517904de5c
This controller supports 2.5G/1G/100MB/10MB speeds, and allows tx/rx checksum offload, TSO, LRO, and multi-queue operation. The driver was derived from code contributed by Intel, and modified by Netgate to fit into the iflib framework. Thanks to Mike Karels for testing and feedback on the driver. Reviewed by: bcr (manpages), kbowling, scottl, erj MFC after: 1 month Relnotes: yes Sponsored by: Rubicon Communications, LLC ("Netgate") Differential Revision: https://reviews.freebsd.org/D30668
722 lines
17 KiB
C
722 lines
17 KiB
C
/*-
|
|
* Copyright 2021 Intel Corp
|
|
* Copyright 2021 Rubicon Communications, LLC (Netgate)
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "igc_api.h"
|
|
|
|
static void igc_reload_nvm_generic(struct igc_hw *hw);
|
|
|
|
/**
|
|
* igc_init_nvm_ops_generic - Initialize NVM function pointers
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Setups up the function pointers to no-op functions
|
|
**/
|
|
void igc_init_nvm_ops_generic(struct igc_hw *hw)
|
|
{
|
|
struct igc_nvm_info *nvm = &hw->nvm;
|
|
DEBUGFUNC("igc_init_nvm_ops_generic");
|
|
|
|
/* Initialize function pointers */
|
|
nvm->ops.init_params = igc_null_ops_generic;
|
|
nvm->ops.acquire = igc_null_ops_generic;
|
|
nvm->ops.read = igc_null_read_nvm;
|
|
nvm->ops.release = igc_null_nvm_generic;
|
|
nvm->ops.reload = igc_reload_nvm_generic;
|
|
nvm->ops.update = igc_null_ops_generic;
|
|
nvm->ops.validate = igc_null_ops_generic;
|
|
nvm->ops.write = igc_null_write_nvm;
|
|
}
|
|
|
|
/**
|
|
* igc_null_nvm_read - No-op function, return 0
|
|
* @hw: pointer to the HW structure
|
|
* @a: dummy variable
|
|
* @b: dummy variable
|
|
* @c: dummy variable
|
|
**/
|
|
s32 igc_null_read_nvm(struct igc_hw IGC_UNUSEDARG *hw,
|
|
u16 IGC_UNUSEDARG a, u16 IGC_UNUSEDARG b,
|
|
u16 IGC_UNUSEDARG *c)
|
|
{
|
|
DEBUGFUNC("igc_null_read_nvm");
|
|
return IGC_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* igc_null_nvm_generic - No-op function, return void
|
|
* @hw: pointer to the HW structure
|
|
**/
|
|
void igc_null_nvm_generic(struct igc_hw IGC_UNUSEDARG *hw)
|
|
{
|
|
DEBUGFUNC("igc_null_nvm_generic");
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* igc_null_write_nvm - No-op function, return 0
|
|
* @hw: pointer to the HW structure
|
|
* @a: dummy variable
|
|
* @b: dummy variable
|
|
* @c: dummy variable
|
|
**/
|
|
s32 igc_null_write_nvm(struct igc_hw IGC_UNUSEDARG *hw,
|
|
u16 IGC_UNUSEDARG a, u16 IGC_UNUSEDARG b,
|
|
u16 IGC_UNUSEDARG *c)
|
|
{
|
|
DEBUGFUNC("igc_null_write_nvm");
|
|
return IGC_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* igc_raise_eec_clk - Raise EEPROM clock
|
|
* @hw: pointer to the HW structure
|
|
* @eecd: pointer to the EEPROM
|
|
*
|
|
* Enable/Raise the EEPROM clock bit.
|
|
**/
|
|
static void igc_raise_eec_clk(struct igc_hw *hw, u32 *eecd)
|
|
{
|
|
*eecd = *eecd | IGC_EECD_SK;
|
|
IGC_WRITE_REG(hw, IGC_EECD, *eecd);
|
|
IGC_WRITE_FLUSH(hw);
|
|
usec_delay(hw->nvm.delay_usec);
|
|
}
|
|
|
|
/**
|
|
* igc_lower_eec_clk - Lower EEPROM clock
|
|
* @hw: pointer to the HW structure
|
|
* @eecd: pointer to the EEPROM
|
|
*
|
|
* Clear/Lower the EEPROM clock bit.
|
|
**/
|
|
static void igc_lower_eec_clk(struct igc_hw *hw, u32 *eecd)
|
|
{
|
|
*eecd = *eecd & ~IGC_EECD_SK;
|
|
IGC_WRITE_REG(hw, IGC_EECD, *eecd);
|
|
IGC_WRITE_FLUSH(hw);
|
|
usec_delay(hw->nvm.delay_usec);
|
|
}
|
|
|
|
/**
|
|
* igc_shift_out_eec_bits - Shift data bits our to the EEPROM
|
|
* @hw: pointer to the HW structure
|
|
* @data: data to send to the EEPROM
|
|
* @count: number of bits to shift out
|
|
*
|
|
* We need to shift 'count' bits out to the EEPROM. So, the value in the
|
|
* "data" parameter will be shifted out to the EEPROM one bit at a time.
|
|
* In order to do this, "data" must be broken down into bits.
|
|
**/
|
|
static void igc_shift_out_eec_bits(struct igc_hw *hw, u16 data, u16 count)
|
|
{
|
|
struct igc_nvm_info *nvm = &hw->nvm;
|
|
u32 eecd = IGC_READ_REG(hw, IGC_EECD);
|
|
u32 mask;
|
|
|
|
DEBUGFUNC("igc_shift_out_eec_bits");
|
|
|
|
mask = 0x01 << (count - 1);
|
|
if (nvm->type == igc_nvm_eeprom_spi)
|
|
eecd |= IGC_EECD_DO;
|
|
|
|
do {
|
|
eecd &= ~IGC_EECD_DI;
|
|
|
|
if (data & mask)
|
|
eecd |= IGC_EECD_DI;
|
|
|
|
IGC_WRITE_REG(hw, IGC_EECD, eecd);
|
|
IGC_WRITE_FLUSH(hw);
|
|
|
|
usec_delay(nvm->delay_usec);
|
|
|
|
igc_raise_eec_clk(hw, &eecd);
|
|
igc_lower_eec_clk(hw, &eecd);
|
|
|
|
mask >>= 1;
|
|
} while (mask);
|
|
|
|
eecd &= ~IGC_EECD_DI;
|
|
IGC_WRITE_REG(hw, IGC_EECD, eecd);
|
|
}
|
|
|
|
/**
|
|
* igc_shift_in_eec_bits - Shift data bits in from the EEPROM
|
|
* @hw: pointer to the HW structure
|
|
* @count: number of bits to shift in
|
|
*
|
|
* In order to read a register from the EEPROM, we need to shift 'count' bits
|
|
* in from the EEPROM. Bits are "shifted in" by raising the clock input to
|
|
* the EEPROM (setting the SK bit), and then reading the value of the data out
|
|
* "DO" bit. During this "shifting in" process the data in "DI" bit should
|
|
* always be clear.
|
|
**/
|
|
static u16 igc_shift_in_eec_bits(struct igc_hw *hw, u16 count)
|
|
{
|
|
u32 eecd;
|
|
u32 i;
|
|
u16 data;
|
|
|
|
DEBUGFUNC("igc_shift_in_eec_bits");
|
|
|
|
eecd = IGC_READ_REG(hw, IGC_EECD);
|
|
|
|
eecd &= ~(IGC_EECD_DO | IGC_EECD_DI);
|
|
data = 0;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
data <<= 1;
|
|
igc_raise_eec_clk(hw, &eecd);
|
|
|
|
eecd = IGC_READ_REG(hw, IGC_EECD);
|
|
|
|
eecd &= ~IGC_EECD_DI;
|
|
if (eecd & IGC_EECD_DO)
|
|
data |= 1;
|
|
|
|
igc_lower_eec_clk(hw, &eecd);
|
|
}
|
|
|
|
return data;
|
|
}
|
|
|
|
/**
|
|
* igc_poll_eerd_eewr_done - Poll for EEPROM read/write completion
|
|
* @hw: pointer to the HW structure
|
|
* @ee_reg: EEPROM flag for polling
|
|
*
|
|
* Polls the EEPROM status bit for either read or write completion based
|
|
* upon the value of 'ee_reg'.
|
|
**/
|
|
s32 igc_poll_eerd_eewr_done(struct igc_hw *hw, int ee_reg)
|
|
{
|
|
u32 attempts = 100000;
|
|
u32 i, reg = 0;
|
|
|
|
DEBUGFUNC("igc_poll_eerd_eewr_done");
|
|
|
|
for (i = 0; i < attempts; i++) {
|
|
if (ee_reg == IGC_NVM_POLL_READ)
|
|
reg = IGC_READ_REG(hw, IGC_EERD);
|
|
else
|
|
reg = IGC_READ_REG(hw, IGC_EEWR);
|
|
|
|
if (reg & IGC_NVM_RW_REG_DONE)
|
|
return IGC_SUCCESS;
|
|
|
|
usec_delay(5);
|
|
}
|
|
|
|
return -IGC_ERR_NVM;
|
|
}
|
|
|
|
/**
|
|
* igc_acquire_nvm_generic - Generic request for access to EEPROM
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Set the EEPROM access request bit and wait for EEPROM access grant bit.
|
|
* Return successful if access grant bit set, else clear the request for
|
|
* EEPROM access and return -IGC_ERR_NVM (-1).
|
|
**/
|
|
s32 igc_acquire_nvm_generic(struct igc_hw *hw)
|
|
{
|
|
u32 eecd = IGC_READ_REG(hw, IGC_EECD);
|
|
s32 timeout = IGC_NVM_GRANT_ATTEMPTS;
|
|
|
|
DEBUGFUNC("igc_acquire_nvm_generic");
|
|
|
|
IGC_WRITE_REG(hw, IGC_EECD, eecd | IGC_EECD_REQ);
|
|
eecd = IGC_READ_REG(hw, IGC_EECD);
|
|
|
|
while (timeout) {
|
|
if (eecd & IGC_EECD_GNT)
|
|
break;
|
|
usec_delay(5);
|
|
eecd = IGC_READ_REG(hw, IGC_EECD);
|
|
timeout--;
|
|
}
|
|
|
|
if (!timeout) {
|
|
eecd &= ~IGC_EECD_REQ;
|
|
IGC_WRITE_REG(hw, IGC_EECD, eecd);
|
|
DEBUGOUT("Could not acquire NVM grant\n");
|
|
return -IGC_ERR_NVM;
|
|
}
|
|
|
|
return IGC_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* igc_standby_nvm - Return EEPROM to standby state
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Return the EEPROM to a standby state.
|
|
**/
|
|
static void igc_standby_nvm(struct igc_hw *hw)
|
|
{
|
|
struct igc_nvm_info *nvm = &hw->nvm;
|
|
u32 eecd = IGC_READ_REG(hw, IGC_EECD);
|
|
|
|
DEBUGFUNC("igc_standby_nvm");
|
|
|
|
if (nvm->type == igc_nvm_eeprom_spi) {
|
|
/* Toggle CS to flush commands */
|
|
eecd |= IGC_EECD_CS;
|
|
IGC_WRITE_REG(hw, IGC_EECD, eecd);
|
|
IGC_WRITE_FLUSH(hw);
|
|
usec_delay(nvm->delay_usec);
|
|
eecd &= ~IGC_EECD_CS;
|
|
IGC_WRITE_REG(hw, IGC_EECD, eecd);
|
|
IGC_WRITE_FLUSH(hw);
|
|
usec_delay(nvm->delay_usec);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* igc_stop_nvm - Terminate EEPROM command
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Terminates the current command by inverting the EEPROM's chip select pin.
|
|
**/
|
|
static void igc_stop_nvm(struct igc_hw *hw)
|
|
{
|
|
u32 eecd;
|
|
|
|
DEBUGFUNC("igc_stop_nvm");
|
|
|
|
eecd = IGC_READ_REG(hw, IGC_EECD);
|
|
if (hw->nvm.type == igc_nvm_eeprom_spi) {
|
|
/* Pull CS high */
|
|
eecd |= IGC_EECD_CS;
|
|
igc_lower_eec_clk(hw, &eecd);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* igc_release_nvm_generic - Release exclusive access to EEPROM
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Stop any current commands to the EEPROM and clear the EEPROM request bit.
|
|
**/
|
|
void igc_release_nvm_generic(struct igc_hw *hw)
|
|
{
|
|
u32 eecd;
|
|
|
|
DEBUGFUNC("igc_release_nvm_generic");
|
|
|
|
igc_stop_nvm(hw);
|
|
|
|
eecd = IGC_READ_REG(hw, IGC_EECD);
|
|
eecd &= ~IGC_EECD_REQ;
|
|
IGC_WRITE_REG(hw, IGC_EECD, eecd);
|
|
}
|
|
|
|
/**
|
|
* igc_ready_nvm_eeprom - Prepares EEPROM for read/write
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Setups the EEPROM for reading and writing.
|
|
**/
|
|
static s32 igc_ready_nvm_eeprom(struct igc_hw *hw)
|
|
{
|
|
struct igc_nvm_info *nvm = &hw->nvm;
|
|
u32 eecd = IGC_READ_REG(hw, IGC_EECD);
|
|
u8 spi_stat_reg;
|
|
|
|
DEBUGFUNC("igc_ready_nvm_eeprom");
|
|
|
|
if (nvm->type == igc_nvm_eeprom_spi) {
|
|
u16 timeout = NVM_MAX_RETRY_SPI;
|
|
|
|
/* Clear SK and CS */
|
|
eecd &= ~(IGC_EECD_CS | IGC_EECD_SK);
|
|
IGC_WRITE_REG(hw, IGC_EECD, eecd);
|
|
IGC_WRITE_FLUSH(hw);
|
|
usec_delay(1);
|
|
|
|
/* Read "Status Register" repeatedly until the LSB is cleared.
|
|
* The EEPROM will signal that the command has been completed
|
|
* by clearing bit 0 of the internal status register. If it's
|
|
* not cleared within 'timeout', then error out.
|
|
*/
|
|
while (timeout) {
|
|
igc_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
|
|
hw->nvm.opcode_bits);
|
|
spi_stat_reg = (u8)igc_shift_in_eec_bits(hw, 8);
|
|
if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
|
|
break;
|
|
|
|
usec_delay(5);
|
|
igc_standby_nvm(hw);
|
|
timeout--;
|
|
}
|
|
|
|
if (!timeout) {
|
|
DEBUGOUT("SPI NVM Status error\n");
|
|
return -IGC_ERR_NVM;
|
|
}
|
|
}
|
|
|
|
return IGC_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* igc_read_nvm_eerd - Reads EEPROM using EERD register
|
|
* @hw: pointer to the HW structure
|
|
* @offset: offset of word in the EEPROM to read
|
|
* @words: number of words to read
|
|
* @data: word read from the EEPROM
|
|
*
|
|
* Reads a 16 bit word from the EEPROM using the EERD register.
|
|
**/
|
|
s32 igc_read_nvm_eerd(struct igc_hw *hw, u16 offset, u16 words, u16 *data)
|
|
{
|
|
struct igc_nvm_info *nvm = &hw->nvm;
|
|
u32 i, eerd = 0;
|
|
s32 ret_val = IGC_SUCCESS;
|
|
|
|
DEBUGFUNC("igc_read_nvm_eerd");
|
|
|
|
/* A check for invalid values: offset too large, too many words,
|
|
* too many words for the offset, and not enough words.
|
|
*/
|
|
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
|
|
(words == 0)) {
|
|
DEBUGOUT("nvm parameter(s) out of bounds\n");
|
|
return -IGC_ERR_NVM;
|
|
}
|
|
|
|
for (i = 0; i < words; i++) {
|
|
eerd = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) +
|
|
IGC_NVM_RW_REG_START;
|
|
|
|
IGC_WRITE_REG(hw, IGC_EERD, eerd);
|
|
ret_val = igc_poll_eerd_eewr_done(hw, IGC_NVM_POLL_READ);
|
|
if (ret_val)
|
|
break;
|
|
|
|
data[i] = (IGC_READ_REG(hw, IGC_EERD) >>
|
|
IGC_NVM_RW_REG_DATA);
|
|
}
|
|
|
|
if (ret_val)
|
|
DEBUGOUT1("NVM read error: %d\n", ret_val);
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* igc_write_nvm_spi - Write to EEPROM using SPI
|
|
* @hw: pointer to the HW structure
|
|
* @offset: offset within the EEPROM to be written to
|
|
* @words: number of words to write
|
|
* @data: 16 bit word(s) to be written to the EEPROM
|
|
*
|
|
* Writes data to EEPROM at offset using SPI interface.
|
|
*
|
|
* If igc_update_nvm_checksum is not called after this function , the
|
|
* EEPROM will most likely contain an invalid checksum.
|
|
**/
|
|
s32 igc_write_nvm_spi(struct igc_hw *hw, u16 offset, u16 words, u16 *data)
|
|
{
|
|
struct igc_nvm_info *nvm = &hw->nvm;
|
|
s32 ret_val = -IGC_ERR_NVM;
|
|
u16 widx = 0;
|
|
|
|
DEBUGFUNC("igc_write_nvm_spi");
|
|
|
|
/* A check for invalid values: offset too large, too many words,
|
|
* and not enough words.
|
|
*/
|
|
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
|
|
(words == 0)) {
|
|
DEBUGOUT("nvm parameter(s) out of bounds\n");
|
|
return -IGC_ERR_NVM;
|
|
}
|
|
|
|
while (widx < words) {
|
|
u8 write_opcode = NVM_WRITE_OPCODE_SPI;
|
|
|
|
ret_val = nvm->ops.acquire(hw);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
ret_val = igc_ready_nvm_eeprom(hw);
|
|
if (ret_val) {
|
|
nvm->ops.release(hw);
|
|
return ret_val;
|
|
}
|
|
|
|
igc_standby_nvm(hw);
|
|
|
|
/* Send the WRITE ENABLE command (8 bit opcode) */
|
|
igc_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
|
|
nvm->opcode_bits);
|
|
|
|
igc_standby_nvm(hw);
|
|
|
|
/* Some SPI eeproms use the 8th address bit embedded in the
|
|
* opcode
|
|
*/
|
|
if ((nvm->address_bits == 8) && (offset >= 128))
|
|
write_opcode |= NVM_A8_OPCODE_SPI;
|
|
|
|
/* Send the Write command (8-bit opcode + addr) */
|
|
igc_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
|
|
igc_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
|
|
nvm->address_bits);
|
|
|
|
/* Loop to allow for up to whole page write of eeprom */
|
|
while (widx < words) {
|
|
u16 word_out = data[widx];
|
|
word_out = (word_out >> 8) | (word_out << 8);
|
|
igc_shift_out_eec_bits(hw, word_out, 16);
|
|
widx++;
|
|
|
|
if ((((offset + widx) * 2) % nvm->page_size) == 0) {
|
|
igc_standby_nvm(hw);
|
|
break;
|
|
}
|
|
}
|
|
msec_delay(10);
|
|
nvm->ops.release(hw);
|
|
}
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* igc_read_pba_string_generic - Read device part number
|
|
* @hw: pointer to the HW structure
|
|
* @pba_num: pointer to device part number
|
|
* @pba_num_size: size of part number buffer
|
|
*
|
|
* Reads the product board assembly (PBA) number from the EEPROM and stores
|
|
* the value in pba_num.
|
|
**/
|
|
s32 igc_read_pba_string_generic(struct igc_hw *hw, u8 *pba_num,
|
|
u32 pba_num_size)
|
|
{
|
|
s32 ret_val;
|
|
u16 nvm_data;
|
|
u16 pba_ptr;
|
|
u16 offset;
|
|
u16 length;
|
|
|
|
DEBUGFUNC("igc_read_pba_string_generic");
|
|
|
|
if (pba_num == NULL) {
|
|
DEBUGOUT("PBA string buffer was null\n");
|
|
return -IGC_ERR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
|
|
if (ret_val) {
|
|
DEBUGOUT("NVM Read Error\n");
|
|
return ret_val;
|
|
}
|
|
|
|
ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
|
|
if (ret_val) {
|
|
DEBUGOUT("NVM Read Error\n");
|
|
return ret_val;
|
|
}
|
|
|
|
/* if nvm_data is not ptr guard the PBA must be in legacy format which
|
|
* means pba_ptr is actually our second data word for the PBA number
|
|
* and we can decode it into an ascii string
|
|
*/
|
|
if (nvm_data != NVM_PBA_PTR_GUARD) {
|
|
DEBUGOUT("NVM PBA number is not stored as string\n");
|
|
|
|
/* make sure callers buffer is big enough to store the PBA */
|
|
if (pba_num_size < IGC_PBANUM_LENGTH) {
|
|
DEBUGOUT("PBA string buffer too small\n");
|
|
return IGC_ERR_NO_SPACE;
|
|
}
|
|
|
|
/* extract hex string from data and pba_ptr */
|
|
pba_num[0] = (nvm_data >> 12) & 0xF;
|
|
pba_num[1] = (nvm_data >> 8) & 0xF;
|
|
pba_num[2] = (nvm_data >> 4) & 0xF;
|
|
pba_num[3] = nvm_data & 0xF;
|
|
pba_num[4] = (pba_ptr >> 12) & 0xF;
|
|
pba_num[5] = (pba_ptr >> 8) & 0xF;
|
|
pba_num[6] = '-';
|
|
pba_num[7] = 0;
|
|
pba_num[8] = (pba_ptr >> 4) & 0xF;
|
|
pba_num[9] = pba_ptr & 0xF;
|
|
|
|
/* put a null character on the end of our string */
|
|
pba_num[10] = '\0';
|
|
|
|
/* switch all the data but the '-' to hex char */
|
|
for (offset = 0; offset < 10; offset++) {
|
|
if (pba_num[offset] < 0xA)
|
|
pba_num[offset] += '0';
|
|
else if (pba_num[offset] < 0x10)
|
|
pba_num[offset] += 'A' - 0xA;
|
|
}
|
|
|
|
return IGC_SUCCESS;
|
|
}
|
|
|
|
ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length);
|
|
if (ret_val) {
|
|
DEBUGOUT("NVM Read Error\n");
|
|
return ret_val;
|
|
}
|
|
|
|
if (length == 0xFFFF || length == 0) {
|
|
DEBUGOUT("NVM PBA number section invalid length\n");
|
|
return -IGC_ERR_NVM_PBA_SECTION;
|
|
}
|
|
/* check if pba_num buffer is big enough */
|
|
if (pba_num_size < (((u32)length * 2) - 1)) {
|
|
DEBUGOUT("PBA string buffer too small\n");
|
|
return -IGC_ERR_NO_SPACE;
|
|
}
|
|
|
|
/* trim pba length from start of string */
|
|
pba_ptr++;
|
|
length--;
|
|
|
|
for (offset = 0; offset < length; offset++) {
|
|
ret_val = hw->nvm.ops.read(hw, pba_ptr + offset, 1, &nvm_data);
|
|
if (ret_val) {
|
|
DEBUGOUT("NVM Read Error\n");
|
|
return ret_val;
|
|
}
|
|
pba_num[offset * 2] = (u8)(nvm_data >> 8);
|
|
pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
|
|
}
|
|
pba_num[offset * 2] = '\0';
|
|
|
|
return IGC_SUCCESS;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
* igc_read_mac_addr_generic - Read device MAC address
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Reads the device MAC address from the EEPROM and stores the value.
|
|
* Since devices with two ports use the same EEPROM, we increment the
|
|
* last bit in the MAC address for the second port.
|
|
**/
|
|
s32 igc_read_mac_addr_generic(struct igc_hw *hw)
|
|
{
|
|
u32 rar_high;
|
|
u32 rar_low;
|
|
u16 i;
|
|
|
|
rar_high = IGC_READ_REG(hw, IGC_RAH(0));
|
|
rar_low = IGC_READ_REG(hw, IGC_RAL(0));
|
|
|
|
for (i = 0; i < IGC_RAL_MAC_ADDR_LEN; i++)
|
|
hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
|
|
|
|
for (i = 0; i < IGC_RAH_MAC_ADDR_LEN; i++)
|
|
hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
|
|
|
|
for (i = 0; i < ETH_ADDR_LEN; i++)
|
|
hw->mac.addr[i] = hw->mac.perm_addr[i];
|
|
|
|
return IGC_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* igc_validate_nvm_checksum_generic - Validate EEPROM checksum
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Calculates the EEPROM checksum by reading/adding each word of the EEPROM
|
|
* and then verifies that the sum of the EEPROM is equal to 0xBABA.
|
|
**/
|
|
s32 igc_validate_nvm_checksum_generic(struct igc_hw *hw)
|
|
{
|
|
s32 ret_val;
|
|
u16 checksum = 0;
|
|
u16 i, nvm_data;
|
|
|
|
DEBUGFUNC("igc_validate_nvm_checksum_generic");
|
|
|
|
for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
|
|
ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
|
|
if (ret_val) {
|
|
DEBUGOUT("NVM Read Error\n");
|
|
return ret_val;
|
|
}
|
|
checksum += nvm_data;
|
|
}
|
|
|
|
if (checksum != (u16) NVM_SUM) {
|
|
DEBUGOUT("NVM Checksum Invalid\n");
|
|
return -IGC_ERR_NVM;
|
|
}
|
|
|
|
return IGC_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* igc_update_nvm_checksum_generic - Update EEPROM checksum
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Updates the EEPROM checksum by reading/adding each word of the EEPROM
|
|
* up to the checksum. Then calculates the EEPROM checksum and writes the
|
|
* value to the EEPROM.
|
|
**/
|
|
s32 igc_update_nvm_checksum_generic(struct igc_hw *hw)
|
|
{
|
|
s32 ret_val;
|
|
u16 checksum = 0;
|
|
u16 i, nvm_data;
|
|
|
|
DEBUGFUNC("igc_update_nvm_checksum");
|
|
|
|
for (i = 0; i < NVM_CHECKSUM_REG; i++) {
|
|
ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
|
|
if (ret_val) {
|
|
DEBUGOUT("NVM Read Error while updating checksum.\n");
|
|
return ret_val;
|
|
}
|
|
checksum += nvm_data;
|
|
}
|
|
checksum = (u16) NVM_SUM - checksum;
|
|
ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
|
|
if (ret_val)
|
|
DEBUGOUT("NVM Write Error while updating checksum.\n");
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* igc_reload_nvm_generic - Reloads EEPROM
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
|
|
* extended control register.
|
|
**/
|
|
static void igc_reload_nvm_generic(struct igc_hw *hw)
|
|
{
|
|
u32 ctrl_ext;
|
|
|
|
DEBUGFUNC("igc_reload_nvm_generic");
|
|
|
|
usec_delay(10);
|
|
ctrl_ext = IGC_READ_REG(hw, IGC_CTRL_EXT);
|
|
ctrl_ext |= IGC_CTRL_EXT_EE_RST;
|
|
IGC_WRITE_REG(hw, IGC_CTRL_EXT, ctrl_ext);
|
|
IGC_WRITE_FLUSH(hw);
|
|
}
|
|
|
|
|