61d5ffaf10
issues in these areas: .h's installed .hP's installed -lcurses interaction files needed in ~/legal for copyleft reasons.
289 lines
7.9 KiB
C++
289 lines
7.9 KiB
C++
// This may look like C code, but it is really -*- C++ -*-
|
|
|
|
/*
|
|
Copyright (C) 1988 Free Software Foundation
|
|
written by Doug Lea (dl@rocky.oswego.edu)
|
|
|
|
This file is part of the GNU C++ Library. This library is free
|
|
software; you can redistribute it and/or modify it under the terms of
|
|
the GNU Library General Public License as published by the Free
|
|
Software Foundation; either version 2 of the License, or (at your
|
|
option) any later version. This library is distributed in the hope
|
|
that it will be useful, but WITHOUT ANY WARRANTY; without even the
|
|
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
|
PURPOSE. See the GNU Library General Public License for more details.
|
|
You should have received a copy of the GNU Library General Public
|
|
License along with this library; if not, write to the Free Software
|
|
Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
#ifndef _Rational_h
|
|
#ifdef __GNUG__
|
|
#pragma interface
|
|
#endif
|
|
#define _Rational_h 1
|
|
|
|
#include <Integer.h>
|
|
#include <math.h>
|
|
|
|
class Rational
|
|
{
|
|
protected:
|
|
Integer num;
|
|
Integer den;
|
|
|
|
void normalize();
|
|
|
|
public:
|
|
Rational();
|
|
Rational(double);
|
|
Rational(int n);
|
|
Rational(long n);
|
|
Rational(int n, int d);
|
|
Rational(long n, long d);
|
|
Rational(long n, unsigned long d);
|
|
Rational(unsigned long n, long d);
|
|
Rational(unsigned long n, unsigned long d);
|
|
Rational(const Integer& n);
|
|
Rational(const Integer& n, const Integer& d);
|
|
Rational(const Rational&);
|
|
|
|
~Rational();
|
|
|
|
Rational& operator = (const Rational& y);
|
|
|
|
friend int operator == (const Rational& x, const Rational& y);
|
|
friend int operator != (const Rational& x, const Rational& y);
|
|
friend int operator < (const Rational& x, const Rational& y);
|
|
friend int operator <= (const Rational& x, const Rational& y);
|
|
friend int operator > (const Rational& x, const Rational& y);
|
|
friend int operator >= (const Rational& x, const Rational& y);
|
|
|
|
friend Rational operator + (const Rational& x, const Rational& y);
|
|
friend Rational operator - (const Rational& x, const Rational& y);
|
|
friend Rational operator * (const Rational& x, const Rational& y);
|
|
friend Rational operator / (const Rational& x, const Rational& y);
|
|
|
|
Rational& operator += (const Rational& y);
|
|
Rational& operator -= (const Rational& y);
|
|
Rational& operator *= (const Rational& y);
|
|
Rational& operator /= (const Rational& y);
|
|
|
|
#if defined (__GNUG__) && ! defined (__STRICT_ANSI__)
|
|
friend Rational operator <? (const Rational& x, const Rational& y); // min
|
|
friend Rational operator >? (const Rational& x, const Rational& y); // max
|
|
#endif
|
|
|
|
friend Rational operator - (const Rational& x);
|
|
|
|
|
|
// builtin Rational functions
|
|
|
|
|
|
void negate(); // x = -x
|
|
void invert(); // x = 1/x
|
|
|
|
friend int sign(const Rational& x); // -1, 0, or +1
|
|
friend Rational abs(const Rational& x); // absolute value
|
|
friend Rational sqr(const Rational& x); // square
|
|
friend Rational pow(const Rational& x, long y);
|
|
friend Rational pow(const Rational& x, const Integer& y);
|
|
const Integer& numerator() const;
|
|
const Integer& denominator() const;
|
|
|
|
// coercion & conversion
|
|
|
|
operator double() const;
|
|
friend Integer floor(const Rational& x);
|
|
friend Integer ceil(const Rational& x);
|
|
friend Integer trunc(const Rational& x);
|
|
friend Integer round(const Rational& x);
|
|
|
|
friend istream& operator >> (istream& s, Rational& y);
|
|
friend ostream& operator << (ostream& s, const Rational& y);
|
|
|
|
int fits_in_float() const;
|
|
int fits_in_double() const;
|
|
|
|
// procedural versions of operators
|
|
|
|
friend int compare(const Rational& x, const Rational& y);
|
|
friend void add(const Rational& x, const Rational& y, Rational& dest);
|
|
friend void sub(const Rational& x, const Rational& y, Rational& dest);
|
|
friend void mul(const Rational& x, const Rational& y, Rational& dest);
|
|
friend void div(const Rational& x, const Rational& y, Rational& dest);
|
|
|
|
// error detection
|
|
|
|
void error(const char* msg) const;
|
|
int OK() const;
|
|
|
|
};
|
|
|
|
typedef Rational RatTmp; // backwards compatibility
|
|
|
|
inline Rational::Rational() : num(&_ZeroRep), den(&_OneRep) {}
|
|
inline Rational::~Rational() {}
|
|
|
|
inline Rational::Rational(const Rational& y) :num(y.num), den(y.den) {}
|
|
|
|
inline Rational::Rational(const Integer& n) :num(n), den(&_OneRep) {}
|
|
|
|
inline Rational::Rational(const Integer& n, const Integer& d) :num(n),den(d)
|
|
{
|
|
normalize();
|
|
}
|
|
|
|
inline Rational::Rational(long n) :num(n), den(&_OneRep) { }
|
|
|
|
inline Rational::Rational(int n) :num(n), den(&_OneRep) { }
|
|
|
|
inline Rational::Rational(long n, long d) :num(n), den(d) { normalize(); }
|
|
inline Rational::Rational(int n, int d) :num(n), den(d) { normalize(); }
|
|
inline Rational::Rational(long n, unsigned long d) :num(n), den(d)
|
|
{
|
|
normalize();
|
|
}
|
|
inline Rational::Rational(unsigned long n, long d) :num(n), den(d)
|
|
{
|
|
normalize();
|
|
}
|
|
inline Rational::Rational(unsigned long n, unsigned long d) :num(n), den(d)
|
|
{
|
|
normalize();
|
|
}
|
|
|
|
inline Rational& Rational::operator = (const Rational& y)
|
|
{
|
|
num = y.num; den = y.den;
|
|
return *this;
|
|
}
|
|
|
|
inline int operator == (const Rational& x, const Rational& y)
|
|
{
|
|
return compare(x.num, y.num) == 0 && compare(x.den, y.den) == 0;
|
|
}
|
|
|
|
inline int operator != (const Rational& x, const Rational& y)
|
|
{
|
|
return compare(x.num, y.num) != 0 || compare(x.den, y.den) != 0;
|
|
}
|
|
|
|
inline int operator < (const Rational& x, const Rational& y)
|
|
{
|
|
return compare(x, y) < 0;
|
|
}
|
|
|
|
inline int operator <= (const Rational& x, const Rational& y)
|
|
{
|
|
return compare(x, y) <= 0;
|
|
}
|
|
|
|
inline int operator > (const Rational& x, const Rational& y)
|
|
{
|
|
return compare(x, y) > 0;
|
|
}
|
|
|
|
inline int operator >= (const Rational& x, const Rational& y)
|
|
{
|
|
return compare(x, y) >= 0;
|
|
}
|
|
|
|
inline int sign(const Rational& x)
|
|
{
|
|
return sign(x.num);
|
|
}
|
|
|
|
inline void Rational::negate()
|
|
{
|
|
num.negate();
|
|
}
|
|
|
|
|
|
inline Rational& Rational::operator += (const Rational& y)
|
|
{
|
|
add(*this, y, *this);
|
|
return *this;
|
|
}
|
|
|
|
inline Rational& Rational::operator -= (const Rational& y)
|
|
{
|
|
sub(*this, y, *this);
|
|
return *this;
|
|
}
|
|
|
|
inline Rational& Rational::operator *= (const Rational& y)
|
|
{
|
|
mul(*this, y, *this);
|
|
return *this;
|
|
}
|
|
|
|
inline Rational& Rational::operator /= (const Rational& y)
|
|
{
|
|
div(*this, y, *this);
|
|
return *this;
|
|
}
|
|
|
|
inline const Integer& Rational::numerator() const { return num; }
|
|
inline const Integer& Rational::denominator() const { return den; }
|
|
inline Rational::operator double() const { return ratio(num, den); }
|
|
|
|
#if defined (__GNUG__) && ! defined (__STRICT_ANSI__)
|
|
inline Rational operator <? (const Rational& x, const Rational& y)
|
|
{
|
|
if (compare(x, y) <= 0) return x; else return y;
|
|
}
|
|
|
|
inline Rational operator >? (const Rational& x, const Rational& y)
|
|
{
|
|
if (compare(x, y) >= 0) return x; else return y;
|
|
}
|
|
#endif
|
|
|
|
#if defined(__GNUG__) && !defined(_G_NO_NRV)
|
|
|
|
inline Rational operator + (const Rational& x, const Rational& y) return r
|
|
{
|
|
add(x, y, r);
|
|
}
|
|
|
|
inline Rational operator - (const Rational& x, const Rational& y) return r
|
|
{
|
|
sub(x, y, r);
|
|
}
|
|
|
|
inline Rational operator * (const Rational& x, const Rational& y) return r
|
|
{
|
|
mul(x, y, r);
|
|
}
|
|
|
|
inline Rational operator / (const Rational& x, const Rational& y) return r
|
|
{
|
|
div(x, y, r);
|
|
}
|
|
|
|
#else /* NO_NRV */
|
|
|
|
inline Rational operator + (const Rational& x, const Rational& y)
|
|
{
|
|
Rational r; add(x, y, r); return r;
|
|
}
|
|
|
|
inline Rational operator - (const Rational& x, const Rational& y)
|
|
{
|
|
Rational r; sub(x, y, r); return r;
|
|
}
|
|
|
|
inline Rational operator * (const Rational& x, const Rational& y)
|
|
{
|
|
Rational r; mul(x, y, r); return r;
|
|
}
|
|
|
|
inline Rational operator / (const Rational& x, const Rational& y)
|
|
{
|
|
Rational r; div(x, y, r); return r;
|
|
}
|
|
#endif
|
|
|
|
#endif
|