1843 lines
45 KiB
C
1843 lines
45 KiB
C
/*
|
|
* Copyright (c) 1997, 1998, 1999
|
|
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Bill Paul.
|
|
* 4. Neither the name of the author nor the names of any co-contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
/*
|
|
* Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
|
|
* Programming manual is available from www.adaptec.com.
|
|
*
|
|
* Written by Bill Paul <wpaul@ctr.columbia.edu>
|
|
* Department of Electical Engineering
|
|
* Columbia University, New York City
|
|
*/
|
|
|
|
/*
|
|
* The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
|
|
* controller designed with flexibility and reducing CPU load in mind.
|
|
* The Starfire offers high and low priority buffer queues, a
|
|
* producer/consumer index mechanism and several different buffer
|
|
* queue and completion queue descriptor types. Any one of a number
|
|
* of different driver designs can be used, depending on system and
|
|
* OS requirements. This driver makes use of type0 transmit frame
|
|
* descriptors (since BSD fragments packets across an mbuf chain)
|
|
* and two RX buffer queues prioritized on size (one queue for small
|
|
* frames that will fit into a single mbuf, another with full size
|
|
* mbuf clusters for everything else). The producer/consumer indexes
|
|
* and completion queues are also used.
|
|
*
|
|
* One downside to the Starfire has to do with alignment: buffer
|
|
* queues must be aligned on 256-byte boundaries, and receive buffers
|
|
* must be aligned on longword boundaries. The receive buffer alignment
|
|
* causes problems on the Alpha platform, where the packet payload
|
|
* should be longword aligned. There is no simple way around this.
|
|
*
|
|
* For receive filtering, the Starfire offers 16 perfect filter slots
|
|
* and a 512-bit hash table.
|
|
*
|
|
* The Starfire has no internal transceiver, relying instead on an
|
|
* external MII-based transceiver. Accessing registers on external
|
|
* PHYs is done through a special register map rather than with the
|
|
* usual bitbang MDIO method.
|
|
*
|
|
* Acesssing the registers on the Starfire is a little tricky. The
|
|
* Starfire has a 512K internal register space. When programmed for
|
|
* PCI memory mapped mode, the entire register space can be accessed
|
|
* directly. However in I/O space mode, only 256 bytes are directly
|
|
* mapped into PCI I/O space. The other registers can be accessed
|
|
* indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
|
|
* registers inside the 256-byte I/O window.
|
|
*/
|
|
|
|
#include "bpf.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
|
|
#if NBPF > 0
|
|
#include <net/bpf.h>
|
|
#endif
|
|
|
|
#include <vm/vm.h> /* for vtophys */
|
|
#include <vm/pmap.h> /* for vtophys */
|
|
#include <machine/clock.h> /* for DELAY */
|
|
#include <machine/bus_pio.h>
|
|
#include <machine/bus_memio.h>
|
|
#include <machine/bus.h>
|
|
#include <machine/resource.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/rman.h>
|
|
|
|
#include <pci/pcireg.h>
|
|
#include <pci/pcivar.h>
|
|
|
|
#define SF_USEIOSPACE
|
|
|
|
/* #define SF_BACKGROUND_AUTONEG */
|
|
|
|
#include <pci/if_sfreg.h>
|
|
|
|
#ifndef lint
|
|
static const char rcsid[] =
|
|
"$FreeBSD$";
|
|
#endif
|
|
|
|
static struct sf_type sf_devs[] = {
|
|
{ AD_VENDORID, AD_DEVICEID_STARFIRE,
|
|
"Adaptec AIC-6915 10/100BaseTX" },
|
|
{ 0, 0, NULL }
|
|
};
|
|
|
|
static struct sf_type sf_phys[] = {
|
|
{ 0, 0, "<MII-compliant physical interface>" }
|
|
};
|
|
|
|
static int sf_probe __P((device_t));
|
|
static int sf_attach __P((device_t));
|
|
static int sf_detach __P((device_t));
|
|
static void sf_intr __P((void *));
|
|
static void sf_stats_update __P((void *));
|
|
static void sf_rxeof __P((struct sf_softc *));
|
|
static void sf_txeof __P((struct sf_softc *));
|
|
static int sf_encap __P((struct sf_softc *,
|
|
struct sf_tx_bufdesc_type0 *,
|
|
struct mbuf *));
|
|
static void sf_start __P((struct ifnet *));
|
|
static int sf_ioctl __P((struct ifnet *, u_long, caddr_t));
|
|
static void sf_init __P((void *));
|
|
static void sf_stop __P((struct sf_softc *));
|
|
static void sf_watchdog __P((struct ifnet *));
|
|
static void sf_shutdown __P((device_t));
|
|
static int sf_ifmedia_upd __P((struct ifnet *));
|
|
static void sf_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
|
|
static void sf_reset __P((struct sf_softc *));
|
|
static int sf_init_rx_ring __P((struct sf_softc *));
|
|
static void sf_init_tx_ring __P((struct sf_softc *));
|
|
static int sf_newbuf __P((struct sf_softc *,
|
|
struct sf_rx_bufdesc_type0 *,
|
|
struct mbuf *));
|
|
static void sf_setmulti __P((struct sf_softc *));
|
|
static int sf_setperf __P((struct sf_softc *, int, caddr_t));
|
|
static int sf_sethash __P((struct sf_softc *, caddr_t, int));
|
|
#ifdef notdef
|
|
static int sf_setvlan __P((struct sf_softc *, int, u_int32_t));
|
|
#endif
|
|
|
|
static u_int8_t sf_read_eeprom __P((struct sf_softc *, int));
|
|
static u_int32_t sf_calchash __P((caddr_t));
|
|
|
|
static int sf_phy_readreg __P((struct sf_softc *, int));
|
|
static void sf_phy_writereg __P((struct sf_softc *, int, int));
|
|
static void sf_autoneg_xmit __P((struct sf_softc *));
|
|
static void sf_autoneg_mii __P((struct sf_softc *, int, int));
|
|
static void sf_getmode_mii __P((struct sf_softc *));
|
|
static void sf_setmode_mii __P((struct sf_softc *, int));
|
|
|
|
static u_int32_t csr_read_4 __P((struct sf_softc *, int));
|
|
static void csr_write_4 __P((struct sf_softc *, int, u_int32_t));
|
|
|
|
#ifdef SF_USEIOSPACE
|
|
#define SF_RES SYS_RES_IOPORT
|
|
#define SF_RID SF_PCI_LOIO
|
|
#else
|
|
#define SF_RES SYS_RES_MEMORY
|
|
#define SF_RID SF_PCI_LOMEM
|
|
#endif
|
|
|
|
static device_method_t sf_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, sf_probe),
|
|
DEVMETHOD(device_attach, sf_attach),
|
|
DEVMETHOD(device_detach, sf_detach),
|
|
DEVMETHOD(device_shutdown, sf_shutdown),
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static driver_t sf_driver = {
|
|
"sf",
|
|
sf_methods,
|
|
sizeof(struct sf_softc),
|
|
};
|
|
|
|
static devclass_t sf_devclass;
|
|
|
|
DRIVER_MODULE(sf, pci, sf_driver, sf_devclass, 0, 0);
|
|
|
|
#define SF_SETBIT(sc, reg, x) \
|
|
csr_write_4(sc, reg, csr_read_4(sc, reg) | x)
|
|
|
|
#define SF_CLRBIT(sc, reg, x) \
|
|
csr_write_4(sc, reg, csr_read_4(sc, reg) & ~x)
|
|
|
|
static u_int32_t csr_read_4(sc, reg)
|
|
struct sf_softc *sc;
|
|
int reg;
|
|
{
|
|
u_int32_t val;
|
|
|
|
#ifdef SF_USEIOSPACE
|
|
CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
|
|
val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
|
|
#else
|
|
val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
|
|
#endif
|
|
|
|
return(val);
|
|
}
|
|
|
|
static u_int8_t sf_read_eeprom(sc, reg)
|
|
struct sf_softc *sc;
|
|
int reg;
|
|
{
|
|
u_int8_t val;
|
|
|
|
val = (csr_read_4(sc, SF_EEADDR_BASE +
|
|
(reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
|
|
|
|
return(val);
|
|
}
|
|
|
|
static void csr_write_4(sc, reg, val)
|
|
struct sf_softc *sc;
|
|
int reg;
|
|
u_int32_t val;
|
|
{
|
|
#ifdef SF_USEIOSPACE
|
|
CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
|
|
CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
|
|
#else
|
|
CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
static u_int32_t sf_calchash(addr)
|
|
caddr_t addr;
|
|
{
|
|
u_int32_t crc, carry;
|
|
int i, j;
|
|
u_int8_t c;
|
|
|
|
/* Compute CRC for the address value. */
|
|
crc = 0xFFFFFFFF; /* initial value */
|
|
|
|
for (i = 0; i < 6; i++) {
|
|
c = *(addr + i);
|
|
for (j = 0; j < 8; j++) {
|
|
carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
|
|
crc <<= 1;
|
|
c >>= 1;
|
|
if (carry)
|
|
crc = (crc ^ 0x04c11db6) | carry;
|
|
}
|
|
}
|
|
|
|
/* return the filter bit position */
|
|
return(crc >> 23 & 0x1FF);
|
|
}
|
|
|
|
/*
|
|
* Copy the address 'mac' into the perfect RX filter entry at
|
|
* offset 'idx.' The perfect filter only has 16 entries so do
|
|
* some sanity tests.
|
|
*/
|
|
static int sf_setperf(sc, idx, mac)
|
|
struct sf_softc *sc;
|
|
int idx;
|
|
caddr_t mac;
|
|
{
|
|
u_int16_t *p;
|
|
|
|
if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
|
|
return(EINVAL);
|
|
|
|
if (mac == NULL)
|
|
return(EINVAL);
|
|
|
|
p = (u_int16_t *)mac;
|
|
|
|
csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
|
|
(idx * SF_RXFILT_PERFECT_SKIP), htons(p[2]));
|
|
csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
|
|
(idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1]));
|
|
csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
|
|
(idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0]));
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Set the bit in the 512-bit hash table that corresponds to the
|
|
* specified mac address 'mac.' If 'prio' is nonzero, update the
|
|
* priority hash table instead of the filter hash table.
|
|
*/
|
|
static int sf_sethash(sc, mac, prio)
|
|
struct sf_softc *sc;
|
|
caddr_t mac;
|
|
int prio;
|
|
{
|
|
u_int32_t h = 0;
|
|
|
|
if (mac == NULL)
|
|
return(EINVAL);
|
|
|
|
h = sf_calchash(mac);
|
|
|
|
if (prio) {
|
|
SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
|
|
(SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
|
|
} else {
|
|
SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
|
|
(SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
|
|
}
|
|
|
|
return(0);
|
|
}
|
|
|
|
#ifdef notdef
|
|
/*
|
|
* Set a VLAN tag in the receive filter.
|
|
*/
|
|
static int sf_setvlan(sc, idx, vlan)
|
|
struct sf_softc *sc;
|
|
int idx;
|
|
u_int32_t vlan;
|
|
{
|
|
if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
|
|
return(EINVAL);
|
|
|
|
csr_write_4(sc, SF_RXFILT_HASH_BASE +
|
|
(idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
|
|
|
|
return(0);
|
|
}
|
|
#endif
|
|
|
|
static int sf_phy_readreg(sc, reg)
|
|
struct sf_softc *sc;
|
|
int reg;
|
|
{
|
|
int i;
|
|
u_int32_t val = 0;
|
|
|
|
for (i = 0; i < SF_TIMEOUT; i++) {
|
|
val = csr_read_4(sc, SF_PHY_REG(sc->sf_phy_addr, reg));
|
|
if (val & SF_MII_DATAVALID)
|
|
break;
|
|
}
|
|
|
|
if (i == SF_TIMEOUT)
|
|
return(0);
|
|
|
|
if ((val & 0x0000FFFF) == 0xFFFF)
|
|
return(0);
|
|
|
|
return(val & 0x0000FFFF);
|
|
}
|
|
|
|
static void sf_phy_writereg(sc, reg, val)
|
|
struct sf_softc *sc;
|
|
int reg, val;
|
|
{
|
|
int i;
|
|
int busy;
|
|
|
|
csr_write_4(sc, SF_PHY_REG(sc->sf_phy_addr, reg), val);
|
|
|
|
for (i = 0; i < SF_TIMEOUT; i++) {
|
|
busy = csr_read_4(sc, SF_PHY_REG(sc->sf_phy_addr, reg));
|
|
if (!(busy & SF_MII_BUSY))
|
|
break;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static void sf_setmulti(sc)
|
|
struct sf_softc *sc;
|
|
{
|
|
struct ifnet *ifp;
|
|
int i;
|
|
struct ifmultiaddr *ifma;
|
|
u_int8_t dummy[] = { 0, 0, 0, 0, 0, 0 };
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
/* First zot all the existing filters. */
|
|
for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
|
|
sf_setperf(sc, i, (char *)&dummy);
|
|
for (i = SF_RXFILT_HASH_BASE;
|
|
i < (SF_RXFILT_HASH_MAX + 1); i += 4)
|
|
csr_write_4(sc, i, 0);
|
|
SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
|
|
|
|
/* Now program new ones. */
|
|
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
|
|
SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
|
|
} else {
|
|
i = 1;
|
|
/* First find the tail of the list. */
|
|
for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
|
|
ifma = ifma->ifma_link.le_next) {
|
|
if (ifma->ifma_link.le_next == NULL)
|
|
break;
|
|
}
|
|
/* Now traverse the list backwards. */
|
|
for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs;
|
|
ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
/*
|
|
* Program the first 15 multicast groups
|
|
* into the perfect filter. For all others,
|
|
* use the hash table.
|
|
*/
|
|
if (i < SF_RXFILT_PERFECT_CNT) {
|
|
sf_setperf(sc, i,
|
|
LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
|
|
i++;
|
|
continue;
|
|
}
|
|
|
|
sf_sethash(sc,
|
|
LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Initiate an autonegotiation session.
|
|
*/
|
|
static void sf_autoneg_xmit(sc)
|
|
struct sf_softc *sc;
|
|
{
|
|
u_int16_t phy_sts;
|
|
|
|
sf_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
|
|
DELAY(500);
|
|
while(sf_phy_readreg(sc, PHY_BMCR)
|
|
& PHY_BMCR_RESET);
|
|
|
|
phy_sts = sf_phy_readreg(sc, PHY_BMCR);
|
|
phy_sts |= PHY_BMCR_AUTONEGENBL|PHY_BMCR_AUTONEGRSTR;
|
|
sf_phy_writereg(sc, PHY_BMCR, phy_sts);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Invoke autonegotiation on a PHY.
|
|
*/
|
|
static void sf_autoneg_mii(sc, flag, verbose)
|
|
struct sf_softc *sc;
|
|
int flag;
|
|
int verbose;
|
|
{
|
|
u_int16_t phy_sts = 0, media, advert, ability;
|
|
struct ifnet *ifp;
|
|
struct ifmedia *ifm;
|
|
|
|
ifm = &sc->ifmedia;
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
ifm->ifm_media = IFM_ETHER | IFM_AUTO;
|
|
|
|
#ifndef FORCE_AUTONEG_TFOUR
|
|
/*
|
|
* First, see if autoneg is supported. If not, there's
|
|
* no point in continuing.
|
|
*/
|
|
phy_sts = sf_phy_readreg(sc, PHY_BMSR);
|
|
if (!(phy_sts & PHY_BMSR_CANAUTONEG)) {
|
|
if (verbose)
|
|
printf("sf%d: autonegotiation not supported\n",
|
|
sc->sf_unit);
|
|
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
switch (flag) {
|
|
case SF_FLAG_FORCEDELAY:
|
|
/*
|
|
* XXX Never use this option anywhere but in the probe
|
|
* routine: making the kernel stop dead in its tracks
|
|
* for three whole seconds after we've gone multi-user
|
|
* is really bad manners.
|
|
*/
|
|
sf_autoneg_xmit(sc);
|
|
DELAY(5000000);
|
|
break;
|
|
case SF_FLAG_SCHEDDELAY:
|
|
/*
|
|
* Wait for the transmitter to go idle before starting
|
|
* an autoneg session, otherwise sf_start() may clobber
|
|
* our timeout, and we don't want to allow transmission
|
|
* during an autoneg session since that can screw it up.
|
|
*/
|
|
if (sc->sf_tx_cnt) {
|
|
sc->sf_want_auto = 1;
|
|
return;
|
|
}
|
|
sf_autoneg_xmit(sc);
|
|
ifp->if_timer = 5;
|
|
sc->sf_autoneg = 1;
|
|
sc->sf_want_auto = 0;
|
|
return;
|
|
break;
|
|
case SF_FLAG_DELAYTIMEO:
|
|
ifp->if_timer = 0;
|
|
sc->sf_autoneg = 0;
|
|
break;
|
|
default:
|
|
printf("sf%d: invalid autoneg flag: %d\n", sc->sf_unit, flag);
|
|
return;
|
|
}
|
|
|
|
if (sf_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) {
|
|
if (verbose)
|
|
printf("sf%d: autoneg complete, ", sc->sf_unit);
|
|
phy_sts = sf_phy_readreg(sc, PHY_BMSR);
|
|
} else {
|
|
if (verbose)
|
|
printf("sf%d: autoneg not complete, ", sc->sf_unit);
|
|
}
|
|
|
|
media = sf_phy_readreg(sc, PHY_BMCR);
|
|
|
|
/* Link is good. Report modes and set duplex mode. */
|
|
if (sf_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) {
|
|
if (verbose)
|
|
printf("link status good ");
|
|
advert = sf_phy_readreg(sc, PHY_ANAR);
|
|
ability = sf_phy_readreg(sc, PHY_LPAR);
|
|
|
|
if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) {
|
|
ifm->ifm_media = IFM_ETHER|IFM_100_T4;
|
|
media |= PHY_BMCR_SPEEDSEL;
|
|
media &= ~PHY_BMCR_DUPLEX;
|
|
printf("(100baseT4)\n");
|
|
} else if (advert & PHY_ANAR_100BTXFULL &&
|
|
ability & PHY_ANAR_100BTXFULL) {
|
|
ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX;
|
|
media |= PHY_BMCR_SPEEDSEL;
|
|
media |= PHY_BMCR_DUPLEX;
|
|
printf("(full-duplex, 100Mbps)\n");
|
|
} else if (advert & PHY_ANAR_100BTXHALF &&
|
|
ability & PHY_ANAR_100BTXHALF) {
|
|
ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX;
|
|
media |= PHY_BMCR_SPEEDSEL;
|
|
media &= ~PHY_BMCR_DUPLEX;
|
|
printf("(half-duplex, 100Mbps)\n");
|
|
} else if (advert & PHY_ANAR_10BTFULL &&
|
|
ability & PHY_ANAR_10BTFULL) {
|
|
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX;
|
|
media &= ~PHY_BMCR_SPEEDSEL;
|
|
media |= PHY_BMCR_DUPLEX;
|
|
printf("(full-duplex, 10Mbps)\n");
|
|
} else if (advert & PHY_ANAR_10BTHALF &&
|
|
ability & PHY_ANAR_10BTHALF) {
|
|
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
|
|
media &= ~PHY_BMCR_SPEEDSEL;
|
|
media &= ~PHY_BMCR_DUPLEX;
|
|
printf("(half-duplex, 10Mbps)\n");
|
|
}
|
|
|
|
media &= ~PHY_BMCR_AUTONEGENBL;
|
|
|
|
/* Set ASIC's duplex mode to match the PHY. */
|
|
sf_phy_writereg(sc, PHY_BMCR, media);
|
|
if ((media & IFM_GMASK) == IFM_FDX) {
|
|
SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
|
|
} else {
|
|
SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
|
|
}
|
|
} else {
|
|
if (verbose)
|
|
printf("no carrier\n");
|
|
}
|
|
|
|
sf_init(sc);
|
|
|
|
if (sc->sf_tx_pend) {
|
|
sc->sf_autoneg = 0;
|
|
sc->sf_tx_pend = 0;
|
|
sf_start(ifp);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static void sf_getmode_mii(sc)
|
|
struct sf_softc *sc;
|
|
{
|
|
u_int16_t bmsr;
|
|
struct ifnet *ifp;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
bmsr = sf_phy_readreg(sc, PHY_BMSR);
|
|
if (bootverbose)
|
|
printf("sf%d: PHY status word: %x\n", sc->sf_unit, bmsr);
|
|
|
|
/* fallback */
|
|
sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
|
|
|
|
if (bmsr & PHY_BMSR_10BTHALF) {
|
|
if (bootverbose)
|
|
printf("sf%d: 10Mbps half-duplex mode supported\n",
|
|
sc->sf_unit);
|
|
ifmedia_add(&sc->ifmedia,
|
|
IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
|
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
|
|
}
|
|
|
|
if (bmsr & PHY_BMSR_10BTFULL) {
|
|
if (bootverbose)
|
|
printf("sf%d: 10Mbps full-duplex mode supported\n",
|
|
sc->sf_unit);
|
|
ifmedia_add(&sc->ifmedia,
|
|
IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
|
|
sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX;
|
|
}
|
|
|
|
if (bmsr & PHY_BMSR_100BTXHALF) {
|
|
if (bootverbose)
|
|
printf("sf%d: 100Mbps half-duplex mode supported\n",
|
|
sc->sf_unit);
|
|
ifp->if_baudrate = 100000000;
|
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
|
|
ifmedia_add(&sc->ifmedia,
|
|
IFM_ETHER|IFM_100_TX|IFM_HDX, 0, NULL);
|
|
sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX;
|
|
}
|
|
|
|
if (bmsr & PHY_BMSR_100BTXFULL) {
|
|
if (bootverbose)
|
|
printf("sf%d: 100Mbps full-duplex mode supported\n",
|
|
sc->sf_unit);
|
|
ifp->if_baudrate = 100000000;
|
|
ifmedia_add(&sc->ifmedia,
|
|
IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
|
|
sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX;
|
|
}
|
|
|
|
/* Some also support 100BaseT4. */
|
|
if (bmsr & PHY_BMSR_100BT4) {
|
|
if (bootverbose)
|
|
printf("sf%d: 100baseT4 mode supported\n", sc->sf_unit);
|
|
ifp->if_baudrate = 100000000;
|
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_T4, 0, NULL);
|
|
sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_T4;
|
|
#ifdef FORCE_AUTONEG_TFOUR
|
|
if (bootverbose)
|
|
printf("sf%d: forcing on autoneg support for BT4\n",
|
|
sc->sf_unit);
|
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0 NULL):
|
|
sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO;
|
|
#endif
|
|
}
|
|
|
|
if (bmsr & PHY_BMSR_CANAUTONEG) {
|
|
if (bootverbose)
|
|
printf("sf%d: autoneg supported\n", sc->sf_unit);
|
|
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
|
|
sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Set speed and duplex mode.
|
|
*/
|
|
static void sf_setmode_mii(sc, media)
|
|
struct sf_softc *sc;
|
|
int media;
|
|
{
|
|
u_int16_t bmcr;
|
|
struct ifnet *ifp;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
/*
|
|
* If an autoneg session is in progress, stop it.
|
|
*/
|
|
if (sc->sf_autoneg) {
|
|
printf("sf%d: canceling autoneg session\n", sc->sf_unit);
|
|
ifp->if_timer = sc->sf_autoneg = sc->sf_want_auto = 0;
|
|
bmcr = sf_phy_readreg(sc, PHY_BMCR);
|
|
bmcr &= ~PHY_BMCR_AUTONEGENBL;
|
|
sf_phy_writereg(sc, PHY_BMCR, bmcr);
|
|
}
|
|
|
|
printf("sf%d: selecting MII, ", sc->sf_unit);
|
|
|
|
bmcr = sf_phy_readreg(sc, PHY_BMCR);
|
|
|
|
bmcr &= ~(PHY_BMCR_AUTONEGENBL|PHY_BMCR_SPEEDSEL|
|
|
PHY_BMCR_DUPLEX|PHY_BMCR_LOOPBK);
|
|
|
|
if (IFM_SUBTYPE(media) == IFM_100_T4) {
|
|
printf("100Mbps/T4, half-duplex\n");
|
|
bmcr |= PHY_BMCR_SPEEDSEL;
|
|
bmcr &= ~PHY_BMCR_DUPLEX;
|
|
}
|
|
|
|
if (IFM_SUBTYPE(media) == IFM_100_TX) {
|
|
printf("100Mbps, ");
|
|
bmcr |= PHY_BMCR_SPEEDSEL;
|
|
}
|
|
|
|
if (IFM_SUBTYPE(media) == IFM_10_T) {
|
|
printf("10Mbps, ");
|
|
bmcr &= ~PHY_BMCR_SPEEDSEL;
|
|
}
|
|
|
|
if ((media & IFM_GMASK) == IFM_FDX) {
|
|
printf("full duplex\n");
|
|
bmcr |= PHY_BMCR_DUPLEX;
|
|
SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
|
|
} else {
|
|
printf("half duplex\n");
|
|
bmcr &= ~PHY_BMCR_DUPLEX;
|
|
SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
|
|
}
|
|
|
|
sf_phy_writereg(sc, PHY_BMCR, bmcr);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Set media options.
|
|
*/
|
|
static int sf_ifmedia_upd(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct sf_softc *sc;
|
|
struct ifmedia *ifm;
|
|
|
|
sc = ifp->if_softc;
|
|
ifm = &sc->ifmedia;
|
|
|
|
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
|
|
return(EINVAL);
|
|
|
|
if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO)
|
|
sf_autoneg_mii(sc, SF_FLAG_SCHEDDELAY, 1);
|
|
else {
|
|
sf_setmode_mii(sc, ifm->ifm_media);
|
|
}
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Report current media status.
|
|
*/
|
|
static void sf_ifmedia_sts(ifp, ifmr)
|
|
struct ifnet *ifp;
|
|
struct ifmediareq *ifmr;
|
|
{
|
|
struct sf_softc *sc;
|
|
u_int16_t advert = 0, ability = 0;
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
ifmr->ifm_active = IFM_ETHER;
|
|
|
|
if (!(sf_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) {
|
|
if (sf_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL)
|
|
ifmr->ifm_active = IFM_ETHER|IFM_100_TX;
|
|
else
|
|
ifmr->ifm_active = IFM_ETHER|IFM_10_T;
|
|
if (sf_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_DUPLEX)
|
|
ifmr->ifm_active |= IFM_FDX;
|
|
else
|
|
ifmr->ifm_active |= IFM_HDX;
|
|
return;
|
|
}
|
|
|
|
ability = sf_phy_readreg(sc, PHY_LPAR);
|
|
advert = sf_phy_readreg(sc, PHY_ANAR);
|
|
if (advert & PHY_ANAR_100BT4 &&
|
|
ability & PHY_ANAR_100BT4) {
|
|
ifmr->ifm_active = IFM_ETHER|IFM_100_T4;
|
|
} else if (advert & PHY_ANAR_100BTXFULL &&
|
|
ability & PHY_ANAR_100BTXFULL) {
|
|
ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_FDX;
|
|
} else if (advert & PHY_ANAR_100BTXHALF &&
|
|
ability & PHY_ANAR_100BTXHALF) {
|
|
ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_HDX;
|
|
} else if (advert & PHY_ANAR_10BTFULL &&
|
|
ability & PHY_ANAR_10BTFULL) {
|
|
ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_FDX;
|
|
} else if (advert & PHY_ANAR_10BTHALF &&
|
|
ability & PHY_ANAR_10BTHALF) {
|
|
ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_HDX;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static int sf_ioctl(ifp, command, data)
|
|
struct ifnet *ifp;
|
|
u_long command;
|
|
caddr_t data;
|
|
{
|
|
struct sf_softc *sc = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *) data;
|
|
int s, error = 0;
|
|
|
|
s = splimp();
|
|
|
|
switch(command) {
|
|
case SIOCSIFADDR:
|
|
case SIOCGIFADDR:
|
|
case SIOCSIFMTU:
|
|
error = ether_ioctl(ifp, command, data);
|
|
break;
|
|
case SIOCSIFFLAGS:
|
|
if (ifp->if_flags & IFF_UP) {
|
|
sf_init(sc);
|
|
} else {
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
sf_stop(sc);
|
|
}
|
|
error = 0;
|
|
break;
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
sf_setmulti(sc);
|
|
error = 0;
|
|
break;
|
|
case SIOCGIFMEDIA:
|
|
case SIOCSIFMEDIA:
|
|
error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
(void)splx(s);
|
|
|
|
return(error);
|
|
}
|
|
|
|
static void sf_reset(sc)
|
|
struct sf_softc *sc;
|
|
{
|
|
register int i;
|
|
|
|
csr_write_4(sc, SF_GEN_ETH_CTL, 0);
|
|
SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
|
|
DELAY(1000);
|
|
SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
|
|
|
|
SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
|
|
|
|
for (i = 0; i < SF_TIMEOUT; i++) {
|
|
DELAY(10);
|
|
if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
|
|
break;
|
|
}
|
|
|
|
if (i == SF_TIMEOUT)
|
|
printf("sf%d: reset never completed!\n", sc->sf_unit);
|
|
|
|
/* Wait a little while for the chip to get its brains in order. */
|
|
DELAY(1000);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
|
|
* IDs against our list and return a device name if we find a match.
|
|
* We also check the subsystem ID so that we can identify exactly which
|
|
* NIC has been found, if possible.
|
|
*/
|
|
static int sf_probe(dev)
|
|
device_t dev;
|
|
{
|
|
struct sf_type *t;
|
|
|
|
t = sf_devs;
|
|
|
|
while(t->sf_name != NULL) {
|
|
if ((pci_get_vendor(dev) == t->sf_vid) &&
|
|
(pci_get_device(dev) == t->sf_did)) {
|
|
switch(pci_read_config(dev,
|
|
SF_PCI_SUBVEN_ID >> 16, 4) & 0x8FFF) {
|
|
case AD_SUBSYSID_62011_REV0:
|
|
case AD_SUBSYSID_62011_REV1:
|
|
device_set_desc(dev,
|
|
"Adaptec ANA-62011 10/100BaseTX");
|
|
return(0);
|
|
break;
|
|
case AD_SUBSYSID_62022:
|
|
device_set_desc(dev,
|
|
"Adaptec ANA-62022 10/100BaseTX");
|
|
return(0);
|
|
break;
|
|
case AD_SUBSYSID_62044:
|
|
device_set_desc(dev,
|
|
"Adaptec ANA-62044 10/100BaseTX");
|
|
return(0);
|
|
break;
|
|
case AD_SUBSYSID_62020:
|
|
device_set_desc(dev,
|
|
"Adaptec ANA-62020 10/100BaseFX");
|
|
return(0);
|
|
break;
|
|
case AD_SUBSYSID_69011:
|
|
device_set_desc(dev,
|
|
"Adaptec ANA-69011 10/100BaseTX");
|
|
return(0);
|
|
break;
|
|
default:
|
|
device_set_desc(dev, t->sf_name);
|
|
return(0);
|
|
break;
|
|
}
|
|
}
|
|
t++;
|
|
}
|
|
|
|
return(ENXIO);
|
|
}
|
|
|
|
/*
|
|
* Attach the interface. Allocate softc structures, do ifmedia
|
|
* setup and ethernet/BPF attach.
|
|
*/
|
|
static int sf_attach(dev)
|
|
device_t dev;
|
|
{
|
|
int s, i;
|
|
u_int32_t command;
|
|
struct sf_softc *sc;
|
|
struct ifnet *ifp;
|
|
int media = IFM_ETHER|IFM_100_TX|IFM_FDX;
|
|
struct sf_type *p;
|
|
u_int16_t phy_vid, phy_did, phy_sts;
|
|
int unit, rid, error = 0;
|
|
|
|
s = splimp();
|
|
|
|
sc = device_get_softc(dev);
|
|
unit = device_get_unit(dev);
|
|
bzero(sc, sizeof(struct sf_softc));
|
|
|
|
/*
|
|
* Handle power management nonsense.
|
|
*/
|
|
command = pci_read_config(dev, SF_PCI_CAPID, 4) & 0x000000FF;
|
|
if (command == 0x01) {
|
|
|
|
command = pci_read_config(dev, SF_PCI_PWRMGMTCTRL, 4);
|
|
if (command & SF_PSTATE_MASK) {
|
|
u_int32_t iobase, membase, irq;
|
|
|
|
/* Save important PCI config data. */
|
|
iobase = pci_read_config(dev, SF_PCI_LOIO, 4);
|
|
membase = pci_read_config(dev, SF_PCI_LOMEM, 4);
|
|
irq = pci_read_config(dev, SF_PCI_INTLINE, 4);
|
|
|
|
/* Reset the power state. */
|
|
printf("sf%d: chip is in D%d power mode "
|
|
"-- setting to D0\n", unit, command & SF_PSTATE_MASK);
|
|
command &= 0xFFFFFFFC;
|
|
pci_write_config(dev, SF_PCI_PWRMGMTCTRL, command, 4);
|
|
|
|
/* Restore PCI config data. */
|
|
pci_write_config(dev, SF_PCI_LOIO, iobase, 4);
|
|
pci_write_config(dev, SF_PCI_LOMEM, membase, 4);
|
|
pci_write_config(dev, SF_PCI_INTLINE, irq, 4);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Map control/status registers.
|
|
*/
|
|
command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
|
|
command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
|
|
pci_write_config(dev, PCI_COMMAND_STATUS_REG, command, 4);
|
|
command = pci_read_config(dev, PCI_COMMAND_STATUS_REG, 4);
|
|
|
|
#ifdef SF_USEIOSPACE
|
|
if (!(command & PCIM_CMD_PORTEN)) {
|
|
printf("sf%d: failed to enable I/O ports!\n", unit);
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
#else
|
|
if (!(command & PCIM_CMD_MEMEN)) {
|
|
printf("sf%d: failed to enable memory mapping!\n", unit);
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
#endif
|
|
|
|
rid = SF_RID;
|
|
sc->sf_res = bus_alloc_resource(dev, SF_RES, &rid,
|
|
0, ~0, 1, RF_ACTIVE);
|
|
|
|
if (sc->sf_res == NULL) {
|
|
printf ("sf%d: couldn't map ports\n", unit);
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
sc->sf_btag = rman_get_bustag(sc->sf_res);
|
|
sc->sf_bhandle = rman_get_bushandle(sc->sf_res);
|
|
|
|
/* Allocate interrupt */
|
|
rid = 0;
|
|
sc->sf_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
|
|
RF_SHAREABLE | RF_ACTIVE);
|
|
|
|
if (sc->sf_irq == NULL) {
|
|
printf("sf%d: couldn't map interrupt\n", unit);
|
|
bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
error = bus_setup_intr(dev, sc->sf_irq, INTR_TYPE_NET,
|
|
sf_intr, sc, &sc->sf_intrhand);
|
|
|
|
if (error) {
|
|
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_res);
|
|
bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
|
|
printf("sf%d: couldn't set up irq\n", unit);
|
|
goto fail;
|
|
}
|
|
|
|
callout_handle_init(&sc->sf_stat_ch);
|
|
|
|
/* Reset the adapter. */
|
|
sf_reset(sc);
|
|
|
|
/*
|
|
* Get station address from the EEPROM.
|
|
*/
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++)
|
|
sc->arpcom.ac_enaddr[i] =
|
|
sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
|
|
|
|
/*
|
|
* An Adaptec chip was detected. Inform the world.
|
|
*/
|
|
printf("sf%d: Ethernet address: %6D\n", unit,
|
|
sc->arpcom.ac_enaddr, ":");
|
|
|
|
sc->sf_unit = unit;
|
|
|
|
/* Allocate the descriptor queues. */
|
|
sc->sf_ldata = contigmalloc(sizeof(struct sf_list_data), M_DEVBUF,
|
|
M_NOWAIT, 0x100000, 0xffffffff, PAGE_SIZE, 0);
|
|
|
|
if (sc->sf_ldata == NULL) {
|
|
printf("sf%d: no memory for list buffers!\n", unit);
|
|
bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
|
|
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
|
|
bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
bzero(sc->sf_ldata, sizeof(struct sf_list_data));
|
|
|
|
if (bootverbose)
|
|
printf("sf%d: probing for a PHY\n", sc->sf_unit);
|
|
for (i = SF_PHYADDR_MIN; i < SF_PHYADDR_MAX + 1; i++) {
|
|
if (bootverbose)
|
|
printf("sf%d: checking address: %d\n",
|
|
sc->sf_unit, i);
|
|
sc->sf_phy_addr = i;
|
|
sf_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
|
|
DELAY(500);
|
|
while(sf_phy_readreg(sc, PHY_BMCR)
|
|
& PHY_BMCR_RESET);
|
|
if ((phy_sts = sf_phy_readreg(sc, PHY_BMSR)))
|
|
break;
|
|
}
|
|
if (phy_sts) {
|
|
phy_vid = sf_phy_readreg(sc, PHY_VENID);
|
|
phy_did = sf_phy_readreg(sc, PHY_DEVID);
|
|
if (bootverbose)
|
|
printf("sf%d: found PHY at address %d, ",
|
|
sc->sf_unit, sc->sf_phy_addr);
|
|
if (bootverbose)
|
|
printf("vendor id: %x device id: %x\n",
|
|
phy_vid, phy_did);
|
|
p = sf_phys;
|
|
while(p->sf_vid) {
|
|
if (phy_vid == p->sf_vid &&
|
|
(phy_did | 0x000F) == p->sf_did) {
|
|
sc->sf_pinfo = p;
|
|
break;
|
|
}
|
|
p++;
|
|
}
|
|
if (sc->sf_pinfo == NULL)
|
|
sc->sf_pinfo = &sf_phys[PHY_UNKNOWN];
|
|
if (bootverbose)
|
|
printf("sf%d: PHY type: %s\n",
|
|
sc->sf_unit, sc->sf_pinfo->sf_name);
|
|
} else {
|
|
printf("sf%d: MII without any phy!\n", sc->sf_unit);
|
|
free(sc->sf_ldata, M_DEVBUF);
|
|
bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
|
|
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
|
|
bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
ifp->if_softc = sc;
|
|
ifp->if_unit = unit;
|
|
ifp->if_name = "sf";
|
|
ifp->if_mtu = ETHERMTU;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = sf_ioctl;
|
|
ifp->if_output = ether_output;
|
|
ifp->if_start = sf_start;
|
|
ifp->if_watchdog = sf_watchdog;
|
|
ifp->if_init = sf_init;
|
|
ifp->if_baudrate = 10000000;
|
|
ifp->if_snd.ifq_maxlen = SF_TX_DLIST_CNT - 1;
|
|
|
|
/*
|
|
* Do ifmedia setup.
|
|
*/
|
|
ifmedia_init(&sc->ifmedia, 0, sf_ifmedia_upd, sf_ifmedia_sts);
|
|
|
|
sf_getmode_mii(sc);
|
|
if (cold) {
|
|
sf_autoneg_mii(sc, SF_FLAG_FORCEDELAY, 1);
|
|
sf_stop(sc);
|
|
} else {
|
|
sf_init(sc);
|
|
sf_autoneg_mii(sc, SF_FLAG_SCHEDDELAY, 1);
|
|
}
|
|
|
|
media = sc->ifmedia.ifm_media;
|
|
ifmedia_set(&sc->ifmedia, media);
|
|
|
|
/*
|
|
* Call MI attach routines.
|
|
*/
|
|
if_attach(ifp);
|
|
ether_ifattach(ifp);
|
|
|
|
#if NBPF > 0
|
|
bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
|
|
#endif
|
|
|
|
fail:
|
|
splx(s);
|
|
return(error);
|
|
}
|
|
|
|
static int sf_detach(dev)
|
|
device_t dev;
|
|
{
|
|
struct sf_softc *sc;
|
|
struct ifnet *ifp;
|
|
int s;
|
|
|
|
s = splimp();
|
|
|
|
sc = device_get_softc(dev);
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
if_detach(ifp);
|
|
sf_stop(sc);
|
|
|
|
bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
|
|
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
|
|
bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
|
|
|
|
free(sc->sf_ldata, M_DEVBUF);
|
|
ifmedia_removeall(&sc->ifmedia);
|
|
|
|
splx(s);
|
|
|
|
return(0);
|
|
}
|
|
|
|
static int sf_init_rx_ring(sc)
|
|
struct sf_softc *sc;
|
|
{
|
|
struct sf_list_data *ld;
|
|
int i;
|
|
|
|
ld = sc->sf_ldata;
|
|
|
|
bzero((char *)ld->sf_rx_dlist_big,
|
|
sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT);
|
|
bzero((char *)ld->sf_rx_clist,
|
|
sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT);
|
|
|
|
for (i = 0; i < SF_RX_DLIST_CNT; i++) {
|
|
if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS)
|
|
return(ENOBUFS);
|
|
}
|
|
|
|
return(0);
|
|
}
|
|
|
|
static void sf_init_tx_ring(sc)
|
|
struct sf_softc *sc;
|
|
{
|
|
struct sf_list_data *ld;
|
|
int i;
|
|
|
|
ld = sc->sf_ldata;
|
|
|
|
bzero((char *)ld->sf_tx_dlist,
|
|
sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT);
|
|
bzero((char *)ld->sf_tx_clist,
|
|
sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT);
|
|
|
|
for (i = 0; i < SF_TX_DLIST_CNT; i++)
|
|
ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID;
|
|
for (i = 0; i < SF_TX_CLIST_CNT; i++)
|
|
ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX;
|
|
|
|
ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1;
|
|
sc->sf_tx_cnt = 0;
|
|
|
|
return;
|
|
}
|
|
|
|
static int sf_newbuf(sc, c, m)
|
|
struct sf_softc *sc;
|
|
struct sf_rx_bufdesc_type0 *c;
|
|
struct mbuf *m;
|
|
{
|
|
struct mbuf *m_new = NULL;
|
|
|
|
if (m == NULL) {
|
|
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
|
|
if (m_new == NULL) {
|
|
printf("sf%d: no memory for rx list -- "
|
|
"packet dropped!\n", sc->sf_unit);
|
|
return(ENOBUFS);
|
|
}
|
|
|
|
MCLGET(m_new, M_DONTWAIT);
|
|
if (!(m_new->m_flags & M_EXT)) {
|
|
printf("sf%d: no memory for rx list -- "
|
|
"packet dropped!\n", sc->sf_unit);
|
|
m_freem(m_new);
|
|
return(ENOBUFS);
|
|
}
|
|
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
|
|
} else {
|
|
m_new = m;
|
|
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
|
|
m_new->m_data = m_new->m_ext.ext_buf;
|
|
}
|
|
|
|
m_adj(m_new, sizeof(u_int64_t));
|
|
|
|
c->sf_mbuf = m_new;
|
|
c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t)));
|
|
c->sf_valid = 1;
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* The starfire is programmed to use 'normal' mode for packet reception,
|
|
* which means we use the consumer/producer model for both the buffer
|
|
* descriptor queue and the completion descriptor queue. The only problem
|
|
* with this is that it involves a lot of register accesses: we have to
|
|
* read the RX completion consumer and producer indexes and the RX buffer
|
|
* producer index, plus the RX completion consumer and RX buffer producer
|
|
* indexes have to be updated. It would have been easier if Adaptec had
|
|
* put each index in a separate register, especially given that the damn
|
|
* NIC has a 512K register space.
|
|
*
|
|
* In spite of all the lovely features that Adaptec crammed into the 6915,
|
|
* it is marred by one truly stupid design flaw, which is that receive
|
|
* buffer addresses must be aligned on a longword boundary. This forces
|
|
* the packet payload to be unaligned, which is suboptimal on the x86 and
|
|
* completely unuseable on the Alpha. Our only recourse is to copy received
|
|
* packets into properly aligned buffers before handing them off.
|
|
*/
|
|
|
|
static void sf_rxeof(sc)
|
|
struct sf_softc *sc;
|
|
{
|
|
struct ether_header *eh;
|
|
struct mbuf *m;
|
|
struct ifnet *ifp;
|
|
struct sf_rx_bufdesc_type0 *desc;
|
|
struct sf_rx_cmpdesc_type3 *cur_rx;
|
|
u_int32_t rxcons, rxprod;
|
|
int cmpprodidx, cmpconsidx, bufprodidx;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
rxcons = csr_read_4(sc, SF_CQ_CONSIDX);
|
|
rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1);
|
|
cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX));
|
|
cmpconsidx = SF_IDX_LO(rxcons);
|
|
bufprodidx = SF_IDX_LO(rxprod);
|
|
|
|
while (cmpconsidx != cmpprodidx) {
|
|
struct mbuf *m0;
|
|
|
|
cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx];
|
|
desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx];
|
|
m = desc->sf_mbuf;
|
|
SF_INC(cmpconsidx, SF_RX_CLIST_CNT);
|
|
SF_INC(bufprodidx, SF_RX_DLIST_CNT);
|
|
|
|
if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) {
|
|
ifp->if_ierrors++;
|
|
sf_newbuf(sc, desc, m);
|
|
continue;
|
|
}
|
|
|
|
m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
|
|
cur_rx->sf_len + ETHER_ALIGN, 0, ifp, NULL);
|
|
sf_newbuf(sc, desc, m);
|
|
if (m0 == NULL) {
|
|
ifp->if_ierrors++;
|
|
continue;
|
|
}
|
|
m_adj(m0, ETHER_ALIGN);
|
|
m = m0;
|
|
|
|
eh = mtod(m, struct ether_header *);
|
|
ifp->if_ipackets++;
|
|
|
|
#if NBPF > 0
|
|
if (ifp->if_bpf) {
|
|
bpf_mtap(ifp, m);
|
|
if (ifp->if_flags & IFF_PROMISC &&
|
|
(bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
|
|
ETHER_ADDR_LEN) && !(eh->ether_dhost[0] & 1))) {
|
|
m_freem(m);
|
|
continue;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Remove header from mbuf and pass it on. */
|
|
m_adj(m, sizeof(struct ether_header));
|
|
ether_input(ifp, eh, m);
|
|
|
|
}
|
|
|
|
csr_write_4(sc, SF_CQ_CONSIDX,
|
|
(rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx);
|
|
csr_write_4(sc, SF_RXDQ_PTR_Q1,
|
|
(rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Read the transmit status from the completion queue and release
|
|
* mbufs. Note that the buffer descriptor index in the completion
|
|
* descriptor is an offset from the start of the transmit buffer
|
|
* descriptor list in bytes. This is important because the manual
|
|
* gives the impression that it should match the producer/consumer
|
|
* index, which is the offset in 8 byte blocks.
|
|
*/
|
|
static void sf_txeof(sc)
|
|
struct sf_softc *sc;
|
|
{
|
|
int txcons, cmpprodidx, cmpconsidx;
|
|
struct sf_tx_cmpdesc_type1 *cur_cmp;
|
|
struct sf_tx_bufdesc_type0 *cur_tx;
|
|
struct ifnet *ifp;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
txcons = csr_read_4(sc, SF_CQ_CONSIDX);
|
|
cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX));
|
|
cmpconsidx = SF_IDX_HI(txcons);
|
|
|
|
while (cmpconsidx != cmpprodidx) {
|
|
cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx];
|
|
cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7];
|
|
SF_INC(cmpconsidx, SF_TX_CLIST_CNT);
|
|
|
|
if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK)
|
|
ifp->if_opackets++;
|
|
else
|
|
ifp->if_oerrors++;
|
|
|
|
sc->sf_tx_cnt--;
|
|
if (cur_tx->sf_mbuf != NULL) {
|
|
m_freem(cur_tx->sf_mbuf);
|
|
cur_tx->sf_mbuf = NULL;
|
|
}
|
|
}
|
|
|
|
ifp->if_timer = 0;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
csr_write_4(sc, SF_CQ_CONSIDX,
|
|
(txcons & ~SF_CQ_CONSIDX_TXQ) |
|
|
((cmpconsidx << 16) & 0xFFFF0000));
|
|
|
|
return;
|
|
}
|
|
|
|
static void sf_intr(arg)
|
|
void *arg;
|
|
{
|
|
struct sf_softc *sc;
|
|
struct ifnet *ifp;
|
|
u_int32_t status;
|
|
|
|
sc = arg;
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED))
|
|
return;
|
|
|
|
/* Disable interrupts. */
|
|
csr_write_4(sc, SF_IMR, 0x00000000);
|
|
|
|
for (;;) {
|
|
status = csr_read_4(sc, SF_ISR);
|
|
if (status)
|
|
csr_write_4(sc, SF_ISR, status);
|
|
|
|
if (!(status & SF_INTRS))
|
|
break;
|
|
|
|
if (status & SF_ISR_RXDQ1_DMADONE)
|
|
sf_rxeof(sc);
|
|
|
|
if (status & SF_ISR_TX_TXDONE)
|
|
sf_txeof(sc);
|
|
|
|
if (status & SF_ISR_ABNORMALINTR) {
|
|
if (status & SF_ISR_STATSOFLOW) {
|
|
untimeout(sf_stats_update, sc,
|
|
sc->sf_stat_ch);
|
|
sf_stats_update(sc);
|
|
} else
|
|
sf_init(sc);
|
|
}
|
|
}
|
|
|
|
/* Re-enable interrupts. */
|
|
csr_write_4(sc, SF_IMR, SF_INTRS);
|
|
|
|
if (ifp->if_snd.ifq_head != NULL)
|
|
sf_start(ifp);
|
|
|
|
return;
|
|
}
|
|
|
|
static void sf_init(xsc)
|
|
void *xsc;
|
|
{
|
|
struct sf_softc *sc;
|
|
struct ifnet *ifp;
|
|
int i, s;
|
|
|
|
s = splimp();
|
|
|
|
sc = xsc;
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
sf_stop(sc);
|
|
sf_reset(sc);
|
|
|
|
/* Init all the receive filter registers */
|
|
for (i = SF_RXFILT_PERFECT_BASE;
|
|
i < (SF_RXFILT_HASH_MAX + 1); i += 4)
|
|
csr_write_4(sc, i, 0);
|
|
|
|
/* Empty stats counter registers. */
|
|
for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++)
|
|
csr_write_4(sc, SF_STATS_BASE +
|
|
(i + sizeof(u_int32_t)), 0);
|
|
|
|
/* Init our MAC address */
|
|
csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
|
|
csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
|
|
sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr);
|
|
|
|
if (sf_init_rx_ring(sc) == ENOBUFS) {
|
|
printf("sf%d: initialization failed: no "
|
|
"memory for rx buffers\n", sc->sf_unit);
|
|
(void)splx(s);
|
|
return;
|
|
}
|
|
|
|
sf_init_tx_ring(sc);
|
|
|
|
csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN);
|
|
|
|
/* If we want promiscuous mode, set the allframes bit. */
|
|
if (ifp->if_flags & IFF_PROMISC) {
|
|
SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
|
|
} else {
|
|
SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
|
|
}
|
|
|
|
if (ifp->if_flags & IFF_BROADCAST) {
|
|
SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
|
|
} else {
|
|
SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
|
|
}
|
|
|
|
/* Init the completion queue indexes */
|
|
csr_write_4(sc, SF_CQ_CONSIDX, 0);
|
|
csr_write_4(sc, SF_CQ_PRODIDX, 0);
|
|
|
|
/* Init the RX completion queue */
|
|
csr_write_4(sc, SF_RXCQ_CTL_1,
|
|
vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR);
|
|
SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3);
|
|
|
|
/* Init RX DMA control. */
|
|
SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS);
|
|
|
|
/* Init the RX buffer descriptor queue. */
|
|
csr_write_4(sc, SF_RXDQ_ADDR_Q1,
|
|
vtophys(sc->sf_ldata->sf_rx_dlist_big));
|
|
csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES);
|
|
csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
|
|
|
|
/* Init the TX completion queue */
|
|
csr_write_4(sc, SF_TXCQ_CTL,
|
|
vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR);
|
|
|
|
/* Init the TX buffer descriptor queue. */
|
|
csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO,
|
|
vtophys(sc->sf_ldata->sf_tx_dlist));
|
|
SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX);
|
|
csr_write_4(sc, SF_TXDQ_CTL,
|
|
SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES);
|
|
SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP);
|
|
|
|
/* Enable autopadding of short TX frames. */
|
|
SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
|
|
|
|
/* Make sure the duplex mode is set correctly. */
|
|
if ((sc->ifmedia.ifm_media & IFM_GMASK) == IFM_FDX) {
|
|
SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
|
|
} else {
|
|
SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
|
|
}
|
|
|
|
/* Enable interrupts. */
|
|
csr_write_4(sc, SF_IMR, SF_INTRS);
|
|
SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
|
|
|
|
/* Enable the RX and TX engines. */
|
|
SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB);
|
|
SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB);
|
|
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
|
|
|
|
splx(s);
|
|
|
|
return;
|
|
}
|
|
|
|
static int sf_encap(sc, c, m_head)
|
|
struct sf_softc *sc;
|
|
struct sf_tx_bufdesc_type0 *c;
|
|
struct mbuf *m_head;
|
|
{
|
|
int frag = 0;
|
|
struct sf_frag *f = NULL;
|
|
struct mbuf *m;
|
|
|
|
m = m_head;
|
|
|
|
for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
|
|
if (m->m_len != 0) {
|
|
if (frag == SF_MAXFRAGS)
|
|
break;
|
|
f = &c->sf_frags[frag];
|
|
if (frag == 0)
|
|
f->sf_pktlen = m_head->m_pkthdr.len;
|
|
f->sf_fraglen = m->m_len;
|
|
f->sf_addr = vtophys(mtod(m, vm_offset_t));
|
|
frag++;
|
|
}
|
|
}
|
|
|
|
if (m != NULL) {
|
|
struct mbuf *m_new = NULL;
|
|
|
|
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
|
|
if (m_new == NULL) {
|
|
printf("sf%d: no memory for tx list", sc->sf_unit);
|
|
return(1);
|
|
}
|
|
|
|
if (m_head->m_pkthdr.len > MHLEN) {
|
|
MCLGET(m_new, M_DONTWAIT);
|
|
if (!(m_new->m_flags & M_EXT)) {
|
|
m_freem(m_new);
|
|
printf("sf%d: no memory for tx list",
|
|
sc->sf_unit);
|
|
return(1);
|
|
}
|
|
}
|
|
m_copydata(m_head, 0, m_head->m_pkthdr.len,
|
|
mtod(m_new, caddr_t));
|
|
m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
|
|
m_freem(m_head);
|
|
m_head = m_new;
|
|
f = &c->sf_frags[0];
|
|
f->sf_fraglen = f->sf_pktlen = m_head->m_pkthdr.len;
|
|
f->sf_addr = vtophys(mtod(m_head, caddr_t));
|
|
frag = 1;
|
|
}
|
|
|
|
c->sf_mbuf = m_head;
|
|
c->sf_id = SF_TX_BUFDESC_ID;
|
|
c->sf_fragcnt = frag;
|
|
c->sf_intr = 1;
|
|
c->sf_caltcp = 0;
|
|
c->sf_crcen = 1;
|
|
|
|
return(0);
|
|
}
|
|
|
|
static void sf_start(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct sf_softc *sc;
|
|
struct sf_tx_bufdesc_type0 *cur_tx = NULL;
|
|
struct mbuf *m_head = NULL;
|
|
int i, txprod;
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
if (ifp->if_flags & IFF_OACTIVE)
|
|
return;
|
|
|
|
if (sc->sf_autoneg) {
|
|
sc->sf_tx_pend = 1;
|
|
return;
|
|
}
|
|
|
|
txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
|
|
i = SF_IDX_HI(txprod) >> 4;
|
|
|
|
while(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) {
|
|
IF_DEQUEUE(&ifp->if_snd, m_head);
|
|
if (m_head == NULL)
|
|
break;
|
|
|
|
cur_tx = &sc->sf_ldata->sf_tx_dlist[i];
|
|
sf_encap(sc, cur_tx, m_head);
|
|
|
|
/*
|
|
* If there's a BPF listener, bounce a copy of this frame
|
|
* to him.
|
|
*/
|
|
#if NBPF > 0
|
|
if (ifp->if_bpf)
|
|
bpf_mtap(ifp, m_head);
|
|
#endif
|
|
SF_INC(i, SF_TX_DLIST_CNT);
|
|
sc->sf_tx_cnt++;
|
|
if (sc->sf_tx_cnt == (SF_TX_DLIST_CNT - 2))
|
|
break;
|
|
}
|
|
|
|
if (cur_tx == NULL)
|
|
return;
|
|
|
|
/* Transmit */
|
|
csr_write_4(sc, SF_TXDQ_PRODIDX,
|
|
(txprod & ~SF_TXDQ_PRODIDX_HIPRIO) |
|
|
((i << 20) & 0xFFFF0000));
|
|
|
|
ifp->if_timer = 5;
|
|
|
|
return;
|
|
}
|
|
|
|
static void sf_stop(sc)
|
|
struct sf_softc *sc;
|
|
{
|
|
int i;
|
|
struct ifnet *ifp;
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
untimeout(sf_stats_update, sc, sc->sf_stat_ch);
|
|
|
|
csr_write_4(sc, SF_GEN_ETH_CTL, 0);
|
|
csr_write_4(sc, SF_CQ_CONSIDX, 0);
|
|
csr_write_4(sc, SF_CQ_PRODIDX, 0);
|
|
csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
|
|
csr_write_4(sc, SF_RXDQ_CTL_1, 0);
|
|
csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
|
|
csr_write_4(sc, SF_TXCQ_CTL, 0);
|
|
csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
|
|
csr_write_4(sc, SF_TXDQ_CTL, 0);
|
|
sf_reset(sc);
|
|
|
|
for (i = 0; i < SF_RX_DLIST_CNT; i++) {
|
|
if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) {
|
|
m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf);
|
|
sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < SF_TX_DLIST_CNT; i++) {
|
|
if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
|
|
m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf);
|
|
sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL;
|
|
}
|
|
}
|
|
|
|
ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Note: it is important that this function not be interrupted. We
|
|
* use a two-stage register access scheme: if we are interrupted in
|
|
* between setting the indirect address register and reading from the
|
|
* indirect data register, the contents of the address register could
|
|
* be changed out from under us.
|
|
*/
|
|
static void sf_stats_update(xsc)
|
|
void *xsc;
|
|
{
|
|
struct sf_softc *sc;
|
|
struct ifnet *ifp;
|
|
struct sf_stats stats;
|
|
u_int32_t *ptr;
|
|
int i, s;
|
|
|
|
s = splimp();
|
|
|
|
sc = xsc;
|
|
ifp = &sc->arpcom.ac_if;
|
|
|
|
ptr = (u_int32_t *)&stats;
|
|
for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
|
|
ptr[i] = csr_read_4(sc, SF_STATS_BASE +
|
|
(i + sizeof(u_int32_t)));
|
|
|
|
for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
|
|
csr_write_4(sc, SF_STATS_BASE +
|
|
(i + sizeof(u_int32_t)), 0);
|
|
|
|
ifp->if_collisions += stats.sf_tx_single_colls +
|
|
stats.sf_tx_multi_colls + stats.sf_tx_excess_colls;
|
|
|
|
sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
|
|
|
|
splx(s);
|
|
|
|
return;
|
|
}
|
|
|
|
static void sf_watchdog(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct sf_softc *sc;
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
if (sc->sf_autoneg) {
|
|
sf_autoneg_mii(sc, SF_FLAG_DELAYTIMEO, 1);
|
|
if (!(ifp->if_flags & IFF_UP))
|
|
sf_stop(sc);
|
|
return;
|
|
}
|
|
|
|
ifp->if_oerrors++;
|
|
printf("sf%d: watchdog timeout\n", sc->sf_unit);
|
|
|
|
if (sc->sf_pinfo != NULL) {
|
|
if (!(sf_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT))
|
|
printf("sf%d: no carrier - transceiver "
|
|
"cable problem?\n", sc->sf_unit);
|
|
}
|
|
|
|
sf_stop(sc);
|
|
sf_reset(sc);
|
|
sf_init(sc);
|
|
|
|
if (ifp->if_snd.ifq_head != NULL)
|
|
sf_start(ifp);
|
|
|
|
return;
|
|
}
|
|
|
|
static void sf_shutdown(dev)
|
|
device_t dev;
|
|
{
|
|
struct sf_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
sf_stop(sc);
|
|
|
|
return;
|
|
}
|