = priv_check(td, PRIV_NET_ADDMULTI);
else
error = priv_check(td, PRIV_NET_DELMULTI);
if (error)
return (error);
/* Don't allow group membership on non-multicast interfaces. */
if ((ifp->if_flags & IFF_MULTICAST) == 0)
return (EOPNOTSUPP);
/* Don't let users screw up protocols' entries. */
if (ifr->ifr_addr.sa_family != AF_LINK)
return (EINVAL);
if (cmd == SIOCADDMULTI) {
struct ifmultiaddr *ifma;
/*
* Userland is only permitted to join groups once
* via the if_addmulti() KPI, because it cannot hold
* struct ifmultiaddr * between calls. It may also
* lose a race while we check if the membership
* already exists.
*/
IF_ADDR_RLOCK(ifp);
ifma = if_findmulti(ifp, &ifr->ifr_addr);
IF_ADDR_RUNLOCK(ifp);
if (ifma != NULL)
error = EADDRINUSE;
else
error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
} else {
error = if_delmulti(ifp, &ifr->ifr_addr);
}
if (error == 0)
getmicrotime(&ifp->if_lastchange);
break;
case SIOCSIFPHYADDR:
case SIOCDIFPHYADDR:
#ifdef INET6
case SIOCSIFPHYADDR_IN6:
#endif
case SIOCSIFMEDIA:
case SIOCSIFGENERIC:
error = priv_check(td, PRIV_NET_HWIOCTL);
if (error)
return (error);
if (ifp->if_ioctl == NULL)
return (EOPNOTSUPP);
error = (*ifp->if_ioctl)(ifp, cmd, data);
if (error == 0)
getmicrotime(&ifp->if_lastchange);
break;
case SIOCGIFSTATUS:
case SIOCGIFPSRCADDR:
case SIOCGIFPDSTADDR:
case SIOCGIFMEDIA:
case SIOCGIFXMEDIA:
case SIOCGIFGENERIC:
if (ifp->if_ioctl == NULL)
return (EOPNOTSUPP);
error = (*ifp->if_ioctl)(ifp, cmd, data);
break;
case SIOCSIFLLADDR:
error = priv_check(td, PRIV_NET_SETLLADDR);
if (error)
return (error);
error = if_setlladdr(ifp,
ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len);
break;
case SIOCAIFGROUP:
{
struct ifgroupreq *ifgr = (struct ifgroupreq *)ifr;
error = priv_check(td, PRIV_NET_ADDIFGROUP);
if (error)
return (error);
if ((error = if_addgroup(ifp, ifgr->ifgr_group)))
return (error);
break;
}
case SIOCGIFGROUP:
if ((error = if_getgroup((struct ifgroupreq *)ifr, ifp)))
return (error);
break;
case SIOCDIFGROUP:
{
struct ifgroupreq *ifgr = (struct ifgroupreq *)ifr;
error = priv_check(td, PRIV_NET_DELIFGROUP);
if (error)
return (error);
if ((error = if_delgroup(ifp, ifgr->ifgr_group)))
return (error);
break;
}
default:
error = ENOIOCTL;
break;
}
return (error);
}
/* COMPAT_SVR4 */
#define OSIOCGIFCONF _IOWR('i', 20, struct ifconf)
#ifdef COMPAT_FREEBSD32
struct ifconf32 {
int32_t ifc_len;
union {
uint32_t ifcu_buf;
uint32_t ifcu_req;
} ifc_ifcu;
};
#define SIOCGIFCONF32 _IOWR('i', 36, struct ifconf32)
#endif
/*
* Interface ioctls.
*/
int
ifioctl(struct socket *so, u_long cmd, caddr_t data, struct thread *td)
{
struct ifnet *ifp;
struct ifreq *ifr;
int error;
int oif_flags;
#ifdef VIMAGE
int shutdown;
#endif
CURVNET_SET(so->so_vnet);
#ifdef VIMAGE
/* Make sure the VNET is stable. */
shutdown = (so->so_vnet->vnet_state > SI_SUB_VNET &&
so->so_vnet->vnet_state < SI_SUB_VNET_DONE) ? 1 : 0;
if (shutdown) {
CURVNET_RESTORE();
return (EBUSY);
}
#endif
switch (cmd) {
case SIOCGIFCONF:
case OSIOCGIFCONF: /* COMPAT_SVR4 */
error = ifconf(cmd, data);
CURVNET_RESTORE();
return (error);
#ifdef COMPAT_FREEBSD32
case SIOCGIFCONF32:
{
struct ifconf32 *ifc32;
struct ifconf ifc;
ifc32 = (struct ifconf32 *)data;
ifc.ifc_len = ifc32->ifc_len;
ifc.ifc_buf = PTRIN(ifc32->ifc_buf);
error = ifconf(SIOCGIFCONF, (void *)&ifc);
CURVNET_RESTORE();
if (error == 0)
ifc32->ifc_len = ifc.ifc_len;
return (error);
}
#endif
}
ifr = (struct ifreq *)data;
switch (cmd) {
#ifdef VIMAGE
case SIOCSIFRVNET:
error = priv_check(td, PRIV_NET_SETIFVNET);
if (error == 0)
error = if_vmove_reclaim(td, ifr->ifr_name,
ifr->ifr_jid);
CURVNET_RESTORE();
return (error);
#endif
case SIOCIFCREATE:
case SIOCIFCREATE2:
error = priv_check(td, PRIV_NET_IFCREATE);
if (error == 0)
error = if_clone_create(ifr->ifr_name,
sizeof(ifr->ifr_name),
cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL);
CURVNET_RESTORE();
return (error);
case SIOCIFDESTROY:
error = priv_check(td, PRIV_NET_IFDESTROY);
if (error == 0)
error = if_clone_destroy(ifr->ifr_name);
CURVNET_RESTORE();
return (error);
case SIOCIFGCLONERS:
error = if_clone_list((struct if_clonereq *)data);
CURVNET_RESTORE();
return (error);
case SIOCGIFGMEMB:
error = if_getgroupmembers((struct ifgroupreq *)data);
CURVNET_RESTORE();
return (error);
#if defined(INET) || defined(INET6)
case SIOCSVH:
case SIOCGVH:
if (carp_ioctl_p == NULL)
error = EPROTONOSUPPORT;
else
error = (*carp_ioctl_p)(ifr, cmd, td);
CURVNET_RESTORE();
return (error);
#endif
}
ifp = ifunit_ref(ifr->ifr_name);
if (ifp == NULL) {
CURVNET_RESTORE();
return (ENXIO);
}
error = ifhwioctl(cmd, ifp, data, td);
if (error != ENOIOCTL) {
if_rele(ifp);
CURVNET_RESTORE();
return (error);
}
oif_flags = ifp->if_flags;
if (so->so_proto == NULL) {
if_rele(ifp);
CURVNET_RESTORE();
return (EOPNOTSUPP);
}
/*
* Pass the request on to the socket control method, and if the
* latter returns EOPNOTSUPP, directly to the interface.
*
* Make an exception for the legacy SIOCSIF* requests. Drivers
* trust SIOCSIFADDR et al to come from an already privileged
* layer, and do not perform any credentials checks or input
* validation.
*/
error = ((*so->so_proto->pr_usrreqs->pru_control)(so, cmd, data,
ifp, td));
if (error == EOPNOTSUPP && ifp != NULL && ifp->if_ioctl != NULL &&
cmd != SIOCSIFADDR && cmd != SIOCSIFBRDADDR &&
cmd != SIOCSIFDSTADDR && cmd != SIOCSIFNETMASK)
error = (*ifp->if_ioctl)(ifp, cmd, data);
if ((oif_flags ^ ifp->if_flags) & IFF_UP) {
#ifdef INET6
if (ifp->if_flags & IFF_UP)
in6_if_up(ifp);
#endif
}
if_rele(ifp);
CURVNET_RESTORE();
return (error);
}
/*
* The code common to handling reference counted flags,
* e.g., in ifpromisc() and if_allmulti().
* The "pflag" argument can specify a permanent mode flag to check,
* such as IFF_PPROMISC for promiscuous mode; should be 0 if none.
*
* Only to be used on stack-owned flags, not driver-owned flags.
*/
static int
if_setflag(struct ifnet *ifp, int flag, int pflag, int *refcount, int onswitch)
{
struct ifreq ifr;
int error;
int oldflags, oldcount;
/* Sanity checks to catch programming errors */
KASSERT((flag & (IFF_DRV_OACTIVE|IFF_DRV_RUNNING)) == 0,
("%s: setting driver-owned flag %d", __func__, flag));
if (onswitch)
KASSERT(*refcount >= 0,
("%s: increment negative refcount %d for flag %d",
__func__, *refcount, flag));
else
KASSERT(*refcount > 0,
("%s: decrement non-positive refcount %d for flag %d",
__func__, *refcount, flag));
/* In case this mode is permanent, just touch refcount */
if (ifp->if_flags & pflag) {
*refcount += onswitch ? 1 : -1;
return (0);
}
/* Save ifnet parameters for if_ioctl() may fail */
oldcount = *refcount;
oldflags = ifp->if_flags;
/*
* See if we aren't the only and touching refcount is enough.
* Actually toggle interface flag if we are the first or last.
*/
if (onswitch) {
if ((*refcount)++)
return (0);
ifp->if_flags |= flag;
} else {
if (--(*refcount))
return (0);
ifp->if_flags &= ~flag;
}
/* Call down the driver since we've changed interface flags */
if (ifp->if_ioctl == NULL) {
error = EOPNOTSUPP;
goto recover;
}
ifr.ifr_flags = ifp->if_flags & 0xffff;
ifr.ifr_flagshigh = ifp->if_flags >> 16;
error = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr);
if (error)
goto recover;
/* Notify userland that interface flags have changed */
rt_ifmsg(ifp);
return (0);
recover:
/* Recover after driver error */
*refcount = oldcount;
ifp->if_flags = oldflags;
return (error);
}
/*
* Set/clear promiscuous mode on interface ifp based on the truth value
* of pswitch. The calls are reference counted so that only the first
* "on" request actually has an effect, as does the final "off" request.
* Results are undefined if the "off" and "on" requests are not matched.
*/
int
ifpromisc(struct ifnet *ifp, int pswitch)
{
int error;
int oldflags = ifp->if_flags;
error = if_setflag(ifp, IFF_PROMISC, IFF_PPROMISC,
&ifp->if_pcount, pswitch);
/* If promiscuous mode status has changed, log a message */
if (error == 0 && ((ifp->if_flags ^ oldflags) & IFF_PROMISC) &&
log_promisc_mode_change)
log(LOG_INFO, "%s: promiscuous mode %s\n",
ifp->if_xname,
(ifp->if_flags & IFF_PROMISC) ? "enabled" : "disabled");
return (error);
}
/*
* Return interface configuration
* of system. List may be used
* in later ioctl's (above) to get
* other information.
*/
/*ARGSUSED*/
static int
ifconf(u_long cmd, caddr_t data)
{
struct ifconf *ifc = (struct ifconf *)data;
struct ifnet *ifp;
struct ifaddr *ifa;
struct ifreq ifr;
struct sbuf *sb;
int error, full = 0, valid_len, max_len;
/* Limit initial buffer size to MAXPHYS to avoid DoS from userspace. */
max_len = MAXPHYS - 1;
/* Prevent hostile input from being able to crash the system */
if (ifc->ifc_len <= 0)
return (EINVAL);
again:
if (ifc->ifc_len <= max_len) {
max_len = ifc->ifc_len;
full = 1;
}
sb = sbuf_new(NULL, NULL, max_len + 1, SBUF_FIXEDLEN);
max_len = 0;
valid_len = 0;
IFNET_RLOCK();
TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
int addrs;
/*
* Zero the ifr_name buffer to make sure we don't
* disclose the contents of the stack.
*/
memset(ifr.ifr_name, 0, sizeof(ifr.ifr_name));
if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
>= sizeof(ifr.ifr_name)) {
sbuf_delete(sb);
IFNET_RUNLOCK();
return (ENAMETOOLONG);
}
addrs = 0;
IF_ADDR_RLOCK(ifp);
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
struct sockaddr *sa = ifa->ifa_addr;
if (prison_if(curthread->td_ucred, sa) != 0)
continue;
addrs++;
/* COMPAT_SVR4 */
if (cmd == OSIOCGIFCONF) {
struct osockaddr *osa =
(struct osockaddr *)&ifr.ifr_addr;
ifr.ifr_addr = *sa;
osa->sa_family = sa->sa_family;
sbuf_bcat(sb, &ifr, sizeof(ifr));
max_len += sizeof(ifr);
} else
if (sa->sa_len <= sizeof(*sa)) {
ifr.ifr_addr = *sa;
sbuf_bcat(sb, &ifr, sizeof(ifr));
max_len += sizeof(ifr);
} else {
sbuf_bcat(sb, &ifr,
offsetof(struct ifreq, ifr_addr));
max_len += offsetof(struct ifreq, ifr_addr);
sbuf_bcat(sb, sa, sa->sa_len);
max_len += sa->sa_len;
}
if (sbuf_error(sb) == 0)
valid_len = sbuf_len(sb);
}
IF_ADDR_RUNLOCK(ifp);
if (addrs == 0) {
bzero((caddr_t)&ifr.ifr_addr, sizeof(ifr.ifr_addr));
sbuf_bcat(sb, &ifr, sizeof(ifr));
max_len += sizeof(ifr);
if (sbuf_error(sb) == 0)
valid_len = sbuf_len(sb);
}
}
IFNET_RUNLOCK();
/*
* If we didn't allocate enough space (uncommon), try again. If
* we have already allocated as much space as we are allowed,
* return what we've got.
*/
if (valid_len != max_len && !full) {
sbuf_delete(sb);
goto again;
}
ifc->ifc_len = valid_len;
sbuf_finish(sb);
error = copyout(sbuf_data(sb), ifc->ifc_req, ifc->ifc_len);
sbuf_delete(sb);
return (error);
}
/*
* Just like ifpromisc(), but for all-multicast-reception mode.
*/
int
if_allmulti(struct ifnet *ifp, int onswitch)
{
return (if_setflag(ifp, IFF_ALLMULTI, 0, &ifp->if_amcount, onswitch));
}
struct ifmultiaddr *
if_findmulti(struct ifnet *ifp, const struct sockaddr *sa)
{
struct ifmultiaddr *ifma;
IF_ADDR_LOCK_ASSERT(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (sa->sa_family == AF_LINK) {
if (sa_dl_equal(ifma->ifma_addr, sa))
break;
} else {
if (sa_equal(ifma->ifma_addr, sa))
break;
}
}
return ifma;
}
/*
* Allocate a new ifmultiaddr and initialize based on passed arguments. We
* make copies of passed sockaddrs. The ifmultiaddr will not be added to
* the ifnet multicast address list here, so the caller must do that and
* other setup work (such as notifying the device driver). The reference
* count is initialized to 1.
*/
static struct ifmultiaddr *
if_allocmulti(struct ifnet *ifp, struct sockaddr *sa, struct sockaddr *llsa,
int mflags)
{
struct ifmultiaddr *ifma;
struct sockaddr *dupsa;
ifma = malloc(sizeof *ifma, M_IFMADDR, mflags |
M_ZERO);
if (ifma == NULL)
return (NULL);
dupsa = malloc(sa->sa_len, M_IFMADDR, mflags);
if (dupsa == NULL) {
free(ifma, M_IFMADDR);
return (NULL);
}
bcopy(sa, dupsa, sa->sa_len);
ifma->ifma_addr = dupsa;
ifma->ifma_ifp = ifp;
ifma->ifma_refcount = 1;
ifma->ifma_protospec = NULL;
if (llsa == NULL) {
ifma->ifma_lladdr = NULL;
return (ifma);
}
dupsa = malloc(llsa->sa_len, M_IFMADDR, mflags);
if (dupsa == NULL) {
free(ifma->ifma_addr, M_IFMADDR);
free(ifma, M_IFMADDR);
return (NULL);
}
bcopy(llsa, dupsa, llsa->sa_len);
ifma->ifma_lladdr = dupsa;
return (ifma);
}
/*
* if_freemulti: free ifmultiaddr structure and possibly attached related
* addresses. The caller is responsible for implementing reference
* counting, notifying the driver, handling routing messages, and releasing
* any dependent link layer state.
*/
static void
if_freemulti(struct ifmultiaddr *ifma)
{
KASSERT(ifma->ifma_refcount == 0, ("if_freemulti: refcount %d",
ifma->ifma_refcount));
if (ifma->ifma_lladdr != NULL)
free(ifma->ifma_lladdr, M_IFMADDR);
free(ifma->ifma_addr, M_IFMADDR);
free(ifma, M_IFMADDR);
}
/*
* Register an additional multicast address with a network interface.
*
* - If the address is already present, bump the reference count on the
* address and return.
* - If the address is not link-layer, look up a link layer address.
* - Allocate address structures for one or both addresses, and attach to the
* multicast address list on the interface. If automatically adding a link
* layer address, the protocol address will own a reference to the link
* layer address, to be freed when it is freed.
* - Notify the network device driver of an addition to the multicast address
* list.
*
* 'sa' points to caller-owned memory with the desired multicast address.
*
* 'retifma' will be used to return a pointer to the resulting multicast
* address reference, if desired.
*/
int
if_addmulti(struct ifnet *ifp, struct sockaddr *sa,
struct ifmultiaddr **retifma)
{
struct ifmultiaddr *ifma, *ll_ifma;
struct sockaddr *llsa;
struct sockaddr_dl sdl;
int error;
/*
* If the address is already present, return a new reference to it;
* otherwise, allocate storage and set up a new address.
*/
IF_ADDR_WLOCK(ifp);
ifma = if_findmulti(ifp, sa);
if (ifma != NULL) {
ifma->ifma_refcount++;
if (retifma != NULL)
*retifma = ifma;
IF_ADDR_WUNLOCK(ifp);
return (0);
}
/*
* The address isn't already present; resolve the protocol address
* into a link layer address, and then look that up, bump its
* refcount or allocate an ifma for that also.
* Most link layer resolving functions returns address data which
* fits inside default sockaddr_dl structure. However callback
* can allocate another sockaddr structure, in that case we need to
* free it later.
*/
llsa = NULL;
ll_ifma = NULL;
if (ifp->if_resolvemulti != NULL) {
/* Provide called function with buffer size information */
sdl.sdl_len = sizeof(sdl);
llsa = (struct sockaddr *)&sdl;
error = ifp->if_resolvemulti(ifp, &llsa, sa);
if (error)
goto unlock_out;
}
/*
* Allocate the new address. Don't hook it up yet, as we may also
* need to allocate a link layer multicast address.
*/
ifma = if_allocmulti(ifp, sa, llsa, M_NOWAIT);
if (ifma == NULL) {
error = ENOMEM;
goto free_llsa_out;
}
/*
* If a link layer address is found, we'll need to see if it's
* already present in the address list, or allocate is as well.
* When this block finishes, the link layer address will be on the
* list.
*/
if (llsa != NULL) {
ll_ifma = if_findmulti(ifp, llsa);
if (ll_ifma == NULL) {
ll_ifma = if_allocmulti(ifp, llsa, NULL, M_NOWAIT);
if (ll_ifma == NULL) {
--ifma->ifma_refcount;
if_freemulti(ifma);
error = ENOMEM;
goto free_llsa_out;
}
TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ll_ifma,
ifma_link);
} else
ll_ifma->ifma_refcount++;
ifma->ifma_llifma = ll_ifma;
}
/*
* We now have a new multicast address, ifma, and possibly a new or
* referenced link layer address. Add the primary address to the
* ifnet address list.
*/
TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
if (retifma != NULL)
*retifma = ifma;
/*
* Must generate the message while holding the lock so that 'ifma'
* pointer is still valid.
*/
rt_newmaddrmsg(RTM_NEWMADDR, ifma);
IF_ADDR_WUNLOCK(ifp);
/*
* We are certain we have added something, so call down to the
* interface to let them know about it.
*/
if (ifp->if_ioctl != NULL) {
(void) (*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0);
}
if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl))
link_free_sdl(llsa);
return (0);
free_llsa_out:
if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl))
link_free_sdl(llsa);
unlock_out:
IF_ADDR_WUNLOCK(ifp);
return (error);
}
/*
* Delete a multicast group membership by network-layer group address.
*
* Returns ENOENT if the entry could not be found. If ifp no longer
* exists, results are undefined. This entry point should only be used
* from subsystems which do appropriate locking to hold ifp for the
* duration of the call.
* Network-layer protocol domains must use if_delmulti_ifma().
*/
int
if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
{
struct ifmultiaddr *ifma;
int lastref;
#ifdef INVARIANTS
struct ifnet *oifp;
IFNET_RLOCK_NOSLEEP();
TAILQ_FOREACH(oifp, &V_ifnet, if_link)
if (ifp == oifp)
break;
if (ifp != oifp)
ifp = NULL;
IFNET_RUNLOCK_NOSLEEP();
KASSERT(ifp != NULL, ("%s: ifnet went away", __func__));
#endif
if (ifp == NULL)
return (ENOENT);
IF_ADDR_WLOCK(ifp);
lastref = 0;
ifma = if_findmulti(ifp, sa);
if (ifma != NULL)
lastref = if_delmulti_locked(ifp, ifma, 0);
IF_ADDR_WUNLOCK(ifp);
if (ifma == NULL)
return (ENOENT);
if (lastref && ifp->if_ioctl != NULL) {
(void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0);
}
return (0);
}
/*
* Delete all multicast group membership for an interface.
* Should be used to quickly flush all multicast filters.
*/
void
if_delallmulti(struct ifnet *ifp)
{
struct ifmultiaddr *ifma;
struct ifmultiaddr *next;
IF_ADDR_WLOCK(ifp);
TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next)
if_delmulti_locked(ifp, ifma, 0);
IF_ADDR_WUNLOCK(ifp);
}
/*
* Delete a multicast group membership by group membership pointer.
* Network-layer protocol domains must use this routine.
*
* It is safe to call this routine if the ifp disappeared.
*/
void
if_delmulti_ifma(struct ifmultiaddr *ifma)
{
struct ifnet *ifp;
int lastref;
ifp = ifma->ifma_ifp;
#ifdef DIAGNOSTIC
if (ifp == NULL) {
printf("%s: ifma_ifp seems to be detached\n", __func__);
} else {
struct ifnet *oifp;
IFNET_RLOCK_NOSLEEP();
TAILQ_FOREACH(oifp, &V_ifnet, if_link)
if (ifp == oifp)
break;
if (ifp != oifp) {
printf("%s: ifnet %p disappeared\n", __func__, ifp);
ifp = NULL;
}
IFNET_RUNLOCK_NOSLEEP();
}
#endif
/*
* If and only if the ifnet instance exists: Acquire the address lock.
*/
if (ifp != NULL)
IF_ADDR_WLOCK(ifp);
lastref = if_delmulti_locked(ifp, ifma, 0);
if (ifp != NULL) {
/*
* If and only if the ifnet instance exists:
* Release the address lock.
* If the group was left: update the hardware hash filter.
*/
IF_ADDR_WUNLOCK(ifp);
if (lastref && ifp->if_ioctl != NULL) {
(void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0);
}
}
}
/*
* Perform deletion of network-layer and/or link-layer multicast address.
*
* Return 0 if the reference count was decremented.
* Return 1 if the final reference was released, indicating that the
* hardware hash filter should be reprogrammed.
*/
static int
if_delmulti_locked(struct ifnet *ifp, struct ifmultiaddr *ifma, int detaching)
{
struct ifmultiaddr *ll_ifma;
if (ifp != NULL && ifma->ifma_ifp != NULL) {
KASSERT(ifma->ifma_ifp == ifp,
("%s: inconsistent ifp %p", __func__, ifp));
IF_ADDR_WLOCK_ASSERT(ifp);
}
ifp = ifma->ifma_ifp;
/*
* If the ifnet is detaching, null out references to ifnet,
* so that upper protocol layers will notice, and not attempt
* to obtain locks for an ifnet which no longer exists. The
* routing socket announcement must happen before the ifnet
* instance is detached from the system.
*/
if (detaching) {
#ifdef DIAGNOSTIC
printf("%s: detaching ifnet instance %p\n", __func__, ifp);
#endif
/*
* ifp may already be nulled out if we are being reentered
* to delete the ll_ifma.
*/
if (ifp != NULL) {
rt_newmaddrmsg(RTM_DELMADDR, ifma);
ifma->ifma_ifp = NULL;
}
}
if (--ifma->ifma_refcount > 0)
return 0;
/*
* If this ifma is a network-layer ifma, a link-layer ifma may
* have been associated with it. Release it first if so.
*/
ll_ifma = ifma->ifma_llifma;
if (ll_ifma != NULL) {
KASSERT(ifma->ifma_lladdr != NULL,
("%s: llifma w/o lladdr", __func__));
if (detaching)
ll_ifma->ifma_ifp = NULL; /* XXX */
if (--ll_ifma->ifma_refcount == 0) {
if (ifp != NULL) {
TAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma,
ifma_link);
}
if_freemulti(ll_ifma);
}
}
if (ifp != NULL)
TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
if_freemulti(ifma);
/*
* The last reference to this instance of struct ifmultiaddr
* was released; the hardware should be notified of this change.
*/
return 1;
}
/*
* Set the link layer address on an interface.
*
* At this time we only support certain types of interfaces,
* and we don't allow the length of the address to change.
*
* Set noinline to be dtrace-friendly
*/
__noinline int
if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
{
struct sockaddr_dl *sdl;
struct ifaddr *ifa;
struct ifreq ifr;
IF_ADDR_RLOCK(ifp);
ifa = ifp->if_addr;
if (ifa == NULL) {
IF_ADDR_RUNLOCK(ifp);
return (EINVAL);
}
ifa_ref(ifa);
IF_ADDR_RUNLOCK(ifp);
sdl = (struct sockaddr_dl *)ifa->ifa_addr;
if (sdl == NULL) {
ifa_free(ifa);
return (EINVAL);
}
if (len != sdl->sdl_alen) { /* don't allow length to change */
ifa_free(ifa);
return (EINVAL);
}
switch (ifp->if_type) {
case IFT_ETHER:
case IFT_FDDI:
case IFT_XETHER:
case IFT_ISO88025:
case IFT_L2VLAN:
case IFT_BRIDGE:
case IFT_ARCNET:
case IFT_IEEE8023ADLAG:
case IFT_IEEE80211:
bcopy(lladdr, LLADDR(sdl), len);
ifa_free(ifa);
break;
default:
ifa_free(ifa);
return (ENODEV);
}
/*
* If the interface is already up, we need
* to re-init it in order to reprogram its
* address filter.
*/
if ((ifp->if_flags & IFF_UP) != 0) {
if (ifp->if_ioctl) {
ifp->if_flags &= ~IFF_UP;
ifr.ifr_flags = ifp->if_flags & 0xffff;
ifr.ifr_flagshigh = ifp->if_flags >> 16;
(*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr);
ifp->if_flags |= IFF_UP;
ifr.ifr_flags = ifp->if_flags & 0xffff;
ifr.ifr_flagshigh = ifp->if_flags >> 16;
(*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr);
}
}
EVENTHANDLER_INVOKE(iflladdr_event, ifp);
return (0);
}
/*
* Compat function for handling basic encapsulation requests.
* Not converted stacks (FDDI, IB, ..) supports traditional
* output model: ARP (and other similar L2 protocols) are handled
* inside output routine, arpresolve/nd6_resolve() returns MAC
* address instead of full prepend.
*
* This function creates calculated header==MAC for IPv4/IPv6 and
* returns EAFNOSUPPORT (which is then handled in ARP code) for other
* address families.
*/
static int
if_requestencap_default(struct ifnet *ifp, struct if_encap_req *req)
{
if (req->rtype != IFENCAP_LL)
return (EOPNOTSUPP);
if (req->bufsize < req->lladdr_len)
return (ENOMEM);
switch (req->family) {
case AF_INET:
case AF_INET6:
break;
default:
return (EAFNOSUPPORT);
}
/* Copy lladdr to storage as is */
memmove(req->buf, req->lladdr, req->lladdr_len);
req->bufsize = req->lladdr_len;
req->lladdr_off = 0;
return (0);
}
/*
* The name argument must be a pointer to storage which will last as
* long as the interface does. For physical devices, the result of
* device_get_name(dev) is a good choice and for pseudo-devices a
* static string works well.
*/
void
if_initname(struct ifnet *ifp, const char *name, int unit)
{
ifp->if_dname = name;
ifp->if_dunit = unit;
if (unit != IF_DUNIT_NONE)
snprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
else
strlcpy(ifp->if_xname, name, IFNAMSIZ);
}
int
if_printf(struct ifnet *ifp, const char * fmt, ...)
{
va_list ap;
int retval;
retval = printf("%s: ", ifp->if_xname);
va_start(ap, fmt);
retval += vprintf(fmt, ap);
va_end(ap);
return (retval);
}
void
if_start(struct ifnet *ifp)
{
(*(ifp)->if_start)(ifp);
}
/*
* Backwards compatibility interface for drivers
* that have not implemented it
*/
static int
if_transmit(struct ifnet *ifp, struct mbuf *m)
{
int error;
IFQ_HANDOFF(ifp, m, error);
return (error);
}
static void
if_input_default(struct ifnet *ifp __unused, struct mbuf *m)
{
m_freem(m);
}
int
if_handoff(struct ifqueue *ifq, struct mbuf *m, struct ifnet *ifp, int adjust)
{
int active = 0;
IF_LOCK(ifq);
if (_IF_QFULL(ifq)) {
IF_UNLOCK(ifq);
if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1);
m_freem(m);
return (0);
}
if (ifp != NULL) {
if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len + adjust);
if (m->m_flags & (M_BCAST|M_MCAST))
if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
active = ifp->if_drv_flags & IFF_DRV_OACTIVE;
}
_IF_ENQUEUE(ifq, m);
IF_UNLOCK(ifq);
if (ifp != NULL && !active)
(*(ifp)->if_start)(ifp);
return (1);
}
void
if_register_com_alloc(u_char type,
if_com_alloc_t *a, if_com_free_t *f)
{
KASSERT(if_com_alloc[type] == NULL,
("if_register_com_alloc: %d already registered", type));
KASSERT(if_com_free[type] == NULL,
("if_register_com_alloc: %d free already registered", type));
if_com_alloc[type] = a;
if_com_free[type] = f;
}
void
if_deregister_com_alloc(u_char type)
{
KASSERT(if_com_alloc[type] != NULL,
("if_deregister_com_alloc: %d not registered", type));
KASSERT(if_com_free[type] != NULL,
("if_deregister_com_alloc: %d free not registered", type));
if_com_alloc[type] = NULL;
if_com_free[type] = NULL;
}
/* API for driver access to network stack owned ifnet.*/
uint64_t
if_setbaudrate(struct ifnet *ifp, uint64_t baudrate)
{
uint64_t oldbrate;
oldbrate = ifp->if_baudrate;
ifp->if_baudrate = baudrate;
return (oldbrate);
}
uint64_t
if_getbaudrate(if_t ifp)
{
return (((struct ifnet *)ifp)->if_baudrate);
}
int
if_setcapabilities(if_t ifp, int capabilities)
{
((struct ifnet *)ifp)->if_capabilities = capabilities;
return (0);
}
int
if_setcapabilitiesbit(if_t ifp, int setbit, int clearbit)
{
((struct ifnet *)ifp)->if_capabilities |= setbit;
((struct ifnet *)ifp)->if_capabilities &= ~clearbit;
return (0);
}
int
if_getcapabilities(if_t ifp)
{
return ((struct ifnet *)ifp)->if_capabilities;
}
int
if_setcapenable(if_t ifp, int capabilities)
{
((struct ifnet *)ifp)->if_capenable = capabilities;
return (0);
}
int
if_setcapenablebit(if_t ifp, int setcap, int clearcap)
{
if(setcap)
((struct ifnet *)ifp)->if_capenable |= setcap;
if(clearcap)
((struct ifnet *)ifp)->if_capenable &= ~clearcap;
return (0);
}
const char *
if_getdname(if_t ifp)
{
return ((struct ifnet *)ifp)->if_dname;
}
int
if_togglecapenable(if_t ifp, int togglecap)
{
((struct ifnet *)ifp)->if_capenable ^= togglecap;
return (0);
}
int
if_getcapenable(if_t ifp)
{
return ((struct ifnet *)ifp)->if_capenable;
}
/*
* This is largely undesirable because it ties ifnet to a device, but does
* provide flexiblity for an embedded product vendor. Should be used with
* the understanding that it violates the interface boundaries, and should be
* a last resort only.
*/
int
if_setdev(if_t ifp, void *dev)
{
return (0);
}
int
if_setdrvflagbits(if_t ifp, int set_flags, int clear_flags)
{
((struct ifnet *)ifp)->if_drv_flags |= set_flags;
((struct ifnet *)ifp)->if_drv_flags &= ~clear_flags;
return (0);
}
int
if_getdrvflags(if_t ifp)
{
return ((struct ifnet *)ifp)->if_drv_flags;
}
int
if_setdrvflags(if_t ifp, int flags)
{
((struct ifnet *)ifp)->if_drv_flags = flags;
return (0);
}
int
if_setflags(if_t ifp, int flags)
{
((struct ifnet *)ifp)->if_flags = flags;
return (0);
}
int
if_setflagbits(if_t ifp, int set, int clear)
{
((struct ifnet *)ifp)->if_flags |= set;
((struct ifnet *)ifp)->if_flags &= ~clear;
return (0);
}
int
if_getflags(if_t ifp)
{
return ((struct ifnet *)ifp)->if_flags;
}
int
if_clearhwassist(if_t ifp)
{
((struct ifnet *)ifp)->if_hwassist = 0;
return (0);
}
int
if_sethwassistbits(if_t ifp, int toset, int toclear)
{
((struct ifnet *)ifp)->if_hwassist |= toset;
((struct ifnet *)ifp)->if_hwassist &= ~toclear;
return (0);
}
int
if_sethwassist(if_t ifp, int hwassist_bit)
{
((struct ifnet *)ifp)->if_hwassist = hwassist_bit;
return (0);
}
int
if_gethwassist(if_t ifp)
{
return ((struct ifnet *)ifp)->if_hwassist;
}
int
if_setmtu(if_t ifp, int mtu)
{
((struct ifnet *)ifp)->if_mtu = mtu;
return (0);
}
int
if_getmtu(if_t ifp)
{
return ((struct ifnet *)ifp)->if_mtu;
}
int
if_getmtu_family(if_t ifp, int family)
{
struct domain *dp;
for (dp = domains; dp; dp = dp->dom_next) {
if (dp->dom_family == family && dp->dom_ifmtu != NULL)
return (dp->dom_ifmtu((struct ifnet *)ifp));
}
return (((struct ifnet *)ifp)->if_mtu);
}
int
if_setsoftc(if_t ifp, void *softc)
{
((struct ifnet *)ifp)->if_softc = softc;
return (0);
}
void *
if_getsoftc(if_t ifp)
{
return ((struct ifnet *)ifp)->if_softc;
}
void
if_setrcvif(struct mbuf *m, if_t ifp)
{
m->m_pkthdr.rcvif = (struct ifnet *)ifp;
}
void
if_setvtag(struct mbuf *m, uint16_t tag)
{
m->m_pkthdr.ether_vtag = tag;
}
uint16_t
if_getvtag(struct mbuf *m)
{
return (m->m_pkthdr.ether_vtag);
}
int
if_sendq_empty(if_t ifp)
{
return IFQ_DRV_IS_EMPTY(&((struct ifnet *)ifp)->if_snd);
}
struct ifaddr *
if_getifaddr(if_t ifp)
{
return ((struct ifnet *)ifp)->if_addr;
}
int
if_getamcount(if_t ifp)
{
return ((struct ifnet *)ifp)->if_amcount;
}
int
if_setsendqready(if_t ifp)
{
IFQ_SET_READY(&((struct ifnet *)ifp)->if_snd);
return (0);
}
int
if_setsendqlen(if_t ifp, int tx_desc_count)
{
IFQ_SET_MAXLEN(&((struct ifnet *)ifp)->if_snd, tx_desc_count);
((struct ifnet *)ifp)->if_snd.ifq_drv_maxlen = tx_desc_count;
return (0);
}
int
if_vlantrunkinuse(if_t ifp)
{
return ((struct ifnet *)ifp)->if_vlantrunk != NULL?1:0;
}
int
if_input(if_t ifp, struct mbuf* sendmp)
{
(*((struct ifnet *)ifp)->if_input)((struct ifnet *)ifp, sendmp);
return (0);
}
/* XXX */
#ifndef ETH_ADDR_LEN
#define ETH_ADDR_LEN 6
#endif
int
if_setupmultiaddr(if_t ifp, void *mta, int *cnt, int max)
{
struct ifmultiaddr *ifma;
uint8_t *lmta = (uint8_t *)mta;
int mcnt = 0;
TAILQ_FOREACH(ifma, &((struct ifnet *)ifp)->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
if (mcnt == max)
break;
bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
&lmta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN);
mcnt++;
}
*cnt = mcnt;
return (0);
}
int
if_multiaddr_array(if_t ifp, void *mta, int *cnt, int max)
{
int error;
if_maddr_rlock(ifp);
error = if_setupmultiaddr(ifp, mta, cnt, max);
if_maddr_runlock(ifp);
return (error);
}
int
if_multiaddr_count(if_t ifp, int max)
{
struct ifmultiaddr *ifma;
int count;
count = 0;
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &((struct ifnet *)ifp)->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
count++;
if (count == max)
break;
}
if_maddr_runlock(ifp);
return (count);
}
int
if_multi_apply(struct ifnet *ifp, int (*filter)(void *, struct ifmultiaddr *, int), void *arg)
{
struct ifmultiaddr *ifma;
int cnt = 0;
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
cnt += filter(arg, ifma, cnt);
if_maddr_runlock(ifp);
return (cnt);
}
struct mbuf *
if_dequeue(if_t ifp)
{
struct mbuf *m;
IFQ_DRV_DEQUEUE(&((struct ifnet *)ifp)->if_snd, m);
return (m);
}
int
if_sendq_prepend(if_t ifp, struct mbuf *m)
{
IFQ_DRV_PREPEND(&((struct ifnet *)ifp)->if_snd, m);
return (0);
}
int
if_setifheaderlen(if_t ifp, int len)
{
((struct ifnet *)ifp)->if_hdrlen = len;
return (0);
}
caddr_t
if_getlladdr(if_t ifp)
{
return (IF_LLADDR((struct ifnet *)ifp));
}
void *
if_gethandle(u_char type)
{
return (if_alloc(type));
}
void
if_bpfmtap(if_t ifh, struct mbuf *m)
{
struct ifnet *ifp = (struct ifnet *)ifh;
BPF_MTAP(ifp, m);
}
void
if_etherbpfmtap(if_t ifh, struct mbuf *m)
{
struct ifnet *ifp = (struct ifnet *)ifh;
ETHER_BPF_MTAP(ifp, m);
}
void
if_vlancap(if_t ifh)
{
struct ifnet *ifp = (struct ifnet *)ifh;
VLAN_CAPABILITIES(ifp);
}
void
if_setinitfn(if_t ifp, void (*init_fn)(void *))
{
((struct ifnet *)ifp)->if_init = init_fn;
}
void
if_setioctlfn(if_t ifp, int (*ioctl_fn)(if_t, u_long, caddr_t))
{
((struct ifnet *)ifp)->if_ioctl = (void *)ioctl_fn;
}
void
if_setstartfn(if_t ifp, void (*start_fn)(if_t))
{
((struct ifnet *)ifp)->if_start = (void *)start_fn;
}
void
if_settransmitfn(if_t ifp, if_transmit_fn_t start_fn)
{
((struct ifnet *)ifp)->if_transmit = start_fn;
}
void if_setqflushfn(if_t ifp, if_qflush_fn_t flush_fn)
{
((struct ifnet *)ifp)->if_qflush = flush_fn;
}
void
if_setgetcounterfn(if_t ifp, if_get_counter_t fn)
{
ifp->if_get_counter = fn;
}
/* Revisit these - These are inline functions originally. */
int
drbr_inuse_drv(if_t ifh, struct buf_ring *br)
{
return drbr_inuse(ifh, br);
}
struct mbuf*
drbr_dequeue_drv(if_t ifh, struct buf_ring *br)
{
return drbr_dequeue(ifh, br);
}
int
drbr_needs_enqueue_drv(if_t ifh, struct buf_ring *br)
{
return drbr_needs_enqueue(ifh, br);
}
int
drbr_enqueue_drv(if_t ifh, struct buf_ring *br, struct mbuf *m)
{
return drbr_enqueue(ifh, br, m);
}