freebsd-dev/sys/dev/ae/if_ae.c
Pyun YongHyeon fcb1bf4153 Avoid magic constant.
No functional change.
2013-07-17 01:34:25 +00:00

2264 lines
54 KiB
C

/*-
* Copyright (c) 2008 Stanislav Sedov <stas@FreeBSD.org>.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Driver for Attansic Technology Corp. L2 FastEthernet adapter.
*
* This driver is heavily based on age(4) Attansic L1 driver by Pyun YongHyeon.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/rman.h>
#include <sys/module.h>
#include <sys/queue.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <machine/bus.h>
#include "miibus_if.h"
#include "if_aereg.h"
#include "if_aevar.h"
/*
* Devices supported by this driver.
*/
static struct ae_dev {
uint16_t vendorid;
uint16_t deviceid;
const char *name;
} ae_devs[] = {
{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L2,
"Attansic Technology Corp, L2 FastEthernet" },
};
#define AE_DEVS_COUNT (sizeof(ae_devs) / sizeof(*ae_devs))
static struct resource_spec ae_res_spec_mem[] = {
{ SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE },
{ -1, 0, 0 }
};
static struct resource_spec ae_res_spec_irq[] = {
{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
{ -1, 0, 0 }
};
static struct resource_spec ae_res_spec_msi[] = {
{ SYS_RES_IRQ, 1, RF_ACTIVE },
{ -1, 0, 0 }
};
static int ae_probe(device_t dev);
static int ae_attach(device_t dev);
static void ae_pcie_init(ae_softc_t *sc);
static void ae_phy_reset(ae_softc_t *sc);
static void ae_phy_init(ae_softc_t *sc);
static int ae_reset(ae_softc_t *sc);
static void ae_init(void *arg);
static int ae_init_locked(ae_softc_t *sc);
static int ae_detach(device_t dev);
static int ae_miibus_readreg(device_t dev, int phy, int reg);
static int ae_miibus_writereg(device_t dev, int phy, int reg, int val);
static void ae_miibus_statchg(device_t dev);
static void ae_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr);
static int ae_mediachange(struct ifnet *ifp);
static void ae_retrieve_address(ae_softc_t *sc);
static void ae_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs,
int error);
static int ae_alloc_rings(ae_softc_t *sc);
static void ae_dma_free(ae_softc_t *sc);
static int ae_shutdown(device_t dev);
static int ae_suspend(device_t dev);
static void ae_powersave_disable(ae_softc_t *sc);
static void ae_powersave_enable(ae_softc_t *sc);
static int ae_resume(device_t dev);
static unsigned int ae_tx_avail_size(ae_softc_t *sc);
static int ae_encap(ae_softc_t *sc, struct mbuf **m_head);
static void ae_start(struct ifnet *ifp);
static void ae_start_locked(struct ifnet *ifp);
static void ae_link_task(void *arg, int pending);
static void ae_stop_rxmac(ae_softc_t *sc);
static void ae_stop_txmac(ae_softc_t *sc);
static void ae_mac_config(ae_softc_t *sc);
static int ae_intr(void *arg);
static void ae_int_task(void *arg, int pending);
static void ae_tx_intr(ae_softc_t *sc);
static int ae_rxeof(ae_softc_t *sc, ae_rxd_t *rxd);
static void ae_rx_intr(ae_softc_t *sc);
static void ae_watchdog(ae_softc_t *sc);
static void ae_tick(void *arg);
static void ae_rxfilter(ae_softc_t *sc);
static void ae_rxvlan(ae_softc_t *sc);
static int ae_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data);
static void ae_stop(ae_softc_t *sc);
static int ae_check_eeprom_present(ae_softc_t *sc, int *vpdc);
static int ae_vpd_read_word(ae_softc_t *sc, int reg, uint32_t *word);
static int ae_get_vpd_eaddr(ae_softc_t *sc, uint32_t *eaddr);
static int ae_get_reg_eaddr(ae_softc_t *sc, uint32_t *eaddr);
static void ae_update_stats_rx(uint16_t flags, ae_stats_t *stats);
static void ae_update_stats_tx(uint16_t flags, ae_stats_t *stats);
static void ae_init_tunables(ae_softc_t *sc);
static device_method_t ae_methods[] = {
/* Device interface. */
DEVMETHOD(device_probe, ae_probe),
DEVMETHOD(device_attach, ae_attach),
DEVMETHOD(device_detach, ae_detach),
DEVMETHOD(device_shutdown, ae_shutdown),
DEVMETHOD(device_suspend, ae_suspend),
DEVMETHOD(device_resume, ae_resume),
/* MII interface. */
DEVMETHOD(miibus_readreg, ae_miibus_readreg),
DEVMETHOD(miibus_writereg, ae_miibus_writereg),
DEVMETHOD(miibus_statchg, ae_miibus_statchg),
{ NULL, NULL }
};
static driver_t ae_driver = {
"ae",
ae_methods,
sizeof(ae_softc_t)
};
static devclass_t ae_devclass;
DRIVER_MODULE(ae, pci, ae_driver, ae_devclass, 0, 0);
DRIVER_MODULE(miibus, ae, miibus_driver, miibus_devclass, 0, 0);
MODULE_DEPEND(ae, pci, 1, 1, 1);
MODULE_DEPEND(ae, ether, 1, 1, 1);
MODULE_DEPEND(ae, miibus, 1, 1, 1);
/*
* Tunables.
*/
static int msi_disable = 0;
TUNABLE_INT("hw.ae.msi_disable", &msi_disable);
#define AE_READ_4(sc, reg) \
bus_read_4((sc)->mem[0], (reg))
#define AE_READ_2(sc, reg) \
bus_read_2((sc)->mem[0], (reg))
#define AE_READ_1(sc, reg) \
bus_read_1((sc)->mem[0], (reg))
#define AE_WRITE_4(sc, reg, val) \
bus_write_4((sc)->mem[0], (reg), (val))
#define AE_WRITE_2(sc, reg, val) \
bus_write_2((sc)->mem[0], (reg), (val))
#define AE_WRITE_1(sc, reg, val) \
bus_write_1((sc)->mem[0], (reg), (val))
#define AE_PHY_READ(sc, reg) \
ae_miibus_readreg(sc->dev, 0, reg)
#define AE_PHY_WRITE(sc, reg, val) \
ae_miibus_writereg(sc->dev, 0, reg, val)
#define AE_CHECK_EADDR_VALID(eaddr) \
((eaddr[0] == 0 && eaddr[1] == 0) || \
(eaddr[0] == 0xffffffff && eaddr[1] == 0xffff))
#define AE_RXD_VLAN(vtag) \
(((vtag) >> 4) | (((vtag) & 0x07) << 13) | (((vtag) & 0x08) << 9))
#define AE_TXD_VLAN(vtag) \
(((vtag) << 4) | (((vtag) >> 13) & 0x07) | (((vtag) >> 9) & 0x08))
static int
ae_probe(device_t dev)
{
uint16_t deviceid, vendorid;
int i;
vendorid = pci_get_vendor(dev);
deviceid = pci_get_device(dev);
/*
* Search through the list of supported devs for matching one.
*/
for (i = 0; i < AE_DEVS_COUNT; i++) {
if (vendorid == ae_devs[i].vendorid &&
deviceid == ae_devs[i].deviceid) {
device_set_desc(dev, ae_devs[i].name);
return (BUS_PROBE_DEFAULT);
}
}
return (ENXIO);
}
static int
ae_attach(device_t dev)
{
ae_softc_t *sc;
struct ifnet *ifp;
uint8_t chiprev;
uint32_t pcirev;
int nmsi, pmc;
int error;
sc = device_get_softc(dev); /* Automatically allocated and zeroed
on attach. */
KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
sc->dev = dev;
/*
* Initialize mutexes and tasks.
*/
mtx_init(&sc->mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF);
callout_init_mtx(&sc->tick_ch, &sc->mtx, 0);
TASK_INIT(&sc->int_task, 0, ae_int_task, sc);
TASK_INIT(&sc->link_task, 0, ae_link_task, sc);
pci_enable_busmaster(dev); /* Enable bus mastering. */
sc->spec_mem = ae_res_spec_mem;
/*
* Allocate memory-mapped registers.
*/
error = bus_alloc_resources(dev, sc->spec_mem, sc->mem);
if (error != 0) {
device_printf(dev, "could not allocate memory resources.\n");
sc->spec_mem = NULL;
goto fail;
}
/*
* Retrieve PCI and chip revisions.
*/
pcirev = pci_get_revid(dev);
chiprev = (AE_READ_4(sc, AE_MASTER_REG) >> AE_MASTER_REVNUM_SHIFT) &
AE_MASTER_REVNUM_MASK;
if (bootverbose) {
device_printf(dev, "pci device revision: %#04x\n", pcirev);
device_printf(dev, "chip id: %#02x\n", chiprev);
}
nmsi = pci_msi_count(dev);
if (bootverbose)
device_printf(dev, "MSI count: %d.\n", nmsi);
/*
* Allocate interrupt resources.
*/
if (msi_disable == 0 && nmsi == 1) {
error = pci_alloc_msi(dev, &nmsi);
if (error == 0) {
device_printf(dev, "Using MSI messages.\n");
sc->spec_irq = ae_res_spec_msi;
error = bus_alloc_resources(dev, sc->spec_irq, sc->irq);
if (error != 0) {
device_printf(dev, "MSI allocation failed.\n");
sc->spec_irq = NULL;
pci_release_msi(dev);
} else {
sc->flags |= AE_FLAG_MSI;
}
}
}
if (sc->spec_irq == NULL) {
sc->spec_irq = ae_res_spec_irq;
error = bus_alloc_resources(dev, sc->spec_irq, sc->irq);
if (error != 0) {
device_printf(dev, "could not allocate IRQ resources.\n");
sc->spec_irq = NULL;
goto fail;
}
}
ae_init_tunables(sc);
ae_phy_reset(sc); /* Reset PHY. */
error = ae_reset(sc); /* Reset the controller itself. */
if (error != 0)
goto fail;
ae_pcie_init(sc);
ae_retrieve_address(sc); /* Load MAC address. */
error = ae_alloc_rings(sc); /* Allocate ring buffers. */
if (error != 0)
goto fail;
ifp = sc->ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "could not allocate ifnet structure.\n");
error = ENXIO;
goto fail;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = ae_ioctl;
ifp->if_start = ae_start;
ifp->if_init = ae_init;
ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
ifp->if_hwassist = 0;
ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
IFQ_SET_READY(&ifp->if_snd);
if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
ifp->if_capabilities |= IFCAP_WOL_MAGIC;
sc->flags |= AE_FLAG_PMG;
}
ifp->if_capenable = ifp->if_capabilities;
/*
* Configure and attach MII bus.
*/
error = mii_attach(dev, &sc->miibus, ifp, ae_mediachange,
ae_mediastatus, BMSR_DEFCAPMASK, AE_PHYADDR_DEFAULT,
MII_OFFSET_ANY, 0);
if (error != 0) {
device_printf(dev, "attaching PHYs failed\n");
goto fail;
}
ether_ifattach(ifp, sc->eaddr);
/* Tell the upper layer(s) we support long frames. */
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
/*
* Create and run all helper tasks.
*/
sc->tq = taskqueue_create_fast("ae_taskq", M_WAITOK,
taskqueue_thread_enqueue, &sc->tq);
if (sc->tq == NULL) {
device_printf(dev, "could not create taskqueue.\n");
ether_ifdetach(ifp);
error = ENXIO;
goto fail;
}
taskqueue_start_threads(&sc->tq, 1, PI_NET, "%s taskq",
device_get_nameunit(sc->dev));
/*
* Configure interrupt handlers.
*/
error = bus_setup_intr(dev, sc->irq[0], INTR_TYPE_NET | INTR_MPSAFE,
ae_intr, NULL, sc, &sc->intrhand);
if (error != 0) {
device_printf(dev, "could not set up interrupt handler.\n");
taskqueue_free(sc->tq);
sc->tq = NULL;
ether_ifdetach(ifp);
goto fail;
}
fail:
if (error != 0)
ae_detach(dev);
return (error);
}
#define AE_SYSCTL(stx, parent, name, desc, ptr) \
SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, name, CTLFLAG_RD, ptr, 0, desc)
static void
ae_init_tunables(ae_softc_t *sc)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid *root, *stats, *stats_rx, *stats_tx;
struct ae_stats *ae_stats;
KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
ae_stats = &sc->stats;
ctx = device_get_sysctl_ctx(sc->dev);
root = device_get_sysctl_tree(sc->dev);
stats = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(root), OID_AUTO, "stats",
CTLFLAG_RD, NULL, "ae statistics");
/*
* Receiver statistcics.
*/
stats_rx = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(stats), OID_AUTO, "rx",
CTLFLAG_RD, NULL, "Rx MAC statistics");
AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "bcast",
"broadcast frames", &ae_stats->rx_bcast);
AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "mcast",
"multicast frames", &ae_stats->rx_mcast);
AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "pause",
"PAUSE frames", &ae_stats->rx_pause);
AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "control",
"control frames", &ae_stats->rx_ctrl);
AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "crc_errors",
"frames with CRC errors", &ae_stats->rx_crcerr);
AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "code_errors",
"frames with invalid opcode", &ae_stats->rx_codeerr);
AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "runt",
"runt frames", &ae_stats->rx_runt);
AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "frag",
"fragmented frames", &ae_stats->rx_frag);
AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "align_errors",
"frames with alignment errors", &ae_stats->rx_align);
AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "truncated",
"frames truncated due to Rx FIFO inderrun", &ae_stats->rx_trunc);
/*
* Receiver statistcics.
*/
stats_tx = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(stats), OID_AUTO, "tx",
CTLFLAG_RD, NULL, "Tx MAC statistics");
AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "bcast",
"broadcast frames", &ae_stats->tx_bcast);
AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "mcast",
"multicast frames", &ae_stats->tx_mcast);
AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "pause",
"PAUSE frames", &ae_stats->tx_pause);
AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "control",
"control frames", &ae_stats->tx_ctrl);
AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "defers",
"deferrals occuried", &ae_stats->tx_defer);
AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "exc_defers",
"excessive deferrals occuried", &ae_stats->tx_excdefer);
AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "singlecols",
"single collisions occuried", &ae_stats->tx_singlecol);
AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "multicols",
"multiple collisions occuried", &ae_stats->tx_multicol);
AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "latecols",
"late collisions occuried", &ae_stats->tx_latecol);
AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "aborts",
"transmit aborts due collisions", &ae_stats->tx_abortcol);
AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "underruns",
"Tx FIFO underruns", &ae_stats->tx_underrun);
}
static void
ae_pcie_init(ae_softc_t *sc)
{
AE_WRITE_4(sc, AE_PCIE_LTSSM_TESTMODE_REG, AE_PCIE_LTSSM_TESTMODE_DEFAULT);
AE_WRITE_4(sc, AE_PCIE_DLL_TX_CTRL_REG, AE_PCIE_DLL_TX_CTRL_DEFAULT);
}
static void
ae_phy_reset(ae_softc_t *sc)
{
AE_WRITE_4(sc, AE_PHY_ENABLE_REG, AE_PHY_ENABLE);
DELAY(1000); /* XXX: pause(9) ? */
}
static int
ae_reset(ae_softc_t *sc)
{
int i;
/*
* Issue a soft reset.
*/
AE_WRITE_4(sc, AE_MASTER_REG, AE_MASTER_SOFT_RESET);
bus_barrier(sc->mem[0], AE_MASTER_REG, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
/*
* Wait for reset to complete.
*/
for (i = 0; i < AE_RESET_TIMEOUT; i++) {
if ((AE_READ_4(sc, AE_MASTER_REG) & AE_MASTER_SOFT_RESET) == 0)
break;
DELAY(10);
}
if (i == AE_RESET_TIMEOUT) {
device_printf(sc->dev, "reset timeout.\n");
return (ENXIO);
}
/*
* Wait for everything to enter idle state.
*/
for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
if (AE_READ_4(sc, AE_IDLE_REG) == 0)
break;
DELAY(100);
}
if (i == AE_IDLE_TIMEOUT) {
device_printf(sc->dev, "could not enter idle state.\n");
return (ENXIO);
}
return (0);
}
static void
ae_init(void *arg)
{
ae_softc_t *sc;
sc = (ae_softc_t *)arg;
AE_LOCK(sc);
ae_init_locked(sc);
AE_UNLOCK(sc);
}
static void
ae_phy_init(ae_softc_t *sc)
{
/*
* Enable link status change interrupt.
* XXX magic numbers.
*/
#ifdef notyet
AE_PHY_WRITE(sc, 18, 0xc00);
#endif
}
static int
ae_init_locked(ae_softc_t *sc)
{
struct ifnet *ifp;
struct mii_data *mii;
uint8_t eaddr[ETHER_ADDR_LEN];
uint32_t val;
bus_addr_t addr;
AE_LOCK_ASSERT(sc);
ifp = sc->ifp;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
return (0);
mii = device_get_softc(sc->miibus);
ae_stop(sc);
ae_reset(sc);
ae_pcie_init(sc); /* Initialize PCIE stuff. */
ae_phy_init(sc);
ae_powersave_disable(sc);
/*
* Clear and disable interrupts.
*/
AE_WRITE_4(sc, AE_ISR_REG, 0xffffffff);
/*
* Set the MAC address.
*/
bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
val = eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5];
AE_WRITE_4(sc, AE_EADDR0_REG, val);
val = eaddr[0] << 8 | eaddr[1];
AE_WRITE_4(sc, AE_EADDR1_REG, val);
bzero(sc->rxd_base_dma, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING);
bzero(sc->txd_base, AE_TXD_BUFSIZE_DEFAULT);
bzero(sc->txs_base, AE_TXS_COUNT_DEFAULT * 4);
/*
* Set ring buffers base addresses.
*/
addr = sc->dma_rxd_busaddr;
AE_WRITE_4(sc, AE_DESC_ADDR_HI_REG, BUS_ADDR_HI(addr));
AE_WRITE_4(sc, AE_RXD_ADDR_LO_REG, BUS_ADDR_LO(addr));
addr = sc->dma_txd_busaddr;
AE_WRITE_4(sc, AE_TXD_ADDR_LO_REG, BUS_ADDR_LO(addr));
addr = sc->dma_txs_busaddr;
AE_WRITE_4(sc, AE_TXS_ADDR_LO_REG, BUS_ADDR_LO(addr));
/*
* Configure ring buffers sizes.
*/
AE_WRITE_2(sc, AE_RXD_COUNT_REG, AE_RXD_COUNT_DEFAULT);
AE_WRITE_2(sc, AE_TXD_BUFSIZE_REG, AE_TXD_BUFSIZE_DEFAULT / 4);
AE_WRITE_2(sc, AE_TXS_COUNT_REG, AE_TXS_COUNT_DEFAULT);
/*
* Configure interframe gap parameters.
*/
val = ((AE_IFG_TXIPG_DEFAULT << AE_IFG_TXIPG_SHIFT) &
AE_IFG_TXIPG_MASK) |
((AE_IFG_RXIPG_DEFAULT << AE_IFG_RXIPG_SHIFT) &
AE_IFG_RXIPG_MASK) |
((AE_IFG_IPGR1_DEFAULT << AE_IFG_IPGR1_SHIFT) &
AE_IFG_IPGR1_MASK) |
((AE_IFG_IPGR2_DEFAULT << AE_IFG_IPGR2_SHIFT) &
AE_IFG_IPGR2_MASK);
AE_WRITE_4(sc, AE_IFG_REG, val);
/*
* Configure half-duplex operation.
*/
val = ((AE_HDPX_LCOL_DEFAULT << AE_HDPX_LCOL_SHIFT) &
AE_HDPX_LCOL_MASK) |
((AE_HDPX_RETRY_DEFAULT << AE_HDPX_RETRY_SHIFT) &
AE_HDPX_RETRY_MASK) |
((AE_HDPX_ABEBT_DEFAULT << AE_HDPX_ABEBT_SHIFT) &
AE_HDPX_ABEBT_MASK) |
((AE_HDPX_JAMIPG_DEFAULT << AE_HDPX_JAMIPG_SHIFT) &
AE_HDPX_JAMIPG_MASK) | AE_HDPX_EXC_EN;
AE_WRITE_4(sc, AE_HDPX_REG, val);
/*
* Configure interrupt moderate timer.
*/
AE_WRITE_2(sc, AE_IMT_REG, AE_IMT_DEFAULT);
val = AE_READ_4(sc, AE_MASTER_REG);
val |= AE_MASTER_IMT_EN;
AE_WRITE_4(sc, AE_MASTER_REG, val);
/*
* Configure interrupt clearing timer.
*/
AE_WRITE_2(sc, AE_ICT_REG, AE_ICT_DEFAULT);
/*
* Configure MTU.
*/
val = ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
ETHER_CRC_LEN;
AE_WRITE_2(sc, AE_MTU_REG, val);
/*
* Configure cut-through threshold.
*/
AE_WRITE_4(sc, AE_CUT_THRESH_REG, AE_CUT_THRESH_DEFAULT);
/*
* Configure flow control.
*/
AE_WRITE_2(sc, AE_FLOW_THRESH_HI_REG, (AE_RXD_COUNT_DEFAULT / 8) * 7);
AE_WRITE_2(sc, AE_FLOW_THRESH_LO_REG, (AE_RXD_COUNT_MIN / 8) >
(AE_RXD_COUNT_DEFAULT / 12) ? (AE_RXD_COUNT_MIN / 8) :
(AE_RXD_COUNT_DEFAULT / 12));
/*
* Init mailboxes.
*/
sc->txd_cur = sc->rxd_cur = 0;
sc->txs_ack = sc->txd_ack = 0;
sc->rxd_cur = 0;
AE_WRITE_2(sc, AE_MB_TXD_IDX_REG, sc->txd_cur);
AE_WRITE_2(sc, AE_MB_RXD_IDX_REG, sc->rxd_cur);
sc->tx_inproc = 0; /* Number of packets the chip processes now. */
sc->flags |= AE_FLAG_TXAVAIL; /* Free Tx's available. */
/*
* Enable DMA.
*/
AE_WRITE_1(sc, AE_DMAREAD_REG, AE_DMAREAD_EN);
AE_WRITE_1(sc, AE_DMAWRITE_REG, AE_DMAWRITE_EN);
/*
* Check if everything is OK.
*/
val = AE_READ_4(sc, AE_ISR_REG);
if ((val & AE_ISR_PHY_LINKDOWN) != 0) {
device_printf(sc->dev, "Initialization failed.\n");
return (ENXIO);
}
/*
* Clear interrupt status.
*/
AE_WRITE_4(sc, AE_ISR_REG, 0x3fffffff);
AE_WRITE_4(sc, AE_ISR_REG, 0x0);
/*
* Enable interrupts.
*/
val = AE_READ_4(sc, AE_MASTER_REG);
AE_WRITE_4(sc, AE_MASTER_REG, val | AE_MASTER_MANUAL_INT);
AE_WRITE_4(sc, AE_IMR_REG, AE_IMR_DEFAULT);
/*
* Disable WOL.
*/
AE_WRITE_4(sc, AE_WOL_REG, 0);
/*
* Configure MAC.
*/
val = AE_MAC_TX_CRC_EN | AE_MAC_TX_AUTOPAD |
AE_MAC_FULL_DUPLEX | AE_MAC_CLK_PHY |
AE_MAC_TX_FLOW_EN | AE_MAC_RX_FLOW_EN |
((AE_HALFBUF_DEFAULT << AE_HALFBUF_SHIFT) & AE_HALFBUF_MASK) |
((AE_MAC_PREAMBLE_DEFAULT << AE_MAC_PREAMBLE_SHIFT) &
AE_MAC_PREAMBLE_MASK);
AE_WRITE_4(sc, AE_MAC_REG, val);
/*
* Configure Rx MAC.
*/
ae_rxfilter(sc);
ae_rxvlan(sc);
/*
* Enable Tx/Rx.
*/
val = AE_READ_4(sc, AE_MAC_REG);
AE_WRITE_4(sc, AE_MAC_REG, val | AE_MAC_TX_EN | AE_MAC_RX_EN);
sc->flags &= ~AE_FLAG_LINK;
mii_mediachg(mii); /* Switch to the current media. */
callout_reset(&sc->tick_ch, hz, ae_tick, sc);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
#ifdef AE_DEBUG
device_printf(sc->dev, "Initialization complete.\n");
#endif
return (0);
}
static int
ae_detach(device_t dev)
{
struct ae_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
KASSERT(sc != NULL, ("[ae: %d]: sc is NULL", __LINE__));
ifp = sc->ifp;
if (device_is_attached(dev)) {
AE_LOCK(sc);
sc->flags |= AE_FLAG_DETACH;
ae_stop(sc);
AE_UNLOCK(sc);
callout_drain(&sc->tick_ch);
taskqueue_drain(sc->tq, &sc->int_task);
taskqueue_drain(taskqueue_swi, &sc->link_task);
ether_ifdetach(ifp);
}
if (sc->tq != NULL) {
taskqueue_drain(sc->tq, &sc->int_task);
taskqueue_free(sc->tq);
sc->tq = NULL;
}
if (sc->miibus != NULL) {
device_delete_child(dev, sc->miibus);
sc->miibus = NULL;
}
bus_generic_detach(sc->dev);
ae_dma_free(sc);
if (sc->intrhand != NULL) {
bus_teardown_intr(dev, sc->irq[0], sc->intrhand);
sc->intrhand = NULL;
}
if (ifp != NULL) {
if_free(ifp);
sc->ifp = NULL;
}
if (sc->spec_irq != NULL)
bus_release_resources(dev, sc->spec_irq, sc->irq);
if (sc->spec_mem != NULL)
bus_release_resources(dev, sc->spec_mem, sc->mem);
if ((sc->flags & AE_FLAG_MSI) != 0)
pci_release_msi(dev);
mtx_destroy(&sc->mtx);
return (0);
}
static int
ae_miibus_readreg(device_t dev, int phy, int reg)
{
ae_softc_t *sc;
uint32_t val;
int i;
sc = device_get_softc(dev);
KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
/*
* Locking is done in upper layers.
*/
val = ((reg << AE_MDIO_REGADDR_SHIFT) & AE_MDIO_REGADDR_MASK) |
AE_MDIO_START | AE_MDIO_READ | AE_MDIO_SUP_PREAMBLE |
((AE_MDIO_CLK_25_4 << AE_MDIO_CLK_SHIFT) & AE_MDIO_CLK_MASK);
AE_WRITE_4(sc, AE_MDIO_REG, val);
/*
* Wait for operation to complete.
*/
for (i = 0; i < AE_MDIO_TIMEOUT; i++) {
DELAY(2);
val = AE_READ_4(sc, AE_MDIO_REG);
if ((val & (AE_MDIO_START | AE_MDIO_BUSY)) == 0)
break;
}
if (i == AE_MDIO_TIMEOUT) {
device_printf(sc->dev, "phy read timeout: %d.\n", reg);
return (0);
}
return ((val << AE_MDIO_DATA_SHIFT) & AE_MDIO_DATA_MASK);
}
static int
ae_miibus_writereg(device_t dev, int phy, int reg, int val)
{
ae_softc_t *sc;
uint32_t aereg;
int i;
sc = device_get_softc(dev);
KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
/*
* Locking is done in upper layers.
*/
aereg = ((reg << AE_MDIO_REGADDR_SHIFT) & AE_MDIO_REGADDR_MASK) |
AE_MDIO_START | AE_MDIO_SUP_PREAMBLE |
((AE_MDIO_CLK_25_4 << AE_MDIO_CLK_SHIFT) & AE_MDIO_CLK_MASK) |
((val << AE_MDIO_DATA_SHIFT) & AE_MDIO_DATA_MASK);
AE_WRITE_4(sc, AE_MDIO_REG, aereg);
/*
* Wait for operation to complete.
*/
for (i = 0; i < AE_MDIO_TIMEOUT; i++) {
DELAY(2);
aereg = AE_READ_4(sc, AE_MDIO_REG);
if ((aereg & (AE_MDIO_START | AE_MDIO_BUSY)) == 0)
break;
}
if (i == AE_MDIO_TIMEOUT) {
device_printf(sc->dev, "phy write timeout: %d.\n", reg);
}
return (0);
}
static void
ae_miibus_statchg(device_t dev)
{
ae_softc_t *sc;
sc = device_get_softc(dev);
taskqueue_enqueue(taskqueue_swi, &sc->link_task);
}
static void
ae_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
ae_softc_t *sc;
struct mii_data *mii;
sc = ifp->if_softc;
KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
AE_LOCK(sc);
mii = device_get_softc(sc->miibus);
mii_pollstat(mii);
ifmr->ifm_status = mii->mii_media_status;
ifmr->ifm_active = mii->mii_media_active;
AE_UNLOCK(sc);
}
static int
ae_mediachange(struct ifnet *ifp)
{
ae_softc_t *sc;
struct mii_data *mii;
struct mii_softc *mii_sc;
int error;
/* XXX: check IFF_UP ?? */
sc = ifp->if_softc;
KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
AE_LOCK(sc);
mii = device_get_softc(sc->miibus);
LIST_FOREACH(mii_sc, &mii->mii_phys, mii_list)
PHY_RESET(mii_sc);
error = mii_mediachg(mii);
AE_UNLOCK(sc);
return (error);
}
static int
ae_check_eeprom_present(ae_softc_t *sc, int *vpdc)
{
int error;
uint32_t val;
KASSERT(vpdc != NULL, ("[ae, %d]: vpdc is NULL!\n", __LINE__));
/*
* Not sure why, but Linux does this.
*/
val = AE_READ_4(sc, AE_SPICTL_REG);
if ((val & AE_SPICTL_VPD_EN) != 0) {
val &= ~AE_SPICTL_VPD_EN;
AE_WRITE_4(sc, AE_SPICTL_REG, val);
}
error = pci_find_cap(sc->dev, PCIY_VPD, vpdc);
return (error);
}
static int
ae_vpd_read_word(ae_softc_t *sc, int reg, uint32_t *word)
{
uint32_t val;
int i;
AE_WRITE_4(sc, AE_VPD_DATA_REG, 0); /* Clear register value. */
/*
* VPD registers start at offset 0x100. Read them.
*/
val = 0x100 + reg * 4;
AE_WRITE_4(sc, AE_VPD_CAP_REG, (val << AE_VPD_CAP_ADDR_SHIFT) &
AE_VPD_CAP_ADDR_MASK);
for (i = 0; i < AE_VPD_TIMEOUT; i++) {
DELAY(2000);
val = AE_READ_4(sc, AE_VPD_CAP_REG);
if ((val & AE_VPD_CAP_DONE) != 0)
break;
}
if (i == AE_VPD_TIMEOUT) {
device_printf(sc->dev, "timeout reading VPD register %d.\n",
reg);
return (ETIMEDOUT);
}
*word = AE_READ_4(sc, AE_VPD_DATA_REG);
return (0);
}
static int
ae_get_vpd_eaddr(ae_softc_t *sc, uint32_t *eaddr)
{
uint32_t word, reg, val;
int error;
int found;
int vpdc;
int i;
KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
KASSERT(eaddr != NULL, ("[ae, %d]: eaddr is NULL", __LINE__));
/*
* Check for EEPROM.
*/
error = ae_check_eeprom_present(sc, &vpdc);
if (error != 0)
return (error);
/*
* Read the VPD configuration space.
* Each register is prefixed with signature,
* so we can check if it is valid.
*/
for (i = 0, found = 0; i < AE_VPD_NREGS; i++) {
error = ae_vpd_read_word(sc, i, &word);
if (error != 0)
break;
/*
* Check signature.
*/
if ((word & AE_VPD_SIG_MASK) != AE_VPD_SIG)
break;
reg = word >> AE_VPD_REG_SHIFT;
i++; /* Move to the next word. */
if (reg != AE_EADDR0_REG && reg != AE_EADDR1_REG)
continue;
error = ae_vpd_read_word(sc, i, &val);
if (error != 0)
break;
if (reg == AE_EADDR0_REG)
eaddr[0] = val;
else
eaddr[1] = val;
found++;
}
if (found < 2)
return (ENOENT);
eaddr[1] &= 0xffff; /* Only last 2 bytes are used. */
if (AE_CHECK_EADDR_VALID(eaddr) != 0) {
if (bootverbose)
device_printf(sc->dev,
"VPD ethernet address registers are invalid.\n");
return (EINVAL);
}
return (0);
}
static int
ae_get_reg_eaddr(ae_softc_t *sc, uint32_t *eaddr)
{
/*
* BIOS is supposed to set this.
*/
eaddr[0] = AE_READ_4(sc, AE_EADDR0_REG);
eaddr[1] = AE_READ_4(sc, AE_EADDR1_REG);
eaddr[1] &= 0xffff; /* Only last 2 bytes are used. */
if (AE_CHECK_EADDR_VALID(eaddr) != 0) {
if (bootverbose)
device_printf(sc->dev,
"Ethernet address registers are invalid.\n");
return (EINVAL);
}
return (0);
}
static void
ae_retrieve_address(ae_softc_t *sc)
{
uint32_t eaddr[2] = {0, 0};
int error;
/*
*Check for EEPROM.
*/
error = ae_get_vpd_eaddr(sc, eaddr);
if (error != 0)
error = ae_get_reg_eaddr(sc, eaddr);
if (error != 0) {
if (bootverbose)
device_printf(sc->dev,
"Generating random ethernet address.\n");
eaddr[0] = arc4random();
/*
* Set OUI to ASUSTek COMPUTER INC.
*/
sc->eaddr[0] = 0x02; /* U/L bit set. */
sc->eaddr[1] = 0x1f;
sc->eaddr[2] = 0xc6;
sc->eaddr[3] = (eaddr[0] >> 16) & 0xff;
sc->eaddr[4] = (eaddr[0] >> 8) & 0xff;
sc->eaddr[5] = (eaddr[0] >> 0) & 0xff;
} else {
sc->eaddr[0] = (eaddr[1] >> 8) & 0xff;
sc->eaddr[1] = (eaddr[1] >> 0) & 0xff;
sc->eaddr[2] = (eaddr[0] >> 24) & 0xff;
sc->eaddr[3] = (eaddr[0] >> 16) & 0xff;
sc->eaddr[4] = (eaddr[0] >> 8) & 0xff;
sc->eaddr[5] = (eaddr[0] >> 0) & 0xff;
}
}
static void
ae_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
bus_addr_t *addr = arg;
if (error != 0)
return;
KASSERT(nsegs == 1, ("[ae, %d]: %d segments instead of 1!", __LINE__,
nsegs));
*addr = segs[0].ds_addr;
}
static int
ae_alloc_rings(ae_softc_t *sc)
{
bus_addr_t busaddr;
int error;
/*
* Create parent DMA tag.
*/
error = bus_dma_tag_create(bus_get_dma_tag(sc->dev),
1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0,
BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
&sc->dma_parent_tag);
if (error != 0) {
device_printf(sc->dev, "could not creare parent DMA tag.\n");
return (error);
}
/*
* Create DMA tag for TxD.
*/
error = bus_dma_tag_create(sc->dma_parent_tag,
8, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
NULL, NULL, AE_TXD_BUFSIZE_DEFAULT, 1,
AE_TXD_BUFSIZE_DEFAULT, 0, NULL, NULL,
&sc->dma_txd_tag);
if (error != 0) {
device_printf(sc->dev, "could not creare TxD DMA tag.\n");
return (error);
}
/*
* Create DMA tag for TxS.
*/
error = bus_dma_tag_create(sc->dma_parent_tag,
8, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
NULL, NULL, AE_TXS_COUNT_DEFAULT * 4, 1,
AE_TXS_COUNT_DEFAULT * 4, 0, NULL, NULL,
&sc->dma_txs_tag);
if (error != 0) {
device_printf(sc->dev, "could not creare TxS DMA tag.\n");
return (error);
}
/*
* Create DMA tag for RxD.
*/
error = bus_dma_tag_create(sc->dma_parent_tag,
128, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
NULL, NULL, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING, 1,
AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING, 0, NULL, NULL,
&sc->dma_rxd_tag);
if (error != 0) {
device_printf(sc->dev, "could not creare TxS DMA tag.\n");
return (error);
}
/*
* Allocate TxD DMA memory.
*/
error = bus_dmamem_alloc(sc->dma_txd_tag, (void **)&sc->txd_base,
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->dma_txd_map);
if (error != 0) {
device_printf(sc->dev,
"could not allocate DMA memory for TxD ring.\n");
return (error);
}
error = bus_dmamap_load(sc->dma_txd_tag, sc->dma_txd_map, sc->txd_base,
AE_TXD_BUFSIZE_DEFAULT, ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT);
if (error != 0 || busaddr == 0) {
device_printf(sc->dev,
"could not load DMA map for TxD ring.\n");
return (error);
}
sc->dma_txd_busaddr = busaddr;
/*
* Allocate TxS DMA memory.
*/
error = bus_dmamem_alloc(sc->dma_txs_tag, (void **)&sc->txs_base,
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->dma_txs_map);
if (error != 0) {
device_printf(sc->dev,
"could not allocate DMA memory for TxS ring.\n");
return (error);
}
error = bus_dmamap_load(sc->dma_txs_tag, sc->dma_txs_map, sc->txs_base,
AE_TXS_COUNT_DEFAULT * 4, ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT);
if (error != 0 || busaddr == 0) {
device_printf(sc->dev,
"could not load DMA map for TxS ring.\n");
return (error);
}
sc->dma_txs_busaddr = busaddr;
/*
* Allocate RxD DMA memory.
*/
error = bus_dmamem_alloc(sc->dma_rxd_tag, (void **)&sc->rxd_base_dma,
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
&sc->dma_rxd_map);
if (error != 0) {
device_printf(sc->dev,
"could not allocate DMA memory for RxD ring.\n");
return (error);
}
error = bus_dmamap_load(sc->dma_rxd_tag, sc->dma_rxd_map,
sc->rxd_base_dma, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING,
ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT);
if (error != 0 || busaddr == 0) {
device_printf(sc->dev,
"could not load DMA map for RxD ring.\n");
return (error);
}
sc->dma_rxd_busaddr = busaddr + AE_RXD_PADDING;
sc->rxd_base = (ae_rxd_t *)(sc->rxd_base_dma + AE_RXD_PADDING);
return (0);
}
static void
ae_dma_free(ae_softc_t *sc)
{
if (sc->dma_txd_tag != NULL) {
if (sc->dma_txd_map != NULL) {
bus_dmamap_unload(sc->dma_txd_tag, sc->dma_txd_map);
if (sc->txd_base != NULL)
bus_dmamem_free(sc->dma_txd_tag, sc->txd_base,
sc->dma_txd_map);
}
bus_dma_tag_destroy(sc->dma_txd_tag);
sc->dma_txd_map = NULL;
sc->dma_txd_tag = NULL;
sc->txd_base = NULL;
}
if (sc->dma_txs_tag != NULL) {
if (sc->dma_txs_map != NULL) {
bus_dmamap_unload(sc->dma_txs_tag, sc->dma_txs_map);
if (sc->txs_base != NULL)
bus_dmamem_free(sc->dma_txs_tag, sc->txs_base,
sc->dma_txs_map);
}
bus_dma_tag_destroy(sc->dma_txs_tag);
sc->dma_txs_map = NULL;
sc->dma_txs_tag = NULL;
sc->txs_base = NULL;
}
if (sc->dma_rxd_tag != NULL) {
if (sc->dma_rxd_map != NULL) {
bus_dmamap_unload(sc->dma_rxd_tag, sc->dma_rxd_map);
if (sc->rxd_base_dma != NULL)
bus_dmamem_free(sc->dma_rxd_tag,
sc->rxd_base_dma, sc->dma_rxd_map);
}
bus_dma_tag_destroy(sc->dma_rxd_tag);
sc->dma_rxd_map = NULL;
sc->dma_rxd_tag = NULL;
sc->rxd_base_dma = NULL;
}
if (sc->dma_parent_tag != NULL) {
bus_dma_tag_destroy(sc->dma_parent_tag);
sc->dma_parent_tag = NULL;
}
}
static int
ae_shutdown(device_t dev)
{
ae_softc_t *sc;
int error;
sc = device_get_softc(dev);
KASSERT(sc != NULL, ("[ae: %d]: sc is NULL", __LINE__));
error = ae_suspend(dev);
AE_LOCK(sc);
ae_powersave_enable(sc);
AE_UNLOCK(sc);
return (error);
}
static void
ae_powersave_disable(ae_softc_t *sc)
{
uint32_t val;
AE_LOCK_ASSERT(sc);
AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 0);
val = AE_PHY_READ(sc, AE_PHY_DBG_DATA);
if (val & AE_PHY_DBG_POWERSAVE) {
val &= ~AE_PHY_DBG_POWERSAVE;
AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, val);
DELAY(1000);
}
}
static void
ae_powersave_enable(ae_softc_t *sc)
{
uint32_t val;
AE_LOCK_ASSERT(sc);
/*
* XXX magic numbers.
*/
AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 0);
val = AE_PHY_READ(sc, AE_PHY_DBG_DATA);
AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, val | 0x1000);
AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 2);
AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, 0x3000);
AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 3);
AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, 0);
}
static void
ae_pm_init(ae_softc_t *sc)
{
struct ifnet *ifp;
uint32_t val;
uint16_t pmstat;
struct mii_data *mii;
int pmc;
AE_LOCK_ASSERT(sc);
ifp = sc->ifp;
if ((sc->flags & AE_FLAG_PMG) == 0) {
/* Disable WOL entirely. */
AE_WRITE_4(sc, AE_WOL_REG, 0);
return;
}
/*
* Configure WOL if enabled.
*/
if ((ifp->if_capenable & IFCAP_WOL) != 0) {
mii = device_get_softc(sc->miibus);
mii_pollstat(mii);
if ((mii->mii_media_status & IFM_AVALID) != 0 &&
(mii->mii_media_status & IFM_ACTIVE) != 0) {
AE_WRITE_4(sc, AE_WOL_REG, AE_WOL_MAGIC | \
AE_WOL_MAGIC_PME);
/*
* Configure MAC.
*/
val = AE_MAC_RX_EN | AE_MAC_CLK_PHY | \
AE_MAC_TX_CRC_EN | AE_MAC_TX_AUTOPAD | \
((AE_HALFBUF_DEFAULT << AE_HALFBUF_SHIFT) & \
AE_HALFBUF_MASK) | \
((AE_MAC_PREAMBLE_DEFAULT << \
AE_MAC_PREAMBLE_SHIFT) & AE_MAC_PREAMBLE_MASK) | \
AE_MAC_BCAST_EN | AE_MAC_MCAST_EN;
if ((IFM_OPTIONS(mii->mii_media_active) & \
IFM_FDX) != 0)
val |= AE_MAC_FULL_DUPLEX;
AE_WRITE_4(sc, AE_MAC_REG, val);
} else { /* No link. */
AE_WRITE_4(sc, AE_WOL_REG, AE_WOL_LNKCHG | \
AE_WOL_LNKCHG_PME);
AE_WRITE_4(sc, AE_MAC_REG, 0);
}
} else {
ae_powersave_enable(sc);
}
/*
* PCIE hacks. Magic numbers.
*/
val = AE_READ_4(sc, AE_PCIE_PHYMISC_REG);
val |= AE_PCIE_PHYMISC_FORCE_RCV_DET;
AE_WRITE_4(sc, AE_PCIE_PHYMISC_REG, val);
val = AE_READ_4(sc, AE_PCIE_DLL_TX_CTRL_REG);
val |= AE_PCIE_DLL_TX_CTRL_SEL_NOR_CLK;
AE_WRITE_4(sc, AE_PCIE_DLL_TX_CTRL_REG, val);
/*
* Configure PME.
*/
if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
if ((ifp->if_capenable & IFCAP_WOL) != 0)
pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
}
}
static int
ae_suspend(device_t dev)
{
ae_softc_t *sc;
sc = device_get_softc(dev);
AE_LOCK(sc);
ae_stop(sc);
ae_pm_init(sc);
AE_UNLOCK(sc);
return (0);
}
static int
ae_resume(device_t dev)
{
ae_softc_t *sc;
sc = device_get_softc(dev);
KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
AE_LOCK(sc);
AE_READ_4(sc, AE_WOL_REG); /* Clear WOL status. */
if ((sc->ifp->if_flags & IFF_UP) != 0)
ae_init_locked(sc);
AE_UNLOCK(sc);
return (0);
}
static unsigned int
ae_tx_avail_size(ae_softc_t *sc)
{
unsigned int avail;
if (sc->txd_cur >= sc->txd_ack)
avail = AE_TXD_BUFSIZE_DEFAULT - (sc->txd_cur - sc->txd_ack);
else
avail = sc->txd_ack - sc->txd_cur;
return (avail);
}
static int
ae_encap(ae_softc_t *sc, struct mbuf **m_head)
{
struct mbuf *m0;
ae_txd_t *hdr;
unsigned int to_end;
uint16_t len;
AE_LOCK_ASSERT(sc);
m0 = *m_head;
len = m0->m_pkthdr.len;
if ((sc->flags & AE_FLAG_TXAVAIL) == 0 ||
len + sizeof(ae_txd_t) + 3 > ae_tx_avail_size(sc)) {
#ifdef AE_DEBUG
if_printf(sc->ifp, "No free Tx available.\n");
#endif
return ENOBUFS;
}
hdr = (ae_txd_t *)(sc->txd_base + sc->txd_cur);
bzero(hdr, sizeof(*hdr));
/* Skip header size. */
sc->txd_cur = (sc->txd_cur + sizeof(ae_txd_t)) % AE_TXD_BUFSIZE_DEFAULT;
/* Space available to the end of the ring */
to_end = AE_TXD_BUFSIZE_DEFAULT - sc->txd_cur;
if (to_end >= len) {
m_copydata(m0, 0, len, (caddr_t)(sc->txd_base + sc->txd_cur));
} else {
m_copydata(m0, 0, to_end, (caddr_t)(sc->txd_base +
sc->txd_cur));
m_copydata(m0, to_end, len - to_end, (caddr_t)sc->txd_base);
}
/*
* Set TxD flags and parameters.
*/
if ((m0->m_flags & M_VLANTAG) != 0) {
hdr->vlan = htole16(AE_TXD_VLAN(m0->m_pkthdr.ether_vtag));
hdr->len = htole16(len | AE_TXD_INSERT_VTAG);
} else {
hdr->len = htole16(len);
}
/*
* Set current TxD position and round up to a 4-byte boundary.
*/
sc->txd_cur = ((sc->txd_cur + len + 3) & ~3) % AE_TXD_BUFSIZE_DEFAULT;
if (sc->txd_cur == sc->txd_ack)
sc->flags &= ~AE_FLAG_TXAVAIL;
#ifdef AE_DEBUG
if_printf(sc->ifp, "New txd_cur = %d.\n", sc->txd_cur);
#endif
/*
* Update TxS position and check if there are empty TxS available.
*/
sc->txs_base[sc->txs_cur].flags &= ~htole16(AE_TXS_UPDATE);
sc->txs_cur = (sc->txs_cur + 1) % AE_TXS_COUNT_DEFAULT;
if (sc->txs_cur == sc->txs_ack)
sc->flags &= ~AE_FLAG_TXAVAIL;
/*
* Synchronize DMA memory.
*/
bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map, BUS_DMASYNC_PREREAD |
BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
static void
ae_start(struct ifnet *ifp)
{
ae_softc_t *sc;
sc = ifp->if_softc;
AE_LOCK(sc);
ae_start_locked(ifp);
AE_UNLOCK(sc);
}
static void
ae_start_locked(struct ifnet *ifp)
{
ae_softc_t *sc;
unsigned int count;
struct mbuf *m0;
int error;
sc = ifp->if_softc;
KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
AE_LOCK_ASSERT(sc);
#ifdef AE_DEBUG
if_printf(ifp, "Start called.\n");
#endif
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING || (sc->flags & AE_FLAG_LINK) == 0)
return;
count = 0;
while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
if (m0 == NULL)
break; /* Nothing to do. */
error = ae_encap(sc, &m0);
if (error != 0) {
if (m0 != NULL) {
IFQ_DRV_PREPEND(&ifp->if_snd, m0);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
#ifdef AE_DEBUG
if_printf(ifp, "Setting OACTIVE.\n");
#endif
}
break;
}
count++;
sc->tx_inproc++;
/* Bounce a copy of the frame to BPF. */
ETHER_BPF_MTAP(ifp, m0);
m_freem(m0);
}
if (count > 0) { /* Something was dequeued. */
AE_WRITE_2(sc, AE_MB_TXD_IDX_REG, sc->txd_cur / 4);
sc->wd_timer = AE_TX_TIMEOUT; /* Load watchdog. */
#ifdef AE_DEBUG
if_printf(ifp, "%d packets dequeued.\n", count);
if_printf(ifp, "Tx pos now is %d.\n", sc->txd_cur);
#endif
}
}
static void
ae_link_task(void *arg, int pending)
{
ae_softc_t *sc;
struct mii_data *mii;
struct ifnet *ifp;
uint32_t val;
sc = (ae_softc_t *)arg;
KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
AE_LOCK(sc);
ifp = sc->ifp;
mii = device_get_softc(sc->miibus);
if (mii == NULL || ifp == NULL ||
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
AE_UNLOCK(sc); /* XXX: could happen? */
return;
}
sc->flags &= ~AE_FLAG_LINK;
if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
(IFM_AVALID | IFM_ACTIVE)) {
switch(IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
sc->flags |= AE_FLAG_LINK;
break;
default:
break;
}
}
/*
* Stop Rx/Tx MACs.
*/
ae_stop_rxmac(sc);
ae_stop_txmac(sc);
if ((sc->flags & AE_FLAG_LINK) != 0) {
ae_mac_config(sc);
/*
* Restart DMA engines.
*/
AE_WRITE_1(sc, AE_DMAREAD_REG, AE_DMAREAD_EN);
AE_WRITE_1(sc, AE_DMAWRITE_REG, AE_DMAWRITE_EN);
/*
* Enable Rx and Tx MACs.
*/
val = AE_READ_4(sc, AE_MAC_REG);
val |= AE_MAC_TX_EN | AE_MAC_RX_EN;
AE_WRITE_4(sc, AE_MAC_REG, val);
}
AE_UNLOCK(sc);
}
static void
ae_stop_rxmac(ae_softc_t *sc)
{
uint32_t val;
int i;
AE_LOCK_ASSERT(sc);
/*
* Stop Rx MAC engine.
*/
val = AE_READ_4(sc, AE_MAC_REG);
if ((val & AE_MAC_RX_EN) != 0) {
val &= ~AE_MAC_RX_EN;
AE_WRITE_4(sc, AE_MAC_REG, val);
}
/*
* Stop Rx DMA engine.
*/
if (AE_READ_1(sc, AE_DMAWRITE_REG) == AE_DMAWRITE_EN)
AE_WRITE_1(sc, AE_DMAWRITE_REG, 0);
/*
* Wait for IDLE state.
*/
for (i = 0; i < AE_IDLE_TIMEOUT; i--) {
val = AE_READ_4(sc, AE_IDLE_REG);
if ((val & (AE_IDLE_RXMAC | AE_IDLE_DMAWRITE)) == 0)
break;
DELAY(100);
}
if (i == AE_IDLE_TIMEOUT)
device_printf(sc->dev, "timed out while stopping Rx MAC.\n");
}
static void
ae_stop_txmac(ae_softc_t *sc)
{
uint32_t val;
int i;
AE_LOCK_ASSERT(sc);
/*
* Stop Tx MAC engine.
*/
val = AE_READ_4(sc, AE_MAC_REG);
if ((val & AE_MAC_TX_EN) != 0) {
val &= ~AE_MAC_TX_EN;
AE_WRITE_4(sc, AE_MAC_REG, val);
}
/*
* Stop Tx DMA engine.
*/
if (AE_READ_1(sc, AE_DMAREAD_REG) == AE_DMAREAD_EN)
AE_WRITE_1(sc, AE_DMAREAD_REG, 0);
/*
* Wait for IDLE state.
*/
for (i = 0; i < AE_IDLE_TIMEOUT; i--) {
val = AE_READ_4(sc, AE_IDLE_REG);
if ((val & (AE_IDLE_TXMAC | AE_IDLE_DMAREAD)) == 0)
break;
DELAY(100);
}
if (i == AE_IDLE_TIMEOUT)
device_printf(sc->dev, "timed out while stopping Tx MAC.\n");
}
static void
ae_mac_config(ae_softc_t *sc)
{
struct mii_data *mii;
uint32_t val;
AE_LOCK_ASSERT(sc);
mii = device_get_softc(sc->miibus);
val = AE_READ_4(sc, AE_MAC_REG);
val &= ~AE_MAC_FULL_DUPLEX;
/* XXX disable AE_MAC_TX_FLOW_EN? */
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
val |= AE_MAC_FULL_DUPLEX;
AE_WRITE_4(sc, AE_MAC_REG, val);
}
static int
ae_intr(void *arg)
{
ae_softc_t *sc;
uint32_t val;
sc = (ae_softc_t *)arg;
KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__));
val = AE_READ_4(sc, AE_ISR_REG);
if (val == 0 || (val & AE_IMR_DEFAULT) == 0)
return (FILTER_STRAY);
/* Disable interrupts. */
AE_WRITE_4(sc, AE_ISR_REG, AE_ISR_DISABLE);
/* Schedule interrupt processing. */
taskqueue_enqueue(sc->tq, &sc->int_task);
return (FILTER_HANDLED);
}
static void
ae_int_task(void *arg, int pending)
{
ae_softc_t *sc;
struct ifnet *ifp;
uint32_t val;
sc = (ae_softc_t *)arg;
AE_LOCK(sc);
ifp = sc->ifp;
val = AE_READ_4(sc, AE_ISR_REG); /* Read interrupt status. */
if (val == 0) {
AE_UNLOCK(sc);
return;
}
/*
* Clear interrupts and disable them.
*/
AE_WRITE_4(sc, AE_ISR_REG, val | AE_ISR_DISABLE);
#ifdef AE_DEBUG
if_printf(ifp, "Interrupt received: 0x%08x\n", val);
#endif
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
if ((val & (AE_ISR_DMAR_TIMEOUT | AE_ISR_DMAW_TIMEOUT |
AE_ISR_PHY_LINKDOWN)) != 0) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
ae_init_locked(sc);
AE_UNLOCK(sc);
return;
}
if ((val & AE_ISR_TX_EVENT) != 0)
ae_tx_intr(sc);
if ((val & AE_ISR_RX_EVENT) != 0)
ae_rx_intr(sc);
/*
* Re-enable interrupts.
*/
AE_WRITE_4(sc, AE_ISR_REG, 0);
if ((sc->flags & AE_FLAG_TXAVAIL) != 0) {
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
ae_start_locked(ifp);
}
}
AE_UNLOCK(sc);
}
static void
ae_tx_intr(ae_softc_t *sc)
{
struct ifnet *ifp;
ae_txd_t *txd;
ae_txs_t *txs;
uint16_t flags;
AE_LOCK_ASSERT(sc);
ifp = sc->ifp;
#ifdef AE_DEBUG
if_printf(ifp, "Tx interrupt occuried.\n");
#endif
/*
* Syncronize DMA buffers.
*/
bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
for (;;) {
txs = sc->txs_base + sc->txs_ack;
flags = le16toh(txs->flags);
if ((flags & AE_TXS_UPDATE) == 0)
break;
txs->flags = htole16(flags & ~AE_TXS_UPDATE);
/* Update stats. */
ae_update_stats_tx(flags, &sc->stats);
/*
* Update TxS position.
*/
sc->txs_ack = (sc->txs_ack + 1) % AE_TXS_COUNT_DEFAULT;
sc->flags |= AE_FLAG_TXAVAIL;
txd = (ae_txd_t *)(sc->txd_base + sc->txd_ack);
if (txs->len != txd->len)
device_printf(sc->dev, "Size mismatch: TxS:%d TxD:%d\n",
le16toh(txs->len), le16toh(txd->len));
/*
* Move txd ack and align on 4-byte boundary.
*/
sc->txd_ack = ((sc->txd_ack + le16toh(txd->len) +
sizeof(ae_txs_t) + 3) & ~3) % AE_TXD_BUFSIZE_DEFAULT;
if ((flags & AE_TXS_SUCCESS) != 0)
ifp->if_opackets++;
else
ifp->if_oerrors++;
sc->tx_inproc--;
}
if ((sc->flags & AE_FLAG_TXAVAIL) != 0)
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
if (sc->tx_inproc < 0) {
if_printf(ifp, "Received stray Tx interrupt(s).\n");
sc->tx_inproc = 0;
}
if (sc->tx_inproc == 0)
sc->wd_timer = 0; /* Unarm watchdog. */
/*
* Syncronize DMA buffers.
*/
bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static int
ae_rxeof(ae_softc_t *sc, ae_rxd_t *rxd)
{
struct ifnet *ifp;
struct mbuf *m;
unsigned int size;
uint16_t flags;
AE_LOCK_ASSERT(sc);
ifp = sc->ifp;
flags = le16toh(rxd->flags);
#ifdef AE_DEBUG
if_printf(ifp, "Rx interrupt occuried.\n");
#endif
size = le16toh(rxd->len) - ETHER_CRC_LEN;
if (size < (ETHER_MIN_LEN - ETHER_CRC_LEN - ETHER_VLAN_ENCAP_LEN)) {
if_printf(ifp, "Runt frame received.");
return (EIO);
}
m = m_devget(&rxd->data[0], size, ETHER_ALIGN, ifp, NULL);
if (m == NULL)
return (ENOBUFS);
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
(flags & AE_RXD_HAS_VLAN) != 0) {
m->m_pkthdr.ether_vtag = AE_RXD_VLAN(le16toh(rxd->vlan));
m->m_flags |= M_VLANTAG;
}
/*
* Pass it through.
*/
AE_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
AE_LOCK(sc);
return (0);
}
static void
ae_rx_intr(ae_softc_t *sc)
{
ae_rxd_t *rxd;
struct ifnet *ifp;
uint16_t flags;
int count, error;
KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
AE_LOCK_ASSERT(sc);
ifp = sc->ifp;
/*
* Syncronize DMA buffers.
*/
bus_dmamap_sync(sc->dma_rxd_tag, sc->dma_rxd_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
for (count = 0;; count++) {
rxd = (ae_rxd_t *)(sc->rxd_base + sc->rxd_cur);
flags = le16toh(rxd->flags);
if ((flags & AE_RXD_UPDATE) == 0)
break;
rxd->flags = htole16(flags & ~AE_RXD_UPDATE);
/* Update stats. */
ae_update_stats_rx(flags, &sc->stats);
/*
* Update position index.
*/
sc->rxd_cur = (sc->rxd_cur + 1) % AE_RXD_COUNT_DEFAULT;
if ((flags & AE_RXD_SUCCESS) == 0) {
ifp->if_ierrors++;
continue;
}
error = ae_rxeof(sc, rxd);
if (error != 0) {
ifp->if_ierrors++;
continue;
} else {
ifp->if_ipackets++;
}
}
if (count > 0) {
bus_dmamap_sync(sc->dma_rxd_tag, sc->dma_rxd_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/*
* Update Rx index.
*/
AE_WRITE_2(sc, AE_MB_RXD_IDX_REG, sc->rxd_cur);
}
}
static void
ae_watchdog(ae_softc_t *sc)
{
struct ifnet *ifp;
KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
AE_LOCK_ASSERT(sc);
ifp = sc->ifp;
if (sc->wd_timer == 0 || --sc->wd_timer != 0)
return; /* Noting to do. */
if ((sc->flags & AE_FLAG_LINK) == 0)
if_printf(ifp, "watchdog timeout (missed link).\n");
else
if_printf(ifp, "watchdog timeout - resetting.\n");
ifp->if_oerrors++;
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
ae_init_locked(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
ae_start_locked(ifp);
}
static void
ae_tick(void *arg)
{
ae_softc_t *sc;
struct mii_data *mii;
sc = (ae_softc_t *)arg;
KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
AE_LOCK_ASSERT(sc);
mii = device_get_softc(sc->miibus);
mii_tick(mii);
ae_watchdog(sc); /* Watchdog check. */
callout_reset(&sc->tick_ch, hz, ae_tick, sc);
}
static void
ae_rxvlan(ae_softc_t *sc)
{
struct ifnet *ifp;
uint32_t val;
AE_LOCK_ASSERT(sc);
ifp = sc->ifp;
val = AE_READ_4(sc, AE_MAC_REG);
val &= ~AE_MAC_RMVLAN_EN;
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
val |= AE_MAC_RMVLAN_EN;
AE_WRITE_4(sc, AE_MAC_REG, val);
}
static void
ae_rxfilter(ae_softc_t *sc)
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
uint32_t crc;
uint32_t mchash[2];
uint32_t rxcfg;
KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__));
AE_LOCK_ASSERT(sc);
ifp = sc->ifp;
rxcfg = AE_READ_4(sc, AE_MAC_REG);
rxcfg &= ~(AE_MAC_MCAST_EN | AE_MAC_BCAST_EN | AE_MAC_PROMISC_EN);
if ((ifp->if_flags & IFF_BROADCAST) != 0)
rxcfg |= AE_MAC_BCAST_EN;
if ((ifp->if_flags & IFF_PROMISC) != 0)
rxcfg |= AE_MAC_PROMISC_EN;
if ((ifp->if_flags & IFF_ALLMULTI) != 0)
rxcfg |= AE_MAC_MCAST_EN;
/*
* Wipe old settings.
*/
AE_WRITE_4(sc, AE_REG_MHT0, 0);
AE_WRITE_4(sc, AE_REG_MHT1, 0);
if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
AE_WRITE_4(sc, AE_REG_MHT0, 0xffffffff);
AE_WRITE_4(sc, AE_REG_MHT1, 0xffffffff);
AE_WRITE_4(sc, AE_MAC_REG, rxcfg);
return;
}
/*
* Load multicast tables.
*/
bzero(mchash, sizeof(mchash));
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN);
mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
}
if_maddr_runlock(ifp);
AE_WRITE_4(sc, AE_REG_MHT0, mchash[0]);
AE_WRITE_4(sc, AE_REG_MHT1, mchash[1]);
AE_WRITE_4(sc, AE_MAC_REG, rxcfg);
}
static int
ae_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct ae_softc *sc;
struct ifreq *ifr;
struct mii_data *mii;
int error, mask;
sc = ifp->if_softc;
ifr = (struct ifreq *)data;
error = 0;
switch (cmd) {
case SIOCSIFMTU:
if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU)
error = EINVAL;
else if (ifp->if_mtu != ifr->ifr_mtu) {
AE_LOCK(sc);
ifp->if_mtu = ifr->ifr_mtu;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
ae_init_locked(sc);
}
AE_UNLOCK(sc);
}
break;
case SIOCSIFFLAGS:
AE_LOCK(sc);
if ((ifp->if_flags & IFF_UP) != 0) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
if (((ifp->if_flags ^ sc->if_flags)
& (IFF_PROMISC | IFF_ALLMULTI)) != 0)
ae_rxfilter(sc);
} else {
if ((sc->flags & AE_FLAG_DETACH) == 0)
ae_init_locked(sc);
}
} else {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
ae_stop(sc);
}
sc->if_flags = ifp->if_flags;
AE_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
AE_LOCK(sc);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
ae_rxfilter(sc);
AE_UNLOCK(sc);
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
mii = device_get_softc(sc->miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
break;
case SIOCSIFCAP:
AE_LOCK(sc);
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
(ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
ae_rxvlan(sc);
}
VLAN_CAPABILITIES(ifp);
AE_UNLOCK(sc);
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
return (error);
}
static void
ae_stop(ae_softc_t *sc)
{
struct ifnet *ifp;
int i;
AE_LOCK_ASSERT(sc);
ifp = sc->ifp;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
sc->flags &= ~AE_FLAG_LINK;
sc->wd_timer = 0; /* Cancel watchdog. */
callout_stop(&sc->tick_ch);
/*
* Clear and disable interrupts.
*/
AE_WRITE_4(sc, AE_IMR_REG, 0);
AE_WRITE_4(sc, AE_ISR_REG, 0xffffffff);
/*
* Stop Rx/Tx MACs.
*/
ae_stop_txmac(sc);
ae_stop_rxmac(sc);
/*
* Stop DMA engines.
*/
AE_WRITE_1(sc, AE_DMAREAD_REG, ~AE_DMAREAD_EN);
AE_WRITE_1(sc, AE_DMAWRITE_REG, ~AE_DMAWRITE_EN);
/*
* Wait for everything to enter idle state.
*/
for (i = 0; i < AE_IDLE_TIMEOUT; i++) {
if (AE_READ_4(sc, AE_IDLE_REG) == 0)
break;
DELAY(100);
}
if (i == AE_IDLE_TIMEOUT)
device_printf(sc->dev, "could not enter idle state in stop.\n");
}
static void
ae_update_stats_tx(uint16_t flags, ae_stats_t *stats)
{
if ((flags & AE_TXS_BCAST) != 0)
stats->tx_bcast++;
if ((flags & AE_TXS_MCAST) != 0)
stats->tx_mcast++;
if ((flags & AE_TXS_PAUSE) != 0)
stats->tx_pause++;
if ((flags & AE_TXS_CTRL) != 0)
stats->tx_ctrl++;
if ((flags & AE_TXS_DEFER) != 0)
stats->tx_defer++;
if ((flags & AE_TXS_EXCDEFER) != 0)
stats->tx_excdefer++;
if ((flags & AE_TXS_SINGLECOL) != 0)
stats->tx_singlecol++;
if ((flags & AE_TXS_MULTICOL) != 0)
stats->tx_multicol++;
if ((flags & AE_TXS_LATECOL) != 0)
stats->tx_latecol++;
if ((flags & AE_TXS_ABORTCOL) != 0)
stats->tx_abortcol++;
if ((flags & AE_TXS_UNDERRUN) != 0)
stats->tx_underrun++;
}
static void
ae_update_stats_rx(uint16_t flags, ae_stats_t *stats)
{
if ((flags & AE_RXD_BCAST) != 0)
stats->rx_bcast++;
if ((flags & AE_RXD_MCAST) != 0)
stats->rx_mcast++;
if ((flags & AE_RXD_PAUSE) != 0)
stats->rx_pause++;
if ((flags & AE_RXD_CTRL) != 0)
stats->rx_ctrl++;
if ((flags & AE_RXD_CRCERR) != 0)
stats->rx_crcerr++;
if ((flags & AE_RXD_CODEERR) != 0)
stats->rx_codeerr++;
if ((flags & AE_RXD_RUNT) != 0)
stats->rx_runt++;
if ((flags & AE_RXD_FRAG) != 0)
stats->rx_frag++;
if ((flags & AE_RXD_TRUNC) != 0)
stats->rx_trunc++;
if ((flags & AE_RXD_ALIGN) != 0)
stats->rx_align++;
}