freebsd-dev/sys/opencrypto/cryptosoft.c

1758 lines
42 KiB
C

/* $OpenBSD: cryptosoft.c,v 1.35 2002/04/26 08:43:50 deraadt Exp $ */
/*-
* The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
* Copyright (c) 2002-2006 Sam Leffler, Errno Consulting
*
* This code was written by Angelos D. Keromytis in Athens, Greece, in
* February 2000. Network Security Technologies Inc. (NSTI) kindly
* supported the development of this code.
*
* Copyright (c) 2000, 2001 Angelos D. Keromytis
* Copyright (c) 2014-2021 The FreeBSD Foundation
* All rights reserved.
*
* Portions of this software were developed by John-Mark Gurney
* under sponsorship of the FreeBSD Foundation and
* Rubicon Communications, LLC (Netgate).
*
* Portions of this software were developed by Ararat River
* Consulting, LLC under sponsorship of the FreeBSD Foundation.
*
* Permission to use, copy, and modify this software with or without fee
* is hereby granted, provided that this entire notice is included in
* all source code copies of any software which is or includes a copy or
* modification of this software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
* MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
* PURPOSE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/sysctl.h>
#include <sys/errno.h>
#include <sys/random.h>
#include <sys/kernel.h>
#include <sys/uio.h>
#include <sys/endian.h>
#include <sys/limits.h>
#include <crypto/sha1.h>
#include <opencrypto/rmd160.h>
#include <opencrypto/cryptodev.h>
#include <opencrypto/xform.h>
#include <sys/kobj.h>
#include <sys/bus.h>
#include "cryptodev_if.h"
struct swcr_auth {
void *sw_ictx;
void *sw_octx;
const struct auth_hash *sw_axf;
uint16_t sw_mlen;
bool sw_hmac;
};
struct swcr_encdec {
void *sw_ctx;
const struct enc_xform *sw_exf;
};
struct swcr_compdec {
const struct comp_algo *sw_cxf;
};
struct swcr_session {
int (*swcr_process)(const struct swcr_session *, struct cryptop *);
struct swcr_auth swcr_auth;
struct swcr_encdec swcr_encdec;
struct swcr_compdec swcr_compdec;
};
static int32_t swcr_id;
static void swcr_freesession(device_t dev, crypto_session_t cses);
/* Used for CRYPTO_NULL_CBC. */
static int
swcr_null(const struct swcr_session *ses, struct cryptop *crp)
{
return (0);
}
/*
* Apply a symmetric encryption/decryption algorithm.
*/
static int
swcr_encdec(const struct swcr_session *ses, struct cryptop *crp)
{
unsigned char blk[EALG_MAX_BLOCK_LEN];
const struct crypto_session_params *csp;
const struct enc_xform *exf;
const struct swcr_encdec *sw;
void *ctx;
size_t inlen, outlen, todo;
int blksz, resid;
struct crypto_buffer_cursor cc_in, cc_out;
const unsigned char *inblk;
unsigned char *outblk;
int error;
bool encrypting;
error = 0;
sw = &ses->swcr_encdec;
exf = sw->sw_exf;
csp = crypto_get_params(crp->crp_session);
if (exf->native_blocksize == 0) {
/* Check for non-padded data */
if ((crp->crp_payload_length % exf->blocksize) != 0)
return (EINVAL);
blksz = exf->blocksize;
} else
blksz = exf->native_blocksize;
if (exf == &enc_xform_aes_icm &&
(crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0)
return (EINVAL);
ctx = __builtin_alloca(exf->ctxsize);
if (crp->crp_cipher_key != NULL) {
error = exf->setkey(ctx, crp->crp_cipher_key,
csp->csp_cipher_klen);
if (error)
return (error);
} else
memcpy(ctx, sw->sw_ctx, exf->ctxsize);
crypto_read_iv(crp, blk);
exf->reinit(ctx, blk, csp->csp_ivlen);
crypto_cursor_init(&cc_in, &crp->crp_buf);
crypto_cursor_advance(&cc_in, crp->crp_payload_start);
if (CRYPTO_HAS_OUTPUT_BUFFER(crp)) {
crypto_cursor_init(&cc_out, &crp->crp_obuf);
crypto_cursor_advance(&cc_out, crp->crp_payload_output_start);
} else
cc_out = cc_in;
encrypting = CRYPTO_OP_IS_ENCRYPT(crp->crp_op);
/*
* Loop through encrypting blocks. 'inlen' is the remaining
* length of the current segment in the input buffer.
* 'outlen' is the remaining length of current segment in the
* output buffer.
*/
inlen = outlen = 0;
for (resid = crp->crp_payload_length; resid >= blksz; resid -= todo) {
if (inlen == 0)
inblk = crypto_cursor_segment(&cc_in, &inlen);
if (outlen == 0)
outblk = crypto_cursor_segment(&cc_out, &outlen);
/*
* If the current block is not contained within the
* current input/output segment, use 'blk' as a local
* buffer.
*/
if (inlen < blksz) {
crypto_cursor_copydata(&cc_in, blksz, blk);
inblk = blk;
inlen = blksz;
}
if (outlen < blksz) {
outblk = blk;
outlen = blksz;
}
todo = rounddown2(MIN(resid, MIN(inlen, outlen)), blksz);
if (encrypting)
exf->encrypt_multi(ctx, inblk, outblk, todo);
else
exf->decrypt_multi(ctx, inblk, outblk, todo);
if (inblk == blk) {
inblk = crypto_cursor_segment(&cc_in, &inlen);
} else {
crypto_cursor_advance(&cc_in, todo);
inlen -= todo;
inblk += todo;
}
if (outblk == blk) {
crypto_cursor_copyback(&cc_out, blksz, blk);
outblk = crypto_cursor_segment(&cc_out, &outlen);
} else {
crypto_cursor_advance(&cc_out, todo);
outlen -= todo;
outblk += todo;
}
}
/* Handle trailing partial block for stream ciphers. */
if (resid > 0) {
KASSERT(exf->native_blocksize != 0,
("%s: partial block of %d bytes for cipher %s",
__func__, resid, exf->name));
KASSERT(resid < blksz, ("%s: partial block too big", __func__));
inblk = crypto_cursor_segment(&cc_in, &inlen);
outblk = crypto_cursor_segment(&cc_out, &outlen);
if (inlen < resid) {
crypto_cursor_copydata(&cc_in, resid, blk);
inblk = blk;
}
if (outlen < resid)
outblk = blk;
if (encrypting)
exf->encrypt_last(ctx, inblk, outblk,
resid);
else
exf->decrypt_last(ctx, inblk, outblk,
resid);
if (outlen < resid)
crypto_cursor_copyback(&cc_out, resid, blk);
}
explicit_bzero(ctx, exf->ctxsize);
explicit_bzero(blk, sizeof(blk));
return (0);
}
/*
* Compute or verify hash.
*/
static int
swcr_authcompute(const struct swcr_session *ses, struct cryptop *crp)
{
struct {
union authctx ctx;
u_char aalg[HASH_MAX_LEN];
u_char uaalg[HASH_MAX_LEN];
} s;
const struct crypto_session_params *csp;
const struct swcr_auth *sw;
const struct auth_hash *axf;
int err;
sw = &ses->swcr_auth;
axf = sw->sw_axf;
csp = crypto_get_params(crp->crp_session);
if (crp->crp_auth_key != NULL) {
if (sw->sw_hmac) {
hmac_init_ipad(axf, crp->crp_auth_key,
csp->csp_auth_klen, &s.ctx);
} else {
axf->Init(&s.ctx);
axf->Setkey(&s.ctx, crp->crp_auth_key,
csp->csp_auth_klen);
}
} else
memcpy(&s.ctx, sw->sw_ictx, axf->ctxsize);
if (crp->crp_aad != NULL)
err = axf->Update(&s.ctx, crp->crp_aad, crp->crp_aad_length);
else
err = crypto_apply(crp, crp->crp_aad_start, crp->crp_aad_length,
axf->Update, &s.ctx);
if (err)
goto out;
if (CRYPTO_HAS_OUTPUT_BUFFER(crp) &&
CRYPTO_OP_IS_ENCRYPT(crp->crp_op))
err = crypto_apply_buf(&crp->crp_obuf,
crp->crp_payload_output_start, crp->crp_payload_length,
axf->Update, &s.ctx);
else
err = crypto_apply(crp, crp->crp_payload_start,
crp->crp_payload_length, axf->Update, &s.ctx);
if (err)
goto out;
if (csp->csp_flags & CSP_F_ESN)
axf->Update(&s.ctx, crp->crp_esn, 4);
axf->Final(s.aalg, &s.ctx);
if (sw->sw_hmac) {
if (crp->crp_auth_key != NULL)
hmac_init_opad(axf, crp->crp_auth_key,
csp->csp_auth_klen, &s.ctx);
else
memcpy(&s.ctx, sw->sw_octx, axf->ctxsize);
axf->Update(&s.ctx, s.aalg, axf->hashsize);
axf->Final(s.aalg, &s.ctx);
}
if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) {
crypto_copydata(crp, crp->crp_digest_start, sw->sw_mlen, s.uaalg);
if (timingsafe_bcmp(s.aalg, s.uaalg, sw->sw_mlen) != 0)
err = EBADMSG;
} else {
/* Inject the authentication data */
crypto_copyback(crp, crp->crp_digest_start, sw->sw_mlen, s.aalg);
}
out:
explicit_bzero(&s, sizeof(s));
return (err);
}
CTASSERT(INT_MAX <= (1ll<<39) - 256); /* GCM: plain text < 2^39-256 */
CTASSERT(INT_MAX <= (uint64_t)-1); /* GCM: associated data <= 2^64-1 */
static int
swcr_gmac(const struct swcr_session *ses, struct cryptop *crp)
{
struct {
union authctx ctx;
uint32_t blkbuf[howmany(AES_BLOCK_LEN, sizeof(uint32_t))];
u_char tag[GMAC_DIGEST_LEN];
u_char tag2[GMAC_DIGEST_LEN];
} s;
u_char *blk = (u_char *)s.blkbuf;
struct crypto_buffer_cursor cc;
const u_char *inblk;
const struct swcr_auth *swa;
const struct auth_hash *axf;
uint32_t *blkp;
size_t len;
int blksz, error, ivlen, resid;
swa = &ses->swcr_auth;
axf = swa->sw_axf;
blksz = GMAC_BLOCK_LEN;
KASSERT(axf->blocksize == blksz, ("%s: axf block size mismatch",
__func__));
if (crp->crp_auth_key != NULL) {
axf->Init(&s.ctx);
axf->Setkey(&s.ctx, crp->crp_auth_key,
crypto_get_params(crp->crp_session)->csp_auth_klen);
} else
memcpy(&s.ctx, swa->sw_ictx, axf->ctxsize);
/* Initialize the IV */
ivlen = AES_GCM_IV_LEN;
crypto_read_iv(crp, blk);
axf->Reinit(&s.ctx, blk, ivlen);
crypto_cursor_init(&cc, &crp->crp_buf);
crypto_cursor_advance(&cc, crp->crp_payload_start);
for (resid = crp->crp_payload_length; resid >= blksz; resid -= len) {
inblk = crypto_cursor_segment(&cc, &len);
if (len >= blksz) {
len = rounddown(MIN(len, resid), blksz);
crypto_cursor_advance(&cc, len);
} else {
len = blksz;
crypto_cursor_copydata(&cc, len, blk);
inblk = blk;
}
axf->Update(&s.ctx, inblk, len);
}
if (resid > 0) {
memset(blk, 0, blksz);
crypto_cursor_copydata(&cc, resid, blk);
axf->Update(&s.ctx, blk, blksz);
}
/* length block */
memset(blk, 0, blksz);
blkp = (uint32_t *)blk + 1;
*blkp = htobe32(crp->crp_payload_length * 8);
axf->Update(&s.ctx, blk, blksz);
/* Finalize MAC */
axf->Final(s.tag, &s.ctx);
error = 0;
if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) {
crypto_copydata(crp, crp->crp_digest_start, swa->sw_mlen,
s.tag2);
if (timingsafe_bcmp(s.tag, s.tag2, swa->sw_mlen) != 0)
error = EBADMSG;
} else {
/* Inject the authentication data */
crypto_copyback(crp, crp->crp_digest_start, swa->sw_mlen, s.tag);
}
explicit_bzero(&s, sizeof(s));
return (error);
}
static int
swcr_gcm(const struct swcr_session *ses, struct cryptop *crp)
{
struct {
uint32_t blkbuf[howmany(AES_BLOCK_LEN, sizeof(uint32_t))];
u_char tag[GMAC_DIGEST_LEN];
u_char tag2[GMAC_DIGEST_LEN];
} s;
u_char *blk = (u_char *)s.blkbuf;
struct crypto_buffer_cursor cc_in, cc_out;
const u_char *inblk;
u_char *outblk;
size_t inlen, outlen, todo;
const struct swcr_auth *swa;
const struct swcr_encdec *swe;
const struct enc_xform *exf;
void *ctx;
uint32_t *blkp;
int blksz, error, ivlen, r, resid;
swa = &ses->swcr_auth;
swe = &ses->swcr_encdec;
exf = swe->sw_exf;
blksz = GMAC_BLOCK_LEN;
KASSERT(blksz == exf->native_blocksize,
("%s: blocksize mismatch", __func__));
if ((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0)
return (EINVAL);
ivlen = AES_GCM_IV_LEN;
ctx = __builtin_alloca(exf->ctxsize);
if (crp->crp_cipher_key != NULL)
exf->setkey(ctx, crp->crp_cipher_key,
crypto_get_params(crp->crp_session)->csp_cipher_klen);
else
memcpy(ctx, swe->sw_ctx, exf->ctxsize);
exf->reinit(ctx, crp->crp_iv, ivlen);
/* Supply MAC with AAD */
if (crp->crp_aad != NULL) {
inlen = rounddown2(crp->crp_aad_length, blksz);
if (inlen != 0)
exf->update(ctx, crp->crp_aad, inlen);
if (crp->crp_aad_length != inlen) {
memset(blk, 0, blksz);
memcpy(blk, (char *)crp->crp_aad + inlen,
crp->crp_aad_length - inlen);
exf->update(ctx, blk, blksz);
}
} else {
crypto_cursor_init(&cc_in, &crp->crp_buf);
crypto_cursor_advance(&cc_in, crp->crp_aad_start);
for (resid = crp->crp_aad_length; resid >= blksz;
resid -= inlen) {
inblk = crypto_cursor_segment(&cc_in, &inlen);
if (inlen >= blksz) {
inlen = rounddown2(MIN(inlen, resid), blksz);
crypto_cursor_advance(&cc_in, inlen);
} else {
inlen = blksz;
crypto_cursor_copydata(&cc_in, inlen, blk);
inblk = blk;
}
exf->update(ctx, inblk, inlen);
}
if (resid > 0) {
memset(blk, 0, blksz);
crypto_cursor_copydata(&cc_in, resid, blk);
exf->update(ctx, blk, blksz);
}
}
/* Do encryption with MAC */
crypto_cursor_init(&cc_in, &crp->crp_buf);
crypto_cursor_advance(&cc_in, crp->crp_payload_start);
if (CRYPTO_HAS_OUTPUT_BUFFER(crp)) {
crypto_cursor_init(&cc_out, &crp->crp_obuf);
crypto_cursor_advance(&cc_out, crp->crp_payload_output_start);
} else
cc_out = cc_in;
inlen = outlen = 0;
for (resid = crp->crp_payload_length; resid >= blksz; resid -= todo) {
if (inlen == 0)
inblk = crypto_cursor_segment(&cc_in, &inlen);
if (outlen == 0)
outblk = crypto_cursor_segment(&cc_out, &outlen);
if (inlen < blksz) {
crypto_cursor_copydata(&cc_in, blksz, blk);
inblk = blk;
inlen = blksz;
}
if (CRYPTO_OP_IS_ENCRYPT(crp->crp_op)) {
if (outlen < blksz) {
outblk = blk;
outlen = blksz;
}
todo = rounddown2(MIN(resid, MIN(inlen, outlen)),
blksz);
exf->encrypt_multi(ctx, inblk, outblk, todo);
exf->update(ctx, outblk, todo);
if (outblk == blk) {
crypto_cursor_copyback(&cc_out, blksz, blk);
outblk = crypto_cursor_segment(&cc_out, &outlen);
} else {
crypto_cursor_advance(&cc_out, todo);
outlen -= todo;
outblk += todo;
}
} else {
todo = rounddown2(MIN(resid, inlen), blksz);
exf->update(ctx, inblk, todo);
}
if (inblk == blk) {
inblk = crypto_cursor_segment(&cc_in, &inlen);
} else {
crypto_cursor_advance(&cc_in, todo);
inlen -= todo;
inblk += todo;
}
}
if (resid > 0) {
crypto_cursor_copydata(&cc_in, resid, blk);
if (CRYPTO_OP_IS_ENCRYPT(crp->crp_op)) {
exf->encrypt_last(ctx, blk, blk, resid);
crypto_cursor_copyback(&cc_out, resid, blk);
}
exf->update(ctx, blk, resid);
}
/* length block */
memset(blk, 0, blksz);
blkp = (uint32_t *)blk + 1;
*blkp = htobe32(crp->crp_aad_length * 8);
blkp = (uint32_t *)blk + 3;
*blkp = htobe32(crp->crp_payload_length * 8);
exf->update(ctx, blk, blksz);
/* Finalize MAC */
exf->final(s.tag, ctx);
/* Validate tag */
error = 0;
if (!CRYPTO_OP_IS_ENCRYPT(crp->crp_op)) {
crypto_copydata(crp, crp->crp_digest_start, swa->sw_mlen,
s.tag2);
r = timingsafe_bcmp(s.tag, s.tag2, swa->sw_mlen);
if (r != 0) {
error = EBADMSG;
goto out;
}
/* tag matches, decrypt data */
crypto_cursor_init(&cc_in, &crp->crp_buf);
crypto_cursor_advance(&cc_in, crp->crp_payload_start);
inlen = 0;
for (resid = crp->crp_payload_length; resid > blksz;
resid -= todo) {
if (inlen == 0)
inblk = crypto_cursor_segment(&cc_in, &inlen);
if (outlen == 0)
outblk = crypto_cursor_segment(&cc_out, &outlen);
if (inlen < blksz) {
crypto_cursor_copydata(&cc_in, blksz, blk);
inblk = blk;
inlen = blksz;
}
if (outlen < blksz) {
outblk = blk;
outlen = blksz;
}
todo = rounddown2(MIN(resid, MIN(inlen, outlen)),
blksz);
exf->decrypt_multi(ctx, inblk, outblk, todo);
if (inblk == blk) {
inblk = crypto_cursor_segment(&cc_in, &inlen);
} else {
crypto_cursor_advance(&cc_in, todo);
inlen -= todo;
inblk += todo;
}
if (outblk == blk) {
crypto_cursor_copyback(&cc_out, blksz, blk);
outblk = crypto_cursor_segment(&cc_out,
&outlen);
} else {
crypto_cursor_advance(&cc_out, todo);
outlen -= todo;
outblk += todo;
}
}
if (resid > 0) {
crypto_cursor_copydata(&cc_in, resid, blk);
exf->decrypt_last(ctx, blk, blk, resid);
crypto_cursor_copyback(&cc_out, resid, blk);
}
} else {
/* Inject the authentication data */
crypto_copyback(crp, crp->crp_digest_start, swa->sw_mlen,
s.tag);
}
out:
explicit_bzero(ctx, exf->ctxsize);
explicit_bzero(&s, sizeof(s));
return (error);
}
static void
build_ccm_b0(const char *nonce, u_int nonce_length, u_int aad_length,
u_int data_length, u_int tag_length, uint8_t *b0)
{
uint8_t *bp;
uint8_t flags, L;
KASSERT(nonce_length >= 7 && nonce_length <= 13,
("nonce_length must be between 7 and 13 bytes"));
/*
* Need to determine the L field value. This is the number of
* bytes needed to specify the length of the message; the length
* is whatever is left in the 16 bytes after specifying flags and
* the nonce.
*/
L = 15 - nonce_length;
flags = ((aad_length > 0) << 6) +
(((tag_length - 2) / 2) << 3) +
L - 1;
/*
* Now we need to set up the first block, which has flags, nonce,
* and the message length.
*/
b0[0] = flags;
memcpy(b0 + 1, nonce, nonce_length);
bp = b0 + 1 + nonce_length;
/* Need to copy L' [aka L-1] bytes of data_length */
for (uint8_t *dst = b0 + CCM_CBC_BLOCK_LEN - 1; dst >= bp; dst--) {
*dst = data_length;
data_length >>= 8;
}
}
/* NB: OCF only supports AAD lengths < 2^32. */
static int
build_ccm_aad_length(u_int aad_length, uint8_t *blk)
{
if (aad_length < ((1 << 16) - (1 << 8))) {
be16enc(blk, aad_length);
return (sizeof(uint16_t));
} else {
blk[0] = 0xff;
blk[1] = 0xfe;
be32enc(blk + 2, aad_length);
return (2 + sizeof(uint32_t));
}
}
static int
swcr_ccm_cbc_mac(const struct swcr_session *ses, struct cryptop *crp)
{
struct {
union authctx ctx;
u_char blk[CCM_CBC_BLOCK_LEN];
u_char tag[AES_CBC_MAC_HASH_LEN];
u_char tag2[AES_CBC_MAC_HASH_LEN];
} s;
const struct crypto_session_params *csp;
const struct swcr_auth *swa;
const struct auth_hash *axf;
int error, ivlen, len;
csp = crypto_get_params(crp->crp_session);
swa = &ses->swcr_auth;
axf = swa->sw_axf;
if (crp->crp_auth_key != NULL) {
axf->Init(&s.ctx);
axf->Setkey(&s.ctx, crp->crp_auth_key, csp->csp_auth_klen);
} else
memcpy(&s.ctx, swa->sw_ictx, axf->ctxsize);
/* Initialize the IV */
ivlen = csp->csp_ivlen;
/* Supply MAC with IV */
axf->Reinit(&s.ctx, crp->crp_iv, ivlen);
/* Supply MAC with b0. */
build_ccm_b0(crp->crp_iv, ivlen, crp->crp_payload_length, 0,
swa->sw_mlen, s.blk);
axf->Update(&s.ctx, s.blk, CCM_CBC_BLOCK_LEN);
len = build_ccm_aad_length(crp->crp_payload_length, s.blk);
axf->Update(&s.ctx, s.blk, len);
crypto_apply(crp, crp->crp_payload_start, crp->crp_payload_length,
axf->Update, &s.ctx);
/* Finalize MAC */
axf->Final(s.tag, &s.ctx);
error = 0;
if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) {
crypto_copydata(crp, crp->crp_digest_start, swa->sw_mlen,
s.tag2);
if (timingsafe_bcmp(s.tag, s.tag2, swa->sw_mlen) != 0)
error = EBADMSG;
} else {
/* Inject the authentication data */
crypto_copyback(crp, crp->crp_digest_start, swa->sw_mlen,
s.tag);
}
explicit_bzero(&s, sizeof(s));
return (error);
}
static int
swcr_ccm(const struct swcr_session *ses, struct cryptop *crp)
{
const struct crypto_session_params *csp;
struct {
uint32_t blkbuf[howmany(AES_BLOCK_LEN, sizeof(uint32_t))];
u_char tag[AES_CBC_MAC_HASH_LEN];
u_char tag2[AES_CBC_MAC_HASH_LEN];
} s;
u_char *blk = (u_char *)s.blkbuf;
struct crypto_buffer_cursor cc_in, cc_out;
const u_char *inblk;
u_char *outblk;
size_t inlen, outlen, todo;
const struct swcr_auth *swa;
const struct swcr_encdec *swe;
const struct enc_xform *exf;
void *ctx;
size_t len;
int blksz, error, ivlen, r, resid;
csp = crypto_get_params(crp->crp_session);
swa = &ses->swcr_auth;
swe = &ses->swcr_encdec;
exf = swe->sw_exf;
blksz = AES_BLOCK_LEN;
KASSERT(blksz == exf->native_blocksize,
("%s: blocksize mismatch", __func__));
if (crp->crp_payload_length > ccm_max_payload_length(csp))
return (EMSGSIZE);
if ((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0)
return (EINVAL);
ivlen = csp->csp_ivlen;
ctx = __builtin_alloca(exf->ctxsize);
if (crp->crp_cipher_key != NULL)
exf->setkey(ctx, crp->crp_cipher_key,
crypto_get_params(crp->crp_session)->csp_cipher_klen);
else
memcpy(ctx, swe->sw_ctx, exf->ctxsize);
exf->reinit(ctx, crp->crp_iv, ivlen);
/* Supply MAC with b0. */
_Static_assert(sizeof(s.blkbuf) >= CCM_CBC_BLOCK_LEN,
"blkbuf too small for b0");
build_ccm_b0(crp->crp_iv, ivlen, crp->crp_aad_length,
crp->crp_payload_length, swa->sw_mlen, blk);
exf->update(ctx, blk, CCM_CBC_BLOCK_LEN);
/* Supply MAC with AAD */
if (crp->crp_aad_length != 0) {
len = build_ccm_aad_length(crp->crp_aad_length, blk);
exf->update(ctx, blk, len);
if (crp->crp_aad != NULL)
exf->update(ctx, crp->crp_aad, crp->crp_aad_length);
else
crypto_apply(crp, crp->crp_aad_start,
crp->crp_aad_length, exf->update, ctx);
/* Pad the AAD (including length field) to a full block. */
len = (len + crp->crp_aad_length) % CCM_CBC_BLOCK_LEN;
if (len != 0) {
len = CCM_CBC_BLOCK_LEN - len;
memset(blk, 0, CCM_CBC_BLOCK_LEN);
exf->update(ctx, blk, len);
}
}
/* Do encryption/decryption with MAC */
crypto_cursor_init(&cc_in, &crp->crp_buf);
crypto_cursor_advance(&cc_in, crp->crp_payload_start);
if (CRYPTO_HAS_OUTPUT_BUFFER(crp)) {
crypto_cursor_init(&cc_out, &crp->crp_obuf);
crypto_cursor_advance(&cc_out, crp->crp_payload_output_start);
} else
cc_out = cc_in;
inlen = outlen = 0;
for (resid = crp->crp_payload_length; resid >= blksz; resid -= todo) {
if (inlen == 0)
inblk = crypto_cursor_segment(&cc_in, &inlen);
if (outlen == 0)
outblk = crypto_cursor_segment(&cc_out, &outlen);
if (inlen < blksz) {
crypto_cursor_copydata(&cc_in, blksz, blk);
inblk = blk;
inlen = blksz;
}
if (CRYPTO_OP_IS_ENCRYPT(crp->crp_op)) {
if (outlen < blksz) {
outblk = blk;
outlen = blksz;
}
todo = rounddown2(MIN(resid, MIN(inlen, outlen)),
blksz);
exf->update(ctx, inblk, todo);
exf->encrypt_multi(ctx, inblk, outblk, todo);
if (outblk == blk) {
crypto_cursor_copyback(&cc_out, blksz, blk);
outblk = crypto_cursor_segment(&cc_out, &outlen);
} else {
crypto_cursor_advance(&cc_out, todo);
outlen -= todo;
outblk += todo;
}
} else {
/*
* One of the problems with CCM+CBC is that
* the authentication is done on the
* unencrypted data. As a result, we have to
* decrypt the data twice: once to generate
* the tag and a second time after the tag is
* verified.
*/
todo = blksz;
exf->decrypt(ctx, inblk, blk);
exf->update(ctx, blk, todo);
}
if (inblk == blk) {
inblk = crypto_cursor_segment(&cc_in, &inlen);
} else {
crypto_cursor_advance(&cc_in, todo);
inlen -= todo;
inblk += todo;
}
}
if (resid > 0) {
crypto_cursor_copydata(&cc_in, resid, blk);
if (CRYPTO_OP_IS_ENCRYPT(crp->crp_op)) {
exf->update(ctx, blk, resid);
exf->encrypt_last(ctx, blk, blk, resid);
crypto_cursor_copyback(&cc_out, resid, blk);
} else {
exf->decrypt_last(ctx, blk, blk, resid);
exf->update(ctx, blk, resid);
}
}
/* Finalize MAC */
exf->final(s.tag, ctx);
/* Validate tag */
error = 0;
if (!CRYPTO_OP_IS_ENCRYPT(crp->crp_op)) {
crypto_copydata(crp, crp->crp_digest_start, swa->sw_mlen,
s.tag2);
r = timingsafe_bcmp(s.tag, s.tag2, swa->sw_mlen);
if (r != 0) {
error = EBADMSG;
goto out;
}
/* tag matches, decrypt data */
exf->reinit(ctx, crp->crp_iv, ivlen);
crypto_cursor_init(&cc_in, &crp->crp_buf);
crypto_cursor_advance(&cc_in, crp->crp_payload_start);
inlen = 0;
for (resid = crp->crp_payload_length; resid >= blksz;
resid -= todo) {
if (inlen == 0)
inblk = crypto_cursor_segment(&cc_in, &inlen);
if (outlen == 0)
outblk = crypto_cursor_segment(&cc_out,
&outlen);
if (inlen < blksz) {
crypto_cursor_copydata(&cc_in, blksz, blk);
inblk = blk;
inlen = blksz;
}
if (outlen < blksz) {
outblk = blk;
outlen = blksz;
}
todo = rounddown2(MIN(resid, MIN(inlen, outlen)),
blksz);
exf->decrypt_multi(ctx, inblk, outblk, todo);
if (inblk == blk) {
inblk = crypto_cursor_segment(&cc_in, &inlen);
} else {
crypto_cursor_advance(&cc_in, todo);
inlen -= todo;
inblk += todo;
}
if (outblk == blk) {
crypto_cursor_copyback(&cc_out, blksz, blk);
outblk = crypto_cursor_segment(&cc_out,
&outlen);
} else {
crypto_cursor_advance(&cc_out, todo);
outlen -= todo;
outblk += todo;
}
}
if (resid > 0) {
crypto_cursor_copydata(&cc_in, resid, blk);
exf->decrypt_last(ctx, blk, blk, resid);
crypto_cursor_copyback(&cc_out, resid, blk);
}
} else {
/* Inject the authentication data */
crypto_copyback(crp, crp->crp_digest_start, swa->sw_mlen,
s.tag);
}
out:
explicit_bzero(ctx, exf->ctxsize);
explicit_bzero(&s, sizeof(s));
return (error);
}
static int
swcr_chacha20_poly1305(const struct swcr_session *ses, struct cryptop *crp)
{
const struct crypto_session_params *csp;
struct {
uint64_t blkbuf[howmany(CHACHA20_NATIVE_BLOCK_LEN, sizeof(uint64_t))];
u_char tag[POLY1305_HASH_LEN];
u_char tag2[POLY1305_HASH_LEN];
} s;
u_char *blk = (u_char *)s.blkbuf;
struct crypto_buffer_cursor cc_in, cc_out;
const u_char *inblk;
u_char *outblk;
size_t inlen, outlen, todo;
uint64_t *blkp;
const struct swcr_auth *swa;
const struct swcr_encdec *swe;
const struct enc_xform *exf;
void *ctx;
int blksz, error, r, resid;
swa = &ses->swcr_auth;
swe = &ses->swcr_encdec;
exf = swe->sw_exf;
blksz = exf->native_blocksize;
KASSERT(blksz <= sizeof(s.blkbuf), ("%s: blocksize mismatch", __func__));
if ((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0)
return (EINVAL);
csp = crypto_get_params(crp->crp_session);
ctx = __builtin_alloca(exf->ctxsize);
if (crp->crp_cipher_key != NULL)
exf->setkey(ctx, crp->crp_cipher_key,
csp->csp_cipher_klen);
else
memcpy(ctx, swe->sw_ctx, exf->ctxsize);
exf->reinit(ctx, crp->crp_iv, csp->csp_ivlen);
/* Supply MAC with AAD */
if (crp->crp_aad != NULL)
exf->update(ctx, crp->crp_aad, crp->crp_aad_length);
else
crypto_apply(crp, crp->crp_aad_start, crp->crp_aad_length,
exf->update, ctx);
if (crp->crp_aad_length % POLY1305_BLOCK_LEN != 0) {
/* padding1 */
memset(blk, 0, POLY1305_BLOCK_LEN);
exf->update(ctx, blk, POLY1305_BLOCK_LEN -
crp->crp_aad_length % POLY1305_BLOCK_LEN);
}
/* Do encryption with MAC */
crypto_cursor_init(&cc_in, &crp->crp_buf);
crypto_cursor_advance(&cc_in, crp->crp_payload_start);
if (CRYPTO_HAS_OUTPUT_BUFFER(crp)) {
crypto_cursor_init(&cc_out, &crp->crp_obuf);
crypto_cursor_advance(&cc_out, crp->crp_payload_output_start);
} else
cc_out = cc_in;
inlen = outlen = 0;
if (CRYPTO_OP_IS_ENCRYPT(crp->crp_op)) {
for (resid = crp->crp_payload_length; resid >= blksz;
resid -= todo) {
if (inlen == 0)
inblk = crypto_cursor_segment(&cc_in, &inlen);
if (outlen == 0)
outblk = crypto_cursor_segment(&cc_out,
&outlen);
if (inlen < blksz) {
crypto_cursor_copydata(&cc_in, blksz, blk);
inblk = blk;
inlen = blksz;
}
if (outlen < blksz) {
outblk = blk;
outlen = blksz;
}
todo = rounddown2(MIN(resid, MIN(inlen, outlen)),
blksz);
exf->encrypt_multi(ctx, inblk, outblk, todo);
exf->update(ctx, outblk, todo);
if (inblk == blk) {
inblk = crypto_cursor_segment(&cc_in, &inlen);
} else {
crypto_cursor_advance(&cc_in, todo);
inlen -= todo;
inblk += todo;
}
if (outblk == blk) {
crypto_cursor_copyback(&cc_out, blksz, blk);
outblk = crypto_cursor_segment(&cc_out, &outlen);
} else {
crypto_cursor_advance(&cc_out, todo);
outlen -= todo;
outblk += todo;
}
}
if (resid > 0) {
crypto_cursor_copydata(&cc_in, resid, blk);
exf->encrypt_last(ctx, blk, blk, resid);
crypto_cursor_copyback(&cc_out, resid, blk);
exf->update(ctx, blk, resid);
}
} else
crypto_apply(crp, crp->crp_payload_start,
crp->crp_payload_length, exf->update, ctx);
if (crp->crp_payload_length % POLY1305_BLOCK_LEN != 0) {
/* padding2 */
memset(blk, 0, POLY1305_BLOCK_LEN);
exf->update(ctx, blk, POLY1305_BLOCK_LEN -
crp->crp_payload_length % POLY1305_BLOCK_LEN);
}
/* lengths */
blkp = (uint64_t *)blk;
blkp[0] = htole64(crp->crp_aad_length);
blkp[1] = htole64(crp->crp_payload_length);
exf->update(ctx, blk, sizeof(uint64_t) * 2);
/* Finalize MAC */
exf->final(s.tag, ctx);
/* Validate tag */
error = 0;
if (!CRYPTO_OP_IS_ENCRYPT(crp->crp_op)) {
crypto_copydata(crp, crp->crp_digest_start, swa->sw_mlen,
s.tag2);
r = timingsafe_bcmp(s.tag, s.tag2, swa->sw_mlen);
if (r != 0) {
error = EBADMSG;
goto out;
}
/* tag matches, decrypt data */
crypto_cursor_init(&cc_in, &crp->crp_buf);
crypto_cursor_advance(&cc_in, crp->crp_payload_start);
inlen = 0;
for (resid = crp->crp_payload_length; resid > blksz;
resid -= todo) {
if (inlen == 0)
inblk = crypto_cursor_segment(&cc_in, &inlen);
if (outlen == 0)
outblk = crypto_cursor_segment(&cc_out,
&outlen);
if (inlen < blksz) {
crypto_cursor_copydata(&cc_in, blksz, blk);
inblk = blk;
inlen = blksz;
}
if (outlen < blksz) {
outblk = blk;
outlen = blksz;
}
todo = rounddown2(MIN(resid, MIN(inlen, outlen)),
blksz);
exf->decrypt_multi(ctx, inblk, outblk, todo);
if (inblk == blk) {
inblk = crypto_cursor_segment(&cc_in, &inlen);
} else {
crypto_cursor_advance(&cc_in, todo);
inlen -= todo;
inblk += todo;
}
if (outblk == blk) {
crypto_cursor_copyback(&cc_out, blksz, blk);
outblk = crypto_cursor_segment(&cc_out,
&outlen);
} else {
crypto_cursor_advance(&cc_out, todo);
outlen -= todo;
outblk += todo;
}
}
if (resid > 0) {
crypto_cursor_copydata(&cc_in, resid, blk);
exf->decrypt_last(ctx, blk, blk, resid);
crypto_cursor_copyback(&cc_out, resid, blk);
}
} else {
/* Inject the authentication data */
crypto_copyback(crp, crp->crp_digest_start, swa->sw_mlen,
s.tag);
}
out:
explicit_bzero(ctx, exf->ctxsize);
explicit_bzero(&s, sizeof(s));
return (error);
}
/*
* Apply a cipher and a digest to perform EtA.
*/
static int
swcr_eta(const struct swcr_session *ses, struct cryptop *crp)
{
int error;
if (CRYPTO_OP_IS_ENCRYPT(crp->crp_op)) {
error = swcr_encdec(ses, crp);
if (error == 0)
error = swcr_authcompute(ses, crp);
} else {
error = swcr_authcompute(ses, crp);
if (error == 0)
error = swcr_encdec(ses, crp);
}
return (error);
}
/*
* Apply a compression/decompression algorithm
*/
static int
swcr_compdec(const struct swcr_session *ses, struct cryptop *crp)
{
const struct comp_algo *cxf;
uint8_t *data, *out;
int adj;
uint32_t result;
cxf = ses->swcr_compdec.sw_cxf;
/* We must handle the whole buffer of data in one time
* then if there is not all the data in the mbuf, we must
* copy in a buffer.
*/
data = malloc(crp->crp_payload_length, M_CRYPTO_DATA, M_NOWAIT);
if (data == NULL)
return (EINVAL);
crypto_copydata(crp, crp->crp_payload_start, crp->crp_payload_length,
data);
if (CRYPTO_OP_IS_COMPRESS(crp->crp_op))
result = cxf->compress(data, crp->crp_payload_length, &out);
else
result = cxf->decompress(data, crp->crp_payload_length, &out);
free(data, M_CRYPTO_DATA);
if (result == 0)
return (EINVAL);
crp->crp_olen = result;
/* Check the compressed size when doing compression */
if (CRYPTO_OP_IS_COMPRESS(crp->crp_op)) {
if (result >= crp->crp_payload_length) {
/* Compression was useless, we lost time */
free(out, M_CRYPTO_DATA);
return (0);
}
}
/* Copy back the (de)compressed data. m_copyback is
* extending the mbuf as necessary.
*/
crypto_copyback(crp, crp->crp_payload_start, result, out);
if (result < crp->crp_payload_length) {
switch (crp->crp_buf.cb_type) {
case CRYPTO_BUF_MBUF:
case CRYPTO_BUF_SINGLE_MBUF:
adj = result - crp->crp_payload_length;
m_adj(crp->crp_buf.cb_mbuf, adj);
break;
case CRYPTO_BUF_UIO: {
struct uio *uio = crp->crp_buf.cb_uio;
int ind;
adj = crp->crp_payload_length - result;
ind = uio->uio_iovcnt - 1;
while (adj > 0 && ind >= 0) {
if (adj < uio->uio_iov[ind].iov_len) {
uio->uio_iov[ind].iov_len -= adj;
break;
}
adj -= uio->uio_iov[ind].iov_len;
uio->uio_iov[ind].iov_len = 0;
ind--;
uio->uio_iovcnt--;
}
}
break;
case CRYPTO_BUF_VMPAGE:
adj = crp->crp_payload_length - result;
crp->crp_buf.cb_vm_page_len -= adj;
break;
default:
break;
}
}
free(out, M_CRYPTO_DATA);
return 0;
}
static int
swcr_setup_cipher(struct swcr_session *ses,
const struct crypto_session_params *csp)
{
struct swcr_encdec *swe;
const struct enc_xform *txf;
int error;
swe = &ses->swcr_encdec;
txf = crypto_cipher(csp);
if (csp->csp_cipher_key != NULL) {
if (txf->ctxsize != 0) {
swe->sw_ctx = malloc(txf->ctxsize, M_CRYPTO_DATA,
M_NOWAIT);
if (swe->sw_ctx == NULL)
return (ENOMEM);
}
error = txf->setkey(swe->sw_ctx,
csp->csp_cipher_key, csp->csp_cipher_klen);
if (error)
return (error);
}
swe->sw_exf = txf;
return (0);
}
static int
swcr_setup_auth(struct swcr_session *ses,
const struct crypto_session_params *csp)
{
struct swcr_auth *swa;
const struct auth_hash *axf;
swa = &ses->swcr_auth;
axf = crypto_auth_hash(csp);
swa->sw_axf = axf;
if (csp->csp_auth_mlen < 0 || csp->csp_auth_mlen > axf->hashsize)
return (EINVAL);
if (csp->csp_auth_mlen == 0)
swa->sw_mlen = axf->hashsize;
else
swa->sw_mlen = csp->csp_auth_mlen;
if (csp->csp_auth_klen == 0 || csp->csp_auth_key != NULL) {
swa->sw_ictx = malloc(axf->ctxsize, M_CRYPTO_DATA,
M_NOWAIT);
if (swa->sw_ictx == NULL)
return (ENOBUFS);
}
switch (csp->csp_auth_alg) {
case CRYPTO_SHA1_HMAC:
case CRYPTO_SHA2_224_HMAC:
case CRYPTO_SHA2_256_HMAC:
case CRYPTO_SHA2_384_HMAC:
case CRYPTO_SHA2_512_HMAC:
case CRYPTO_RIPEMD160_HMAC:
swa->sw_hmac = true;
if (csp->csp_auth_key != NULL) {
swa->sw_octx = malloc(axf->ctxsize, M_CRYPTO_DATA,
M_NOWAIT);
if (swa->sw_octx == NULL)
return (ENOBUFS);
hmac_init_ipad(axf, csp->csp_auth_key,
csp->csp_auth_klen, swa->sw_ictx);
hmac_init_opad(axf, csp->csp_auth_key,
csp->csp_auth_klen, swa->sw_octx);
}
break;
case CRYPTO_RIPEMD160:
case CRYPTO_SHA1:
case CRYPTO_SHA2_224:
case CRYPTO_SHA2_256:
case CRYPTO_SHA2_384:
case CRYPTO_SHA2_512:
case CRYPTO_NULL_HMAC:
axf->Init(swa->sw_ictx);
break;
case CRYPTO_AES_NIST_GMAC:
case CRYPTO_AES_CCM_CBC_MAC:
case CRYPTO_POLY1305:
if (csp->csp_auth_key != NULL) {
axf->Init(swa->sw_ictx);
axf->Setkey(swa->sw_ictx, csp->csp_auth_key,
csp->csp_auth_klen);
}
break;
case CRYPTO_BLAKE2B:
case CRYPTO_BLAKE2S:
/*
* Blake2b and Blake2s support an optional key but do
* not require one.
*/
if (csp->csp_auth_klen == 0)
axf->Init(swa->sw_ictx);
else if (csp->csp_auth_key != NULL)
axf->Setkey(swa->sw_ictx, csp->csp_auth_key,
csp->csp_auth_klen);
break;
}
if (csp->csp_mode == CSP_MODE_DIGEST) {
switch (csp->csp_auth_alg) {
case CRYPTO_AES_NIST_GMAC:
ses->swcr_process = swcr_gmac;
break;
case CRYPTO_AES_CCM_CBC_MAC:
ses->swcr_process = swcr_ccm_cbc_mac;
break;
default:
ses->swcr_process = swcr_authcompute;
}
}
return (0);
}
static int
swcr_setup_aead(struct swcr_session *ses,
const struct crypto_session_params *csp)
{
struct swcr_auth *swa;
int error;
error = swcr_setup_cipher(ses, csp);
if (error)
return (error);
swa = &ses->swcr_auth;
if (csp->csp_auth_mlen == 0)
swa->sw_mlen = ses->swcr_encdec.sw_exf->macsize;
else
swa->sw_mlen = csp->csp_auth_mlen;
return (0);
}
static bool
swcr_auth_supported(const struct crypto_session_params *csp)
{
const struct auth_hash *axf;
axf = crypto_auth_hash(csp);
if (axf == NULL)
return (false);
switch (csp->csp_auth_alg) {
case CRYPTO_SHA1_HMAC:
case CRYPTO_SHA2_224_HMAC:
case CRYPTO_SHA2_256_HMAC:
case CRYPTO_SHA2_384_HMAC:
case CRYPTO_SHA2_512_HMAC:
case CRYPTO_NULL_HMAC:
case CRYPTO_RIPEMD160_HMAC:
break;
case CRYPTO_AES_NIST_GMAC:
switch (csp->csp_auth_klen * 8) {
case 128:
case 192:
case 256:
break;
default:
return (false);
}
if (csp->csp_auth_key == NULL)
return (false);
if (csp->csp_ivlen != AES_GCM_IV_LEN)
return (false);
break;
case CRYPTO_POLY1305:
if (csp->csp_auth_klen != POLY1305_KEY_LEN)
return (false);
break;
case CRYPTO_AES_CCM_CBC_MAC:
switch (csp->csp_auth_klen * 8) {
case 128:
case 192:
case 256:
break;
default:
return (false);
}
if (csp->csp_auth_key == NULL)
return (false);
break;
}
return (true);
}
static bool
swcr_cipher_supported(const struct crypto_session_params *csp)
{
const struct enc_xform *txf;
txf = crypto_cipher(csp);
if (txf == NULL)
return (false);
if (csp->csp_cipher_alg != CRYPTO_NULL_CBC &&
txf->ivsize != csp->csp_ivlen)
return (false);
return (true);
}
#define SUPPORTED_SES (CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD | CSP_F_ESN)
static int
swcr_probesession(device_t dev, const struct crypto_session_params *csp)
{
if ((csp->csp_flags & ~(SUPPORTED_SES)) != 0)
return (EINVAL);
switch (csp->csp_mode) {
case CSP_MODE_COMPRESS:
switch (csp->csp_cipher_alg) {
case CRYPTO_DEFLATE_COMP:
break;
default:
return (EINVAL);
}
break;
case CSP_MODE_CIPHER:
switch (csp->csp_cipher_alg) {
case CRYPTO_AES_NIST_GCM_16:
case CRYPTO_AES_CCM_16:
case CRYPTO_CHACHA20_POLY1305:
case CRYPTO_XCHACHA20_POLY1305:
return (EINVAL);
default:
if (!swcr_cipher_supported(csp))
return (EINVAL);
break;
}
break;
case CSP_MODE_DIGEST:
if (!swcr_auth_supported(csp))
return (EINVAL);
break;
case CSP_MODE_AEAD:
switch (csp->csp_cipher_alg) {
case CRYPTO_AES_NIST_GCM_16:
case CRYPTO_AES_CCM_16:
switch (csp->csp_cipher_klen * 8) {
case 128:
case 192:
case 256:
break;
default:
return (EINVAL);
}
break;
case CRYPTO_CHACHA20_POLY1305:
case CRYPTO_XCHACHA20_POLY1305:
break;
default:
return (EINVAL);
}
break;
case CSP_MODE_ETA:
/* AEAD algorithms cannot be used for EtA. */
switch (csp->csp_cipher_alg) {
case CRYPTO_AES_NIST_GCM_16:
case CRYPTO_AES_CCM_16:
case CRYPTO_CHACHA20_POLY1305:
case CRYPTO_XCHACHA20_POLY1305:
return (EINVAL);
}
switch (csp->csp_auth_alg) {
case CRYPTO_AES_NIST_GMAC:
case CRYPTO_AES_CCM_CBC_MAC:
return (EINVAL);
}
if (!swcr_cipher_supported(csp) ||
!swcr_auth_supported(csp))
return (EINVAL);
break;
default:
return (EINVAL);
}
return (CRYPTODEV_PROBE_SOFTWARE);
}
/*
* Generate a new software session.
*/
static int
swcr_newsession(device_t dev, crypto_session_t cses,
const struct crypto_session_params *csp)
{
struct swcr_session *ses;
const struct comp_algo *cxf;
int error;
ses = crypto_get_driver_session(cses);
error = 0;
switch (csp->csp_mode) {
case CSP_MODE_COMPRESS:
switch (csp->csp_cipher_alg) {
case CRYPTO_DEFLATE_COMP:
cxf = &comp_algo_deflate;
break;
#ifdef INVARIANTS
default:
panic("bad compression algo");
#endif
}
ses->swcr_compdec.sw_cxf = cxf;
ses->swcr_process = swcr_compdec;
break;
case CSP_MODE_CIPHER:
switch (csp->csp_cipher_alg) {
case CRYPTO_NULL_CBC:
ses->swcr_process = swcr_null;
break;
#ifdef INVARIANTS
case CRYPTO_AES_NIST_GCM_16:
case CRYPTO_AES_CCM_16:
case CRYPTO_CHACHA20_POLY1305:
case CRYPTO_XCHACHA20_POLY1305:
panic("bad cipher algo");
#endif
default:
error = swcr_setup_cipher(ses, csp);
if (error == 0)
ses->swcr_process = swcr_encdec;
}
break;
case CSP_MODE_DIGEST:
error = swcr_setup_auth(ses, csp);
break;
case CSP_MODE_AEAD:
switch (csp->csp_cipher_alg) {
case CRYPTO_AES_NIST_GCM_16:
error = swcr_setup_aead(ses, csp);
if (error == 0)
ses->swcr_process = swcr_gcm;
break;
case CRYPTO_AES_CCM_16:
error = swcr_setup_aead(ses, csp);
if (error == 0)
ses->swcr_process = swcr_ccm;
break;
case CRYPTO_CHACHA20_POLY1305:
case CRYPTO_XCHACHA20_POLY1305:
error = swcr_setup_aead(ses, csp);
if (error == 0)
ses->swcr_process = swcr_chacha20_poly1305;
break;
#ifdef INVARIANTS
default:
panic("bad aead algo");
#endif
}
break;
case CSP_MODE_ETA:
#ifdef INVARIANTS
switch (csp->csp_cipher_alg) {
case CRYPTO_AES_NIST_GCM_16:
case CRYPTO_AES_CCM_16:
case CRYPTO_CHACHA20_POLY1305:
case CRYPTO_XCHACHA20_POLY1305:
panic("bad eta cipher algo");
}
switch (csp->csp_auth_alg) {
case CRYPTO_AES_NIST_GMAC:
case CRYPTO_AES_CCM_CBC_MAC:
panic("bad eta auth algo");
}
#endif
error = swcr_setup_auth(ses, csp);
if (error)
break;
if (csp->csp_cipher_alg == CRYPTO_NULL_CBC) {
/* Effectively degrade to digest mode. */
ses->swcr_process = swcr_authcompute;
break;
}
error = swcr_setup_cipher(ses, csp);
if (error == 0)
ses->swcr_process = swcr_eta;
break;
default:
error = EINVAL;
}
if (error)
swcr_freesession(dev, cses);
return (error);
}
static void
swcr_freesession(device_t dev, crypto_session_t cses)
{
struct swcr_session *ses;
ses = crypto_get_driver_session(cses);
zfree(ses->swcr_encdec.sw_ctx, M_CRYPTO_DATA);
zfree(ses->swcr_auth.sw_ictx, M_CRYPTO_DATA);
zfree(ses->swcr_auth.sw_octx, M_CRYPTO_DATA);
}
/*
* Process a software request.
*/
static int
swcr_process(device_t dev, struct cryptop *crp, int hint)
{
struct swcr_session *ses;
ses = crypto_get_driver_session(crp->crp_session);
crp->crp_etype = ses->swcr_process(ses, crp);
crypto_done(crp);
return (0);
}
static void
swcr_identify(driver_t *drv, device_t parent)
{
/* NB: order 10 is so we get attached after h/w devices */
if (device_find_child(parent, "cryptosoft", -1) == NULL &&
BUS_ADD_CHILD(parent, 10, "cryptosoft", 0) == 0)
panic("cryptosoft: could not attach");
}
static int
swcr_probe(device_t dev)
{
device_set_desc(dev, "software crypto");
device_quiet(dev);
return (BUS_PROBE_NOWILDCARD);
}
static int
swcr_attach(device_t dev)
{
swcr_id = crypto_get_driverid(dev, sizeof(struct swcr_session),
CRYPTOCAP_F_SOFTWARE | CRYPTOCAP_F_SYNC);
if (swcr_id < 0) {
device_printf(dev, "cannot initialize!");
return (ENXIO);
}
return (0);
}
static int
swcr_detach(device_t dev)
{
crypto_unregister_all(swcr_id);
return 0;
}
static device_method_t swcr_methods[] = {
DEVMETHOD(device_identify, swcr_identify),
DEVMETHOD(device_probe, swcr_probe),
DEVMETHOD(device_attach, swcr_attach),
DEVMETHOD(device_detach, swcr_detach),
DEVMETHOD(cryptodev_probesession, swcr_probesession),
DEVMETHOD(cryptodev_newsession, swcr_newsession),
DEVMETHOD(cryptodev_freesession,swcr_freesession),
DEVMETHOD(cryptodev_process, swcr_process),
{0, 0},
};
static driver_t swcr_driver = {
"cryptosoft",
swcr_methods,
0, /* NB: no softc */
};
/*
* NB: We explicitly reference the crypto module so we
* get the necessary ordering when built as a loadable
* module. This is required because we bundle the crypto
* module code together with the cryptosoft driver (otherwise
* normal module dependencies would handle things).
*/
extern int crypto_modevent(struct module *, int, void *);
/* XXX where to attach */
DRIVER_MODULE(cryptosoft, nexus, swcr_driver, crypto_modevent, NULL);
MODULE_VERSION(cryptosoft, 1);
MODULE_DEPEND(cryptosoft, crypto, 1, 1, 1);